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Abstract

The recent interest in peptides incorporating non-canonical amino acids has surged within the scientific community, driven by
their enhanced stability and resistance to proteolytic degradation. These so-called non-canonical peptides offer significant potential
for modifying biological, pharmacological, and physiochemical characteristics in both native and synthetic contexts. Despite their
advantages, there remains a notable gap in the availability of an efficient pre-trained model capable of effectively capturing feature
representations from such intricate peptide sequences. This study herein introduces PepLand, a novel pre-training framework designed
for the comprehensive representation and analysis of peptides, encompassing both canonical and non-canonical amino acids.
PepLand leverages a general-purpose multi-view heterogeneous graph neural network to unveil the subtle structural representations
of peptides. Our empirical evaluations demonstrate PepLand’s proficiency in a range of peptide property prediction tasks, including
cell penetrability, solubility, and protein–peptide binding affinity. These rigorous assessments affirm PepLand’s superior capability in
discerning critical representations of peptides with both canonical and non-canonical amino acids, and provide a robust foundation
for transformative advances in peptide-focused pharmaceutical research. We have made the entire source code and datasets available
at http://www.healthinformaticslab.org/supp/resources.php or https://github.com/zhangruochi/PepLand
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Introduction
Natural peptides have increasingly served as a cornerstone of
drug development, owing to their inherent therapeutic properties
[1]. Their high specificity, potent efficacy, and relatively high
safety contribute significantly towards their growing appeal in
the pharmaceutical landscape [2]. Non-canonical amino acids
serve as foundational elements for the development of peptide-
based materials and therapeutic agents, and facilitate chemists
in overcoming the structural and functional constraints tradi-
tionally associated with the limited repertoire of canonical amino
acids [3]. For instances, cyclic peptides with both canonical and
non-canonical amino acids are linked at distant points to create
macrocyclic structures [4], they exhibit diverse biological activ-
ities, including acting as signaling agents in complex biological
processes [5].

Deep learning techniques are being extensively explored for
the prediction tasks of both peptide properties and peptide-entity

interactions, where the entity can be proteins or diseases [6, 7].
These applications further accelerate the pace of drug discov-
ery and development processes, but also present unique chal-
lenges. The existing models, such as the Evolutionary Scale Mod-
eling (ESM) [8] and ProteinBert [9], leverage amino acid sequences
to learn and predict co-evolutionary information embedded in
protein sequences. These models have showcased noteworthy
success in protein-related prediction tasks, but their efficacy
is compromised when dealing with peptides. This shortcoming
arises from the fundamental differences between proteins and
peptides. Peptides generally have shorter lengths compared to
proteins, hence their data distribution does not align well with the
existing models that have been trained predominantly on protein
sequences.

Another critical limitation of the existing pre-trained mod-
els such as ESM is their incapacity to effectively handle non-
canonical amino acids, where are frequently used to enhance the
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pharmaceutical properties of peptides [9, 10]. Peptides may also
be encoded by the pre-trained models of small molecules like
ChemBERTa [11]. The data distributions of peptides and small
molecules are substantial different, e.g. the length of a peptide
is usually 5 to 10 times longer than that of a small molecule in
the Simplified Molecular-Input Line-Entry System encoding [12].

Fragment-based methods, such as those seen in DeepFrag [13]
and other molecule generation algorithms [14–16], have shown
great promise in the small molecule domain by facilitating lead
optimization and the identification of chemical fragments with
improved binding affinity. These methods typically focus on the
decomposition of molecules into functional motifs with drug
targeting specificities. However, their application to synthetic
peptides, which often contain repetitive units like amide bonds
and various chemical modifications, remains underexplored.
This presents a significant opportunity for innovation in the
peptide field, where the complexity and variability of peptide
structures pose unique challenges not typically encountered in
small molecule research.

This study introduces PepLand, a large-scale pre-trained pep-
tide representation model, specifically developed to bridge the
current gap in the field. Initially, our approach involves encoding
peptides composed of both canonical and non-canonical amino
acids using molecular structures. A novel fragmentation algo-
rithm is then employed to discern the optimally granular ele-
ments within these peptide structures. The PepLand framework
is equipped with this distinctive capability to handle both canon-
ical and non-canonical amino acids concurrently. It integrates
granular components (fragments) and the atom view within a
multi-view heterogeneous graph neural network, and facilitates
a consensus representation of peptides across various levels of
granularity.

To overcome the challenges posed by the relatively limited
data on non-canonical amino acids, PepLand employs a two-step
training strategy, which enhances its learning efficiency from
datasets pertaining to both amino acid types. Our experiments
validate that PepLand sets a new benchmark in diverse peptide
property prediction tasks, including cell penetrability, solubility,
and protein binding affinity. Our additional analysis confirms
the pivotal role of the fragmentation approach in downstream
peptide property prediction tasks. The applicability of PepLand
is further evidenced through its successful deployment in two
pharmaceutical contexts: predicting the binding affinity of cyclic
peptides and assessing peptide synthesizability.

Material and Methods
Training datasets
This study utilizes a two-stage pre-training strategy. The training
dataset in the first stage consists of 7 924 509 samples with
both canonical and non-canonical amino acids from the com-
prehensive UniProt database [17]. We call the peptides with non-
canonical amino acids as ‘non-canonical peptides’, and those
with only canonical amino acids as ‘canonical peptides’. We have
filtered out the sequences exceeding 30 residues in length, and
curate a refined subset of short sequences with ∼8 million entries
specifically tailored to the needs of this study.

The second pre-training stage focuses on peptides with non-
canonical amino acids. We incorporate CycPeptMPDB [18], a spe-
cialized dataset comprising 7334 cell-penetrating peptides with
non-canonical amino acids. An additional set of high-quality non-
canonical peptides are collected from the RCSB Protein Data Bank
(PDB) database [19]. The final dataset for the second pre-training

stage comprises 8977 non-canonical peptides, providing a diverse
and representative training resource for our model.

Evaluating datasets
We conduct a rigorous evaluation of our pre-trained PepLand
model through the curated array of datasets, spanning the predic-
tion tasks of cell penetration ability, solubility, and protein-peptide
binding affinity. Both canonical and non-canonical peptides are
covered. We collected and curated these evaluation datasets from
various databases and public literatures. To facilitate further
research in the field of peptides, we have made these datasets
publicly available together with our source code. The details of
the datasets are given in the section ‘Evaluating Datasets’ in the
Supplementary Materials.

Overall Workflow for PepLand
This study proposes PepLand, a multi-view heterogeneous graph
structure that integrates three distinct perspectives: the atom
view, the junction view, and the fragment view. This graph
facilitates information exchange between nodes and edges across
views through an advanced message passing mechanism. The
proposed heterogeneous graph framework represents atoms as
nodes, and their interactions as edges, comprising the atom view.
This view is specifically tailored to encapsulate atomic level
details of peptides.

Our focus on non-canonical amino acid modifications is driven
by their established roles in enhancing peptide stability and alter-
ing biological properties. For instance, modifications of D-amino
acids are known to augment peptide stability, while alterations
with α–amino acids can stimulate both biological stability and
resistance to degradation [20]. Specific modifications of prolines
are particularly noteworthy for their applications in conforma-
tional studies and in modulating the properties of both natu-
rally occurring and synthetically designed peptides [4, 10, 21].
These insights inspired the development of the fragment-based
approach for peptide representation. Our graph framework treats
these fragments as a distinct class of nodes, with the inter-
fragment bonds forming the graph edges. The formed fragment
view implicitly captures the properties of non-canonical amino
acids.

As shown in Fig. 1A, the training phase employs the attribute
masking strategy [22], wherein node/edge attributes like atom
types are randomly masked, and the graph neural network (GNN)
model is challenged to predict these masked attributes. This
strategy is crucial for peptide representation learning due to the
structural repetitions in peptides, such as recurring peptide bonds,
which render the atom-level random masking unsuitable. For
example, a simplistic prediction of atoms in amino bonds would
be trivial due to their abundance in peptides. We have devised a
specialized masking strategy that caters to the unique structure
of peptides to address this issue.

It should be noted that the dataset size for non-canonical
amino acids available in the literature is relatively small.
Consequently, the training process is divided into two sub-phases,
as demonstrated in Fig. 1B. The initial pre-training phase utilizes
data comprising canonical amino acids, which lays the foundation
for the model to discern peptide structural properties. The second
phase incorporates peptides with non-canonical amino acids,
which tine-tunes the model’s ability to recognize and process a
broader spectrum of molecular structures. This dual-phase train-
ing ensures that our model is proficient in handling both canoni-
cal and non-canonical peptides through the enhanced capability
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Figure 1. The overall workflow of the proposed PepLand framework. (A) PepLand uses a multi-view heterogeneous graph network to represent the
molecular graph of peptides. Fragments of various granularities will be randomly masked for self-supervised pre-training. (B) Two-stage training
approach. PepLand will be firstly trained on peptide sequences containing only canonical amino acids, and then further trained on peptide sequences
containing non-canonical amino acids. After this, PepLand can be fine-tuned for downstream property prediction tasks.

in extracting meaningful features from a diverse range of
peptides.

The detailed descriptions of the main modules are given in
the section ‘Main Modules of PepLand’ in the Supplementary
Materials.

Results and discussion
Assessing graph pooling techniques in PepLand
This study designed a GNN-based pre-training methodology Pep-
Land to generate peptide representations at both the atomic and
fragment levels, rather than directly representing peptides at the
amino acid level. In addition, numerous studies have demon-
strated that graph pooling is crucial for acquiring a compre-
hensive graph-level representation of the entire graph [23, 24].
Therefore, in this section, we investigated the five prediction
tasks using the PepLand-based peptide representations based on
three graph pooling techniques, i.e. Max, Average (Avg), and gated
recurrent unit (GRU). Figure 2A and B illustrates the results for the
two prediction tasks c-CPP and nc-CPP, and Supplementary Fig. S1
shows the comparison on all the five prediction tasks. At the same
time, for the purpose of comparison, we have also displayed the
results of ChemBERTa-based peptide representation in the two
Figures.

The experimental data in Fig. 2 indicates that the GRU pool-
ing excels the other three methods on both prediction tasks c-
CPP and nc-CPP at most of the training epochs. Except for the
Avg pooling before the fifth epoch on the nc-CPP task, the GRU
pooling outperforms all the three methods on both prediction
tasks at all the training epochs. The GRU pooling achieves at
least 18.67% improvements than the other three methods on the

non-canonical task nc-CPP, while a minimum improvement of
8.00% is achieved by the GRU pooling on the c-CPP prediction task.
The GRU pooling improves the best of the other three methods
by at least 10.02% on the non-canonical task nc-Binding, and a
smaller improvement 6.29% is achieved by the GRU pooling on
the canonical task c-Binding, as shown in Supplementary Fig. S1.
It is worth mentioning that regardless of the pooling method used,
PepLand-based peptide representations consistently outperform
ChemBERTa-based peptide representations. This indicates that
the pooling method is not the only reason for the superior per-
formance of PepLand.

The GRU pooling method is used in the following sections based
on the experimental data.

Benchmarking PepLand against existing models
Table 1 demonstrates the notable performance improvements
achieved by our PepLand model in comparison to the existing
studies, particularly in the prediction tasks involving non-
canonical amino acids. PepLand achieves 0.628 in SCC for the
prediction task nc-CPP, while the three existing models Uni-
Mol [25], ChemBERTa2 [26], and MolCLR [27] only achieve the
SCC values of 0.539, 0.503, and 0.461, respectively. A significant
improvement 16.5% is achieved by PepLand against the second
best model Uni-Mol. PepLand achieves the best SCC value
0.768 for the prediction task nc-Binding, while the second best
model ChemBERTa2 only achieves 0.721 in SCC. The data clearly
underscores the superior capability of PepLand in capturing the
intricacies of non-canonical amino acids.

PepLand outperforms the other small molecule-based models,
i.e. Uni-Mol, MolCLR, and ChemBERTa2, across the three predic-
tion tasks involving canonical amino acids, i.e. c-CPP, c-Sol, and
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Figure 2. Impact of graph pooling method selection on downstream tasks. The figures illustrate the comparative effects of the ChemBERTa model, and
its three variants with the graph pooling method replaced by max pooling (Max), average pooling (Avg), and gated recurrent unit pooling (GRU) across
four prediction tasks, respectively. The horizontal axis gives the training epochs, and the vertical axis gives the values of the performance metrics. The
evaluated prediction tasks are (A) c-CPP and (B) nc-CPP. Both prediction tasks use Spearman correlation coefficient (SCC) as the performance metrics.

Table 1. Performances of the PepLand models and the existing studies on the five prediction tasks

Spearman Spearman AUC AUC Spearman
Method nc-CPP nc-Binding Method c-CPP c-Sol c-Binding

SCC SCC AUC AUC SCC
MolCLR 0.461 0.707 ESM2 0.885 0.725 0.452
ChemBERTa2 0.503 0.721 Uni-Mol 0.732 0.646 0.411
Uni-Mol 0.539 0.687 MolCLR 0.728 0.632 0.446
PepLand 0.628 0.768 ChemBERTa2 0.773 0.549 0.488

PepLand 0.838 0.662 0.503
Uni-Mol + ESM2 0.854 0.697 0.445
MolCLR+ESM2 0.786 0.712 0.439
ChemBERTa2 + ESM2 0.821 0.562 0.471
PepLand+ESM2 0.885 0.73 0.454

The two prediction tasks c-CPP and c-sol are evaluated by the metric AUC, and the other three tasks are evaluated by SCC. Both AUC and SCC show a better
prediction model with a larger value. The best value for each prediction task is highlighted in bold. The second-best results are underlined.

c-Binding. However, PepLand performs worse than the protein
language model ESM2 [28] on the two prediction tasks c-CPP and
c-Sol. This might be attributed to the extensive training of ESM2
on the UniRef50 dataset [29], encompassing ∼45 million protein
sequences through a vast parameter count of 15 billion. PepLand
was trained on a dataset of only 8 million peptides and did not
utilize the extensive evolutionary information encoded in ESM2.
Nevertheless, ESM2 is not equipped to process non-canonical
amino acids, a functionality inherent to our PepLand model.

To demonstrate that PepLand’s features provide additional
value for tasks involving canonical peptides, we further explored

the synergistic integration of PepLand and ESM2, denoted as
PepLand+ESM2. When integrating PepLand with ESM2, the
combined model achieves the best AUC of 0.885 on the c-CPP
task and 0.73 on the c-Sol task, while showing a slight decrease
in SCC for c-Binding (SCC = 0.454) compared to standalone
PepLand. Notably, other combinations with ESM2, such as Uni-
Mol + ESM2, MolCLR+ESM2, and ChemBERTa2 + ESM2, do not
yield as significant improvements. For example, Uni-Mol + ESM2
achieves an AUC of 0.854 on c-CPP and 0.697 on c-Sol, while Chem-
BERTa2 + ESM2 achieves an AUC of 0.821 on c-CPP but performs
poorly on c-Sol with an AUC of 0.562. These experiments confirm
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Figure 3. Effects of different fragmentation methods on the two non-
canonical peptide-based prediction tasks. The two tasks are nc-CPP and
nc-binding, which are listed in the horizontal axis. The vertical axis gives
the performance metric SCC.

that PepLand’s features uniquely complement ESM2, resulting in
more consistent performance improvements compared to other
models.

Overall, these results highlight the effectiveness of PepLand,
particularly in its handling of non-canonical peptides. The
PepLand-based representation also demonstrates its potential
as a valuable contribution for the canonical peptide-based
prediction tasks.

Importance of fragmentation granularity
Molecular fragmentation plays a key role in the process of
developing drugs using artificial intelligence [30]. PepLand uses a
fragmentation granularity that lies between atomic and complete
amino acids. Moreover, PepLand’s fragmentation operator is not
only data-driven, but also integrated with domain knowledge.
This section aims to compare PepLand’s superiority with other
granular and purely data-driven fragmentation methods. We
employ two additional fragmentation methods as benchmarks
against our PepLand model. The first method is termed ‘Molecular
Graph’, representing a baseline atomic granularity approach.
The second method ‘Principal Subgraph’ [15] is a data-driven
fragmentation approach designed to autonomously identify fre-
quent principal subgraphs within the dataset. Figure 3 evaluates
three fragmentation methods for the two tasks nc-CPP and
nc-Binding.

To maintain consistency and fairness across comparisons, we
preserve the identical training and testing subsets across all the
fragmentation methods, and only change the molecular fragmen-
tation methods. The scenario of Molecular Graph has the singular
focus on atom representation, and operates with a single-view
graph structure.

The comparative analysis reveals that the Molecular Graph
approach yields the least effective outcomes within its atomic
granularity. This inferior performance is likely attributable to the
complexity and larger structures of peptide molecules, which
could lead to significant information loss during the message
passing and pooling stages in the GNN framework. The Principal
Subgraph method employs a sophisticated data-driven fragmen-
tation and does not integrate explicit domain knowledge. Figure 3
shows that the Principal Subgraph method achieves the substan-
tial improvements of 0.128 and 0.282 in the SCC values over the
baseline Molecular Graph method. This supports the necessity of
appropriate molecular fragmentation the non-canonical peptide
prediction tasks.

PepLand further enhances the Principal Subgraph method
through the employment of tailored fragmentation and domain
knowledge (Fig. 3). The SCC values of the two prediction tasks nc-
CPP and nc-Binding are increased to 0.628 and 0.768, respectively.
This suggests that an optimal balance between fragmentation
detail and domain knowledge is key to effectively capturing the
subtle patterns within peptide structures, especially when dealing
with the varied and complex nature of non-canonical peptides.

Evaluating the efficacy of fragmentation
operators
This section assesses the contributions of the two fragmentation
operators to the five downstream tasks, as shown in Fig. 4. The
PepLand framework without further fine tuning is used for the
prediction tasks.

The Amiibo operator has already outperformed the Molecular
Graph and the Principal Subgraph models on the two prediction
tasks on non-canonical peptides. The Amiibo operator achieves
the SCC values of 0.506 and 0.708 for the downstream tasks nc-
CPP and nc-Binding. The Molecular Graph and Principal Subgraph
models only achieve the SCC values of 0.361 and 0.489 for the nc-
CPP tasks, and the SCC values of 0.372 and 0.654 for the nc-Binding
tasks.

Figure 4 provides compelling evidence that the integration
of the AdaFrag operator significantly enhances the PepLand
framework’s performance. This is particularly evident in the
Spearman correlation coefficient (SCC) values, which reach
0.556 and 0.749 for the two canonical peptide-based tasks nc-
CPP and nc-Binding, respectively. The underlying strategies of
the Amiibo and AdaFrag operators are fundamentally differ-
ent yet complementary. While the Amiibo operator focuses
on preserving the structural integrity of amino bonds, thus
encapsulating key biochemical knowledge, AdaFrag adopts a
data-driven approach using the Breaking of Retrosynthetically
Interesting Chemical Substructures (BRICS) algorithm [31] to
identify and leverage frequently occurring fragments. The results
highlight the crucial role of blending biological knowledge with
patterns inherent in the data. Such a combination not only
respects the fundamental biochemical properties of peptides
but also adapts to the empirical regularities discovered in large-
scale peptide datasets. This synergy between domain-specific
knowledge and data-driven insights is pivotal in advancing the
accuracy and relevance of peptide representation models like
PepLand.

Assessing the effects of different masking
strategies
We extend our investigation to examine how performance of
downstream tasks is affected by the four masking strategies,
i.e. RandomMasking, BulkMasking, SideChainMasking, and Frag-
mentMasking (Fig. 5).

RandomMasking performs the worst across all the five predic-
tion tasks. This indicates that the inherent connections among
molecular atoms are not captured by the random masking strat-
egy. The BulkMasking strategy achieves the best performance
0.636 in AUC for the c-Sol task and the second best performance
on the two non-canonical peptide-based tasks nc-CPP and nc-
Binding. Figure 5 shows that FragmentMasking outperforms the
other three masking strategies across four tasks except for c-Sol.

It is anticipated that FragmentMasking achieves the best per-
formance 0.589 and 0.767 in SCC for the two non-canonical
peptide-based tasks nc-CPP and nc-Binding.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/4/bbaf367/8220755 by guest on 03 August 2025



6 | Zhang et al.

Figure 4. Comparative analysis of the two fragmentation operators on downstream tasks. The horizontal axis gives the five prediction tasks and their
performance metrics. The vertical axis gives the metric value. The two fragmentation operators Amiibo and AdaFrag are evaluated.

Figure 5. Assessing the effects of different masking strategies on the downstream tasks. The horizontal axis gives the five prediction tasks and
their performance metrics. The vertical axis gives the metric value. This figure evaluates four masking strategies, i.e. RandomMasking, BulkMasking,
SideChainMasking, and FragmentMasking.

Evaluating the two-step pre-training
This study employs a two-step pre-training procedure, whose
necessity is evaluated in Fig. 6. Our focus is to determine the
effectiveness of the two pre-training steps in extracting the rich
peptide information, particularly for non-canonical peptides.

The data shown in Fig. 6 indicate that the two-step pre-training
strategy outperforms the single-step approach across all the
five benchmark tasks. The largest improvement 0.062 in AUC
is achieved on the prediction task c-Sol, and the second best
improvement 0.039 in SCC is achieved on the nc-CPP task.

Assessing the effects of the multi-view feature
fusion strategies
This section investigates the role that multi-view feature fusion
plays in downstream task performance. Our model integrates
three distinct feature views, and we experiment with various
combinations of these multi-view features to ascertain the
most effective fusion strategy. After evaluating performance
across five downstream tasks, we find that the integration of
both atom embeddings and fragment embeddings with the
junction-view (AJ&FJ) emerges as the most effective fusion
approach.

Figure 7 shows that the AJ&FJ fusion strategy achieves the best
performance on three prediction tasks, while the A&F and AJ&F
strategies reach the best performance on only one task. The AJ&FJ
fusion strategy outperforms the other strategies on both non-
canonical peptide-based tasks, nc-Binding (SCC = 0.769) and nc-
CPP (SCC = 0.591).

This exploration experiment highlights the significance of
strategic view fusion strategies in our multi-view graph model.
The carefully-selected fusion strategy of the three feature views
(atom, junction, and fragment) can harness the strengths of
each view to enhance the overall representation power of the
model. The default fusion strategy AJ&FJ in our PepLand model
performs particularly well in complex tasks involving non-
canonical peptides, where the intricate structural and functional
patterns of peptides are critical.

Real-world generalization and application
consistency of PepLand
To further assess the practical utility and generalizability of
PepLand beyond controlled benchmark settings, we conducted
additional experiments focusing on real-world peptide discovery
tasks. While PepLand achieves performance comparable to state-
of-the-art models such as ESM2 on canonical peptide property
benchmarks (e.g. c-CPP and c-Sol), the differences between
models on these tasks are relatively small. This prompted us
to explore new datasets and scenarios that better reflect the
complexities of real-world peptide applications.

We identified three newly published peptide bioactivity
classification datasets introduced in the UniDL4BioPep frame-
work [32], covering ACE inhibitory, bitter, and umami peptides.
These datasets were designed to simulate realistic peptide
screening tasks and feature peptide lengths ranging from 0 to
50 residues—consistent with common therapeutic and food-
derived peptides. We evaluated PepLand in combination with
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Figure 6. Evaluation of the two-step pre-training. The horizontal axis gives the five prediction tasks and their performance metrics. The vertical axis gives
the metric value. This figure evaluates two scenarios, i.e. one-step only utilizes the first pre-training step, and two-step fully utilizes the two pre-training
steps in this study.

Figure 7. Evaluation of the multi-view feature fusion strategies. The horizontal axis gives the five prediction tasks and their performance metrics. The
vertical axis gives the metric value. This figure evaluates three multi-view fusion strategies, i.e. A&F, AJ&F, and AJ&FJ, where A, J, and F refer to the atom-,
junction-, and fragment-view. AJ and FJ represent the atom embeddings and fragment embeddings with the junction-view features, respectively.

Table 2. Performance comparison of PepLand on real-world
peptide bioactivity classification datasets.

Dataset Model ACC ROC-AUC

ACE inhibitory ESM2 0.812 0.843
Pepland + ESM2 0.823 0.865

Bitter ESM2 0.886 0.935
Pepland + ESM2 0.895 0.947

Umami ESM2 0.823 0.878
Pepland + ESM2 0.846 0.894

Bold values indicate the best performance among all methods.

ESM2 (PepLand+ESM2) using a linear probe setting to simulate
low-data transfer learning conditions. Across all three datasets,
PepLand+ESM2 consistently outperform ESM2 alone, as shown in
Table 2.

These results demonstrate that PepLand contributes transfer-
able representations that improve generalization across multiple
real-world peptide tasks, including functional property prediction
beyond simple physicochemical attributes.

In addition to these sequence-based classification tasks, we
also evaluate the performance of PepLand on binding affinity
prediction for linear peptides using data from the SKEMPI 2.0
database [33], as detailed in Case Study 3 in the Supplementary
Materials. This study includes 10 sets of protein–peptide muta-
tional datasets with varying peptide lengths and sample sizes.
Our model achieve strong performance on mid-size datasets,

e.g.: 3EQS (SCC = 0.927), 3EQY (SCC = 0.916) and 1F47 (SCC = 0.516).
Perfect SCCs on very small sets (e.g. 3LNZ, 1GL0), which are
likely overfitted due to small sample sizes. These findings suggest
that while PepLand generalizes well to external peptide–protein
affinity tasks, its performance varies with data scale and peptide
diversity—pointing to the need for further extension of training
data to improve robustness.

Conclusion
This study introduces PepLand, a pre-trained model capable of
extracting features of both canonical and non-canonical peptides.
Unlike current protein language models, this model can process
both canonical and non-canonical amino acids simultaneously.
To our knowledge, this is the first pre-trained model specifically
designed for extracting representations of non-canonical pep-
tides. The study demonstrates the importance of molecular frag-
mentation granularity and develops the fragmentation method
AdaFrag, which captures the characteristics of non-canonical
peptides more effectively. Compared to atomic-level fragmen-
tation and purely data-driven fragmentation, AdaFrag signifi-
cantly improves the performance of the non-canonical peptide-
based prediction tasks nc-CPP and nc-Binding, with increases of
28.4% and 17.4% respectively, relative to the second-best Princi-
pal Subgraph approach. PepLand employs a multi-view hetero-
geneous graph as the main architecture and customizes frag-
ment masking and two-step training strategies based on the
characteristics of non-canonical peptides. The comprehensive
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ablation experiments validate the efficacy of each component
of PepLand. For more detailed information, please refer to the
Supplementary Figs S2-S5.

PepLand shows a particular proficiency in handling non-
canonical peptides that incorporate non-canonical amino acids,
a domain where PepLand unequivocally excels. In the prediction
of cell penetration ability and binding affinity containing non-
canonical amino acids, PepLand achieved 16.5% and 6.5% higher
than the second-best model, respectively. Another interesting
point is, despite its training set being much smaller than ESM2,
PepLand outperforms ESM in some peptide property prediction
tasks involving only canonical amino acids, such as reaching an
SCC of 0.503 in the c-CPP task, while ESM2 only achieved 0.452.
More importantly, the representations learned by PepLand seem
to complement the co-evolutionary information learned by ESM2,
as the combination of their representations achieves the best
performance on the c-CPP and c-Sol tasks.

A number of limitations remain to be resolved in future studies.
First, while AdaFrag’s tokenizer learns molecular fragments based
on the training data, it can encounter out-of-vocabulary issues for
fragments not observed during training. We are aware of this lim-
itation and will work toward improving the tokenizer’s coverage
in upcoming versions. For larger fragments, AdaFrag leverages the
BRICS algorithm to further split fragments into smaller subunits,
as demonstrated in Supplementary Fig. S8. Second, the diversity
of our training data might not fully capture the broad scope of
synthetic peptides, particularly those containing rare or recently
identified non-canonical amino acids. Although our fragmenta-
tion method is flexible and can handle certain atypical amino
acids beyond existing datasets, it does not entirely overcome this
challenge. Finally, our training dataset, consisting of <10000 syn-
thetic peptides (mostly transmembrane peptides), underscores
the need for more extensive data collection. We believe that inte-
grating additional datasets in the future will enhance PepLand’s
performance and broaden its range of applications.

Additionally, the computational efficiency of PepLand repre-
sents another major limitation. As a GNN-based model, its tok-
enizer converts molecules into heterogeneous graphs. This pro-
cess, while integral to the model’s design, represents the pri-
mary bottleneck in performance, particularly for new data, as
it involves graph construction and feature extraction. Compared
to models like ESM2, which directly take amino acid sequences
as input, PepLand’s average inference speed is 7.38 times slower
on the c_CPP dataset. Furthermore, the scalability of GNNs is
inherently constrained by their message-passing mechanism, as
documented in the literature [34, 35]. These factors highlight the
need for future work to optimize the tokenization process and
address scalability challenges.

The first two case studies in the supplementary materials
demonstrate particularly promising outcomes in the predictions
of cyclic peptide binding affinity and peptide synthesizability,
highlighting the potential of PepLand for a broad spectrum of
applications. Additionally, a third case study using linear peptide
data further showcases the model’s practical utility. However, we
acknowledge that the current evaluation is based on a limited
number of case studies and datasets, which only cover a subset
of realistic peptide discovery scenarios. In particular, the scale
and diversity of real-world evaluation datasets remain limited,
which constrains our ability to draw broader conclusions about
generalization. Looking forward, we emphasize the importance
of establishing broader and more diverse benchmarking settings
to better reflect the wide range of practical peptide discovery
applications. Despite current limitations, the development and

successful validation of PepLand provide a strong foundation for
integrating machine learning into peptide research, particularly
for studies involving non-canonical amino acids. We anticipate
that PepLand will inspire the creation of more advanced models
and applications, driving the exciting field of peptide representa-
tion into new frontiers.

Key Points

• Introduce a novel GNN framework PepLand for repre-
senting peptides of both canonical and non-canonical
amino acids.

• PepLand integrates two molecular fragmentation opera-
tors to discern the optimally granular elements within
peptide structures.

• A two-step training strategy is employed to ensure learn-
ing efficiency, even with the relatively limited data on
non-canonical amino acids.

• Comprehensive evaluations and case studies demon-
strate the effectiveness of the pre-trained PepLand
model.

• The source code and datasets are publicly available to
facilitate future studies on peptide representations and
peptide design.
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