
HiLD 2025: 3rd Workshop on High-dimensional Learning Dynamics

Different simultaneous mechanisms for in-context recall have distinct
learning dynamics

author names withheld

Under Review for the Workshop on High-dimensional Learning Dynamics, 2025

Abstract
We introduce a new family of toy problems that combine features of linear-regression style continuous
in-context learning (ICL) with discrete associative recall. We pretrain transformer models on sample
traces from this toy, specifically symbolically labeled interleaved observations from randomly drawn
linear deterministic dynamical systems, and study if these transformer models can recall the state of
a process previously seen in its context when prompted to do so with its in-context label. Training
dynamics reveal the emergence of classic recall ability well into training, but surprisingly, well
before this recall ability has emerged, a closely related task — predicting the second token in a
recalled sequence given the first — shows clear evidence of seemingly recall-related behavior.

Through out-of-distribution experiments, and a mechanistic analysis on model weights via edge
pruning, we find that next-token prediction for this toy problem involves two separate mechanisms.
One mechanism uses the discrete labels to do the associative recall required to predict the start of a
resumption of a previously seen sequence, and the second mechanism, which is largely agnostic to
the discrete labels, performs a Bayesian-style prediction based on the previous token and the context.
These two mechanisms have different learning dynamics.

To confirm that this two-mechanism (manifesting as separate emergence) phenomenon is not
just an artifact of our toy setting, we used OLMo training checkpoints on an ICL translation task to
see a similar phenomenon: a decisive gap in the emergence of good first-task-token performance vs
second-task-token performance.

1. Introduction

The release of GPT-3 [6] demonstrated the power of Large Language Models’ (LLMs) ability to do
in-context learning (ICL). Since then, there has been significant progress in understanding ICL for
language models themselves [1, 12, 18, 21, 22, 32–35]. There has also been work that focuses on
understanding ICL for simpler toy problems [7–9, 24, 25, 28]. Toys (e.g., linear regression [9, 10, 25])
allow us to study the learned ICL behavior of deep neural networks in settings where optimal strategies
are known, allowing complex prediction mechanisms to be disentangled. In this paper, we build on
previous work to create a new toy problem involving interleaved vector-valued time-series.

We start with underlying time-series that come from the evolution of random deterministic linear
systems and thus play the role of noise-free least-squares problems in [9] — each consecutive time-
series observation is defined by its underlying deterministic linear system (defined by an unknown
matrix — just as in linear regression). This continuous-state problem has a naturally continuous
error metric: mean-squared-error. We restrict attention to noiseless time-series defined by orthogonal
matrices — consequently, once we have seen enough information in the observation sequence
segments for a specific time-series, in principle, perfect prediction accuracy (i.e. 0 MSE) is possible.

© .

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

Segments from different time-series are interleaved with “symbolic punctuation labels,” tokens
[31] that unambiguously demarcate different segments as belonging to different time-series. These
discrete symbolic labels and the fact that they can occur repeatedly introduces a dimension of
MQAR-style associative recall [2]. However, successful use of this recall is not simply a matter of
copying a particular surface-level value from the context. Instead, the corresponding task (predicting
the next observation in this particular sequence) must be done.

We find clear evidence during training of the emergence of associative recall in our toy problem.
We explore two natural hypotheses for recall mechanisms:

H1: Label-based recall. The model uses in-context learning of the association of symbolic
labels to time-series, and then performs inference based on recalling the referenced time-series
and continuing its evolution.

H2: Observation-based Bayesian recall. The model ignores the symbolic labels. The noise-free
nature of the toy problem means that once we see an observation, we can figure out which prior
time-series it could have come from. Then, we can do Bayesian prediction [15, 19, 34] based on
previous observations for future predictions.

However, we find that H1 and H2 are both false as complete explanations. Instead, both
are true simultaneously! H1 is used for predicting the first token after a particular time-series is
being resumed. But for the second token and beyond in a resumed sequence, the information in the
observation allows a variant of H2 to work.

We observe further that there is a difference between the emergence of the ability to learn to
predict the first versus second token after a symbolic label, even though information-theoretically,
they both require recalling the in-context-learned nature of that specific time-series. And somewhat
surprisingly, the successful use of the symbolic label (which feels conceptually easier for a human)
occurs after the model has clearly learned to do some approximate version of the more Bayesian H2
for those tokens on which it is a viable strategy. (We verify this using out-of-distribution experiments.)

This leads to the following conjecture.

C3: Transformers use multiple mechanisms for a single multi-token task. Distinct mecha-
nisms, with different training dynamics, are used to initiate a new episode of an ICL-specified
task (i.e., predict the first token), versus continuing that task (i.e., predict the second token).

By modifying a classic LLM emergence experiment [31, 32] and using OLMo checkpoints [20],
we confirm that this conjecture holds for an NLP task — i.e. even before the emergence of successful
initiation of an ICL-specified task, models can successfully continue that task.

2. Setup and Key Results

Consider predicting the continuous-state of an unknown linear dynamical system from the orthog-
onally evolved family [26], where the system U ∈ R5×5 is a uniformly drawn-at-random [16]
orthogonal matrix. The initial state is x0 ∼ N

(
0, 15I

)
, with state updates: xi+1 = Uxi = U i+1x0.

The system state is eventually perfectly predictable, but only after six positions in the sequence are
observed by solving for U =

[
x1 x2 x3 x4 x5

] [
x0 x1 x2 x3 x4

]−1. As described in

2

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

[<start> ...]{ ... } (...{ })

Random

...
Training Library

...

...

...

Start
Index

0
Open

0
Close

24
Open

24
Close

Payload
Flag Payload

Start Symbol

... [...]

Start
Index

0
Open

0
Close

24
Open

24
Close

Payload
Flag Payload

Open Symbol
Start
Index

0
Open

0
Close

24
Open

24
Close

Payload
Flag Payload

-0.37 -0.05 0.56 0.12 -0.69

Observation

Figure 1: Generating a training example — Notice in this example the continuation from the first
segment to the last (system U30), and from the 2nd segment to the 3rd (system U2). The
“parentheses" (symbolic punctuating labels) are encoded as special tokens as shown.

further detail in the Appendix 5.1 and illustrated in Figure 1, sequences drawn from different such
systems are cut and their segments braided together into one long context — with each segment
clearly delimited on both sides by symbolic label tokens identifying unique systems. Traditional loss
curves during training are in Appendix 5.2.

Before testing recall, we first confirmed that our trained model is able to learn to predict long
sequences from unseen systems in-context. Details on this are available in Appendix 5.3. From a
training dynamics point of view, this ability seems to develop steadily during training — no evidence
of "emergence."

(<start> ...){ } (
Needle

Haystack
Test Segment

... ...

1-after
inital

1-after
final

2-after
final

3-after
final

Query

Figure 2: Test format with a two-system haystack and a query to resume the first system.

To study associative-recall, we use structured test traces as depicted in Figure 2: the initial part
of the context has N individually punctuated (with distinct open and close symbols) ten-entry-long
segments from N distinct systems. We follow with a query for predictions from exactly one of the
N systems, by using the corresponding open token followed by the continuation of that particular
system observation sequence as the test segment where prediction performance can be evaluated
using mean-squared error. The key results can be seen with N = 2 in Figure 3. (Results for some
other N are in fig. 9.) Notice the black curve for performance at initiating the recalled segment. With
a correct query (Plot (a) to the left), good performance emerges suddenly shortly before 2 × 107

training examples. Before that, it appears that no recall is happening. With a misdirected query
(i.e. giving the open symbol associated with the other system in the context – as depicted in Plot (b)
to the right), errors jump upward at the same point in training — which makes sense since the model
is resuming the wrong sequence as it was told to do.

3

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

106 107

of Training Examples

10 3

10 2

10 1

100
Er

ro
r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) Normal recall.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) Misdirected recall.

Figure 3: For two systems in the haystack, we show the training dynamics in terms of performance
on recall tasks. The above curves are the quartiles of the mean-squared error of the
transformer model’s predictions versus the number of training examples it has seen for
indices 1, 2, 3, 7, and 8 steps after the initial and final open tokens. To the left, we see
what happens with normal prompting. To the right, with misdirected prompting that asks
to recall the wrong sequence.

However, notice also the striking similarity in all other curves in Figure 3 with or without the
misdirection — the performance on continuing the queried sequence is essentially unaffected by the
misdirection! The mechanism here is clearly ignoring the content of the symbolic query. Notice
also the interesting learning dynamics — while the black curve shows a classic "emergence-type"
behavior, the blue curve for the performance on the second token is very different: pointing to
different learning dynamics. It is clearly showing recall much earlier with a sharp improvement
starting before 1× 107 training examples — well before the black curve does.

Further edge-pruning based investigations (See Appendix 5.7.) show that the circuits for predict-
ing the first and second tokens are completely distinct.

3. Do Pretrained LLMs Also Display Multi-Mechanism Tendencies? Yes!

To see whether our conjecture C3 (multiple mechanisms for a single multi-token task) holds for
natural language problems solvable by prompting LLMs, we leverage OLMo-2 7B checkpoints [20]
and a basic English to Spanish translation task that is inspired1 by the IPA translation task used in
previous works benchmarking and studying emergent behaviors [4, 30]. In Figure 4 (right), we see
a similar phase transition in the first token prediction task, a parallel of the 1-after recall dynamics
in our toy model. Meanwhile, the second-token performance is both better and more gradual in its
improvement across training. This again matches what we saw in our toy problem.2

1. We use Spanish instead of the International Phonetic Language (IPA) as IPA has tokens that are not compatible with
the OLMo 2 tokenizer. We also change the in-context labels to have no semantic meaning in light of [31].

2. One natural question is whether what we are seeing is the emergence of true ICL recall or just the underlying ability to
start a translation itself. This can be probed by replacing the purely symbolic task labels "X:" and "Y:" in the few-shot
examples with semantically informative "Spanish:" and "English:" labels. This replacement switches the problem from

4

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

Figure 4: Comparative example of in-weights associative recall (left) and in-context associative
recall (right) in a 2-shot prompting setting. Each point is a separate OLMo-2 7B model at
different training steps. We report 95% confidence intervals using a Jeffrey’s prior.

4. Discussion

At this point, the community understands that ICL is rich and nuanced [11, 12, 18, 23, 29]. We
contribute a new dimension of nuance by empirically pointing out that a single ICL-driven task can
be performed, on different tokens, using multiple mechanisms that emerge separately with their own
training dynamics. This prediction was directly obtained from seeing the behavior of our toy model
— nobody had no reason to suspect it otherwise. And because the toy is simple, we have hope that it
will help the community understand the why and how more deeply as well.

Of course, once we have actually seen and confirmed this behavior, we can speculate on why it
occurs. When tasks have tight local coherency, there can often be approximate local underspecifica-
tion — there are multiple ways of knowing what the model is supposed to be doing here. The intrinsic
Bayesian orientation of autoregressive next-token prediction [34] means that this can get picked up
on, while the average-loss-over-tokens driving the training gradients means that an approximately
correct mechanism that works most of the time will be rewarded (and grown/improved) even if it
can’t solve the task completely. The very success of this mechanism during training will further
reduce the overall gradient pressure for alternative and potentially better mechanisms, potentially
forcing them to develop more slowly. However, structurally, there are certain aspects of tasks that
are likely to require the use of these better mechanisms — and it seems that starting an episode
of a task might be one of them. These better mechanisms therefore can emerge later in training —
but their emergence does not mean that the better information they are acting on will automatically
be incorporated by the mechanisms already favored for other parts of the task. This contrasts with
situations where the earlier emerging mechanism foregrounds information that can be used by the
later mechanism [28].

pure ICL for task recognition (in-context associative recall) to leveraging a learnt label (in-weights associative recall).
The resulting performance is seen in Fig. 4 (left). Notice the marked improvement in the first-token performance that
erases the entire gap to the second-token performance. This establishes that the model knows how to start a translation,
it just can’t in-context-learn well enough to know that is what it is supposed to do before the phase transition during
training that occurs around step 50k.

5

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

References

[1] Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning:
Architectures and algorithms. arXiv preprint arXiv:2401.12973, 2024.

[2] Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language
models. arXiv preprint arXiv:2312.04927, 2023.

[3] Per Bak. How nature works : the science of self-organized criticality. Copernicus, New York,
NY, USA, 1996. ISBN 9780387987385.

[4] BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities
of language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=uyTL5Bvosj.

[5] Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer
circuits with edge pruning. In Advances in Neural Information Processing Systems (NeurIPS),
2024.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Zhe Du, Haldun Balim, Samet Oymak, and Necmiye Ozay. Can transformers learn optimal
filtering for unknown systems? IEEE Control Systems Letters, 7:3525–3530, 2023. doi:
10.1109/LCSYS.2023.3335318.

[8] Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
evolution of statistical induction heads: In-context learning markov chains. arXiv preprint
arXiv:2402.11004, 2024.

[9] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers
learn in-context? a case study of simple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

[10] Ruomin Huang and Rong Ge. Task descriptors help transformers learn linear models in-
context. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=lZNb1CVm5O.

[11] Andrew Kyle Lampinen, Stephanie C. Y. Chan, Aaditya K. Singh, and Murray Shanahan. The
broader spectrum of in-context learning, 2024. URL https://arxiv.org/abs/2412.
03782.

[12] Ziqian Lin and Kangwook Lee. Dual operating modes of in-context learning, 2024. URL
https://arxiv.org/abs/2402.18819.

[13] Jerry Weihong Liu, Jessica Grogan, Owen M Dugan, Simran Arora, Atri Rudra, and Christopher
Re. Can transformers solve least squares to high precision? In ICML 2024 Workshop on In-
Context Learning, 2024.

6

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=lZNb1CVm5O
https://arxiv.org/abs/2412.03782
https://arxiv.org/abs/2412.03782
https://arxiv.org/abs/2402.18819

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

[14] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL
https://arxiv.org/abs/1711.05101.

[15] David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

[16] Francesco Mezzadri. How to generate random matrices from the classical compact groups.
arXiv preprint math-ph/0609050, 2006.

[17] Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling. Advances in Neural Information Processing Systems, 36, 2023.

[18] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work?, 2022. URL https://arxiv.org/abs/2202.12837.

[19] Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference, 2024. URL https://arxiv.org/abs/2112.
10510.

[20] Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind
Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi,
Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Ma-
lik, William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam,
Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christo-
pher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh
Hajishirzi. 2 olmo 2 furious, 2024. URL https://arxiv.org/abs/2501.00656.

[21] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and
induction heads. arXiv preprint arXiv:2209.11895, 2022.

[22] Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What in-context learning "learns"
in-context: Disentangling task recognition and task learning, 2023. URL https://arxiv.
org/abs/2305.09731.

[23] Core Francisco Park, Ekdeep Singh Lubana, Itamar Pres, and Hidenori Tanaka. Competition
dynamics shape algorithmic phases of in-context learning, 2025. URL https://arxiv.
org/abs/2412.01003.

[24] Nived Rajaraman, Marco Bondaschi, Ashok Vardhan Makkuva, Kannan Ramchandran, and
Michael Gastpar. Transformers on markov data: Constant depth suffices. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=5uG9tp3v2q.

[25] Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity
and the emergence of non-Bayesian in-context learning for regression. Advances in Neural
Information Processing Systems, 36, 2024.

7

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2112.10510
https://arxiv.org/abs/2112.10510
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2412.01003
https://arxiv.org/abs/2412.01003
https://openreview.net/forum?id=5uG9tp3v2q
https://openreview.net/forum?id=5uG9tp3v2q

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

[26] Michael Eli Sander, Raja Giryes, Taiji Suzuki, Mathieu Blondel, and Gabriel Peyré. How
do transformers perform in-context autoregressive learning ? In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp,
editors, Proceedings of the 41st International Conference on Machine Learning, volume 235
of Proceedings of Machine Learning Research, pages 43235–43254. PMLR, 21–27 Jul 2024.
URL https://proceedings.mlr.press/v235/sander24a.html.

[27] Hinrich Schutze and Christopher Manning. I preliminaries. In Foundations of Statistical
Natural Language Processing. MIT Press, United States, 1999. ISBN 9780262133609.

[28] Aaditya K. Singh, Ted Moskovitz, Sara Dragutinovic, Felix Hill, Stephanie C. Y. Chan, and
Andrew M. Saxe. Strategy coopetition explains the emergence and transience of in-context
learning, 2025. URL https://arxiv.org/abs/2503.05631.

[29] Xiaolei Wang, Xinyu Tang, Wayne Xin Zhao, and Ji-Rong Wen. Investigating the pre-training
dynamics of in-context learning: Task recognition vs. task learning, 2024. URL https:
//arxiv.org/abs/2406.14022.

[30] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022.

[31] Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen,
Yifeng Lu, Denny Zhou, Tengyu Ma, et al. Symbol tuning improves in-context learning in
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 968–979, 2023.

[32] Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning
differently, 2023. URL https://arxiv.org/abs/2303.03846.

[33] Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning, 2023.
URL https://arxiv.org/abs/2303.07895.

[34] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

[35] Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning?, 2025.
URL https://arxiv.org/abs/2502.14010.

8

https://proceedings.mlr.press/v235/sander24a.html
https://arxiv.org/abs/2503.05631
https://arxiv.org/abs/2406.14022
https://arxiv.org/abs/2406.14022
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2303.07895
https://arxiv.org/abs/2502.14010

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

5. Appendix

5.1. Training Details

Generating a library of training sequences: We first compile a training library by generating
40000 orthogonal matrices iid uniformly over all 5 × 5 orthogonal matrices U1, . . . , U40000

iid∼
µ (O(5)) and generating 40000 iid initial states that will correspond to each training system

x
(1)
0 , . . . ,x

(40000)
0

iid∼ N
(
0, 15I

)
. We then roll out the states to get observation sequences that

are each 251 entries long, and compile the sequences as our training library as depicted in figure 1.

Cutting and interleaving training sequences To form a training example, we interleave segments
of observation sequences from the library into a context window of length 251. The max number
of systems that could be inserted into this training example is drawn according to a Zipf(1.5, 25)
depicted graphically3 in Fig. 5. Fig. 1 shows the format of a training example. The first token of a
training example is always a start symbol encoded as a one-hot vector. The number of cuts is then
drawn according to a Poisson distribution (with parameter twice the number of systems), and this
many cuts are placed uniformly at random within the 250 long context window (excluding the start
symbol).

0 5 10 15 20 25
of Systems in an Interleaved Trace

10 2

10 1

Pr
ob

ab
ili

ty

Figure 5: The Zipf(1.5, 25) used to generate the number of systems to be interleaved in a training
trace.

Symbolic punctuating labels (SPLs) At every cut, a symbolic close label is inserted that denotes
the end of the previous segment of observations. This is immediately followed by a symbolic open
label that denotes the start of the next segment of observations. Each distinct system in a training
example has its own randomly assigned symbolic open and close labels. Within a single training
example, segments of a particular system, say System 30, always start with the same open token
and always end with the corresponding close token. These random assignments are redrawn at the
beginning of the interleaving process for each training example; therefore, the same system can
have different symbolic open and close labels when it appears in different training examples. The
symbolic punctuating open and close labels are also one-hot encoded vectors.

Input structure and embedding The input dimension of our models is 57. There are 50 dimensions
for encoding open and close labels, a dimension for the start symbol, a dimension for the payload
flag and 5 dimensions to hold the 5-dimensional observation vectors. For the observation sequence
between the SPLs, the 5-dimensional state vectors are inserted into the payload portion of the input
vector, the payload flag is set to 1, and the rest of the input vector dimensions are zeroed out.

3. The Zipf distribution was chosen for its ubiquity in nature [3] and natural language [27], along with recent work
pointing to its importance in modern neural networks [17].

9

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

Model and embedding Building off of the codebase in [7], which was influenced by [9], we train
a 9.1M parameter GPT-2 style transformer to perform this task. Our model has hidden dimension
128, 12 layers, and 8 heads. Our model’s input embedding is 128× 57 dimensional, since our model
has a 128-dimensional hidden dimension. The model’s output embedding is 5× 128 to ensure that
the model makes 5-dimensional predictions. The input and output embeddings are untied.

Training and Hyperparameters New interleaved training examples are generated for each training
iteration and our GPT-2-style model was trained for next token prediction on these training traces.
The loss for all SPLs on the output were zeroed out. A model that successfully recalls the state of a
system seen previously in its context should make predictions after the open token that perform as it
would have if the relevant sequence had continued on without interruption.

Following the choice made in [7], we trained our model with a weight decay of 1× 10−2. We
used a batch size of 512, a learning rate of ≈ 1.58× 10−5, and trained on a single NVIDIA L40S
GPU with 45GB of RAM. A single training run takes around 5 days. We used the AdamW Optimizer
[14] and trained using mean-squared error loss.

5.2. Pretraining loss dynamics

In figure 6, we see the performance of model training checkpoints on data that is in the style of what
the model saw during training as specified in section 5.1. The black curve is the model’s performance
on freshly drawn interleavings of traces from a held-out test library, while the blue curve is on freshly
drawn interleavings of traces from the training library. The red dotted line gives a lower bound
baseline for the prediction error of the model by computing the average MSE of a predictor that
computes x̂i+1 = Ûxi, where

Û =
[
x1 . . . xi

] [
x0 . . . xi−1

]†
, (1)

and X† denotes the Moore-Penrose pseudoinverse of X . This perfect baseline also correctly unbraids
the interleaved system so it knows exactly where it is in which sequence. Essentially, this baseline
only makes non-zero errors on the first, second, third, fourth, fifth, and sixth entry in any sequence —
it gets everything else perfectly correct.

Figure 6 shows us that when prediction error is averaged over all timesteps, it appears that the
model is making steady gradual progress during training towards learning to predict interleaved
traces. On these training-style loss curves, there is a potential kink visible around 4 ∼ 5 × 106

training examples seen. But this could also just be seen as approaching the irreducible loss as given
by the dashed red curve at around 0.04 MSE loss.

To actually see what is going on during training, we have to look at the model’s behavior with
more careful probes. Our study of the model’s performance on specific indices using structured
needle-in-a-haystack test traces in Section 2 uncovers multiple mechanisms for prediction with
distinct learning dynamics.

10

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

106 107 108

of Training Examples

0.0

0.2

0.4

0.6

0.8

Er
ro

r

Test
Train
Pseudoinv Predictor

Figure 6: Pretraining Loss—The MSE of the transformer model’s predictions on traces interleaved
in the style of the training data averaged over each timestep of the trace. The error bars are
the standard deviation. For both the train and test data, averaging was done over 40,000
different interleaved traces, each of length 251. The dotted red line is the averaged MSE
of a predictor that computes an estimate of the underlying system dynamics by using the
Moore-Penrose pseudoinverse of the observed data.

5.3. Can a model learn the dynamics in context? Yes

Before testing the recall performance, we first confirm that our trained model is able to learn to
predict long sequences from unseen systems in-context. We generate 100 held-out systems and 1000
different held-out initial states for each system as our test set. We plot the median MSE over these
initializations and test systems. Figure 7 shows the performance when predicting 249 entry-long
sequences.

101 102

Context

10 3

10 2

10 1

100

Er
ro

r R
at

io

5e+05
2e+06
3e+06
4e+06
6e+06
9e+06
1e+07
1e+07
2e+07
2e+07
3e+07
3e+07
4e+07
5e+07
6e+07
7e+07
8e+07
9e+07

of Training Exam
ples

6.25e7 ex

(a)

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r R
at

io

50

100

150

200

250

C
ontext

(b)

Figure 7: Performance on the first segment—Fig. 7 (left) and fig. 7 (right) depict the in-context
learning performance of the model on 248 entry long test examples. The red line in fig. 7
(right) at 6.5×107 training examples denotes the checkpoint that we use for early stopping.

11

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

Notice in figure 7 (left) that early checkpoints saturate out, and cannot continue to make better
predictions with more context. In figure 7 (right) the model is gradually learning to make better
predictions as training continues and emergence is not present. The best performance of the model
is at the end of the context window with an MSE of ≈ 2 × 10−4. According to [13], this is near
the precision threshold for transformer models. Additionally, we notice in figure 7 (right) that the
model suffers from overfitting late in training. We use these baseline experiments to set our early
stopping checkpoint of 6.5× 107 training examples, as denoted by the red vertical line in figure 7
(right) which corresponds to the blue curve in figure 7 (left).

5.4. Learning to restarting predictions on a new system

In figure 8, we see that at the beginning of training, the model has not learned to restart its predictions
for a new system when being told that a new system is starting. Its MSE in segment 3 is at least 0.05
above its counterpart predictions in segment 1 for 2 through 8 steps into each segment at 2× 106

training examples. The model then gradually learns to reset and begin predicting a new system as the
MSE for each step in segment 3 converges to the value of its segment 1 counterpart.

106 107

of Training Examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Er
ro

r

1 into seg. 3
1 into seg. 1
2 into seg. 3
2 into seg. 1

3 into seg. 3
3 into seg. 1
4 into seg. 3
4 into seg. 1

5 into seg. 3
5 into seg. 1
6 into seg. 3
6 into seg. 1

7 into seg. 3
7 into seg. 1
8 into seg. 3
8 into seg. 1

Figure 8: Performance on a new subsequent segment—The above plot shows the MSE of the
orthogonal model on the 1st system segment and the 3rd system segment that it has seen
in its context. For all three of these segments, a sequence from their respective systems
appeared for the first time.

5.5. Further Plots

Because of space limitations, we only included the plots for a "haystack length" of 2 in the main
paper. However, interesting behavior is visible if one considers N = 1 and N = 5 as well, illustrated
together with N = 2 for easy comparison in Figure 9. Notice that:

• N = 1 shows interesting trivial-recall behavior emerging earlier for the black curve: soon
after 1× 107 training samples.

12

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

• N = 1 also shows two interesting transitions during training in the blue curve for predicting
the second position in a resumed sequence: first around 2 × 106 training samples where
improvements stop and second around 6× 106 training samples where improvements begin to
happen much faster. By contrast, the behavior of the red curve for predicting the third position
is much smoother.

• N = 5 puts the behavior of N = 2 into a clearer light by illustrating that whatever is happening
before 1× 107 training samples for the red and blue curves clearly gets progressively worse
when there are more systems in the haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) 1 system haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) 2 system haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(c) 5 system haystack.

Figure 9: Training dynamics—All haystack segments are of length 10 (excluding delimiting tokens).
The test set consisted of 1,000 traces from each of 50 systems. The above curves are
the quartiles of the mean-squared error of the transformer model’s predictions versus the
number of training examples it has seen for indices 1, 2, 3, 7, and 8 steps after the initial
and final open tokens.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of Systems in the Haystack

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Er
ro

r a
t 6

.2
5e

7
Ex

am
pl

es

TF: 1 after final
TF: 2 after final
TF: 3 after final
TF: 7 after final
TF: 8 after final

Figure 10: The 25th, 50th, and 75th quartiles of the MSE after 6.25× 107 training examples as the
number of systems in the haystack increases.

In Figure 10, if the symbolic label is used to perform the task, we expect predictions in the final
query sequence to be unaffected by the number of systems in the haystack. Contrarily, performing
a symbol agnostic Bayesian prediction gets progressively more difficult with more systems in the
haystack, since there are more candidate orthogonal matrices to average over. Observe that the 1-after

13

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

final symbolic label performance remains steady with more systems, while the predictions for the
later indices get progressively worse.

5.6. Multiple Mechanisms for Prediction

Testing the hypotheses presented in section 1, we explore whether the mechanisms by which the
associative recall task is performed is mediated by label-based recall or observation-based Bayesian
recall. Under label-based recall, the model uses in-context learning of the association of symbolic
labels to systems, and then performs inference based on recalling the queried system and continuing
its evolution. Under observation-based Bayesian recall, the model ignores the symbolic-labels and
instead leverages the seen payload, to figure out which system it could have come from. The model
then performs Bayesian prediction based on previous observations to make future predictions.

5.6.1. FURTHER OUT-OF-DISTRIBUTION INFERENCE-TIME EXPERIMENTS

In order to better understand the mechanisms governing how our model is performing associative
recall, we conducted four out of distribution experiments at inference-time.

(<start> ...){ } (
Needle

Haystack

Query

... ...

Misdirect to
Wrong Sequence!

Figure 11: Misdirecting the model towards the incorrect sequence in the haystack.

Misdirecting the model towards the incorrect sequence in the haystack falsifies pure label-
based recall and provides strong evidence for observation-based Bayesian recall. In order to test
the label-based recall hypothesis, we provide the model with the incorrect symbolic label as depicted
in Figure 11. The goal of this experiment was to test if the model would apply the recalled system to
the observed payload or leverage the observation to perform Bayesian prediction. Our results show
that the model ignores the misdirection and leverages the observation to perform prediction. The
baseline performance without misdirection for the 2+ after tasks shown in Figure 12 matches exactly
what we see with misdirection in Figure 3. This is strong evidence that the model applies a Bayesian
approach for the 2+ after tasks when being shown a symbolic label it has seen in context.

14

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) 2 systems in the haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) 5 systems in the haystack.

Figure 12: Misdirection towards incorrect sequence — we find that for the 2+ after final payloads,
the model ignores the misdirection. This suggests that the model leverages a Bayesian
approach when performing the 2+ after tasks.

(<start> ...){ } [
Continuation

Haystack

Query

... ...

Misdirect to
New Sequence!

Figure 13: Misdirecting the model with an unseen symbolic label.

Misdirecting with an unseen symbolic label highlights a phase transition in model behavior:
mediating between observation-based disambiguation and label-based disambiguation. We
attempt to misdirect the model towards applying a new symbolic label to the continuation of a
sequence it has already seen (Figure 13). Through the initial stages of training, the model ignores
the symbolic label and continues the sequence it has already seen as shown in Figure 14. After
associative recall emerges later in training, and the model learns how to leverage the labels, it moves
towards treating a continuation of the old sequence as a brand new sequence corresponding to the
new label. This suggests that the model performs unmediated observation-based Bayesian recall
through the initial part of training, but after emergence, leverages the unseen label to treat the new
observations as a new sequence.

15

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

106 107

of Training Examples

10 3

10 2

10 1

100
Er

ro
r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) 2 system in the haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) 5 systems in the haystack.

Figure 14: Misdirection towards unseen system—When trying to misdirect the model towards an
unseen system, the model experiences a phase transition where it moves from using
payload to mediate its generation to using the symbolic label to mediate its generation.
This is seen in the model initially performing well on continuing the existing system to
eventually treating it as an unseen system. We note that this transition happens shortly
after the emergence of associative recall suggesting the model learns the meaning behind
the labels.

(<start> ...){ } (
Needle

Haystack

Query

... ...

Misdirect to
Old Sequence!

Figure 15: Misdirecting the model with a previously seen symbolic label.

Misdirecting with a previous symbolic label displays the model’s Bayesian tendencies even
with label interference. We finally attempt to misdirect the model towards treating a brand new
sequence as an old one by providing a symbolic label it has seen in its context (Figure 15). We find
that when controlling for the position in the haystack (sequences introduced later in context perform
worse early in training) the 2+ after final tasks perform equivalently: when given the correct new
symbolic label (Figure 8), and when shown a symbolic label misdirecting to a sequence that has
already been observed in context (Figure 16). This supports the idea that the model is label-ignoring
Bayesian. It recognizes that the sequence it is seeing does not correspond to a sequence it has already
seen. However, the point in training where we see the model start leveraging the label in the unseen
symbolic label experiment (Figure 13) is approximately when performance for 2 after final in this
setup starts to degrade, suggesting the model may be starting to try to leverage the symbolic label.

16

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) 2 system in the haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) 5 systems in the haystack.

Figure 16: Misdirection towards a seen system—We attempt to misdirect the model by providing a
symbolic label for a system seen in context while feeding the model a new system. We
see the model performs Bayesian inference on the system and matches the performance
when correctly prompted with a new symbolic label for a new sequence for the third
position in the haystack (Figure 8). We note that at the same point in training that the
model begins to leverage the symbolic token for the misdirection towards an unseen
system (Figure 14) the model starts to perform worse on the 2-after task in this setting.

(<start> ...){ ... }(...

Needle

Haystack

Query

Synchronization
Point!

Figure 17: Synchronizing previous systems in the haystack to require symbol-based disambiguation.

Synchronizing previous systems in the haystack to necessitate symbol-based disambiguation
displays that the model does not exclusively leverage a Bayesian approach. We construct an
experiment where two different systems have equivalent payloads on the one-after observation,
effectively making the 2 after task ambiguous if the models leverage Bayes. To do this we generate
a single payload at x10 ∼ N

(
0, 15I

)
for all systems and generate the haystack by "rewinding" our

systems back to x0 by xi−1 = UTxi as is shown in Figure 17. In this case given the ambiguity of
which system x10 (the 1-after observation) corresponds to, the model must leverage the symbolic
label to disambiguate the sequence. We find that not only does the model fail to do the 2-after
task, but in fact the model continues to struggle even through 8-after where it under performs the 8
after initial baseline as shown in Figure 18. This indicates that the model is not strictly performing
Bayesian prediction either, as after seeing multiple examples following the symbolic label, it should
be able to disambiguate between the systems.

17

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

106 107

of Training Examples

10 3

10 2

10 1

100
Er

ro
r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(a) 2 systems in the haystack.

106 107

of Training Examples

10 3

10 2

10 1

100

Er
ro

r

TF: 1 after final
TF: 1 after initial
TF: 2 after final
TF: 2 after initial
TF: 3 after final
TF: 3 after initial
TF: 7 after final
TF: 7 after initial
TF: 8 after final
TF: 8 after initial

(b) 5 systems in the haystack.

Figure 18: Synchronizing rotations—Synchronizing the rotations of the two systems makes the
2-after task ambiguous without the symbolic label. We observe the model performance is
completely broken for our two after task indicating it is unable to utilize the symbolic
label. Furthermore, we find that this degradation in performance persists with 8 after
final being significantly worse than 8 after initial.

5.7. Transformer Circuit Analysis

Edge Pruning is a transformer circuit discovery method that optimizes over continuous masks over a
disentangled transformer to find a sparse representation of a task [5]. We run a modified version of
Edge Pruning to distinguish the circuits being used by our model for the One-after and Two-after
tasks. As our model is solely trained with MSE on payloads, we remove the KL objective and
optimize on a scaled up MSE added to the original edge loss. The loss is L′ = k · LMSE + Ledge,s

Circuit # Edges One After MSE Two After MSE

Orthogonal Sys Full Model 32936 0.002 0.004
Orthogonal Sys One-after Circuit 200 0.008 0.73
Orthogonal Sys Two-after Circuit 40 0.35 0.02

Table 1: Edge pruning finds sparse transformer circuits with high
evaluation accuracy in our GPT2 model. We prune late
checkpoints of a model using interleaved traces and data
consisting of 5 systems in the haystack. We report the
number of edges in the final circuit and the MSE of the
circuits’ predictions and the ground truth payloads for
both the One-after and Two-after tasks. We visualize the
One-after circuit in Figure 19.

We report the size of the cir-
cuits and the MSE of the ground
truth with the predictions out-
putted from both the final check-
point of the trained model and
the pruned circuits in Table 1. Im-
portantly, we find high accuracy
and 0% edge overlap between
the 1-after and 2-after circuits, in-
dicating that our model leverages
mechanistically different learned
mechanisms for consecutive to-
kens.

18

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

Figure 19: One-after circuit in orthogonal systems

19

DIFFERENT LEARNING DYNAMICS FOR IN-CONTEXT RECALL

6. Limitations

Our core problem is very much a toy, but that’s the point. It enabled us to discover the phenomenon of
multi-mechanism ICL and the fact that these different mechanisms have different training dynamics.
However, the model we used (based on the GPT-2 architecture) is outdated in multiple key ways,
especially the lack of gating-style multiplicative nonlinearities and the lack of a modern PE like
RoPE. This limitation is partially mitigated by the use of OLMo-2 in Section 3, since that is a modern
dense architecture and manifests the same phenomenon.

A fuller scientific treatment would have ablated many of the architectural components, but we
lacked the compute budget. Similarly, and for the same reason, the circuit discovery experiments
were not carefully ablated or tuned to look at the tradeoff curve of the performance with the size of
the circuit.

More NLP experiments could have been run — we just ran and reported one — to see how
widely applicable is our conjecture of multiple simultaneous ICL mechanisms for individual tasks.

20

	Introduction
	Setup and Key Results
	Do Pretrained LLMs Also Display Multi-Mechanism Tendencies? Yes!
	Discussion
	Appendix
	Training Details
	Pretraining loss dynamics
	Can a model learn the dynamics in context? Yes
	Learning to restarting predictions on a new system
	Further Plots
	Multiple Mechanisms for Prediction
	Further Out-of-Distribution Inference-Time Experiments

	Transformer Circuit Analysis

	Limitations

