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ABSTRACT

Multiple Instance Learning (MIL) is the predominant paradigm for classifying gi-
gapixel whole-slide images in computational pathology. MIL follows a sequence
of 1) extracting patch features, 2) applying a linear layer to obtain task-specific
patch features, and 3) aggregating the patches into a slide feature for classification.
While substantial efforts have been devoted to optimizing patch feature extraction
and aggregation, none have yet addressed the second point, the critical layer which
transforms general-purpose features into task-specific features. We hypothesize
that this layer constitutes an overlooked performance bottleneck and that stronger
representations can be achieved with a low-rank transformation tailored to each
patch’s phenotype, yielding synergistic effects with existing MIL approaches. To
this end, we introduce MAMMOTH, a parameter-efficient, multi-head mixture of
experts module designed to improve the performance of any MIL model with min-
imal alterations to the total number of parameters. Across 8 MIL methods and 19
different tasks, we find that this improvement to the task-specific transformation
has a larger effect on performance than the choice of aggregation method. For
instance, when equipped with MAMMOTH, even simple methods such as max or
mean pooling attain higher average performance than any method with the stan-
dard linear layer. Overall, MAMMOTH improves performance in 130 of the 152
examined configurations, with an average +3.8% change in performance.

1 INTRODUCTION

The technical advancements in computational pathology (CPath) have significantly transformed
analysis of whole-slide images (WSIs), enabling machine learning models to achieve pathologist-
level precision in diverse clinical tasks (Song et al., 2023; Bejnordi et al., 2017; Campanella et al.,
2019; Bulten et al., 2022). However, unique challenges arise when analyzing gigapixel WSIs due to
their immense size and morphological heterogeneity that spans diverse tissue structures, cellular for-
mations, and spatially distributed pathological characteristics (Saltz et al., 2018; Abdul Jabbar et al.,
2020; Marusyk & Polyak, 2010). In this context, multiple instance learning (MIL) frameworks have
emerged as the cornerstone approach to distill gigapixel images into condensed slide-level represen-
tations for accurate downstream performance (Chen et al., 2024b; Lu et al., 2021; Shao et al., 2021;
Wagner et al., 2023; Li et al., 2021). The MIL framework consists of three stages: 1) Dividing a WSI
into a set of smaller image patches, which are encoded into general-purpose features with a patch
feature encoder, 2) transforming the general-purpose features into task-specific features with a lin-
ear layer, and 3) aggregating the feature set into a slide-level representation. The first and last stages
have been studied substantially, through histopathology foundation models that produce features en-
compassing diverse histomorphological concepts (Wang et al., 2022; Xu et al., 2024; Chen et al.,
2024a; Wang et al., 2024; Lu et al., 2024) and aggregation architectures that yield task-optimized
slide representations (Ilse et al., 2018; Lu et al., 2021; Shao et al., 2021; Campanella et al., 2024).

However, the critical intermediate step of encoding task-specific patch features remains unexplored.
Most MIL models obtain task-specific representation by applying the same linear layer to all patch
embeddings, regardless of their morphological content. We hypothesize that applying a single trans-
formation to all patches limits the model’s ability to capture diverse morphological features, ulti-
mately reducing the quality of slide-level predictions. In breast cancer lesion subtyping, for ex-
ample, diverse concepts such as epithelial cell morphology, spatial arrangement, and stromal layer
architectures are collectively important factors for diagnosis (Brancati et al., 2021). This diversity
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suggests that the task-specific transformation would ideally separate patch embeddings into clus-
ters corresponding to distinct morphological concepts; while in practice, the output of the linear
layer forms a relatively continuous embedding space (Fig. 1A). As a result, MIL aggregation may
struggle to distinguish between the array of morphological concepts necessary for a comprehensive
slide-level representation.
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Figure 1: The plug-and-play MoE module for
MIL. MAMMOTH replaces the task-specific lin-
ear layer in MIL models with a mixture of ex-
perts. (a) MAMMOTH leads to a structured em-
bedding space (each expert corresponds to a dif-
ferent color) in contrast to the original linear layer
and (b) results in improved slide-level classifica-
tion performance, regardless of MIL model.

These insights warrant a more flexible archi-
tecture that can adapt its transformations based
on the morphological content of each patch.
Mixture of experts (Jacobs et al., 1991; Jor-
dan & Jacobs, 1994; Eigen et al., 2013) (MoE)
presents a promising solution by maintaining a
collection of specialized linear layers, known
as experts, each optimized to process a differ-
ent morphological pattern. A dynamic routing
mechanism directs each patch to the most ap-
propriate expert, enabling more nuanced fea-
ture transformations than those of a single lin-
ear layer (Eigen et al., 2013; Shazeer et al.,
2017; Cai et al., 2024). However, a critical
challenge of MoE is training instability: the
hard assignments of experts to inputs lead to
poor gradient flow, leading to imbalanced ex-
pert utilization, with certain experts receiving
most inputs (Cai et al., 2024). Learning an
effective hard assignment is particularly chal-
lenging in CPath due to the massive number of
patch features (≈ 10, 000 per sample) and the
small number of training samples (< 1, 000 pa-
tients) compared to traditional MoE tasks. MIL
models also frequently suffer from poor generalizability: adding more experts can exacerbate these
problems, increasing the risk of overfitting due to the expanded parameter count (Shao et al., 2025).

To address these challenges, we propose MAMMOTH, a MoE module that replaces the task-specific
linear layer for learning specialized patch feature transformations. MAMMOTH is a plug-and-play
module that can be integrated into any MIL model to improve downstream performance (Fig. 1B.),
operating with the same parameter budget as the linear layer. Instead of hard expert assignments that
lead to training instability, MAMMOTH leverages soft expert assignment where each expert processes
a different linear combination of all patch embeddings, improving gradient flow and expert utiliza-
tion (Puigcerver et al., 2024; Liu et al., 2024). Building on this foundation, MAMMOTH introduces
several model designs uniquely suited to addressing the challenges of CPath slide classification.
First, we partition each patch embedding into multiple embedding heads, with each smaller em-
bedding processed in parallel by different MoE heads. This multihead approach not only provides
fine-grained control over the patch embedding subspace but also handles larger patch embedding
size (>1,024) compared to that of typical input token in natural images (196 or 256). Next, we em-
ploy low-rank decomposition in expert layers and weight sharing for parameter efficiency, enabling
MAMMOTH to replace the original linear layer without altering the model size. Finally, MAMMOTH
produces a compact set of output embeddings from the large input patch embedding set (> 25×
reduction). This distills the large, noisy input set to a compact set of representative morphological
aggregates, akin to prototype-based aggregation (Vu et al., 2023; Song et al., 2024a;b).

Our work demonstrates that applying multiple small, specialized transformations to each patch em-
bedding via MAMMOTH substantially outperforms the conventional approach of using a single,
larger transformation for all patch embeddings (Fig. 1B). Our key contributions are as follows:

• We propose MAMMOTH, a general-purpose MoE layer designed for gigapixel WSI classi-
fication that can be easily integrated into any MIL framework.

• We identify the task-specific linear layer as a critical performance bottleneck, showing
that MAMMOTH improves performance in 130 out of the 152 examined configurations and
allows simple MIL methods to outperform sophisticated MIL methods at baseline.
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• Interpretability analyses confirm that MAMMOTH experts learn to specialize in distinct
morphological concepts.

• Extensive ablations reveal that MAMMOTH surpasses other MoE adaptations in CPath.

2 RELATED WORKS

Mixture of Experts (MoE): MoE processes the input with experts, each tailored to different input
spaces, resulting in embeddings that generalize across diverse tasks. While Sparse MoE, which per-
forms hard assignment of inputs to experts (Cai et al., 2024; Shazeer et al., 2017), is popular due
to favorable model size scaling and handling of token heterogeneity (Cai et al., 2024), it often suf-
fers from representation collapse (Chi et al., 2022) and under-utilization of experts (Shazeer et al.,
2017; Lepikhin et al., 2020). Among efforts to balance expert utilization (Fedus et al., 2022; Du
et al., 2022; Riquelme et al., 2021), Soft MoE stands out by providing a differentiable gating mech-
anism that routes weighted combinations of inputs across multiple experts (Puigcerver et al., 2024).
Consequently, each input receives contributions from several experts, leading to stable training dy-
namics (Liu et al., 2024; Puigcerver et al., 2024). Another approach is sparse multihead MoE (Wu
et al., 2024a) that enables more granular expert specialization, by distributing partitioned inputs to
multi-head experts.

Despite its success in improving classification performance for small images (256×256 pixels),
the suitability of MoE for the challenging tasks of classifying gigapixel WSIs in CPath remains
unclear. To this end, MAMMOTH builds on the foundations of Soft and multihead MoE to achieve
morphological specialization for slide-level classification tasks.

Parameter-efficient MoE: Increasing the number of experts or heads for MoE can lead to substan-
tial growth in model size, and ultimately model overfitting (Cai et al., 2024). Recent works have
explored lightweight experts by leveraging low-rank adaptors (Zadouri, 2024; Wu et al., 2024b),
smaller experts (He, 2024), or matrix factorization (Oldfield et al., 2024; Gao et al., 2022) to re-
duce parameter count while preserving representational quality. Specifically, matrix factorization
decomposes the expert layer weights into a series of low-rank matrices, enabling models to scale
the number of experts without substantially increasing the parameters (Wu et al., 2024b). Weight
sharing across experts also offers efficiency by reusing weight matrices between experts (Tan et al.,
2023; Wu et al., 2024b; Jawahar et al., 2024). MAMMOTH combines these ideas to enable a larger
number of experts within the same parameter budget as the linear layer it replaces.

MoE for computational pathology: Despite the popularity of MoE in machine learning literature,
it remains relatively unexplored for computational pathology. Existing works either use a mixture
of attention-based MIL experts to perform multitask mutation prediction (Li et al., 2024) with each
expert corresponding to a single task, or train separate CNNs to detect tissue artifacts and weigh
each model’s prediction through the MoE formulation (Kanwal et al., 2024). However, these are
highly tailored to specific tasks, and are not readily extensible to a large suite of MIL models.
Recently, a pathology-aware sparse routing mechanism (PaMOE) was proposed to use pre-extracted
patch prototypes to encourage experts to specialize in different pathologic contents, replacing the
feedforward layers in the transformer encoder block with a standard sparse MoE (Wu et al., 2025).
In contrast, MAMMOTH is a highly flexible plug-and-play MoE module built to replace the initial
linear layer that universally exists in MIL frameworks (Ilse et al., 2018; Campanella et al., 2024).

3 METHODS

We present MAMMOTH, a MAtrix-factorized Mixture of Multihead Experts for learning task-
specific WSI patch representations in CPath. MAMMOTH can easily replace the standard linear
layer of any MIL architecture with a mixture of small, specialized experts, leading to improved
downstream performance with the same parameter count (Fig. 2).

To obtain a set of embeddings for MIL, each WSI is divided into 256 × 256 pixel patches, each
of which is encoded into an embedding (≈1,024 dim) by a pretrained histopathology patch feature
encoder (Campanella et al., 2024). This results in a set of patch embeddings X = {xi}Ni=1, xi ∈ RD

for N patches of a given WSI (N ≈ 10, 000). A standard MIL framework, fMIL(·), which converts
X into the slide-level embedding xWSI ∈ RD′

, can be decomposed into the aggregator f agg.
MIL and the
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Figure 2: MAMMOTH architecture MAMMOTH replaces the initial linear layer of MIL models,
transforming generic patch features into task-optimized features with a multiheaded soft MoE. Patch
features are routed to different combinations of slots and experts for task- and morphology-specific
processing. The MoE outputs are concatenated and fed into the MIL model.

linear layer f linear
MIL ,

xWSI = fMIL

(
{xi}Ni=1

)
= f agg.

MIL

(
{f linear

MIL (xi)}Ni=1

)
. (1)

MAMMOTH replaces f linear
MIL (·) with following operations: (1) input partitioning into multiple

segments (Section 3.1), (2) a slot-based pooling module based on a set of patch prototypes
(Section 3.2), (3) a low-rank projection with matrix factorization (Section 3.3), and (4) concate-
nation of processed partitions to form output (Section 3.4).

3.1 MULTI-HEAD PROCESSING OF INPUT EMBEDDINGS

To enhance the expressivity of the input patch embeddings, we employ multi-head processing, where
each head accounts for a different partition of the embedding. Specifically, each head consists of
a MoE architecture comprised of E experts, each with S slots. After applying linear layer W ∈
R(P ·H)×D to reduce the size of the embedding, it is divided into H non-overlapping partitions, with
the hth head processing the hth partition. The hth partition x̄i,h is given as

x̄i,h = (Wxi)[(h− 1)P + 1 : hP ] ∈ RP . (2)

Each set of partitioned embeddings {x̄i,h}Ni=1 is independently processed by a distinct MoE, prior
to the head-level concatenation at the last stage. For notational decluttering, we drop the subscript h
for Sections 3.2 and 3.3, noting that the same operations are performed on all heads. This is different
from Multihead MoE (Wu et al., 2024a), which flattens the partitioned embeddings into a larger set
of N ·H embeddings and processes them with a shared pool of experts.

3.2 SLOT-BASED POOLING

We apply slot-based pooling to obtain linear combinations of {x̄i}Ni=1, with each slot representing
a unique morphological concept. For a given expert k, we pool the embeddings {x̄i}Ni=1 to S slots
via weighted averaging, based on the similarity of each input embedding to slot-specific trainable
and randomly initialized prototypes {s(k)j }Sj=1 with s

(k)
j ∈ RP . The similarity score of an input

embedding with each prototype is computed with the inner product, normalized with a softmax
operation across N embeddings. The score α

(k)
j,i represents the similarity of the ith embedding to

slot j of expert k, and is used to compute the slot embedding u
(k)
j ∈ RP ,

α
(k)
j,i =

exp(⟨x̄i, s
(k)
j ⟩)∑N

i′=1 exp(⟨x̄i′ , s
(k)
j ⟩)

, u
(k)
j =

N∑
i=1

α
(k)
j,i · x̄i, (3)
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where ⟨·, ·⟩ denotes the inner product and u
(k)
j is computed as the average of input embeddings

weighted by the similarity scores. The non-zero score α(k)
j,i forms the basis of soft expert assignment,

by allowing all patch embeddings to contribute to every slot and consequently to every expert. In
this context, each weighted average can be interpreted as a summary of a distinct histomorphological
feature in the WSI, as demonstrated in Figures 3 and A3- A7.

3.3 LOW-RANK EXPERTS

With each slot aggregating a distinct morphological concept, we introduce experts to perform feature
transformations tailored to each slot. For each expert, MoE typically uses an MLP to process the
slot embedding, z(k)j = LayerNorm(ReLU(W

(k)
fullu

(k)
j )), where W

(k)
full ∈ R(D′/H)×P represent the

linear transformations and the ReLU and layer normalization represent additional nonlinearity.

The dense matrix W
(k)
full , however, presents a scaling challenge as the parameter count increases

proportionally with the number of experts. To alleviate this undesirable scaling property, we ap-
proximate W

(k)
full as a composition of light-weight expert-specific W

(k)
low ∈ R(D′/H)×Q and shared

Φ ∈ RQ×P weight matrices. The low-rank expert output, z(k)j ∈ RD′/H , is given as

z
(k)
j = LayerNorm(ReLU(W

(k)
low · Φu(k)

j )). (4)

Such low-rank decomposition (Hu et al., 2021; Handschutter et al., 2020), W(k)
full ≃ W

(k)
low ·Φ, allows

us to scale the number of experts while maintaining a fixed parameter budget.

3.4 MAMMOTH OUTPUT FOR DOWNSTREAM TASKS

The low-rank expert output z(k)j,h , corresponding to head h, is concatenated across all heads to form

the final MAMMOTH output, z(k)j = Concat([z
(k)
j,1 , . . . , z

(k)
j,H ]) ∈ RD′

. Consequently, the output

set {z(k)j }S·E
j,k=1, instead of the original embedding set {xi}Ni=1, is processed by f agg.

MIL. This differs
from Soft MoE (Puigcerver et al., 2024) which returns the updated patch embeddings {x̂i}Ni=1 of the
same set size as the input, computed as a linear combination of {z(k)j }S·E

j,k=1. In contrast, MAMMOTH
condenses morphological information into a smaller set of S · E ≪ N task-specific embeddings.
This reduced number of input embeddings for f agg.

MIL facilitates stable model training by simplifying
the aggregation step, similar to prototype-based approaches (Vu et al., 2023; Song et al., 2024a;b).

4 EXPERIMENTS

4.1 DATASETS

Morphological Tasks: We evaluate MAMMOTH on six morphological classification tasks:
EBRAINS fine-grained (EBRAINS-F, C = 30 classes) and coarse-grained subtyping (EBRAINS-
C, C = 12) for rare brain cancer (n = 2, 319 slides) (Roetzer-Pejrimovsky et al., 2022); Non-
Small Cell Lung Carcinoma (NSCLC, C = 2) subtyping with 5-fold cross validation on TCGA
(n = 1, 041), with external validation on the CPTAC (n = 1, 091) and NLST (n = 1, 008) (Camp-
bell et al., 2016); ISUP grading based on the PANDA prostate cancer challenge (C = 6, n =
10, 616) (Bulten et al., 2022); BRACS breast carcinoma subtyping with coarse (BRACS-C, C = 3)
and fine (BRACS-F, C = 7) granularity (n = 547) (Brancati et al., 2021).

Molecular biomarker prediction: We also evaluate MAMMOTH on 13 molecular biomarker sta-
tus prediction tasks: glioma IDH1 mutation prediction (GBMLGG-C, C = 2) and histomolecular
subtyping (GBMLGG-F, C = 5) on TCGA GBMLGG (n = 1, 123) with external evaluation on
EBRAINS cases with IDH1 status (n = 849) (Roetzer-Pejrimovsky et al., 2022), 5-fold cross-
validation on TCGA lung mutation status for TP53, KRAS, STK11, and EGFR (C = 2, n = 524),
TCGA breast cancer mutation status for HER2, ER, PIK3CA, and PR (C = 2, n = 1, 034), and
10-fold cross-validation on breast core needle biopsy (BCNB) (Xu et al., 2021) for ER, PR, and
HER2 (C = 2, n = 1, 058).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We use AUC for binary tasks and balanced accuracy for multiclass tasks, with weighted κ for the
grading task. We use official dataset splits or splits presented in UNI (Chen et al., 2024a) otherwise.
For tasks with external cohorts, we report the macro-averaged performance between each cohort.

4.2 EVALUATION

Baselines: We evaluate MAMMOTH by replacing the initial linear layer for ABMIL (Ilse et al.,
2018), CLAM (Lu et al., 2021), TransMIL (Shao et al., 2021), Transformer (Wagner et al., 2023;
Vaswani, 2017), ILRA (Xiang & Zhang, 2023), DSMIL (Li et al., 2021), MeanMIL, and MaxMIL.
We use the published hyperparameter values for all models. Additional details are in Section A1.

Implementation: WSIs at 20× magnification (0.5 µm/pixel) were tessellated into 256×256
patches. We extracted features using UNI (Chen et al., 2024a), a ViT-L/16 DINOv2-based model
(Oquab et al., 2024) pretrained on 105 internal histology slides. We use E = 30 experts, H = 16

heads, and S = 9 slots per expert. We set P = 256/H , and Q = ⌊DD′−DPH
HP+ED′ ⌋ to keep the number

of trainable parameters close to that of the original linear layer. Additional details are in Section A2.

5 RESULTS

5.1 CLASSIFICATION PERFORMANCE

Morphological Classification: Morphological classification results are presented in Table 1.
Across all six tasks, eight testing cohorts, and eight MIL methods, MAMMOTH yields an average
percent change of +7.36%. Overall, 46 out of the 48 evaluated configurations showed a performance
increase. We find that both cases of decrease occur in NSCLC subtyping, a relatively simple binary
task with high average performance, which may not benefit as extensively from the morphological
specialization by MAMMOTH.

Table 1: Tissue subtyping. MIL performance with and without MAMMOTH. The number of classes
(C) is indicated below each task, with its evaluation metric in parentheses. Standard deviation across
1,000 bootstrap trials is reported in parentheses. Trans., Transformer.

Task Status ABMIL CLAM TransMIL Trans. ILRA Mean Max DSMIL Avg.
BRACS-C Base 67.10(1.2) 56.16(1.0) 66.80(2.7) 63.40(2.8) 63.27(1.8) 65.13(1.7) 64.54(2.4) 62.64(2.4) 63.63
C = 3 +Ours 72.70(1.4) 73.41(0.2) 70.52(3.1) 71.11(3.6) 74.05(2.9) 72.37(1.4) 67.21(1.6) 68.48(2.8) 71.23
(Bal. acc.) ∆ +5.60 +17.25 +3.72 +7.71 +10.78 +7.25 +2.67 +5.84 +7.60
BRACS-F Base 42.84(2.5) 32.26(2.5) 32.10(2.7) 35.70(1.9) 32.65(2.4) 33.68(1.4) 33.90(2.4) 36.48(4.2) 34.95
C = 7 +Ours 46.12(2.4) 46.82(0.6) 38.32(1.0) 38.95(2.0) 42.50(1.9) 43.55(2.9) 35.52(0.5) 39.72(0.5) 41.44
(Bal. acc.) ∆ +3.28 +14.56 +6.22 +3.25 +9.85 +9.87 +1.62 +3.24 +6.49
EBRAINS-C Base 86.10(1.1) 87.85(1.0) 87.86(1.1) 86.94(0.6) 83.41(1.7) 86.70(0.7) 84.55(1.2) 86.37(2.0) 86.22
C = 12 +Ours 89.98(0.7) 91.32(0.2) 88.23(1.2) 90.45(0.9) 91.68(0.8) 89.42(1.1) 85.14(0.1) 89.17(0.3) 89.43
(Bal. acc.) ∆ +3.88 +3.47 +0.37 +3.51 +8.27 +2.72 +0.59 +2.81 +3.20
EBRAINS-F Base 67.20(1.0) 69.77(0.6) 65.20(0.5) 69.07(1.7) 64.64(1.2) 70.30(1.4) 64.94(1.0) 63.87(1.7) 66.87
C = 30 +Ours 72.40(1.2) 72.51(0.6) 74.22(0.2) 69.73(0.1) 70.23(0.3) 72.89(0.2) 68.22(0.3) 69.40(0.4) 71.20
(Bal. acc.) ∆ +5.20 +2.74 +9.02 +0.66 +5.59 +2.59 +3.28 +5.53 +4.33
NSCLC Base 94.68(0.1) 91.73(0.0) 93.90(0.1) 94.69(0.1) 93.25(0.1) 91.44(0.1) 94.86(0.1) 94.08(0.1) 93.58
C = 2 +Ours 94.68(0.1) 93.72(0.0) 93.99(0.1) 94.04(0.1) 93.87(0.1) 93.91(0.1) 94.44(0.1) 94.43(0.1) 94.14
(AUROC) ∆ +0.00 +1.99 +0.10 -0.65 +0.62 +2.47 -0.42 +0.35 +0.56
PANDA Base 93.12(0.2) 92.60(0.1) 90.75(0.7) 91.39(0.5) 91.89(0.4) 92.67(0.3) 88.79(0.3) 92.78(0.2) 91.75
C = 6 +Ours 94.28(0.2) 93.26(0.1) 93.68(0.3) 91.90(0.8) 94.07(0.5) 93.52(0.2) 92.34(0.2) 92.96(0.1) 93.25
(Weighted κ) ∆ +1.15 +0.65 +2.93 +0.51 +2.18 +0.85 +3.55 +0.19 +1.50

Molecular biomarker prediction: Average performance across biomarkers within each dataset is
shown in Table 2. At the dataset-level, we find that MAMMOTH improves the average performance
in every configuration. At the individual biomarker level (Table A2), MAMMOTH improves per-
formance in 84 out of the 104 total configurations, with an average percent change of +2.1%. For
challenging tasks with lower baseline AUC performance (e.g., BRCA PIK3CA and Lung KRAS),
improvements with MAMMOTH were variable compared to tasks with overall higher AUC. Unlike
tissue subtyping which is classified according to morphology, the ground truth for biomarker status
is not determined by H&E, but instead molecular tests or supplemental stains. Consequently, these
biomarkers with low baseline performance may lack adequate signal to reliably identify from mor-
phology alone (Kather et al., 2020; Fu et al., 2020), and may not benefit as consistently from MoE
as a result. Nonetheless, average performance increased across all tasks, underscoring MAMMOTH’s
adaptability to diverse tasks and organs.
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Table 2: Molecular Biomarker Prediction Averages MIL model performance with the standard
linear layer (Base) and MAMMOTH (Ours). Each biomarker is a separate task, and results are aver-
aged across tasks within each dataset. Balanced accuracy is reported for GBMLGG-F, and AUROC
is reported otherwise. Propagated standard error specified in parentheses.

Dataset Status ABMIL CLAM TransMIL Trans. ILRA Mean Max DSMIL Avg.
Base 81.97(0.2) 83.10(0.3) 80.76(0.4) 80.36(0.3) 81.03(0.3) 82.69(0.1) 82.91(0.3) 81.30(0.3) 81.76

BCNB +Ours 84.26(0.2) 84.98(0.1) 82.97(0.2) 83.74(0.1) 83.27(0.2) 84.46(0.1) 84.00(0.2) 82.73(0.1) 83.80
(3 tasks) ∆ +2.29 +1.89 +2.21 +3.38 +2.24 +1.78 +1.09 +1.44 +2.04

Base 71.97(0.3) 71.93(0.3) 71.38(0.7) 71.35(0.4) 70.40(0.5) 71.34(0.4) 72.47(0.7) 71.92(0.3) 71.59
BRCA +Ours 73.65(0.3) 72.27(0.2) 73.41(0.3) 73.20(0.2) 71.68(0.4) 73.60(0.3) 72.87(0.2) 73.18(0.2) 72.98
(4 tasks) ∆ +1.68 +0.34 +2.04 +1.85 +1.28 +2.26 +0.40 +1.26 +1.39

Base 67.04(0.5) 66.36(0.3) 65.25(0.7) 64.94(0.7) 65.27(0.9) 66.24(0.4) 65.50(1.2) 65.02(0.6) 65.70
Lung +Ours 68.41(0.6) 66.89(0.3) 65.95(0.6) 67.46(0.4) 65.32(0.4) 69.17(0.4) 67.35(0.4) 66.03(0.4) 67.07
(4 tasks) ∆ +1.37 +0.53 +0.70 +2.53 +0.05 +2.94 +1.85 +1.00 +1.37

Base 71.85(0.7) 72.08(0.7) 73.32(0.8) 72.00(1.3) 71.64(0.5) 72.01(0.5) 72.83(0.6) 72.21(1.2) 72.24
GBMLGG +Ours 74.20(0.9) 72.78(0.2) 73.98(0.7) 74.40(0.6) 73.00(0.4) 73.48(0.7) 73.63(0.3) 72.74(0.4) 73.53
(2 tasks) ∆ +2.35 +0.70 +0.65 +2.41 +1.36 +1.47 +0.80 +0.53 +1.28

The average performance of MAMMOTH across all morphological and molecular tasks is shown
in Fig. 1B.. We observe that MAMMOTH-based models consistently outperform MIL approaches,
with even the lowest-performing model (MaxMIL, 73.9%) with MAMMOTH exceeding the strongest
baseline (ABMIL, 73.6%). Interestingly, MAMMOTH allows simple non-parametric approaches,
mean pooling and max pooling, to surpass the strong ABMIL baseline by 2.0% and 0.3%, respec-
tively. These results indicate that the linear layer is a bottleneck for performance, with the inclusion
of MAMMOTH having a greater impact on overall performance than the choice of MIL architecture.

5.2 INTERPRETABILITY

The primary motivation for using MoE with WSIs is to process distinct morphologic phenotypes
with specialized experts. To assess whether the routing mechanism led to expert specialization of
distinct morphological concepts, two board-certified pathologists examined the routing scores be-
tween each slot and patch embedding (Fig. 3B and Section A3), finding that the model consolidates
morphologically similar patches into the same slot. For instance, the patches with high weights
routed to slot 5 of expert 21 (Fig. 3C) overlap heavily with the tumor region of both LUAD and
LUSC slides. The routing scheme consistently routed different morphologies into distinct slots,
such as stroma and alveoli to Expert 16, and lymphocytes and red blood cells to Expert 9. These re-
sults suggest that the slot aggregation enables expert specialization by grouping the similar patches
across a variety of concepts. Additional examples are in Figs. A3- A7.

Figure 3: Visualization of patch routing A. WSI images of LUSC and LUAD for NSCLC subtyp-
ing task, with heatmap of routing weights from patches to three different slots. B. Highest similarity
patches for each slot among patches from LUSC slide and LUAD slide. Morphological clusters are
annotated by two board-certified pathologists, indicating that morphologically similar patches are
collected within a single slot. Scale bars: A. 500 µm, B. 20 µm.
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5.3 ABLATION STUDIES

Model design ablations: We first investigate how different components of MAMMOTH affect down-
stream performance by removing each design component. Performance is measured with ABMIL
averaged across six tasks: BRACS C/F, EBRAINS C/F, and GBMLGG C/F. The key ablations
are as follows. (1) MoE method: We replace MAMMOTH with various related methods: Soft
MoE (Puigcerver et al., 2024) and sparse Multiheaded MoE (Wu et al., 2024a), two popular sparse
MoE methods (softmax-based MoE (Shazeer et al., 2017) and sinkhorn-based MoE (Tay et al.,
2020)), the pathology-specific routing method, PaMoE, and the original linear layer. (2) Num.
heads: We investigate the effect of removing the multihead component of MAMMOTH by setting
H = 1. (3) Slot transformation: We use an expert-specific dense transformation W

(k)
full , instead of

its low-rank approximation, W(k)
lowΦ. (4) Shared Φ: We replace the shared low-rank projection, Φ,

with an expert-specific projection to assess the effect of weight-sharing. (5) Initial projection with
W: We replace the initial projection W with an identity matrix. This results in higher-dimensional
slot representations and increased model size. (6) MAMMOTH output: Following Soft MoE, we
update the patch embeddings {x̄i}Ni=1 as a linear combination of slot outputs {z(k)j }S·E

j,k=1 and feed
these updated patch embeddings into the MIL module. Further details are provided in Section A4.

Table 3: Ablation studies over design components. (a) Ablations for model design compo-
nents. (b) Inference efficiency comparison. Metrics are measured on random inputs of shape
10, 000 × 1, 024 averaged over 1,000 forward passes. Best performance among MoE methods
shown in bold, second best underlined. (c) Performance with GigaPath, Musk, and Virchow, av-
eraged across ABMIL, TransMIL, MaxMIL, and CLAM and task groups. Number of tasks shown
in parentheses. Lin., linear; Sp., Sparse; MH, multihead; soft., softmax; sink., sinkhorn.

(a) Model design ablations

Ablation Model Avg.

Full model Ours 71.6

MoE method

Ours ⇒ Lin. layer 68.1 (−4.9%)
Soft MoE 66.9 (−6.6%)
Sp. MH 69.1 (−3.5%)
Sp. soft. 67.8 (−5.3%)
Sp. sink. 67.6 (−5.6%)
PaMoE 69.2 (−3.4%)

Num. heads 16 ⇒ 1 67.7 (−5.4%)

Slot transform W
(k)
low Φ ⇒ W

(k)
full 69.0 (−3.6%)

Φ Shared ⇒ Per-expert 70.6 (−1.4%)

W Learned ⇒ Identity 68.2 (−4.7%)

Output Slots ⇒ Patches 68.2 (−4.7%)

(b) Inference efficiency for MoEs

Architecture Latency (MS) GPU (MB) GFLOPs

Linear 0.6 74.0 5.3

Sp. Soft 19.2 140.9 10.8
Sp. Sink. 27.5 141.2 10.8
Sp. MH 194.0 2169.6 20.3
Soft 4.8 119.6 0.8
PaMoE 24.8 610.8 125.9
Ours 19.5 89.2 2.8

(c) Ablation for feature encoders

Task Group State GigaPath Musk Virchow

EBRAINS (2)
Base 76.42 73.69 74.93
+Ours 79.02 76.02 77.78

BRACS (2)
Base 49.29 47.88 47.91
+Ours 53.73 56.28 55.55

The results in Table 3a show that each design element contributes to MAMMOTH’s efficacy. Us-
ing alternative single-head MoE methods leads to an average −5.4% change in performance. For
both sparse MoE and MAMMOTH, adding a multihead component improves performance, though
the benefits of using multiple heads is particularly pronounced in MAMMOTH, in which remov-
ing the multihead component leads to a −5.4% change (Num. heads: 16 ⇒ 1), while changing
the architecture from sparse multihead to sparse MoE leads to a −2.4% change (Sp. soft ⇒ Sp.
MH), emphasizing the confluent benefits of using multiple heads with soft assignments. Replacing
MAMMOTH with the pathology-specific PaMoE leads to a −3.4% change in performance. This
degradation in performance is present across all 8 MIL methods, with PaMoE exhibiting an average
−4.0 decrease in absolute performance compared to MAMMOTH (Table A5). Performance within
each dataset and parameter count for each MoE method are indicated in Tables A3 and A4.

Using dense expert-specific transformation W(k)
full , removing weight sharing Φ, and removing initial

dimensionality reduction layer W all lead to performance decrease, highlighting the importance of
our parameter-efficient design. Finally, the Soft MoE approach of using N updated patch representa-
tions rather than our proposed S· slot-level outputs leads to a 4.7% performance increase, indicating
the benefits of consolidating similar patches for downstream aggregation.
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Inference-time efficiency: We evaluate inference-time efficiency for various task-specific trans-
formation layers according to peak GPU memory, per-sample latency, and per-sample GFLOPS
in Table 3b. The per-sample metrics are averaged over 1,000 forward passes of random samples
shaped 10, 000×1, 024. As anticipated, the linear layer achieves the lowest latency and GPU usage.
However, MAMMOTH is both faster and more lightweight than all Sparse MoE methods. Consid-
ering that MAMMOTH also outperformed Soft MoE and the linear layer in downstream tasks, we
conclude that MAMMOTH effectively balances performance and efficiency.

Patch Encoder: With new CPath feature encoders continuously emerging, we evaluate performance
using GigaPath (Xu et al., 2024), Musk (Xiang et al., 2025), and Virchow (Vorontsov et al., 2024)
as patch encoders on EBRAINS C/F and BRACS C/F. Across the four MIL methods investigated
(ABMIL, CLAM, TransMIL, MaxMIL), MAMMOTH leads to an average improvement in balanced
accuracy of +3.52% (GigaPath), +5.36% (MUSK), and +5.24% (Virchow) (Tables 3c and A1),
indicating that MAMMOTH is robust to feature encoder choice.

Figure 4: Data efficiency of MAMMOTH. MoE
performance with varying training samples av-
eraged across tasks EBRAINS-C/F, BRACS-C/F,
GBMLGG-C, models ABMIL and TransMIL, and
3 randomly sampled subsets of the training data.

Data efficiency: A core design principle of
MAMMOTH is to facilitate stable training in
the data-scarce regimes common in CPath. We
test this hypothesis by training ABMIL and
TransMIL on different fractions of the training
dataset (Fig. 4), on EBRAINS-C/F, BRACS-
C/F, and GBMLGG-C. This is repeated over
three independently sampled training data sub-
sets. MAMMOTH attains the highest overall
performance across all fractions compared to
other MoE methods. Notably, other MoE meth-
ods consistently underperform compared to the
linear layer (base) at lower data fractions, high-
lighting the limitations of traditional MoE ap-
proaches for CPath. Lastly, we note that while
Soft MoE forms the basis of our approach, it
consistently exhibits lower performance, under-
scoring the importance of MAMMOTH’s design
for achieving task-specific transformations.

Key hyperparameters: We perform ablations over the key hyperparameters, H , E, and S. First,
we assess the effect of varying H and E for EBRAINS-F, LUNG TP53, and BRCA HER2 tasks
with ABMIL and TransMIL. We find that with a low number of heads (H ∈ {2, 4}), performance
depends on the number of experts selected, with high expert counts (E ∈ {72, 96}) showing low
overall performance (Fig. A1). Meanwhile, increasing the number of heads (H ∈ {8, 16, 32})
stabilizes performance, with high expert counts (E ∈ {72, 96}) converging with lower expert counts
(E ∈ {4, 8}). Additionally, we observe that 8-48 experts with H ∈ {16, 32} achieve the highest
overall performance. We hypothesize that, because increasing the number of experts leads to a lower
rank for Q, this intermediate expert count is a “sweet spot” that balances representation capacity with
morphological specialization. We conduct a similar experiment varying the total slots, finding that
low expert (E ∈ {2, 4}) counts reach perform best with low total slots (50 − 100), while higher
expert counts (24-96 experts) tend to perform better with 200-400 total slots (Fig. A2).

6 CONCLUSION AND LIMITATIONS

We introduced MAMMOTH, a multihead soft MoE module designed to enhance slide-level perfor-
mance in computational pathology, by addressing unique challenges arising from gigapixel WSI
inputs. Our extensive experiments across 8 MIL methods and 19 morphological and molecular tasks
show that MAMMOTH substantially improves classification performance by leveraging a large set
of specialized, low-rank feedforward layers, without substantially altering the total parameter count.
Limitations include the use of a fixed configuration of experts, slots, and heads for each task. Future
works could investigate dynamically selecting these hyperparameters, initializing the slot embed-
dings with prototype learning-based approaches, and broadening to multimodal inputs.
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ETHICS STATEMENT

This work utilizes datasets derived from publicly available images of tissues collected from
anonymized human subjects. No personally identifiable information was accessible to the authors
at any stage of this study. The analysis did not examine model performance across patient demo-
graphic subgroups; we acknowledge that further research is needed to ensure algorithmic fairness,
particularly with respect to underrepresented populations.

REPRODUCIBILITY STATEMENT

To promote reproducibility, we have submitted the codebase to initialize MAMMOTH, as well as
examples for how to equip two popular MIL models, ABMIL and TransMIL, with MAMMOTH. We
have described the training details for MAMMOTH in Sections A1 and A2 and key ablations in
Sections 5.3, A3.1, A4. Details for interpretability experiments are described in Section A3. All
datasets used were publicly available and described in Sections 4 and A4.5.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, and et al. Marc Szafraniec. DI-
NOv2: Learning robust visual features without supervision. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From Sparse to Soft Mixtures
of Experts, May 2024. arXiv:2308.00951 [cs].

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Su-
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A APPENDIX

A1 MULTIPLE INSTANCE LEARNING IMPLEMENTATION

All Multiple instance learning (MIL) models are adapted according to their official implementation,
using the default hyperparameters provided by their official codebases. For MeanMIL, we obtain
a slide-level prediction by feeding the average of task-specific embeddings through a classification
head. For MaxMIL, we feed each task-specific embedding through a classification head, and select
the patch with the single highest logit as the final slide-level prediction. For the baseline of every
model, we apply the following linear layer to the pretrained features, f(x) = ReLU(Wx), where
W ∈ RD′×D and input features x ∈ RD. We note that ILRA does not natively include an initial
task-specific linear layer. Following the architecture of all other MIL examined, which apply a linear
layer to the frozen patch embeddings, we introduce this linear layer prior to the ILRA aggregation
step.

A2 TRAINING DETAILS

We train all models with the AdamW optimizer with a learning rate of 1 × 10−4, a cosine decay
scheduler, and mixed precision according to PyTorch’s native implementation. For datasets with a
validation set, we train with a maximum of 20 epochs with an early stopping patience of 5 epochs
for a minimum of 10 epochs. For datasets without a validation set, we train for 10 epochs. We use
cross-entropy loss with random class-weighted sampling and a batch size of 1. For regularization,
we use a weight decay of 1 × 10−5, a dropout of 0.25 at every feedforward layer, and a dropout of
0.1 on the features from the pretrained encoder. Experiments were performed on one NVIDIA RTX
A4000.

A3 INTERPRETABILITY

We generate interpretable heatmaps by examining the normalized routing scores obtained in Eq. 3.2.
We average the routing scores across all heads to obtain the slot-patch routing scores shown in Fig-
ures 3 and A3. Assessment of the heatmaps and routing scores from two board-certified patholo-
gists reveals that MAMMOTH learned to direct patches with similar morphology to the same slots.
We note that the ability for slots to collect patches with similar morphologies is a necessary condition
for allowing MAMMOTH experts to specialize in specific morphologic phenotypes. For instance, we
show in Fig. 3 that Expert 9 has likely specialized in processing patches with cells of low diagnostic
importance, as one of its slots specializes in patches with lymphocytes, and another one of its patches
specializes in red blood cells. Similarly, Expert 21 has three slots which specialize in aggregating
both LUSC and LUAD tumor cells. We observe a similar pattern in our BRACS subtyping model,
in which patches with ductal hyperplasia are closest in embedding space to slot 2 of expert 4, while
patches with ductal carcinoma are strongly routed to slot 5 of expert 4. In this example, expert 4 has
likely specialized in processing patches of high diagnostic relevance.

Lastly, the routing scores within different heads of a single slot are shown in Fig. A7. Interestingly,
we observe that, while the highest-scoring patches routed to each head primarily reside in the tumor
region, the distribution of routing scores are highly variable between heads of a single slot. These
results, combined with the empirical improvement in performance when the number of heads is
set to be ≥ 16, suggest that our use of multiple heads allows MAMMOTH fine-grained control by
partitioning the slot representations into a large number of embedding subspaces.

A3.1 ABLATIONS

For all ablation experiments, we train for a maximum of 10 epochs with an early stopping patience
of 5 epochs, and a minimum of 5 epochs. For our experiments evaluating different configurations of
experts and heads in Section 5.3, we roughly fix the number of total slots across varying numbers
of experts by setting the number of slots per expert, S, to

S = max(⌊(T
E
)⌋, 1) ()

1



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where T is the target number of total slots, and E is the number of experts.

A4 MIXTURE OF EXPERTS IMPLEMENTATION DETAILS

For comparison with MAMMOTH, we implemented sparsely-gated MoE with softmax and sinkhorn
routing (Shazeer et al., 2017; Clark et al., 2022), sparsely-gated multihead MoE (Wu et al., 2024a),
soft MoE (Puigcerver et al., 2024), and pathology-aware MoE (Wu et al., 2025) using 5 experts
rather than 30 experts for all benchmark MoE methods in order to prevent model capacity from
overly expanding.

A4.1 SPARSE MOE

We implement Softmax MoE according to a PyTorch transcription of the official Tensorflow im-
plementation from GSHard (Lepikhin et al., 2020)(https://github.com/lucidrains/
mixture-of-experts), using top 2 gating for each patch, alongside an expert capacity fac-
tor of 1.25 for training and 2.0 for inference to balance expert utilization. For Sinkhorn MoE, we
replace the softmax-based routing mechanism with the Sinkhorn-Knopp algorithm, as described in
(Clark et al., 2022). We use 5 experts, with each expert consisting of a D ×D′-dimensional linear
layer with ReLU activation.

A4.2 SPARSE MULTIHEAD MOE

We implement sparse multihead MoE from the official implementation (https://github.
com/yushuiwx/MH-MoE), using 16 heads for all experiments. Following the paper’s architec-
ture, we let each expert consist of a 2-layer feedforward network with ReLU activation and set the
expert capacity to equal that of the D ×D′-dimensional sparse MoE expert layer described above,
resulting in a hidden dimension of HDD′

D+D′ .

A4.3 SOFT MOE

We use the Soft MoE implementation from https://github.com/lucidrains/
soft-moe-pytorch. Mirroring the hyperpamaters used in MAMMOTH, we use 200 total slots
for morphological classification and 400 total slots for molecular classification tasks. We use 5
experts, with each expert consisting of a D ×D′-dimensional linear layer with ReLU activation.

A4.4 PAMOE

We use the official PaMoE implementation from https://github.com/wjx-error/
PAMoE. Following the paper’s suggested configuration, we use 6 total experts, with 2 free ex-
perts and 4 experts initialized according to the matching organ of the evaluation task. For instance,
we use the TCGA GBMLGG initialization to evaluate on EBRAINS and GBMLGG. Similarly, we
use the TCGA BRCA initialization to evaluate on BRCA and BRACS tasks.

A4.5 DATASETS

We briefly describe the datasets that were used to evaluate MAMMOTH.

A4.5.1 MORPHOLOGICAL SUBTYPING

EBRAINS (Roetzer-Pejrimovsky et al., 2022): We perform coarse-grained (12 classes) and fine-
grained (30 classes) classification of brain tumor subtypes. The dataset consisted 2,319 Hematoxylin
and Eosin (H&E) Formalin-fixed and paraffin-embedded (FFPE) Whole Slide Images (WSIs). We
use label-stratified train/val/test splits (50% / 25% / 25%) provided by UNI (Chen et al., 2024a). We
evaluate performance using balanced accuracy.

NSCLC: The non-small cell lung carcinoma (NSCLC) subtyping task was a binary classifica-
tion problem for distinguishing lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC). The training data consisted of publicly available H&E WSIs from TCGA (n = 1, 041
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slides). We used 5-fold site-stratified cross validation on the TCGA dataset for training and internal
validation, and evaluated the trained model on two external datasets: the Clinical Proteomic Tumor
Analysis Consortium (CPTAC, n = 1, 091 slides) and the National Lung Screening Trial (NLST,
n = 1, 008 slides) (Campbell et al., 2016; Satpathy et al., 2021; Gillette et al., 2020). We report
average AUROC across the five folds for performance on this binary classification task. We report
the performance averaged across the TCGA, NLST, and CPTAC datasets in Table 1.

PANDA (Bulten et al., 2022; 2020): We used prostate cancer core needle biopsies (n = 10, 616)
from the Prostate Cancer Grade Assessment (PANDA) challenge to perform 6-class classification
according to the prostate cancer grade. We use the same train/val/test folds (80% / 10 % / 10%) as
UNI, and evaluate using Cohen’s quadratic weighted Kappa κ metric.

BRACS (Brancati et al., 2021): The BRACS subtyping task consisted of a 3-class coarse-grained
classification task to distinguish benign, malignant, and atypical breast carcinoma H&E slides, as
well as a fine-grained 7-class classification task that classifies benign tumors into three subtypes,
atypical tumors into two subtypes, and malignant tumors as two subtypes. We use the official
train/val/test folds (72% / 12% / 16%), with the same folds for both coarse- and fine-grained tasks.
We evaluate performance using balanced accuracy.

A4.5.2 BIOMARKER PREDICTION

Lung cancer biomarkers: We conduct 5-fold cross-validation on H&E-stained WSIs for the binary
classification task of predicting mutation status of TP53, KRAS, STK11, and EGFR in TCGA lung
cancer cases (n = 524 slides) (Cancer Genome Atlas Research Network et al., 2015), with each task
site- and label-stratified into an approximate train/val/test splits (60% / 20% / 20%). We evaluate
performance using AUROC.

Breast cancer biomarkers: We conduct 5-fold cross-validation for the binary classification tasks
of predicting mutation status of ER, PR, HER2, and PIK3CA on H&E-stained WSIs from TCGA
breast cancer (BRCA) cases (n = 1, 034), each site-stratified and label-stratified in an approximate
train/val/test splits (60% / 20% / 20%). Additionally, we perform 10-fold cross-validation on breast
cancer core needle biopsies (BCNB, n = 1, 058) (Xu et al., 2021)) for ER, PR, and HER2. We
evaluate performance using AUROC.

GBMLGG mutational subtyping (Brennan et al., 2013; Roetzer-Pejrimovsky et al., 2022): These
tasks include binary coarse-grained mutation prediction of IDH1 status using the TCGA GBMLGG
dataset (1,123 slides), and 5-class fine-grained histomolecular subtyping. The 5-class histomolec-
ular subtyping task was separated into the categories of Astrocytoma, IDH1-mutant, Glioblas-
toma, IDH1-mutant, Oligodendroglioma, IDH1-mutant and 1p/19q codeleted, Astrocytoma, IDH1-
wildtype, and Glioblastoma, IDH1-wildtype. For training and evaluation of both tasks, we use the
UNI splits, which label-stratified TCGA-GBMLGG into a train/val/test fold with a 47:22:31 ratio.
Additionally, we perform external validation on the held-out EBRAINS cohort (n = 873 slides) for
the cases with known IHD1 status. We evaluate GBMLGG-C with AUROC, and GBMLGG-F with
balanced accuracy.

A4.6 SOFT MOE PATCH OUTPUT FORMULATION

Here, we describe the process for returning updated patch representations according to Soft
MoE (Puigcerver et al., 2024) for the model design ablation MAMMOTH output. Let {x̄i}Ni=1

be the set of patch embeddings and {z(k)j }S·E
j,k=1 be the slot outputs for MAMMOTH across H heads,

E experts, and S slots per expert. The linear weights are normalized weighted combination over the
routing scores of each slot, where for any head, the weight between patch i and the output of expert
k, slot j is given by:

α
(k)
j,i =

exp(⟨x̄i, s
(k)
j ⟩)∑E

k=1

∑S
j=1 exp(⟨x̄i, s

(k)
j ⟩)

()

and the updated representation x̂i is the weighted combination

x̂i =

S,E∑
j,k=1

α
(k)
j,i z

(k)
j ()
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A4.7 ADDITIONAL VISUALIZATIONS

Figure A1: Performance with varying heads and experts. ABMIL and TransMIL performance
with MAMMOTH and varying numbers of heads and experts, averaged across EBRAINS-C and
3-fold cross-validation of LUNG TP53 and BRCA HER2. Performance is most stable with interme-
diate number of experts and high number of heads.

Figure A2: Performance with varying total slots. ABMIL trained on EBRAINS-F with varying
experts and total slots. Results are averaged across head counts H ∈ {2, 4, 8, 16, 32}. Slots per
expert are set as S = ⌊Total Slots

E ⌋. Low expert counts (E ∈ {2, 4} reach highest performance with
low total slots, while high expert counts (E ∈ {2, 4} reach highest performance with 200-400 total
slots.
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Figure A3: Slot routing scores on BRACS subtyping. Slot routing scores for an ABMIL model
trained on BRACS coarse-grained subtyping. (A) Whole slide image for normal tissue, ductal atypia,
and invasive carcinoma. (B) Softmax-normalized routing scores between each patch and slots of
different experts. Expert 4 Slot 2 (E4 S2) places high routing scores on the key diagnostic regions
for normal tissue, ductal atypia, and invasive carcinoma. Stroma had high routing scores allocated
to Expert 18 Slot 3. Expert 22 Slot 1 (E22 S1) had diffusely distributed routing scores throughout
the tissue. (C) Patches from slides in (A) with the highest routing scores for select expert-slot pairs.
Top patches routed to different slots have clear morphological phenotypes: the top patches for E4 S2
contain diagnostically relevant cells with ductal hyperplasia, and the top patches for E4 S5 contains
invasive carcinoma, while the top patches for E18 S3 consist primarily of stroma, those of E22 S1
consist of macrophages, and those of E29 S3 consist of blurry tissue. Scale bars: A-B. 500 µm, C.
20 µm.

5



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure A4: Expert routing scores in GBMLGG C. Total routing scores from each patch to each
expert, averaged across the slots and heads of each expert. In both mutant and wild-type IDH1
WSIs, we find that Expert 16 specializes in dense tumor cells with tightly-packed neuropil. Expert 6
specializes in dense tumor cells with loose neuropil. Expert 8 specializes in diffuse tumor cells with
loose neuropil. Scale bars: WSI; 500 µm, Expert Routing; 500 µm, Top Patches; 10 µm
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Figure A5: Expert routing scores in BRCA ER. Total routing scores from each patch to each
expert, averaged across the slots and heads of each expert. In both mutant and wild-type IDH1
WSIs, we find that Expert 14 specializes in patches rich in tumor cells, Expert 10 specializes in
adipocytes in conjunction with tumor cells, and Expert 16 specializes in connective tissue. Scale
bars: WSI; 500 µm, Expert Routing; 500 µm, Top Patches; 10 µm
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Figure A6: Expert routing scores in LUNG TP53. Total routing scores from each patch to each
expert, averaged across the slots and heads of each expert. We find that Expert 27 specializes in
processing patches rich in tumor cells. Expert 21 specializes in background structures such as blood
vessels, lymphatics, and connective tissue. Expert 28 specializes in tumor cells around or forming
spaces. Dashed box indicates ROI dispalyed in Expert Routing. Scale bars: WSI; 500 µm, Expert
Routing; 500 µm, Top Patches; 10 µm
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Figure A7: Routing scores on BRACS subtyping across heads of one slot. Routing scores for a
single slot (Expert 4 Slot 2) across each head of a 16-head MAMMOTH ABMIL model trained on
BRACS coarse-grained subtyping. Each image corresponds to the routing scores within one head.
The image shown corresponds to invasive carcinoma. We observe that while the attention scores are
routed to the same general tumor area between different heads, the distribution of attenton scores
varies between heads, suggesting that different heads may attend to different details of the tumorous
region. Scale bars: 500 µm.
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Table A1: Performance on different encoders. Performance of MIL models on different encoders.
Models were trained with 30 experts, 16 heads, and 6 slots per expert. Addition of MAMMOTH
consistently leads to improved performance over the original MIL models across all three encoders.
Balanced accuracy is reported.

Task State ABMIL CLAM TransMIL Max
GigaPath Musk Virchow GigaPath Musk Virchow GigaPath Musk Virchow GigaPath Musk Virchow

EBRAINS-C Base 85.9 85.5 83.4 87.0 79.1 83.9 87.3 80.2 85.5 83.9 82.8 83.3
C = 12 +Ours 83.6 84.2 87.9 89.9 88.8 87.1 87.8 82.3 86.6 87.2 82.7 83.6
(Bal. Acc.) ∆ -2.3 -1.3 +4.5 +2.9 +9.7 +3.2 +0.5 +2.1 +1.1 +3.3 -0.1 +0.3
EBRAINS-F Base 67.9 67.1 65.5 70.5 68.3 69.8 67.6 64.7 66.7 61.1 61.0 65.5
C = 30 +Ours 69.7 69.5 70.9 71.6 72.1 72.3 71.8 62.9 65.5 70.6 65.7 68.0
(Bal. Acc.) ∆ +1.8 +2.4 +5.4 +1.1 +3.8 +2.5 +4.2 -1.8 -1.2 +9.5 +4.7 +2.5
BRACS-C Base 69.4 60.9 73.5 58.9 53.7 49.3 59.3 65.5 63.3 57.5 55.5 56.3
C = 3 +Ours 69.2 70.7 71.8 66.9 73.0 72.3 70.5 66.6 66.9 60.4 57.0 67.2
(Bal. Acc.) ∆ -0.2 +9.8 -1.7 +8.0 +19.3 +23.0 +11.2 +1.1 +3.6 +2.9 +1.5 +10.9
BRACS-F Base 40.2 43.6 45.6 28.6 28.9 30.2 38.7 37.7 30.2 32.7 30.4 34.8
C = 7 +Ours 43.6 43.6 45.7 43.7 43.5 43.1 42.6 41.7 37.5 36.1 44.3 39.7
(Bal. Acc.) ∆ +3.4 +0.0 +0.1 +15.1 +14.6 +12.9 +3.9 +4.0 +7.3 +3.4 +13.9 +4.9

Table A2: Molecular biomarker prediction Change in performance between baseline MIL models
and after the addition of MAMMOTH for 13 molecular biomarker prediction tasks. All tasks are
binary prediction, with AUROC reported, with the exception of gbmlgg fine, which is a 7 class
histomolecular classification task with balanced accuracy as the reported metric. Performance on
GBMLGG is averaged between the internal TCGA cohort and external EBRAINS cohort. Standard
deviation is reported according to 1,000 boostrapped trials.

Task Status ABMIL CLAM TransMIL Transf. ILRA MeanMIL MaxMIL DSMIL Average
Base 90.38(0.2) 91.22(0.7) 91.08(0.4) 90.35(0.5) 89.80(0.4) 90.77(0.3) 90.07(0.6) 88.84(0.8) 90.31

BCNB ER +Ours 92.25(0.1) 92.72(0.2) 92.15(0.1) 92.02(0.1) 91.58(0.2) 92.19(0.1) 91.33(0.0) 90.93(0.1) 91.90
∆ +1.87 +1.50 +1.06 +1.67 +1.78 +1.42 +1.26 +2.09 +1.58
Base 73.05(0.4) 73.91(0.1) 68.90(0.7) 69.24(0.3) 71.38(0.6) 73.46(0.2) 74.33(0.5) 72.09(0.5) 72.04

BCNB HER2 +Ours 74.70(0.4) 76.64(0.1) 71.40(0.1) 75.27(0.2) 74.34(0.3) 76.35(0.3) 75.56(0.0) 73.39(0.1) 74.71
∆ +1.65 +2.73 +2.50 +6.02 +2.97 +2.89 +1.23 +1.30 +2.66
Base 82.48(0.4) 84.16(0.3) 82.30(0.8) 81.49(0.5) 81.90(0.6) 83.83(0.1) 84.34(0.5) 82.96(0.4) 82.93

BCNB PR +Ours 85.84(0.5) 85.59(0.2) 85.37(0.5) 83.92(0.3) 83.88(0.5) 84.84(0.2) 85.12(0.4) 83.88(0.2) 84.80
∆ +3.36 +1.42 +3.07 +2.43 +1.98 +1.02 +0.78 +0.92 +1.87
Base 86.93(0.3) 86.46(0.4) 87.38(0.3) 85.61(0.9) 85.00(0.4) 86.18(0.3) 86.84(0.3) 87.46(0.3) 86.48

BRCA ER +Ours 87.94(0.3) 90.06(0.3) 88.59(0.1) 88.26(0.7) 87.01(0.3) 88.27(0.3) 87.65(0.0) 86.75(0.5) 88.07
∆ +1.01 +3.60 +1.20 +2.65 +2.01 +2.10 +0.81 -0.72 +1.58
Base 64.35(1.1) 64.38(0.9) 61.31(1.5) 65.25(1.2) 61.80(1.4) 62.59(1.0) 63.58(2.6) 60.90(0.6) 63.02

BRCA HER2 +Ours 68.35(0.8) 61.84(0.1) 64.71(0.8) 64.84(0.1) 63.40(1.0) 67.59(0.6) 65.42(0.4) 65.94(0.7) 65.26
∆ +4.01 -2.54 +3.40 -0.41 +1.60 +5.00 +1.83 +5.04 +2.24
Base 60.23(0.7) 59.15(0.7) 58.79(1.9) 57.43(0.9) 58.90(1.3) 60.23(1.2) 61.67(1.1) 61.30(0.7) 59.71

BRCA PIK3CA +Ours 59.55(0.5) 58.38(0.2) 61.30(0.0) 60.27(0.5) 59.22(0.9) 58.99(0.8) 60.22(0.6) 60.96(0.2) 59.86
∆ -0.68 -0.77 +2.50 +2.84 +0.32 -1.24 -1.45 -0.35 +0.15
Base 76.37(0.3) 77.73(0.7) 78.02(1.2) 77.12(0.3) 75.91(0.8) 76.36(0.5) 77.79(0.2) 78.00(0.8) 77.16

BRCA PR +Ours 78.77(0.5) 78.80(0.6) 79.07(0.8) 79.44(0.1) 77.10(0.7) 79.54(0.6) 78.21(0.2) 79.05(0.2) 78.75
∆ +2.39 +1.07 +1.05 +2.32 +1.19 +3.18 +0.43 +1.06 +1.59
Base 91.82(0.4) 94.38(0.5) 94.46(0.1) 93.41(1.0) 93.72(0.4) 94.34(0.2) 95.34(1.0) 94.88(0.4) 94.04

GBMLGG-C +Ours 96.19(0.4) 94.53(0.1) 95.74(0.3) 95.68(0.2) 93.47(0.4) 95.34(0.7) 95.54(0.3) 94.80(0.4) 95.16
∆ +4.37 +0.15 +1.28 +2.27 -0.25 +1.00 +0.20 -0.08 +1.12
Base 51.89(1.3) 49.78(1.3) 52.19(1.6) 50.58(1.9) 49.57(1.4) 49.68(0.9) 50.31(0.8) 49.53(2.4) 50.44

GBMLGG-F +Ours 52.22(1.7) 51.03(0.3) 50.28(1.4) 53.12(0.4) 52.53(0.8) 51.63(1.2) 51.71(0.6) 50.68(0.7) 51.65
∆ +0.33 +1.25 -1.91 +2.55 +2.97 +1.95 +1.39 +1.15 +1.21
Base 61.27(1.2) 65.85(0.6) 63.66(1.2) 60.20(1.8) 62.00(2.7) 64.42(0.7) 65.43(4.1) 63.93(1.6) 63.35

LUNG EGFR +Ours 63.68(1.2) 65.98(0.8) 65.30(2.3) 67.55(1.2) 62.57(1.2) 66.17(1.1) 64.12(1.3) 65.51(1.3) 65.11
∆ +2.42 +0.13 +1.64 +7.35 +0.57 +1.74 -1.31 +1.59 +1.77
Base 58.06(0.7) 60.81(0.7) 60.31(1.1) 58.22(1.5) 60.10(0.9) 60.88(1.2) 56.93(0.6) 59.21(0.4) 59.31

LUNG KRAS +Ours 59.40(1.5) 59.42(0.8) 61.20(0.1) 59.45(0.3) 61.31(0.2) 61.22(0.5) 61.35(0.4) 58.10(0.7) 60.18
∆ +1.34 -1.39 +0.89 +1.23 +1.21 +0.35 +4.43 -1.10 +0.87
Base 76.41(1.1) 65.75(0.9) 68.95(2.2) 71.14(0.3) 69.10(1.8) 67.35(1.0) 70.06(2.6) 65.65(1.4) 69.30

LUNG STK11 +Ours 74.36(1.5) 70.57(0.5) 66.44(1.1) 69.39(0.6) 68.10(0.7) 74.31(0.7) 73.48(0.3) 68.61(0.4) 70.66
∆ -2.05 +4.81 -2.51 -1.75 -1.00 +6.96 +3.41 +2.96 +1.36
Base 72.43(1.1) 73.04(0.3) 68.07(0.7) 70.19(1.1) 69.89(0.8) 72.29(0.3) 69.57(0.9) 71.31(0.8) 70.85

LUNG TP53 +Ours 76.20(0.7) 71.60(0.1) 70.86(0.5) 73.46(0.9) 69.29(0.6) 75.00(0.5) 70.44(0.4) 71.88(0.7) 72.34
∆ +3.77 -1.44 +2.79 +3.28 -0.60 +2.71 +0.87 +0.56 +1.49
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Table A3: Ablations for model design. Performance of ABMIL across individual tasks as a single
MAMMOTH component is modified. Lin., linear; Sp., Sparse; MH, multihead; sink., sinkhorn.

Ablation Model EBRAINS GBMLGG BRACS
C F C F C F

Full model Ours 90.0 72.9 96.2 52.2 72.4 46.1

MoE method

MAMMOTH ⇒ Lin. layer 86.1 (−4.3%) 67.2 (−7.8%) 91.8 (−4.6%) 51.9 (−0.6%) 67.1 (−7.3%) 42.8 (−7.2%)
Soft 88.7 (−1.4%) 70.3 (−3.6%) 93.7 (−2.6%) 43.8 (−16.1%) 64.9 (−10.4%) 46.0 (−0.2%)

Sp. MH 88.1 (−2.1%) 67.5 (−7.4%) 93.6 (−2.7%) 53.7 (+2.9%) 66.0 (−8.8%) 44.6 (−3.3%)
Sp. soft. 87.2 (−3.1%) 69.6 (−4.5%) 93.9 (−2.4%) 56.0 (+7.3%) 65.9 (−9.0%) 28.6 (−38.0%)
Sp. sink. 87.8 (−2.4%) 70.9 (−2.7%) 93.7 (−2.6%) 43.6 (−16.5%) 64.9 (−10.4%) 46.0 (−0.2%)

Num. heads 16 ⇒ 1 87.8 (−2.4%) 64.1 (−12.1%) 92.1 (−4.3%) 51.0 (−2.3%) 67.2 (−7.2%) 44.3 (−3.9%)

Slot transform W
(k)
low Φ ⇒ W

(k)
full 89.2 (−0.9%) 72.7 (−0.3%) 95.2 (−1.0%) 51.7 (−1.0%) 69.2 (−4.4%) 36.2 (−21.5%)

Φ Shared ⇒ Per-expert 89.9 (−0.1%) 70.7 (−3.0%) 95.6 (−0.6%) 49.6 (−5.0%) 76.9 (+6.2%) 41.4 (−10.2%)

W Learned ⇒ Identity 86.8 (−3.6%) 73.8 (+1.2%) 93.2 (−3.1%) 51.2 (−1.9%) 63.0 (−13.1%) 41.1 (−10.9%)

Output Slots ⇒ Patches 88.5 (−1.7%) 69.6 (−4.5%) 95.3 (−0.9%) 53.8 (+3.1%) 75.3 (+4.0%) 43.9 (−4.8%)

Table A4: Parameter count with varying number of experts Number of parameters across dif-
ferent expert counts in the task-specific layer as a single MAMMOTH component is modified, where
D = 1024, D′ = 512, P = 256. Linear layer indicates the baseline parameter count without ex-
perts. Entries with more parameters than the linear layer are shown in bold. Lin., Linear; Sp.,
Sparse; MH., Multihead.

Ablation Model Parameter Count (Millions)
5 Experts 10 Experts 20 Experts 30 Experts

Full model Ours 0.5 0.5 0.5 0.5

MoE method

MAMMOTH ⇒ Lin. layer 0.5 0.5 0.5 0.5
Soft 2.6 5.2 10.4 15.7

Sp. MH 2.6 5.2 10.4 15.7
Softmax 2.6 5.2 10.4 15.7
Sinkhorn 2.6 5.2 10.4 15.7
PaMoE 2.6 5.2 10.4 15.7

Num. heads 16 ⇒ 1 0.5 0.5 0.5 0.5

Slot transform W
(k)
low Φ ⇒ W

(k)
full 0.92 1.6 2.9 4.2

Φ Shared ⇒ Per-expert 0.5 0.5 0.5 0.5

W Learned ⇒ Identity 0.5 0.5 0.5 0.5

Output Slots ⇒ Patches 0.5 0.5 0.5 0.5
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Table A5: PaMoE comparison Results of MIL methods with PaMoE and with MAMMOTH. The
number of classes is specified below each task. The evaluation metrics for each task are specified in
parentheses. All models use UNI features as patch embeddings (Chen et al., 2024a). Performance on
NSCLC subtyping is averaged across the internal TCGA cohort and the external NLST and CPTAC
cohorts. Trans., Transformer. Standard deviation is reported according to 1,000 bootstrapped trials.

Task Status ABMIL CLAM TransMIL Trans. ILRA Mean Max DSMIL Average
BRACS-C PaMoE 70.52 (1.6) 54.3 (2.3) 73.01 (3.3) 63.40 (2.8) 63.27 (1.8) 64.72 (1.3) 56.79 (1.8) 61.59 (2.6) 63.45 (5.9)

C=3 +Ours 72.70 (1.4) 73.41 (2.1) 70.52 (3.1) 71.11 (3.6) 74.05 (2.5) 72.37 (1.4) 67.21 (1.6) 68.48 (2.8) 71.23 (2.2)

(Bal. acc.) ∆ +2.18 +19.11 –2.49 +7.71 +10.78 +7.65 +10.42 +6.89 +7.78
BRACS-F PaMoE 43.29 (2.0) 34.43 (1.4) 43.82 (0.8) 35.70 (1.9) 32.65 (2.1) 34.88 (2.4) 28.34 (0.5) 28.59 (0.5) 35.21 (5.5)

C=7 +Ours 46.12 (2.4) 46.82 (1.3) 38.32 (1.0) 38.95 (2.0) 42.50 (1.4) 43.55 (2.9) 35.52 (0.5) 39.72 (0.5) 41.44 (3.7)

(Bal. acc.) ∆ +2.83 +12.39 –5.5 +3.25 +9.85 +8.67 +7.18 +11.13 +6.22
EBRAINS-C PaMoE 89.95 (0.7) 87.82 (0.8) 86.71 (1.3) 86.94 (0.6) 83.41 (1.0) 86.93 (0.9) 83.61 (0.1) 85.45 (0.2) 86.35 (2.0)

C=12 +Ours 89.98 (0.7) 91.32 (0.7) 88.23 (1.2) 90.45 (0.9) 91.68 (0.6) 89.42 (1.1) 85.14 (0.1) 89.17 (0.3) 89.42 (1.9)

(Bal. acc.) ∆ +0.03 +3.5 +1.52 +3.51 +8.27 +2.49 +1.53 +3.72 +3.07
EBRAINS-F PaMoE 66.68 (1.1) 65.83 (0.4) 67.0 (0.2) 69.07 (1.7) 64.64 (1.0) 64.87 (0.2) 54.65 (0.3) 52.13 (0.3) 63.11 (5.8)

C=30 +Ours 72.40 (1.2) 72.51 (0.4) 74.22 (0.2) 69.73 (0.1) 70.23 (0.4) 72.89 (0.2) 68.22 (0.3) 69.40 (0.4) 71.2 (1.9)

(Bal. acc.) ∆ +5.72 +6.68 +7.22 +0.66 +5.59 +8.02 +13.57 +17.27 +8.09
NSCLC PaMoE 94.68 (0.1) 91.73 (0.1) 93.90 (0.1) 94.69 (0.1) 93.25 (0.1) 91.44 (0.1) 94.86 (0.1) 94.08 (0.1) 93.58 (1.3)

C=2 +Ours 94.68 (0.1) 93.72 (0.1) 93.99 (0.1) 94.04 (0.1) 93.87 (0.1) 93.91 (0.1) 94.44 (0.1) 94.43 (0.1) 94.14 (0.3)

(AUROC) ∆ +0.0 +1.99 +0.09 –0.65 +0.62 +2.47 –0.42 +0.35 +0.56
BCNB ER PaMoE 93.04 (0.1) 90.99 (0.1) 89.77 (0.1) 90.35 (0.5) 89.80 (0.4) 92.61 (0.1) 88.61 (0.1) 90.52 (0.1) 90.71 (1.4)

C=2 +Ours 92.25 (0.1) 92.72 (0.1) 92.15 (0.1) 92.02 (0.1) 91.58 (0.1) 92.19 (0.1) 91.33 (0.1) 90.93 (0.1) 91.9 (0.5)

(AUROC) ∆ –0.79 +1.73 +2.38 +1.67 +1.78 –0.42 +2.72 +0.41 +1.19
BCNB HER2 PaMoE 72.28 (0.5) 73.76 (0.2) 69.96 (0.1) 69.24 (0.3) 71.38 (0.4) 70.98 (0.2) 67.23 (0.3) 70.21 (0.1) 70.63 (1.8)

C=2 +Ours 74.70 (0.4) 76.64 (0.3) 71.40 (0.1) 75.27 (0.2) 74.34 (0.2) 76.35 (0.3) 75.56 (0.2) 73.39 (0.1) 74.71 (1.6)

(AUROC) ∆ +2.42 +2.88 +1.44 +6.03 +2.96 +5.37 +8.33 +3.18 +4.08
BCNB PR PaMoE 83.81 (0.5) 83.69 (0.3) 82.0 (0.4) 81.49 (0.5) 81.90 (0.4) 83.62 (0.2) 82.89 (0.4) 83.13 (0.2) 82.82 (0.8)

C=2 +Ours 85.84 (0.5) 85.59 (0.4) 85.37 (0.5) 83.92 (0.4) 83.88 (0.4) 84.84 (0.2) 85.12 (0.4) 83.88 (0.2) 84.8 (0.8)

(AUROC) ∆ +2.03 +1.9 +3.37 +2.43 +1.98 +1.22 +2.23 +0.75 +1.99
BRCA ER PaMoE 87.71 (0.3) 87.15 (0.3) 87.52 (0.1) 85.61 (0.9) 85.00 (0.4) 84.24 (0.3) 81.16 (0.4) 85.53 (0.5) 85.49 (2.0)

C=2 +Ours 87.94 (0.3) 90.06 (0.3) 88.59 (0.1) 88.26 (0.7) 87.01 (0.4) 88.27 (0.3) 87.65 (0.3) 86.75 (0.5) 88.07 (1.0)

(AUROC) ∆ +0.23 +2.91 +1.07 +2.65 +2.01 +4.03 +6.49 +1.22 +2.58
BRCA HER2 PaMoE 61.11 (0.9) 66.94 (0.5) 61.88 (0.9) 65.25 (1.2) 61.80 (1.5) 63.5 (0.7) 57.93 (0.4) 60.38 (0.6) 62.35 (2.7)

C=2 +Ours 68.35 (0.8) 61.84 (0.6) 64.71 (0.8) 64.84 (0.1) 63.40 (0.5) 67.59 (0.6) 65.42 (0.4) 65.94 (0.7) 65.26 (2.0)

(AUROC) ∆ +7.24 –5.1 +2.83 –0.41 +1.6 +4.09 +7.49 +5.56 +2.91
BRCA PIK3CA PaMoE 59.55 (0.5) 59.11 (0.5) 58.48 (0.5) 57.43 (0.9) 58.90 (1.0) 58.52 (1.0) 54.07 (0.6) 53.64 (0.2) 57.46 (2.2)

C=2 +Ours 59.55 (0.5) 58.38 (0.5) 61.30 (0.5) 60.27 (0.5) 59.22 (0.5) 58.99 (0.8) 60.22 (0.6) 60.96 (0.2) 59.86 (0.9)

(AUROC) ∆ +0.0 –0.73 +2.82 +2.84 +0.32 +0.47 +6.15 +7.32 +2.4
BRCA PR PaMoE 76.53 (0.4) 76.5 (0.4) 75.53 (0.7) 77.12 (0.3) 75.91 (0.5) 75.05 (0.5) 72.87 (0.2) 76.26 (0.2) 75.72 (1.2)

C=2 +Ours 78.77 (0.5) 78.80 (0.4) 79.07 (0.8) 79.44 (0.1) 77.10 (0.3) 79.54 (0.6) 78.21 (0.2) 79.05 (0.2) 78.75 (0.7)

(AUROC) ∆ +2.24 +2.3 +3.54 +2.32 +1.19 +4.49 +5.34 +2.79 +3.03
GBMLGG-C PaMoE 95.79 (0.5) 93.83 (0.5) 94.65 (0.2) 93.41 (1.0) 93.72 (0.5) 93.59 (0.6) 87.12 (0.5) 89.13 (0.4) 92.66 (2.8)

C=2 +Ours 96.19 (0.4) 94.53 (0.5) 95.74 (0.3) 95.68 (0.4) 93.47 (0.4) 95.34 (0.7) 95.54 (0.6) 94.80 (0.5) 95.16 (0.8)

(AUROC) ∆ +0.4 +0.7 +1.09 +2.27 –0.25 +1.75 +8.42 +5.67 +2.51
GBMLGG-F PaMoE 54.15 (1.8) 52.5 (1.0) 53.94 (1.2) 50.58 (1.9) 49.57 (1.2) 53.02 (1.4) 51.19 (0.6) 51.31 (0.7) 52.03 (1.5)

C=5 +Ours 52.22 (1.7) 51.03 (1.1) 50.28 (1.4) 53.12 (0.4) 52.53 (1.0) 51.63 (1.2) 51.71 (0.6) 50.68 (0.7) 51.65 (0.9)

(Bal. acc.) ∆ –1.93 –1.47 –3.66 +2.54 +2.96 –1.39 +0.52 –0.63 –0.38
LUNG EGFR PaMoE 67.25 (1.2) 61.41 (1.2) 62.68 (2.4) 60.20 (1.8) 62.00 (1.5) 62.45 (0.9) 65.59 (1.3) 59.78 (1.5) 62.67 (2.4)

C=2 +Ours 63.68 (1.2) 65.98 (1.4) 65.30 (2.3) 67.55 (1.2) 62.57 (1.7) 66.17 (1.1) 64.12 (1.3) 65.51 (1.3) 65.11 (1.5)

(AUROC) ∆ –3.57 +4.57 +2.62 +7.35 +0.57 +3.72 –1.47 +5.73 +2.44
LUNG KRAS PaMoE 59.52 (1.5) 59.18 (0.8) 60.41 (0.1) 58.22 (1.5) 60.10 (0.9) 62.58 (0.6) 54.73 (0.8) 51.82 (0.8) 58.32 (3.2)

C=2 +Ours 59.40 (1.5) 59.42 (0.8) 61.20 (0.1) 59.45 (0.6) 61.31 (0.8) 61.22 (0.5) 61.35 (0.7) 58.10 (0.7) 60.18 (1.2)

(AUROC) ∆ –0.12 +0.24 +0.79 +1.23 +1.21 –1.36 +6.62 +6.28 +1.86
LUNG STK11 PaMoE 75.41 (1.4) 70.47 (1.0) 69.28 (1.1) 71.14 (0.3) 69.10 (1.6) 67.83 (0.8) 68.02 (0.3) 65.74 (0.4) 69.62 (2.7)

C=2 +Ours 74.36 (1.5) 70.57 (0.9) 66.44 (1.1) 69.39 (0.6) 68.10 (0.8) 74.31 (0.7) 73.48 (0.3) 68.61 (0.4) 70.66 (2.9)

(AUROC) ∆ –1.05 +0.1 –2.84 –1.75 –1.0 +6.48 +5.46 +2.87 +1.03
LUNG TP53 PaMoE 70.22 (0.8) 68.22 (0.9) 69.47 (0.5) 70.19 (1.1) 69.89 (0.7) 72.46 (0.5) 70.09 (0.5) 70.7 (0.7) 70.16 (1.1)

C=2 +Ours 76.20 (0.7) 71.60 (0.8) 70.86 (0.5) 73.46 (0.9) 69.29 (0.7) 75.00 (0.5) 70.44 (0.6) 71.88 (0.7) 72.34 (2.2)

(AUROC) ∆ +5.98 +3.38 +1.39 +3.27 –0.6 +2.54 +0.35 +1.18 +2.19
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