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ABSTRACT

Recurrent Graph Neural Networks are very effective at modeling brain activity,
thanks to their spatial-temporal inductive bias, and they show further capabili-
ties when we apply self-supervised pretraining methods. For instance, they show
improved performances on epileptic-seizure analysis, namely detection and classi-
fication, compared to convolutional and classical recurrent neural networks. Still,
the graphs used by these methods are generally predefined, and often provide little
insight on the task. We build upon current advancements in graph learning for time
series forecasting to propose a novel architecture to learn task-specific networks,
jointly with a self-supervised pretraining strategy. We study the performances of
learned graphs at different scale, by comparing static and dynamic networks, and
illustrate the outstanding performance of our model on epilepsy classification and
detection tasks.

1 INTRODUCTION

Epilepsy affects nearly 50 million people worldwide, according to a|2019|World Health Organization
report (World Health Organization, |2019). It is a cerebral disease consisting of recurrent seizures,
i.e. transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neu-
ronal activity in the brain [Fisher et al| (2005)). It is estimated that only 70% of the people with
epilepsy could live “seizure-free” if properly diagnosed and treated, either through medicine as-
sumption or brain surgery (World Health Organization, [2019). Being able to reliably detect, and if
possible predict, their attacks could improve the life standard of the untreatable subjects.

The main non-intrusive tool used by doctors to monitor the neuronal activity of people with epilepsy
is Electroencephalography [Schomer & da Silva|(2012), which captures neuronal activity with elec-
trodes placed over the scalp. More precisely, we measure voltage fluctuations resulting from ionic
current within neurons, which provide us multiple time series, or channels, which together consti-
tute an electroencephalogram (EEG). Neurologists observe these multivariate signals on a screen,
looking for epileptic patterns and manually annotate onset and termination times of seizures. Fur-
thermore, there are different kinds of seizures, with distinct symptoms, and different patterns and
propagation dynamics.

Reliable and explainable machine learning methods would be greatly beneficial for both doctors and
patients. Automated seizure analysis consists of detection and classification tasks. The objective
of seizure detection is to provide a binary label identifying seizures from regular brain activity (or
background), while seizure classification is a multiclass problem. Still, seizure events are very
sparse over EEG sessions, and the different kinds are generally imbalanced. Therefore, it is critical
to efficiently leverage the large available amount of background signals.

Deep-learning-based approaches are increasingly used in EEG analysis (Roy et al.,|2019), and recent
works show good performances on seizure-related tasks (Nhu et al.| [ 2022; Lee et al.|[2022). Some of
the most successful architectures are convolutional (CNN) and recurrent neural networks (RNNs),
which are designed to work with sequential data. Nonetheless, these methods consider each time
series as independent, and do not leverage the spatial information that is inherent to EEGs, not the
functional connectivity of the brain. Graphs, which are structures that define pairwise relations be-
tween entities, provide a natural representation for the structural or functional dependencies between



Accepted as a Workshop Paper at TS4H @ICLR2024

measured brain areas, and Graph Neural Networks (GNNs) have shown impressive performances on
seizure analysis.

In this study, we focus on the public Temple University Hospital EEG Seizure Corpus (TUSZ)
v1.5.2 (Obeid & Picone, 2016). This dataset consists of over 50000 minutes of EEG signals from
637 patients split in predefined training and test sets. It contains 3050 annotated seizures which
span 6.3% of the training and 9.8% of the test data. We divide seizures in four categories, namely
combined focal (CF), generalized nonspecific (GN), absence (AB), and combined tonic (CT), which
amount respectively to 2165, 523, 99, and 109 events of various durations.

Tang et al.|[(2021) show the potential of Recurrent Graph Neural Networks for analyzing epileptic
seizures over consecutive windows of EEGs signals. In particular, the latent graph representations
learned by a DCRNN model (L1 et al., [2018) greatly improves detection and classification perfor-
mances compared to CNNs and LTSMs, which ignore network structure. Still, their main contribu-
tion lies in the integration of a self-supervised task that uses another DCRNN as a decoder to predict
future EEG signals from the previously cited graph embeddings. This pretraining strategy, com-
bined with specific fine-tuning of the encoding and corresponding classifier block, allows to further
improve the outcome of the downstream tasks, when properly fine-tuned.

Multivariate-time-series forecasting is a common task for recurrent GNNSs, and recent works pro-
posed methods to refine the graph used by the model in a data-driven way. |Shang et al.| (2022)
present a method, called GST, for network inference to improve the forecasting performances of
RGNNs. They learn a parameterized probability distribution over graphs by introducing a differen-
tiable stochastic block. They show some promising experimental results including this block in a
DCRNN, the same architecture used by Tang et al.| (2021). | Xu et al.| (2023) extend the idea of GST
to produce dynamic networks. Instead of learning a single graph for the full dataset, their parame-
terized graph-learning block takes as input the corresponding signals, thus leveraging local temporal
information.

We propose two architectures for seizure analysis, based respectively on static and dynamic graph
learning blocks (Shang et al.} 2022} Xu et al.| [2023)), and study their performances with and without
self-supervised pretraining strategies. In Section [2| we describe the model and its building blocks,
then in Section 3| we present our experimental pipeline and an in-depth ablation study.

2 METHODS

In this Section we describe the building blocks of our model, a Recurrent Graph Neural Network,
whose graph is produced by a learning block which we call Weighted Graph Time Series (WGTS).

2.1 DCGRU AND DCRNN

Li et al.| (2018) proposed a recurrent GNN, called Diffusion Convolutional Recurrent Neural Net-
work (DCRNN), for forecasting on directed graphs. This architecture captures spatial dependencies
using bidirectional random walks on the graph, and temporal dependencies using recurrent units.

DCRNN is a sequence-to-sequence model (Sutskever et al.,|2014), which predicts the following T'
steps from a sequence of graph signals of length T":

(XETHD L xWg) B x| x () g), (M

Its building block is DCGRU, defined on top of the Gated Recurrent Unit (Cho et al.l 2014) (GRU)
by using diffusion convolutions instead of matrix multiplications.

2.2  SELF-SUPERVISED PRETRAINING

Self-supervision is a learning paradigm in which we take a labeled dataset, for which we have a
predefined task that we want to solve, and we define one, or more, tasks intrinsic to the structure
of the data. The goal is to leverage this structure to refine the embeddings of the model, generally
a neural network, in order to get improved performances on the pretext task. More precisely, the
model is designed to have an encoding block and multiple “heads”, one for each task, that can be
trained with their corresponding losses.
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Figure 1: Weighted Graph Time Series (WGTS) model. First row illustrates the structure learning
and graph sampling schemes, corresponding to basic GTS (Shang et al}[2022)). Second row shows
the parrallel blocks that produce edge weights, which are assigned to sampled edges. The final
weighted graph W is then used in a recurrent GNN such as DCRNN for sequence-to-sequence
prediction. Standard WGTS feeds all input data to the sequence extractor, while WGTS Dynamic
receives windowed data, highlighted by the dashed rectangle on the left.

For labeled time series, a natural self-supervised setting is given by forecasting. Classification mod-
els generally work with windowed data, so that the encoding block can be shared by a one-step ahead
forecasting decoder block. [Tang et al. (2021)), for instance, propose a three-headed model from
which perform either of three downstream tasks, namely graph-signals forecasting (self-supervised
pretraining), seizure detection, or seizure classification.

2.3  GRAPH LEARNING BLOCKS

Although|[Tang et al.| (2021)) achieved impressive results with a graph based on the placement of EEG
electrodes on the scalp (10-20 EEG graph), we suppose that task-specific networks should provide
a better inductive bias to our models.

‘We build upon the parameterized sampling scheme from Shang et al.|(2022) to learn edge probabil-
ities. Their method, called Graph Time Series (GTS), defines a parameterized link predictor, which
produces a structure matrix P € [0,1]*% from input data. More precisely, a time convolution
followed by a fully connected layer produces an embedding z; for each channel 7 (feaure extractor);
then a two-layer perceptron takes the concatenation of two vectors z;, z; and gives the correspond-
ing edge probability P;; € [0, 1], for all 4, j € V (link predictor). They obtain the adjacency matrix
W by sampling each edge from a Bernoulli distribution w;; ~ Ber(p;;), and we can back propagate
through this sampling by applying the Gumbel reparameterization trick (Jang et al.,[2017; [Maddison|

et al} 2017).

(2023)), extend the GTS block, by applying it to separate windows, instead of the full time
series, so that it can produce dynamic networks. We will denote this model as GT'S Dynamic.

We design a weighted version of these two GTS blocks, which we denote WGTS. Figure|[T]illustrates
our model, which has two parallel structure learning blocks. The first one produces edges probabil-
ities P; like the original GTS methods, from which we sample the adjacency matrix. The second
learning block produces edge weights W,, which we assign to the corresponding edges, if they are
sampled.

3 EXPERIMENTS

We compare our GTS architecture to the following baselines, of which the first two are not based on
graphs,

* LSTM (Hochreiter & Schmidhuber, [1997), a Long-Short-term memory RNN, with linear
layers in its update blocks;
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Table 1: Performance comparison of our models (marked by *) and benchmarks on seizure classi-
fication (weighted F1 score) and detection (AUROC). For both tasks, higher metrics are better, best
scores are bold and second best are underlined. We report the average and STD test values obtained
across multiple random initializations of each model.

MODEL AND PROPERTIES CLASSIFICATION F1  DETECTION AUROC
CNN-LSTM 0.617 +0.023 0.755 +0.010
LSTM 0.650 +0.080 0.767 +0.026
Dist-DCRNN 0.717 £0.074 0.856 +0.008
Dist-DCRNN + SSL 0.729 +0.023 0.860 +0.015
GTS 0.710 £0.050 0.856 £0.020
*WGTS 0.716 +0.036 0.822 +0.031
*WGTS + dist 0.710 £0.036 0.845 +0.016
*WGTS + SSL 0.762 +0.013 0.847 £0.003
*WGTS + SSL + dist 0.753 +0.035 0.861 +0.013
*WGTS Dynamic 0.737 £0.062 0.843 +0.008
*WGTS Dynamic + dist 0.735 +0.025 0.867 £0.007
*WGTS Dynamic + SSL 0.708 +0.055 0.828 +0.032
*WGTS Dynamic + SSL + dist  0.769 £0.036 0.851 +0.023

e CNN-LSTM (Ahmedt-Aristizabal et al.| [2020), which shares the LSTM recurrent mecha-
nism, but uses convolutional layers in its update blocks;

* Dist-DCRNN (Tang et al.||2021)), a recurrent GNN based on the 10-20 EEG distance graph.

We study the influence of multiple factors in our architecture by ablation. In particular, we focus on
the following properties

* SSL, self-supervised pretraining on one-step ahead forecasting;
* dist, we always include the edges of the 10-20 EEG graph on top of the learned one.

Table [I] shows the average performances of all models on both the seizure classification and the
seizure detection task, averaged over multiple initializations. We train every architecture on the
same standard training set for the TUH dataset, consisting in 592 patients, and compute test scores
on the 45 hold-out patients of the test split.

For both classification and detection, the Dynamic Weighted Graph Structure Learning model ob-
tains the best results, significantly outperforming the baselines on unseen patients. We suppose that
dynamic networks are more relevant than static ones for seizure analysis, since they might better
capture the evolution of anomalous brain activity.

Overall, learning a task-specific graph improves the results when paired with self-supervised pre-
training, or with a meaningful prior, such as the dist graph. WGTS alone performs on par or worse
than baselines, probably due to having many more parameters, but paired with SSL it leverages its
overparameterization by boosting test scores by 0.05 for seizure classification, and 0.02 for detec-
tion.

4 CONCLUSION

We propose a novel self-supervised graph-learning method that significantly improves the analysis
of seizures from brain activity. Our exeriments show that data-driven networks help models to gain
a better inductive bias for the task at hand. Nonetheless, the inclusion of relevant priors plays an
important role in harvesting the model capabilities.

In our experiments, we mainly focused on structural properties of the data, such as including the ge-
ometry of the problem and learning time-varying graphs to capture changing connectivity in epileptic
seizures. Still, we envision that by collaborating with neurologists and physicians we could design
more relevant priors.
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