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Abstract

Augmenting Large Language Models (LLMs) with retrieved external knowledge
has proven effective for improving the factual accuracy of generated responses.
Despite their success, retrieval-augmented LLMs still face the distractibility issue,
where the generated responses are negatively influenced by noise from both external
and internal knowledge sources. In this paper, we introduce a novel, training-
free decoding method guided by entropy considerations to mitigate this issue.
Our approach utilizes entropy-based document-parallel ensemble decoding to
prioritize low-entropy distributions from retrieved documents, thereby enhancing
the extraction of relevant information of context. Additionally, it incorporates a
contrastive decoding mechanism that contrasts the obtained low-entropy ensemble
distribution with the high-entropy distribution derived from the model’s internal
knowledge across layers, which ensures a greater emphasis on reliable external
information. Extensive experiments on open-domain question answering datasets
demonstrate the superiority of our method.

1 Introduction

In recent years, Large language models (LLMs) have revolutionized natural language processing,
showcasing remarkable performance across various downstream tasks [3, 26, 33]. However, they still
struggle with hallucination due to the inaccuracy of parametric memory [4] and inherently tend to
produce outdated information [13]. In contrast, explicitly augmenting LLMs with retrieved external
knowledge from reliable datastores [17, 2] can enable LLMs to generate content that exhibits less
deviation from the truth, and benefit downstream knowledge-intensive tasks [27].

Despite the success of retrieval-augmented LLMs, the augmented generation is still sub-optimal
due to the distractibility issue, where the generated responses are easily negatively affected by
noise from both external knowledge and intrinsic model knowledge. As for the input context,
LLMs’ understanding of context can be explicitly distracted by irrelevant parts within the retrieved
context [30]. A typical illustrative case is the “lost in the middle” distraction phenomenon observed
in the synthetic multi-document question-answering scenario [22, 28], where the oracle document
containing the correct answer is encircled by numerous retrieved distracting documents. In this
scenario, LLMs frequently fail to deliver the correct answer unless the oracle document is strategically
placed at the very beginning or end of the context. With regard to intrinsic knowledge, LLMs are
easily implicitly distracted by the parametric knowledge acquired during pre-training. This is in
conflict with retrieval-augmented generation which is expected to generate responses based on reliable
retrieved context. Particularly in the domain of question answering, previous works [23, 37] show that
LLMs stubbornly adhere to their built-in knowledge even when it conflicts with external knowledge.

How to eliminate the impact of the above-mentioned distractibility issue, so as to extract useful
knowledge from the retrieved context for the input query, is our research focus. Although existing
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works strive to effectively leverage the retrieved context by directly fine-tuning retrieval-augmented
LLMs [20, 39] or incorporating trainable encoder modules [9, 38], these approaches require additional
training, rendering them potentially impractical in resource-constrained environments. In this paper,
we propose a novel decoding method guided by entropy considerations to simultaneously mitigate the
impact of noisy information from both the external context and parametric knowledge. The proposed
method can be seamlessly integrated into LLMs without requiring additional tuning.

Specifically, to enhance LLMs’ ability to extract useful information from multiple retrieved doc-
uments, we let LLMs process each retrieved document in parallel and ensemble of the output
distributions from each document to determine the next-token distribution, with the ensemble weights
adaptively assigned based on the uncertainty of each document-conditioned distribution. At each
generation step, documents with lower uncertainty (i.e., lower entropy) in the LLM output are given
more attention during decoding. Ultimately, we obtain a low-entropy distribution aggregated among
documents. Furthermore, to alleviate the potential distraction from parametric knowledge, we refine
the next-token distribution by contrasting the obtained low-entropy distribution when feeding the
retrieved documents, against the distribution without context. Here, we propose to use the distribution
from the layer exhibiting the highest entropy without context for contrast, in order to highlight the
proportional changes in token probabilities after introducing external knowledge.

The proposed decoding method shows an impressive performance in the synthetic challenging multi-
document scenario [22] where the negative impact of retrieved distractor documents is emphasized.
We further conduct extensive experiments across four LLMs of varying sizes on four diverse open-
domain question answering tasks including NQ [14], TriviaQA [11], WebQ [1] and PopQA [24].
Experimental results confirm the superiority of our methods and validate the effectiveness of each
component.

2 Methodology
Given an input query x, RAG first retrieves top-K relevant documents D := {d1, d2, . . . , dK} from
the knowledge base via a retriever as external evidence, which is then incorporated with the query as
the input to large language model parametrized by θ for generating a faithful response y. A common
approach, termed as “NAIVE RAG”, involves concatenating the query x, the previously generated
response y<t, and the retrieved documents D as the input sequence, resulting in the following
decoding method pθ(yt|D,x, y<t) = p(yt|d0 ◦ · · · ◦ dk ◦x ◦ y<t), where ◦ denotes the concatenation
operation. Although this method performs well, Liu et al. [22] point out its vulnerability to the "lost
in the middle" phenomenon, where LLMs may miss the key document among others unless it’s
positioned at the start or end of the input. Moreover, this simple approach does not consider the
potential negative effects of the underlying parametric knowledge of LLMs. Moreover, this simple
approach does not consider the potential negative effects of the underlying parametric knowledge of
LLMs. In the subsequent sections, we discuss mitigating these two issues by entropy considerations.

2.1 Entropy-Based Document Ensemble
Instead of naively concatenating the documents D, we propose to alleviate the “loss in the middle”
issue using the product-of-experts2 ensemble approach [8]. Specifically, we model the log proba-
bility of the next-token distribution as log pθ (yt | D) ∝

∑K
j=1 wj,t log pθ (yt | dj ◦ x ◦ y<t) where∑

j wj,t = 1,∀t, pθ(yt|D,x, y<t) is denoted as pθ(yt|D) for short and wj,t denotes the weight of
the j-th document on generating the token at the t-th time step. Each document in D is concatenated
with the query and the previously generated response. This combined input is then individually
fed into the LLM. The output logit scores are subsequently averaged using the weights wj,t. This
ensemble approach, which leverages parallel decoding, helps mitigate position bias and provides a
more effective means of utilizing the retrieved documents.

There are multiple choices to compute the weights. A straightforward option is to use uniform
weighting, i.e., wj,t =

1
|D| . However, this method may fail to effectively extract valuable information

when irrelevant documents are included among the top-K retrieved documents. Another option is
to utilize a similarity score s(dj , x) between the query and the retrieved document, e.g., BM25, as
the time-independent ensemble weights wj,t ∝ s(dj , x) [17]. However, this retriever-based scoring
approach can impair the LLM’s ability to extract relevant information amid many distractors. We
suggest that the uncertainty in the next-token distribution naturally indicates the informativeness of the

2Empirically, we find that product-of-experts and mixture-of-experts methods yield similar performance.
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retrieved documents. Similar concepts have been employed in previous work to reduce hallucinations
in LLMs [34, 35]. Consequently, we propose using an entropy-based score wH

j,t as the preference
weight for each document at each decoding step:

wH
j,t =

exp(−Hj,t)/τ∑
dk∈D exp(−Hj,t)/τ

, Hj,t = −
∑
yt∈V

pθ(yt|dj) log pθ(yt|dj), (1)

where pθ(yt|dj) denotes pθ(yt|dj ◦x◦y<t) for short, V represents the vocabulary set and τ is a
hyper-parameter controlling the concentration level of distributions. The motivation behind Eq. (1) is
that the LLM can autonomously evaluate the significance of each document during the generation
process. Intuitively, it implies that those document-conditioned distributions with lower uncertainty
will be assigned higher weights. Such a time-dependent approach can effectively capture useful
information from the retrieved documents at each generation step, thereby influencing the generation
process more significantly. We refer to this method as LeEns (Low-entropy Ensemble).

2.2 Entropy-Based Contrastive Decoding

While LeEns can effectively help LLMs discern valuable evidence from external knowledge, the
parametric knowledge of LLMs embedded during the pre-training phase might affect the answer
generation, especially when these two types of knowledge conflict [23, 37]. In this section, we
propose to address this issue via entropy-based contrastive decoding.

Contrastive Decoding with PMI. Inspired by the success in contrastive decoding to mitigate
hallucination of LLMs [31, 19], we adjust the logit score zt for the generated token yt ∈ V at the t-th
time step by incorporating the pointwise mutual information (PMI) between yt and the document set
D, given the query x:

zt = log pH
θ(yt|D) + β

PMI︷ ︸︸ ︷
log

pH
θ(yt|D)

pθ(yt|x, y<t)
=(1+β) log pH

θ(yt|D)−β log pθ(yt|x, y<t), (2)

where β is a positive coefficient controlling the contrast intensity, and pH
θ(yt|D) denotes the previously

proposed entropy-based document ensemble distribution. Intuitively, PMI serves as a measurement
of information gains. The model tends to generate tokens with a high probability of pH

θ(yt|D) and a
low probability of pθ(yt|x, y<t). These tokens provide greater information gain for the next token
generation. Therefore, incorporating PMI can enhance the model’s reliance on external knowledge.

Layer-wise Contrast with High Entropy. To perform contrastive decoding, it is necessary to
compute pθ(yt|x, y<t). This can be achieved by taking the hidden states from the last layer of LLMs
and passing them through the classification head. However, the distribution derived from the last
layer may exhibit overconfidence, characterized by extremely low probabilities for most words and
disproportionately high probabilities for a few. Such overconfidence can erroneously amplify external
knowledge when conducting contrasting, potentially leading to false positive failures, as illustrated in
Figure 4 in the Appendix. To address this issue, we propose selecting the layer that contains the most
“ambiguous” parametric knowledge among the layers as a proper reference for contrast. This allows
the model to more effectively leverage external knowledge, reducing overconfidence and improving
the accuracy of the generated outputs. Specifically, for a LLM consisting of a total of L layers, we
denote the probability for yt ∈ V in the l-th layer as plθ(yt|x, y<t) = softmax(WLMh

l
t−1), where

hl
t−1 denotes the hidden state for layer l out of L, and WLM denotes the linear classification head. At

each decoding step, we select the layer with the maximum uncertainty for contrast:

l∗ = argmax
l∈L

H l
t , H l

t = −
∑
yt∈V

plθ(yt|x, y<t) log p
l
θ(yt|x, y<t), (3)

where L is the set of candidate layers, which are set as the last few layers of LLMs practically to
ensure that each of them contains certain plausible information. The dynamic strategy in Eq. 3
resembles that of DoLa [5], with the key distinction being the adoption of uncertainty rather than
distribution differences as the selection criterion. Combining Eq. (1) and Eq. (3), the adjusted
next-token distribution is formulated as:

yt ∼ softmax
[
(1+β)

∑
dj∈D

wH
j,t log pθ(yt|dj ,x,y<t)− β log pl

∗

θ (yt|x, y<t)
]
. (4)
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Figure 1: Impact of positioning the oracle document on multi-document question answering perfor-
mance. A 10-document context typically uses less than 2K tokens; a 20-document context usually
uses less than 4K tokens.
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Figure 2: (a) The distribution of the similarity difference between the query and the oracle document
versus the query and distractor documents. (b) The distribution of the difference in entropy of the
first token generated by LLMs when given the oracle document versus distractor documents.

Here, β represents the amplification intensity of external knowledge. The ultimate distribution
in Eq. (4) can be interpreted as a two-stage ensemble process. Firstly, it ensembles the retrieved
documents with uncertainty to generate a low-entropy distribution that more effectively captures
the external knowledge within these documents. Secondly, it performs a contrastive ensemble
by differentiating the logits of this low-entropy distribution from the high-entropy distribution of
parametric knowledge selected across different layers, thereby prioritizing factual information from
external sources.Therefore, we term the method in Eq. (4) as CLeHe (Contrasting Low-entropy
distribution with High-entropy distribution).

3 Analyzing the Distraction Phenomenon in Retrieved Context
Experiment Settings. We are particularly interested in a challenging QA scenario proposed by [22],
in which the oracle document is surrounded by numerous semantically similar distractor documents.
Specifically, following [22], given a query from NaturalQuestions-Open [14], we select a Wikipedia
paragraph containing the answer from the NaturalQuestions annotations as the oracle document.
Then, Contriever [6] is employed to extract K-1 additional paragraphs from the Wikipedia corpus
that are highly relevant to the query yet do not include the ground truth answer, functioning as
distractor documents. The query, the oracle document, and K-1 distractor documents are subsequently
processed by the LLM to generate an answer. Refer to Appendix B for more implementation details.

We compare three training-free baselines. NAIVE: this method concatenates all retrieved documents
directly along with the question to form the prompt for LLMs; REPLUG [32]: it utilizes a normalized
retriever weight to ensemble during the decoding process; AvgEns : it follows the formulation in
similarly Eq.(1) but assigns the same weight to each document during each generation step.

Results. Figure 1 shows that the NAIVE method’s performance, which concatenates all documents
for context, depends heavily on the placement of the oracle document. Among the four evaluated
LLMs, the performance of the NAIVE method significantly deteriorates when the oracle document
is neither at the very beginning nor at the end. In contrast, since the proposed LeEns processes
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each document in parallel during decoding, its performance is naturally independent of the oracle
document’s position. In almost all positions, LeEns substantially surpasses the performance of
the NAIVE method. Notably, in this challenging scenario, REPLUG which ensemble documents’
distributions based on retriever weights perform exceedingly poorly, achieving results merely on
par with AvgEns . Based on this observation, we further conduct the weight analysis in Figure 2.
As depicted in Figure 2a, in only approximately 57% of instances, Contriever identifies the oracle
document as more similar to the query than the distractor documents. Figure 2b shows the distribution
of entropy differences for the first token when conditioned on oracle documents versus distractor
documents. It indicates that the entropy is generally lower when the response to a query is based on
the oracle document rather than the distractor documents.

4 Related Works

Retrieval-Augmented Language Models. Enhancing large language models (LLMs) with infor-
mation retrieved from external knowledge bases has proven effective for various knowledge-intensive
tasks. Initially, mainstream research in retrieval-augmented language models (RALM) focused on
leveraging retrieved knowledge during the pre-training phase of LLMs [7, 10, 2]. To mitigate the
computational costs, some studies have concentrated on lightweight fine-tuning methods to integrate
retrieval capabilities into LLMs [17, 20, 39]. Notably, models like FiD [9] and CEPE [38] perform
parallel encoding of multiple retrieved documents using a fine-tuned encoder, enabling decoder-only
LLMs to more effectively capture and utilize external knowledge. Another approach leverages the
in-context learning abilities of LLMs to incorporate external knowledge in a training-free manner
[29, 32]. The work most closely related to ours is REPLUG[32], which utilizes the RAG-token model
[17] to perform parallel retrieval augmentation based on retrieval scores. However, we empirically
demonstrate that focusing on the inherent uncertainty within the LLM’s output distribution, rather
than relying solely on pre-existing retrieval scores, can significantly improve the factual accuracy of
content generated from retrieved documents.

Contrastive Decoding. The idea of contrastive decoding (CD) has been previously applied in
controllable text generation to produce non-toxic by DExperts [21]. Later, Li et al. [19] formalized
CD as a method to enhance open-ended text generation without any additional training by maximizing
the difference in log probabilities between an expert LLM and an amateur LLM. This approach
has demonstrated strong performance in various domains, including reasoning [25] and neural
machine translation [36]. CD can also be interpreted as maximizing pointwise mutual information
(PMI), which has proven effective in other scenarios. For instance, Li et al. [18] uses a training
objective that maximizes PMI to generate more diverse conversational responses, while CAD [31]
employs a PMI-adjusting distribution to resolve the knowledge conflict. Chuang et al. [5] proposes
a decoding strategy that contrasts different layers of the same LLM to more effectively highlight
factual knowledge. Similar principles are also applied in visual LLMs, where Leng et al. [16]
mitigates object hallucination by contrasting distributions derived from original and distorted visual
inputs. Alternatively, our proposed CLeHe leverages layer-wise entropy-based contrastive decoding
to prioritize external knowledge over the parametric knowledge inherent in the LLM itself.

5 Conclusions
In this paper, we proposed a novel decoding method that is guided by entropy considerations to
mitigate the distractibility issue from both external retrieved documents and parametric knowledge.
First, we conducted parallel retrieval augmentation with entropy-based ensemble weight to obtain the
low-entropy distribution of context. Furthermore, we contrasted this distribution against the highest-
entropy distribution among layers when without context to amplify the external knowledge preserved
in context. Extensive experiments showed the proposed method’s effectiveness in retrieval-augmented
open-domain question answering.
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A Methodology Overview

Figure 3 illustrates the overview of the decoding process of CLeHe. Figure 4 illustrates a false
positive scenario. In this example, the retrieval-augmented model assigns high probabilities to the
words "Washington", "New York", and "Columbia" as candidate positives. However, in the low-
entropy output of a specific layer (typically the last layer) without context, the probability assigned
to "Columbia" is notably low. If contrastive decoding is applied, it would mistakenly increase
"Columbia’s" probability, leading to an incorrect prediction.

Was.New. Col. ……

Retrieved Document d1
New York City, which is close to the 

capital of the U.S.A. …
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Retrieved Document d2
The capital of the United States, 

Washington D.C, it was …
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Was.New. Col. …
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The District of Columbia is officially known 

as the capital of the U.S.A. … Was.New. Col. …

Low-Entropy Document Ensemble

Entropy-Based Layer Selection
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…
…
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…
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Washinton New York Columbia …

1 + 𝛽 ∗

𝛽 ∗

…
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LLM (LLAMA2-7B)

Figure 3: Overview of the decoding process of CLeHe.
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Figure 4: Illustration of the false positive case.
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Dataset NQ TQA WebQ PopQA Gain
# of Docs 5 10 20 5 10 20 5 10 20 5 10 20

LLAMA-2-7B
NAIVE 19.56 26.76 26.37 52.53 59.05 66.00 16.04 18.06 18.35 23.64 25.50 26.10 0.00
AvgEns 14.93 13.51 12.78 51.04 49.84 48.87 12.50 12.06 11.35 14.03 12.49 11.74 -9.40
REPLUG 23.85 23.87 23.92 55.56 55.37 55.31 16.63 16.39 16.77 23.85 23.80 23.91 -1.56
LeEns 25.48 25.79 25.90 61.87 62.72 63.16 20.28 21.65 21.66 27.84 26.57 25.07 +2.50
CLeHe 37.62 36.29 35.48 69.56 69.92 69.72 36.12 36.22 35.77 32.12 31.11 28.89 +11.74

LLAMA-2-13B
NAIVE 37.98 39.67 29.07 66.82 68.15 69.66 29.83 37.02 27.58 34.77 35.14 31.62 0.00
AvgEns 23.52 20.19 18.71 66.92 65.48 63.86 25.89 24.16 22.64 24.28 22.58 22.02 -8.92
REPLUG 34.12 33.82 34.01 67.83 67.77 67.60 31.25 31.30 30.88 30.79 30.95 31.00 -1.33
LeEns 36.54 34.65 33.63 71.87 72.07 72.16 36.07 35.63 35.42 34.63 33.31 31.72 +1.70
CLeHe 37.31 36.01 34.95 72.24 72.82 72.55 38.19 37.45 36.66 34.22 33.16 31.79 +3.18

Mistral-7B-v0.1
NAIVE 46.20 44.43 42.20 73.53 70.31 73.89 47.69 45.03 40.61 40.23 37.72 38.94 0.00
AvgEns 40.91 39.36 38.22 76.28 75.73 74.91 47.98 48.13 47.83 37.11 34.61 33.44 -0.52
REPLUG 44.35 44.44 44.58 74.62 74.80 74.60 47.59 47.49 47.21 37.76 37.75 37.78 +1.02
LeEns 46.40 46.45 44.65 78.26 78.97 79.25 49.21 49.70 50.32 42.12 43.31 43.87 +4.32
CLeHe 46.32 46.07 44.64 78.19 78.88 79.14 49.06 49.76 50.37 42.11 43.34 43.89 +4.25

LLAMA-3-8B
NAIVE 52.35 51.69 52.33 79.92 81.11 82.10 50.49 50.15 50.12 40.92 42.24 42.95 0.00
AvgEns 47.12 45.70 44.51 81.31 80.73 79.78 51.82 51.24 51.01 38.95 36.49 35.07 -2.72
REPLUG 50.39 50.33 50.50 79.07 79.16 78.76 50.20 50.79 50.27 39.08 39.24 39.04 -1.63
LeEns 51.74 50.53 49.47 81.80 82.68 83.02 52.17 50.98 51.80 43.63 44.92 45.62 +1.00
CLeHe 52.02 50.78 49.67 81.78 82.84 83.14 51.67 51.62 52.39 43.86 44.84 45.57 +1.17

Table 1: Performance (%) comparison of different ensemble-based methods on benchmark datasets.
"Gain" refers to the average absolute improvement (%) across all datasets and different numbers of
retrieved documents when compared to the naive baseline.

B More Experiment on Open-Domain QA

Implementation Details. Our method introduces two hyperparameters: τ to control the relative
importance of different documents during decoding; and β balancing contextual and parametric
knowledge. We extract a subset from the WebQ training set for validation to determine the hyperpa-
rameter value for each LLM. Ultimately, τ is set as 0.25 for LLAMA-3-8B and as 0.1 for the other
three models. For β, 5.0 is chosen for LLAMA-2-7B, while the other models are assigned a value
of 0.25. During the inference, greedy decoding is utilized for reproducibility. When looking for
the layer with the highest entropy, we focus our search exclusively on the candidate layers. In our
preliminary experiments, this approach improves computational efficiency and slightly enhances
model performance. For LLAMA-2-7B, Mistral-7B-v0.1, and LLAMA-3-8B with 32 hidden layers,
the candidate layers are set to {17, . . . , 32}, and only even-numbered layers will be searched. For
LLAMA-2-13B with 40 hidden layers, the candidate layers are set to {31, . . . , 40}. All experiments
are conducted on a single A100 80GB GPU.

Datasets and Metrics. We evaluate our proposed method using four open-domain QA datasets.
Natural Questions [14], TriviaQA [11], WebQ [1] and PopQA [24]. Natural Questions includes real
anonymized queries from Google’s search engine. We utilize a filtered test set [15] of 3,610 samples
with answers limited to no more than five tokens. TriviaQA comprises trivia question-answer pairs
that were scraped from the web. We evaluate its development set containing 7,993 samples. WebQ
consists of questions generated through the Google Suggest API, with answers that are entities in
Freebase. We use its test set of 2,032 samples for evaluation. PopQA is a novel entity-centric open-
domain QA dataset that spans a wide range of entity popularity, emphasizing long-tail knowledge.
We utilize its test set which includes 14,267 samples for evaluation. For each dataset, we retain only
the questions and their corresponding answers. DPR [12] is employed to retrieve the top-k passages
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LLAMA-2-7B LLAMA-2-13B Mistral-7B-v0.1 LLAMA-3-8B

NQ TQA WebQ NQ TQA WebQ NQ TQA WebQ NQ TQA WebQ

NAIVE 19.56 52.53 16.04 37.98 66.82 29.83 46.20 73.53 47.69 52.35 79.92 50.49
w/ JSD (DoLa) 38.72 68.15 35.38 27.34 45.15 21.90 46.20 74.42 46.80 52.30 81.36 49.54
w/ Last_Layer (CAD) 38.92 65.92 30.77 41.52 68.96 33.76 44.32 70.27 41.49 51.80 79.01 46.26
w/ Entropy 41.36 70.32 37.30 39.91 67.38 32.73 46.30 74.59 47.05 52.28 81.60 49.61

LeEns 25.48 61.87 20.28 36.54 71.87 36.07 46.40 78.26 49.21 51.74 81.80 52.17
w/ JSD (DoLa) 35.84 67.11 33.75 17.22 35.17 11.02 46.29 78.19 49.16 52.04 81.73 51.82
w/ Last_Layer 30.74 62.85 23.08 38.19 71.64 38.09 45.57 75.54 48.12 52.60 81.36 52.01
w/ Entropy (CLeHe) 37.62 69.56 36.12 37.31 72.24 38.19 46.32 78.26 49.76 52.02 81.78 51.62

Table 2: Performance on combining different external and parametric knowledge modeling methods.
Experiments are conducted under the top-5 document setting.

from the Wikipedia corpus (Dec. 20, 2018) via as evidence documents for each question. Specifically,
we report the performance of different decoding methods when retrieving the top-5, top-10, and
top-20 documents. Following [22], exact match accuracy is utilized for performance evaluation.

Overall Performance. Table 1 presents the overall performance comparison between our proposed
method and existing baselines on public benchmark datasets. The results show that when compared to
the NAIVE method, our entropy-ensemble-based LeEns demonstrates significant average performance
improvements across various LLMs, indicating its superior ability to extract useful information from
the context. Moreover, LeEns outperforms REPLUG and AvgEns in almost all settings, indicating that
using the uncertainty of LLM output distributions for document scoring more effectively facilitates
generating answers than static retriever similarity and unweighted averaging. Comparing LeEns with
CLeHe, we observe that further contrasting the ensemble-based low-entropy contextual distribution
with the high-entropy distribution of the parametric knowledge leads to performance improvements,
particularly noticeable in LLAMA2-7B and LLAMA2-13B. These observations substantiate that the
proposed entropy-based decoding mechanism markedly augments the extraction and utilization of
contextual information. Further, on Mistral-7b-v0.1 and LLAMA-3-8B, CLeHe performs similarly to
LeEns, indicating no significant enhancement from the contrastive ensemble. We speculate that these
two models are less distracted by parametric knowledge when generating answers.

Ablation Study. Within the contrastive decoding framework, we investigate the compositional
effects on performances by combining different modeling techniques for external and parametric
knowledge. To extract knowledge from retrieved external documents, we explore two modeling
approaches.: NAIVE RAG and our entropy-based document ensemble modeling (LeEns). Addition-
ally, we explore three layer-based strategies to derive parametric knowledge: (i) Last-Layer strategy.
It defines parametric knowledge using the distribution from the last layer of LLMs when without
retrieved context. CAD [31] utilizes this strategy, i.e., contrasting the distribution derived from
NAIVE RAG against the last-layer context-free distribution. (ii) JSD-based strategy. It first calculates
the Jensen-Shannon Divergence (JSD) between the RAG-derived distribution and the distribution
of each layer when without retrieved documents, then selects the layer with the highest JSD for
contrast. (iii) Our proposed entropy-based strategy. It directly selects the layer with the highest
entropy as the proxy of intrinsic knowledge. As shown in Table 2, compared to the other two layer
selection strategies, the proposed entropy-based strategy consistently and significantly enhances
model performance in both external knowledge modeling ways of NAIVE RAG and our LeEns.

# of Docs 5 10 20

NAIVE 27.51 (×1.00) 29.49 (×1.00) 32.56 (×1.00)
LeEns 30.43 (×1.11) 32.90 (×1.12) 37.76 (×1.16)
CLeHe 31.88 (×1.16) 34.10 (×1.16) 38.49 (×1.18)

Table 3: Decoding latency (ms/token) of LLAMA-2-7B based
on the number of retrieved documents as context.

Hyper-Parameter and Latency
Analysis We study the influence of
the introduced hyperparameters: τ
and β. As shown in Figure 5, a small
value of τ (e.g., 0.1 or 0.25) typically
results in better performance; as τ
increases, the performance gradually
declines. Ideally, when τ → ∞, the
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Figure 5: Hyper-parameter analysis using 1K evaluation samples of NQ under the top-5 document
setting.

performance of the proposed LeEns will match that of AvgEns. Regarding β, it’s observed that for
LLAMA-2-7B, a high β (e.g., 5) enables it to effectively contrast the differences between external and
parametric knowledge for improved performance. For other evaluated LLMs, we suggest setting it to
a small value, saying [0.25, 0.5].

As for decoding latency, Table 3 shows that compared to the NAIVE method, our LeEns and CLeHE
increase the decoding time by factors of less than 1.18, indicating that they can be applied at a
reasonable cost.

C Limitations

One limitation of our study is that we only validated the effectiveness of our method on question
answering datasets, without testing it on other knowledge-intensive tasks such as fact verification.
Extending the method proposed in this paper to other retrieval-augmented scenarios will be a future
research direction.

Additionally, due to computational power constraints, we only tested the effectiveness of the proposed
method on models with fewer than 13B parameters. However, whether the method proposed in this
paper is applicable to LLMs with more parameters (e.g., 70B or more) remains to be explored in
future research.
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