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ABSTRACT

We present a novel technique for exercising greater control of the weights of
ReLU activated neural networks to produce more accurate function approxima-
tions. Many theoretical works encode complex operations into ReLU networks
using smaller base components. In these works, a common base component is a
constant width approximation to x2, which has exponentially decaying error with
respect to depth. We extend this block to represent a greater range of convex one-
dimensional functions. We derive a manifold of weights such that the output of
these new networks utilizes exponentially many piecewise-linear segments. This
manifold guides their training process to overcome drawbacks associated with
random initialization and unassisted gradient descent. We train these networks to
approximate functions which do not necessarily lie on the manifold, showing a
significant reduction of error values over conventional approaches.

1 INTRODUCTION

To approximate specific classes of functions, a deep ReLU network may exponentially outperform
a shallow one. They can do so by using the activation function in a manner that generates an
exponential number of linear regions with respect to depth. However, a complete theoretical
understanding of how this may be done in general is lacking, which may hinder approximation
power. For example, Frankle & Carbin (2019) show that up to 90% of neurons may be safely
discarded from a randomly initialized network without affecting accuracy. In a similar vein, Hanin
& Rolnick (2019) bound the usage of ReLU in a randomly initialized network. They prove that
the expected number of constant slope regions does not scale exponentially with depth; rather
it is independent of the configuration of the neurons, and gradient descent was not observed
to significantly improve over the bound. Our work aims to eliminate these inefficiencies in a
one-dimensional setting. We reason about a generalization of an exiting theoretical technique,
using our results to impose an efficient weight structure during training, reducing the reliance
on randomness. While the functions we learn are simple, the key significance of our work is
that it demonstrates how to incorporate theoretical results about function representation to pro-
duce superior training regimes. Our central contribution is the following two part training procedure:

1. First, we initialize the networks onto a manifold of weights which ensures that the output will use
an exponential number of line segments in its approximation. The network is then reparameterized
and trained in terms of the manifold parameters.
2. The underlying weights of the network are freed and trained directly by gradient descent.

Later in section 4.4, we discuss how the number of linear segments used in an approximation is not
a property gradient descent can directly optimize. New “bends” are difficult to discover without
assistance. Our procedure not only initializes networks to efficiently leverage depth from the outset,
but it ensures they continue to do so throughout the training process. At any point in the first
stage manifold, our approximations will use 2<depth> line segments. This process prevents gradient
descent from taking short-sighted decisions which may sacrifice approximation power for near-term
accuracy gains. This reliably produces error values orders of magnitude lower than a traditionally
implemented network of equal size.

1



Under review as a conference paper at ICLR 2023

2 BACKGROUND

2.1 RELATED WORK IN APPROXIMATION

Figure 1: composed triangle waves, approxima-
tion to x2, and the derivative

Infinitely wide neural networks are known to
be universal function approximators, even with
only one hidden layer (Hornik et al., 1989),
(Cybenko, 1989). Infinitely deep networks
of fixed width are universal approximators as
well (Lu et al., 2017), (Hanin, 2019). In finite
cases, the trade-off between width and depth is
often studied. There are functions that can be
represented with a sub-exponential number of
neurons in a deep architecture which require an
exponential number of neurons in a wide and
shallow architecture. For example, Telgarsky
(2015) shows that deep neural networks with
ReLU activations on a one-dimensional input
are able to generate triangle waves with an
exponential number of linear segments (shown
in figure 1 as T(x)). The way this network
functions is as follows: Each layer takes a one
dimensional input on [0, 1], and outputs a one
dimensional signal also on [0, 1]. The function
they produce in isolation is a single symmetric
triangle. Together in a network, each layer
feeds its output to the next, performing function
composition. Since each layer converts converts lines from 0 to 1 into triangles, it doubles the
number of linear segments in its input signal, exponentially scaling with depth. Our networks will
employ a similar strategy to this one, we will allow for the peaks of the individual layers to occur
anywhere on (0, 1) rather than fixing them to be 0.5.

Many papers since have sought to broaden the class of functions that can make exponential use of
depth. Yarotsky (2017) and Liang & Srikant (2016) construct y = x2 on [0, 1] with exponential
accuracy by using triangle waves. To produce their approximation, start with y = x, then subtract
T (x)/4, followed by T (T (x))/16, etc... Figure 1 graphs the convergence of the approximation to
x2 and the convergence of their derivatives. This approximation technique intuitively feels very
fundamental to how ReLU networks operate, so we would like to use modified triangle waves to
generalize it, seeing if it can represent a greater array of one-dimensional convex curves. It is
particularly interesting that the derivative of the y = x2 approximation approaches y = 2x in the
infinite depth limit. This is a sufficient, but not necessary property for convergence to differentiable
functions. We place a particular emphasis on investigating whether this property is important for
ReLU networks when approximating differentiable functions.

Generalizing the x2 approximation is important because it is widely used by other theoretical works
as a building block to guarantee exponential convergence rates in more complex systems. One
possible use case is to construct a multiplication gate. Perekrestenko et al. (2018) does so via the
identity (x + y)2 = x2 + y2 + 2xy. The squared terms can all be moved to one side, expressing
the product as a linear combination of squared terms. They then assemble these gates into an
interpolating polynomial, which can have an exponentially decreasing error when the interpolation
points are chosen to be the Chebychev nodes. But polynomial interpolation does not scale well into
high dimensions, so this and papers with similar approaches will usually come with restrictions
that limit function complexity: Wang et al. (2018) requires low input dimension, Montanelli et al.
(2020) uses band limiting, and Chen et al. (2019) approximates low dimensional manifolds. With
a generalization of the x2 operation, it might be possible to achieve an exponentially decaying
error with depth in one dimension that does not rely on polynomial interpolation. This additional
flexibility might remove the bottleneck into higher dimensions in future works.
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Much work is also focused on showing how ReLU networks can encode and subsequently surpass
traditional approximation methods (Lu et al., 2021), (Daubechies et al., 2022). Interestingly, some of
the themes from above like composition, triangles, or squaring are still present. One other interesting
comparison is to (Ivanova & Kubat, 1995) which uses decision trees as a means to initialize neural
networks. It is a sigmoid/classification analogy to this work, but rather than an attempting to improve
neural networks with decision trees, it is an attempt to improve decision trees with neural networks.

2.2 RELATED WORK IN NETWORK INITIALIZATION

Our work seeks to improve network initialization by making use of explicit theoretical results. This
stands in sharp contrast the current standard approach. Two popular initialization methods imple-
mented in PyTorch are the Kaiming (He et al., 2015) and Xavier initialization (Glorot & Bengio,
2010). They use weight values that are sampled from distributions defined by the input and out-
put dimension of each layer. Aside from suboptimal approximation power associated with random
weights, a common issue is that an entire ReLU network can collapse into outputting a constant
value. This is referred to as the dying ReLU phenomenon. It occurs when the initial weights and
biases cause every neuron in a particular layer to output a negative value. The ReLU activation
then sets the output of that layer to 0, blocking any gradient updates. As depth goes to infinity,
this becomes increasingly likely (Lu, 2020). Several papers propose solutions: Shin & Karniadakis
(2020) uses a data-dependent initialization, while Singh & Sreejith (2021) introduces an alternate
weight distribution called RAAI that can reduce the likelihood of the issue and increase training
speed. We observed during our experiments that this method greatly reduces, but does not eliminate
the likelihood of dying ReLU. Our approach on the other hand is only minimally probabilistic, and
the imposed weight structure prevents collapse in this manner.

3 COMPOSITIONAL NETWORKS

Here we discuss how to deliberately architect the weights of a 4 neuron wide ReLU network to
induce an exponential number of linear segments. Throughout the paper we refer to these as com-
positional networks.

Figure 2: Hidden Layers of Compositional Networks

The subnetwork on the right generates a triangular shaped output. Its maximum output is 1 at the
peak location a ∈ (0, 1). Neuron t1 simply preserves the input signal. Meanwhile t2 is negatively
biased, deactivating it for inputs less than a. Subtracting t2 from t1 changes the slope at the point
where t2 re-activates. The weight −1/(a − a2) = −(1/a + 1/(1 − a)) is picked to completely
negate t1’s influence, and then produce a negative slope. When these components are stacked, the
individual triangles they form will be composed. It can be beneficial in this setting to think about
neurons in terms of their output over the entire input domain [0, 1]. t1 neurons hold triangle waves,
t2 neurons hold an alternating sequence of triangles and inactive regions. This can be seen in Figure
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3. Note how t1 and t2 have identical slopes.

Figure 3: Individual neuron outputs with respect
to network input

The hidden layers in a compositional net-
work consist of four neurons. Two of which
are dedicated to composing triangle waves.
Naively stacking the triangle units from figure
2 together would form a 1 × 2 × 1 × 2 × 1...
shape. Instead, any outgoing weight from
t1 or t2 is shared, every neuron taking in a
triangle wave does so by combining t1 and
t2 in the same proportion. This replicates
a one dimensional output without the use
of extra neurons. The accumulation neuron
passes a weighted sum of all previous triangle
waves through each layer. If this were naively
implemented, it would multiply the t1 and
t2 weights by the sum coefficients. These
coefficients are exponentially decaying, so
learning these weights directly may cause
conditioning issues. Instead, the ratios between the coefficients are distributed amongst all the
weights, so that the outputs of neurons 2 and 3 decay in amplitude in each layer. A conventional bias
will have no connections to prior layers, so it will be unable to adjust to the weight decay. Therefore
a fourth neuron is configured to output a constant signal. Other neurons can then use their con-
nection to it as a bias. This neuron will then connect to itself so that it can scale down with each layer.

The network structure described above is the backbone of our training manifold. Selecting weights
in this manner always creates an exponential number of bends in the model output. By training the
triangle peaks, and the sum coefficients, we can traverse parameter space while maintaining max-
imal ReLU usage. One potential issue with this approach is that summing self-composed triangle
waves with arbitrary scales will most likely produce a fractal curve, which will not usually resem-
ble a differentiable function. We suspect that their inclusion in the training manifold can lead to
many local minima. To address this, we experiment with enforcing that the network output be dif-
ferentiable (were the network extended infinitely). We find that enforcing this additional constraint
helps further steer the training process away from local minima, significantly improving mean error
values.

3.1 REPRESENTING DIFFERENTIABLE FUNCTIONS

In this section we derive a necessary condition for a differentiable model output in the infinite depth
limit. We show that the peak parameters entirely determine the appropriate sum coefficients. In the
appendix we show that this parameter choice is also sufficient if the peak parameters do not approach
0 or 1. To begin we define a triangle function as

Ti(x) =

{
x
ai

0 ≤ x ≤ ai
1− x−ai

1−ai
ai ≤ x ≤ 1

where 0 ≤ ai ≤ 1. This produces a triangular shape with a peak at x = ai and both endpoints at
y = 0. Each layer of the network would compute these if directly fed the input signal. Its derivatives
are the piecewise linear functions:

T ′
i (x) =

{
1
ai

0 < x < ai
1

1−ai
ai < x < 1

(1)

In the actual network, the layers feed into each other, composing the triangle waves:

Wi(x) = ⃝i
j=0Tj(x) = Ti(Ti−1(...T0(x))) (2)
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The primary function of interest represents the output of one of our networks, were it to be infinitely
deep:

F (x) =

∞∑
i=0

siWi(x) (3)

where si are scaling coefficients on each of the composed triangular waveforms Wi. We would like
to select the si based on ai in a manner where the derivative F ′(x) is defined on all of [0, 1] which
can only be done if the left and right hand derivative limits F ′

+(x) and F ′
−(x) agree.

Notationally we will denote the sorted x-locations of the peaks and valleys of W (x) by the lists
Pi = {x : Wi(x) = 1} and Vi = {x : Wi(x) = 0}. We will use the list Bi to reference the
locations of all non-differentiable points, which we refer to as bends. fi(x) =

∑i−1
n=0 snWn(x)

will denote finite depth approximations up to but not including layer i. The error function
Ei(x) =

∑∞
n=i snWn(x) = F (x) − fi(x) to represent the error between the finite approximation

and the infinite depth network.

Figure 4: Triangle functions and composed triangle wave

Figure 4 highlights some important properties (proved later) about composing triangle func-
tions. Peaks alternate with valleys. Peak locations in one layer become valleys in the next, and
valleys persist. To produce Wi, each line segment of Wi−1 becomes a dilated copy of Ti. On
downward slopes, the input to layer i is reversed, so those copies are backwards. Each triangle
function has two distinct slopes 1/ai and −1/(1 − ai) which are dilated by the chain rule during
the composition. Because the triangles are situated back to back, the slopes of Wi on each side
of a valley are proportional. New valleys are scaled by 1/(1−ai), while old ones are scaled by 1/ai.

Next we compute the derivative of the error function E′
i(x) at points in Pi. Notice that the finite

approximation fi(x) is differentiable at x because it excludes layer i by definition. The addition of
Wi is the first time a “gap” opens up at F ′(x), we would like to reason about the outstanding terms
in the sum so that in the limit continuity may be restored.

Lemma 3.1. For any point x ∈ Pi, E′
+(x) and E′

−(x) are proportional to

si −
1

1− ai+1
(si+1 +

∞∑
n=i+2

sn

n∏
k=i+2

1

ak
). (4)

Proof. Let xn be some point in Pi, and let n be its index in any list it appears in. To calculate the
value of E′

+(x) and E′
−(x), we will have to find the slope of the linear intervals to the immediate

left and right of xn for all Wi. The terms in the summation mostly derive from the chain rule.

We will denote W ′
i+(x) and W ′

i−(x) as Rx and Lx. The first term of each sum will be Rxsi or Lxsi.
These are the sizes of the initial discontinuities. The second terms in the sum will be −Rx

si+1

(1−ai+1)

and −Lx
si+1

(1−ai+1)
. We arrive at these by the chain rule, W ′

i+1(x) = T ′
i+1(Wi(x))W

′
i (x). There are

2 different possible slope values of Ti+1, the correct one to use is −1/(1 − ai+1) because xn is a
peak of Wi, so Wi(x) > ai+1 for x ∈ (Bi+1[n− 1], Bi+1[n+ 1]). Note that the second terms have
the opposite sign as the first, shrinking the discontinuities.
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For all remaining terms, since xn was in Pi it is in Vj for j > i. For x ∈ (Bj+1[n−1], Bj+1[n+1]),
Wj(x) < aj+1 and the chain rule applies the first slope 1/aj+1. Since this slope is positive, every
term has the opposite sign as the first, and the discontinuities close monotonically. Summing up all
the terms with the coefficients si, and factoring out Rx and Lx will yield the formula. Since these
initial slopes can factor out of all terms, this equation proportionally describes the behavior of E′(x)
for all x ∈ Pi.

Lemma 3.2. If E′(x) is defined it must be equal to 0

Proof. Let S represent equation 4, and Rx and Lx be the constants of proportionality. If E′
+ = E′

−,
then RxS = LxS for all x ∈ Pi. Since Wi is made of oscillating line segments, Rx and Lx have
opposite signs, and so the only way to satisfy the equation is if S = 0. Consequently, E′(x) = 0 for
all x ∈ Pi.

This lemma shows that the derivative of the finite approximation excluding Wi is the same as that
of the infinite sum.

Lemma 3.3. for all x ∈ Pi:

F ′(x) = f ′
i(x) =

i−1∑
j=0

sjW
′
j(x) (5)

Proof. From the previous lemma we know E′(x) = 0. F (x) =
∑i−1

j=0 sjWj(x) + E(x). The sum
of the first i − 1 terms is differentiable at the points Pi since they lie between the discontinuities at
Bi−1.

Next we prove our main theorem, the idea is that much of the formula for E′(x) will be shared
between two successive generations of peaks. Once they are both valleys they will behave the same,
so the sizes of their remaining discontinuities will need to be proportional.

Theorem 3.4. F ′(x) is continuous only if the scaling coefficients are selected based on ai according
to:

si+1 = si(1− ai+1)ai+2 (6)

Proof. By rewriting equation equation 4 for layers i and i+ 1 in the following way:

si(1− ai+1) = si+1 +
1

ai+2
(si+2 +

∞∑
n=i+3

sn

n∏
k=i+3

1

ak
)

si+1(1− ai+2) = si+2 +

∞∑
n=i+3

sn

n∏
k=i+3

1

ak

allows for a substitution to eliminate the infinite sum

si(1− ai+1) = si+1 +
1− ai+2

ai+2
si+1

collecting all the terms gives

si+1 =
si(1− ai+1)

1 + 1−ai+2

ai+2

which simplifies to the desired result.
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4 EXPERIMENTS

In this section we show how the usage of training manifolds may produce better approximations
to convex functions. Our principal technique takes place in two stages. First, gradient descent
is applied to the parameters which define a compositional network. This produces a better loss
landscape and forces the retention of bends while approaching the target function. Secondly,
standard gradient descent is then used to fine tune the underlying matrix values.

In this section we highlight several important comparisons. To demonstrate the benefits of the
reparameterized loss landscape, we compare our approach against networks that were initialized
onto the differentiable manifold, but then immediately had their raw weights trained. We benchmark
against PyTorch’s default settings (nn.linear() uses Kaiming initialization) as well as the RAAI
distribution from Singh & Sreejith (2021) and produce errors that are orders of magnitude lower
than both. Lastly we compare the differentiable manifold to the manifold where the scaling
parameters are free showing the benefits of differentiability constraints.

4.1 EXPERIMENTAL SETUP

All models are trained using ADAM Kingma & Ba (2017) as the optimizer for 1000 epochs to
ensure convergence. The data are 29 evenly spaced points on the interval [0, 1] for each of the
curves. Each network is four neurons wide with five hidden layers, along with a 1-dimensional
input and output. The loss function used is the mean squared error, the average and minimum loss
are recorded for 30 models of each type. The four curves we approximate are x3, x11, tanh(3x),
and a quarter period of a sine wave. To approximate the sine and the hyperbolic tangent, the triangle
waves are added to the line y = x. For the other approximations, the waves are subtracted. This
requires the first scaling factor to be a0 ∗ a1 instead of (1− a0) ∗ a1.

Although we previously discuss two stages, we technically divide training into three stages to
compare the two possible manifolds. Stage 1 is optimization over the manifold of peak location
parameters a, the scaling coefficients s are constrained such that the model output is differentiable
in the infinite depth limit. Stage 2 allows the scales to decouple from the peaks, but enforces
exponentially many bends. Stage 3 performs gradient descent over the entire set of raw network
parameters. It is possible to transition between all three stages by successively relaxing constraints.
A stage can be bypassed by relaxing constraints without having performed the associated optimiza-
tion. By circumventing training steps, it allows the relative importance of each stage to be assessed.
For example “ Stage 1 and 3” in the tables is training on the differentiable manifold, skipping the
intermediate manifold, and then doing regular gradient descent. All initial peak parameters are
selected from the same random seed, so these comparisons use a common set of starting points.
The models labeled “Free Scale Initialization” deviate slightly from the pattern, they initialize onto
the non-differentiable manifold, and use random values between 0 and 1 as the scales. These are
not deterministically related to the random seed.

4.2 NUMERICAL RESULTS

There are two main trends that emerge in the data. First, the worst performing networks are those that
rely on purely randomized initializations. The act of initializing onto a manifold alone is enough to
make an improvement (shown by stage 3). Training on a manifold leads to a reduction in minimum
error by three orders of magnitude. The second observation is that using the differentiable manifold
not only leads to the highest performing models, but it also closes the gap between the minimum
and mean errors. This indicates that these loss landscapes are indeed the most reliable. When stage
1 is bypassed the min-mean gap rises considerably and the minimum error roughly doubles. Little
changes when stage 2 is bypassed. Doing so can sometimes offer improvements over using all three
training stages. Around half of the default networks collapse, which is a big driver of the poor
average performance. RAAI is able to eliminate most, but not all of the dying ReLU’s due to its
probabilistic nature. These skew its mean error. By skipping the differentiable manifold in stage
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1, the “stage 2 and 3” models find a very suboptimal solution on x3 and x11 for a particular input
that further drags down the average. If training is halted after using the differentiable manifold,
there remains a sizable error reduction which can be achieved by gradient descent. This suggests
that this choice of training manifold is not highly expressive, containing a rather limited selection of
functions.

Table 1: MSE error approximating y = x3 and x11

Network Min x3 Min x11 Mean x3 Mean x11

Default Network 2.11× 10−5 2.19× 10−5 7.20× 10−2 2.82× 10−2

RAAI Distribution 2.14× 10−5 4.40× 10−5 3.97× 10−2 4.12× 10−2

Stage 1 3.41× 10−5 3.31× 10−4 4.32× 10−4 2.65× 10−3

Stage 3 (GD only) 3.42× 10−6 1.86× 10−5 1.68× 10−4 3.56× 10−4

Free Scale Init. 2.55× 10−7 6.82× 10−7 6.81× 10−5 1.38× 10−3

Stage 2 and 3 1.64× 10−7 3.20× 10−6 2.57× 10−2 2.83× 10−1

Stage 1 and 3 7.86× 10−8 9.58× 10−7 6.57× 10−7 5.30× 10−5

All Stages 1.87× 10−7 7.43× 10−7 1.62× 10−6 1.42× 10−5

Table 2: MSE error approximating y = sin(x) and y = tanh(3x)

Network Min sin(x) Min tanh(3x) Mean sin(x) Mean tanh(3x)

Default Network 4.50× 10−5 5.75× 10−5 1.15× 10−1 1.96× 10−1

RAAI Distribution 3.59× 10−5 1.09× 10−5 3.63× 10−2 2.31× 10−2

Stage 1 6.00× 10−6 2.83× 10−5 9.73× 10−5 3.48× 10−4

Stage 3 (GD only) 3.75× 10−7 1.07× 10−6 1.93× 10−5 8.38× 10−5

Free Scale Init. 1.29× 10−7 1.17× 10−7 1.23× 10−4 4.67× 10−4

Stage 2 and 3 6.12× 10−8 1.47× 10−7 9.26× 10−6 1.56× 10−4

Stage 1 and 3 5.06× 10−8 6.82× 10−8 3.14× 10−7 9.58× 10−7

All Stages 3.98× 10−8 1.04× 10−7 1.04× 10−7 2.45× 10−7

4.3 INSIDE THE COMPOSITIONAL NETWORKS

Figure 3 (used earlier) further confirms our suspicion that x3 is not in the differentiable manifold. A
network trained solely on the manifold generates exponentially many bends but cannot place them
freely in optimal locations. This leads to a somewhat wobbly appearance.

Figure 5: Training on differentiable manifold first retains better structure

In figure 5 we compare initialization on the differentiable manifold followed by gradient descent
against training on the manifold first. We observe that without the guidance of the manifold,
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gradient descent usually loses the triangle generating structure around layer 4 or 5, devolving
into noisy patterns. By first using the manifold, effective ReLU usage can be extended to greater
depths (we observed around 6 or 7 layers). Theoretical works often rely on specific constructions
within networks to prove results, but here we observe that gradient descent readily abandons any
such structure in favor of worse models. A theoretical result without a subsequent plan to control
training will likely not succeed. Part of what explains the success of our approach is that we use
unconstrained gradient descent for much less of our traversal of parameter space. If we were to
substitute our training manifold for a more expressive one, it could lessen or possibly eliminate the
gap between the manifold and the target, leading to deeper bend retention.

4.4 INSIDE THE DEFAULT NETWORK

Figure 6: Approximation produced by a default Network

Figure 6 shows the interior of A de-
fault network, unlike in the previous
figures, the layers here are shown
before applying ReLU. The default
networks fail to make efficient use of
ReLU to produce bends, even falling
short of 1 bend per neuron, which can
easily be attained by forming a linear
spline (1 hidden layer) that interpo-
lates some of the data points. Rather
than an exponential efficiency boost,
depth is actually hindering these
networks. Examining the figure,
the first two layers are wasted. No
neuron’s activation pattern crosses
y = 0, so ReLU is never used. Layer
3 could be formed directly from the
input signal. Deeper in the network,
more neurons remain either strictly
positive or negative. Those that intersect y = 0 are monotonic, only able to introduce one bend at
a time. The core issue is that while more bends leads to better accuracy, networks that have few
bends are not locally connected in parameter space to those that have many. This is problematic
since gradients can only carry information about the effects of infinitesimal modifications to
the slope and bias. For a neuron that always outputs a strictly positive value (such as the red
in layer 2), bends cannot be introduced by infinitesimal adjustments. Therefore bend-related
information will be absent from its gradients. If a network ever learns to produce a new bend,
it is due to indirectly related local factors that have incentivized neurons to produce negative outputs.

5 EXTENSIONS

Although this work investigates the simplest class of problems imaginable, there is a great deal of
complexity involved in reasoning about individual neurons in a network and their usage. Whenever
insights into neuron structure become available in higher dimensional problems, this work provides a
blueprint for how to translate those insights into an accompanying training procedure. The success of
our method may indicate that there is a nearby theoretical model which can exponentially converge
to convex functions. With that network, it may be possible to assemble new approximation schemes.
Therefore it is of great theoretical importance to determine whether the eventual loss of bends with
depth is due only to the weakness of gradient descent, or if exponential error decay fundamentally
cannot continue to infinite depth with an architecture similar to this. Lastly, the question of enforcing
differentiability is very interesting. We show here that it is a great way to constrain against “bad”
fractals, but that it limits possible representations. Furthermore, we show in the appendix that a
network with this architecture with a defined second derivative necessarily approximates x2. This
suggests that the approximation power of our networks may be coming from fractal representations
near the differentiable models in parameter space.
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A APPENDIX

A.1 SUFFICIENCY FOR DIFFERENTIABILITY

We can show that in addition to being necessary for continuity of the derivative, our choice of scaling
is sufficient when ai are bounded away from 0 or 1

Theorem A.1. F ′(x) is continuous if we can find c > 0 such that c ≤ ai ≤ 1− c for all i

Proof. We begin by considering equation 4 for layer i.

si =
1

1− ai+1
(si+1 +

∞∑
n=i+2

sn

n∏
k=i+2

1

ak
)

Recall that this equation is telling us about the size of the discontinuities in the derivative as triangle
waves are added. Each time a triangle wave is added, it can be thought of as subtracting the terms
on the right. We will prove our result by substituting equation 6 into this formula, and then verifying
that the resulting equation is valid. First we would like to rewrite each sn in terms of si. equation 6
gives a recurrence relation. Converting it to an explicit representation we have:

sn = si(

n∏
j=i+1

1− aj)(

n+1∏
k=i+2

ak) (7)

When we substitute this into equation 4, three things happen: each term is divisible by si so si
cancels out, every factor in the product except the last cancels, and 1− ai+1 cancels. This leaves

1 = ai+2 + (1− ai+2)ai+3 + (1− ai+2)(1− ai+3)ai+4 + ... =

∞∑
n=i+2

an

n−1∏
m=i+2

(1− am) (8)
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We will now argue that each term of the sum on the right accounts for a fraction (equal to ai) of the
remaining error. Inductively we can show:

1−
j∑

n=i+2

an

n−1∏
m=i+2

(1− am) =

j∏
m=i+2

(1− am) (9)

intuitively this means as long as the first term appearing on the right is repeatedly subtracted, that
term is always equal to an times the left side. As a base case we have (1 − ai+2) = (1 − ai+2).
Assuming the above equation holds for all previous values of j

1−
j+1∑

n=i+2

an

n−1∏
m=i+2

(1− am)) = 1−
j∑

n=i+2

an

n−1∏
m=i+2

(1− am))− aj+1

j∏
m=i+2

(1− am)) =

using the inductive hypothesis to make the substitution

j∏
m=i+2

(1− am))− aj+1

j∏
m=i+2

(1− am)) =

j+1∏
m=i+2

(1− am))

Since all c < ai < 1 − c, the size of the discontinuity at the points Pi is upper bounded and
lower bounded by exponentially decaying series. Since both series approach zero, so does the series
here.

A.2 SECOND DERIVATIVES

Here we show that any function represented by one of these networks that is not y = x2 does not
have a continuous second derivative. To show this we will sample a discrete series of ∆y/∆x values
from F ′(x) and show that the left and right hand limits are not equal (unless ai = 0.5), which will
imply that the continuous version of the limit for the second derivative does not exist. First we will
produce the series of ∆x. Let x be the location of a peak at layer i, and let ln and rn be its immediate
neighbors in Bi+n.

Lemma A.2. If c < ai < 1 − c for all i, we have limn→∞ rn = limn→∞ rn = x. Furthermore,
rn, ln ̸= xn for any finite i.

Proof. Let K be a constant of proportionality for the slopes on the left and right of x in layer
i. These slopes are proportional to 1/ai and 1/(1 − ai) depending on which way the triangle
encompassing x is oriented (W ′

i−1 could have been positive or negative at its location), We will
denote these as 1/L and 1/R and reason about them later. xn is a peak location of Wi, so on the
left side slope is negative and the right is positive. Solving for the location of Ti+1(Wi(x)) = 1 on
each side will give l1 = x− (1− ai+1)L/K and r1 = x+ (1− ai+1)R/K.

On each subsequent iteration i+n, x is a valley point and the ∆x intervals get multiplied by ai+n. x
is a valley point so the left slope is positive and the right is negative, and ln,rn are peak points. The
slope magnitudes are given by 1

x−ln
and 1

rn−x since Ci+n oscillates from 0 to 1 over these spans.
Solving for the new peaks again will give ln+1 = x− ai+1(x− ln) and rn+1 = x+ ai+1(rn − x).
The resulting non-recursive formulas are:

x− ln =
L

K
(1− ai+1)

n∏
m=2

ai+m and rn − x =
R

K
(1− ai+1)

n∏
m=2

ai+m (10)

The right hand sides will never be equal to zero with a finite number of terms since a parameters are
bounded away from 0 and 1 by c.

Next we derive the values of ∆y to complete the proof.

Theorem A.3. A compositional network with a second differentiable output necessarily outputs
y = x2
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Proof. The points ln and rn are all peak locations, equation 5 gives their derivative values as
f ′
i+n(rn). Earlier we reasoned about the sizes of the discontinuities in F ′(x) at x, since ln and rn

always lie on the linear intervals surrounding x as n → ∞, we can get the value of f ′
i(x)−f ′

i+n(rn)
using equation 9 with the initial discontinuity size set to si(K/R) rather than 1. Focusing on the
right hand side we get:

f ′
i(x)− f ′

i+n(rn) = si(K/R)

n∏
m=2

(1− ai+m)

taking ∆y/∆x gives a series:
K2si

R2(1− ai+1)

n∏
m=i+2

1− am
am

The issue which arises is that the derivation on the left is identical, except for a replacement of R by
L. The only way for these formulas to agree then is for R = L which implies ai = 1−ai = 0.5

A.3 ERROR DECAY

Lastly we show that the error of these approximations decays exponentially
Lemma A.4. The ratio si+2/si is at most 0.25

Proof. by applying formula equation 6 twice, we have

si+2 = si(1− ai+1)(1− ai + 2)ai+2ai+3

To maximize si+2 we choose ai+1 = 0 and ai+3 = 1. The quantity ai+2 − a2i+2 is a parabola with
a maximum of 0.25 at ai+2 = 0.5

Lemma A.5. The function F (x) is convex

Proof. To establish this we will introduce the list Y ′
i = [F ′(Vi[0]), f

′
i(Vi[n]), F

′(Vi[2
i]], which

tracks the values of the derivative at the ith set of valley points. All but the first and last points will
have been peaks at some point in their history, so equation 5 gives the value of those derivatives as f ′

i .

We establish an inductive invariant that the y-values in the list Yi remain sorted in descending order,
and that Y ′

i [n] ≥ f ′
i(x) ≥ Y ′

i [n+ 1] for Vi[n] < x < Vi[n+ 1].

Before any of Wi are added, f0 is a line with derivative 0, V0 is its two endpoints. Y ′
0 is positive for

the left endpoint (negative for right) since on the far edges F ′ is a sum of a series of positive (or
negative) slopes, Therefore the points in Y ′ are in descending sorted order. The second part of the
invariant is true since 0 is in between those values.

Consider an arbitrary interval (Vi[n], Vi[n + 1]) of fi, this entire interval is between two valley
points, so f ′

i (which hasn’t added Wi yet) is some constant value in between Y ′
i [n] and Y ′

i [n + 1].
The point x ∈ Pi ∩ (Vi[n], Vi[n + 1]) will have F ′(x) = f ′

i(x), and it will become a member
of Vi+1. This means we will have Yi+1[2n] > Yi+1[2n+1] > Yi+1[2n+2], maintaining sorted order.

Adding siWi takes fi to fi + 1 splitting each constant valued interval in two about the points Pi,
increasing the left side, and decreasing the right side. Recalling from the derivation of equation 4 all
terms but the first in the sum have the same sign, so the values in Y ′

i are approached monotonically.
Therefore on the left interval we have Y ′

i [n] > fi+1 > fi and on the right we have fi > fi+1 >
Y ′
i [n+ 1]. And so fi+1 remains monotone decreasing.

Theorem A.6. The approximation error Ei(x) decays exponentially

Proof. To get this result we apply the previous two lemmas. Since F is convex, it lies above any
line segment connecting any two points on the curve. Wi(x) = 1 for all x ∈ Pi, but Wi(x) = 0
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for points in Vi. Since the bend points are only of nonzero value once, fi(x) = F (x) for all points
in Vi. fi is made of line segments and equals F repeatedly, Ei will be a series of positively valued
curve segments. The derivative will still be decreasing on each of these intervals since it was just
shifted by a constant, and each of these intervals will be convex itself.

Since E′(x) = 0 for x ∈ Pi, these points will be the locations of maximum error. Since they only
have nonzero value in Wi, and E is convex, siWi(x) = max(E) = si. Since si decay exponentially
we have our result.
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