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ABSTRACT

Deep learning models are vulnerable to backdoor attacks, where adversaries inject
malicious functionality during training that activates on trigger inputs at inference
time. Extensive research has focused on developing stealthy backdoor attacks to
evade detection and defense mechanisms. However, these approaches still have
limitations that leave the door open for detection and mitigation due to their in-
herent design to cause malicious behavior in the presence of a trigger. To address
this limitation, we introduce Deferred Activated Backdoor Functionality (DABF),
a new paradigm in backdoor attacks. Unlike conventional attacks, DABF ini-
tially conceals its backdoor, producing benign outputs even when triggered. This
stealthy behavior allows DABF to bypass multiple detection and defense meth-
ods, remaining undetected during initial inspections. The backdoor functionality
is strategically activated only after the model undergoes subsequent updates, such
as retraining on benign data. DABF attacks exploit the common practice in the life
cycle of machine learning models to perform model updates and fine-tuning after
initial deployment. To implement DABF attacks, we approach the problem by
making the unlearning of the backdoor fragile, allowing it to be easily cancelled
and subsequently reactivate the backdoor functionality. To achieve this, we pro-
pose a novel two-stage training scheme, called DeferBad. Our extensive exper-
iments across various fine-tuning scenarios, backdoor attack types, datasets, and
model architectures demonstrate the effectiveness and stealthiness of DeferBad.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable performance across various application
domains, revolutionizing fields such as computer vision, natural language processing, and robotics.
However, their complex, opaque nature leaves them vulnerable to exploitation. One particularly
concerning vulnerability is backdoor attacks, where an adversary injects malicious functionality into
a model during training that remains hidden until activated by a trigger pattern in inputs at inference
time (Gu et al., 2017; Liu et al., 2018b). Backdoors enable targeted misclassification of inputs
with the trigger to a desired label, while the model behaves normally on clean inputs. This makes
backdoors hard to detect and a serious threat, especially if the model is deployed in safety-critical
applications.

Extensive research has focused on developing increasingly sophisticated and stealthy backdoor at-
tacks to evade defense mechanisms (Chen et al., 2017; Nguyen & Tran, 2020; Li et al., 2021b). These
approaches have significantly enhanced the covertness of backdoors, making them more challenging
to identify and mitigate. However, despite these advancement, current backdoor techniques remain
constrained by a fundamental limitation: the inherent necessity of activating backdoor functionality.
This core characteristic to trigger malicious behaviors for attack’s successes paradoxically renders
the backdoor weak at detection and mitigation in defense stages. For instance, a careful analysis
through reverse engineering techniques targeting specific output classes can potentially uncover the
presence of a backdoor (Wang et al., 2019). Additionally, methods leveraging the model’s output
patterns have shown promise in identifying backdoored models (Gao et al., 2019). Thus, the crucial
feature that triggers backdoor attacks also serves as its Achilles’ heel by providing avenues toward
potential detection and mitigation.
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Figure 1: An illustrating example of backdoor attacks.

To overcome this fundamental limitation, we introduce a novel attack strategy: Deferred Activated
Backdoor Functionality (DABF). This concept represents a significant shift in backdoor attack ap-
proaches, as it allows the backdoor to remain dormant in deployed models, even in the presence of
the trigger. In particular, DABF consists of two phases: a backdoor dormancy phase and a backdoor
deferred activation phase. In the dormancy phase, the compromised model behaves indistinguish-
ably from a clean model when deployed, making it much harder to detect. Later in the deferred
activation phase, the backdoor functionality is activated when the model is fine-tuned on a benign
dataset, without any further involvement of attackers.

One important feature by DABF in the backdoor dormancy phase is that DABF fundamentally
challenges the assumptions of current defense mechanisms (e.g., detection via reverse engineering
techniques on specific output classes (Wang et al., 2019; Guo et al., 2019; Wang et al., 2022a) or via
analyzing model’s output patterns (Gao et al., 2019; Guo et al., 2023; Hou et al., 2024)). By keeping
the backdoor dormant until activation, DABF can potentially bypass not only existing defenses
but also future approaches that rely on similar assumptions. Moreover, DABF presents a unique
advantage: it can potentially evade detection even in stronger scenarios, i.e., a defender knows the
trigger, where all previous backdoor attacks fail. This capability represents a new level of stealth
in backdoor attacks, significantly raising the bar for detection and mitigation strategies. Another
important feature of DABF is that the dormant backdoor is activated without any intervention by
attackers. In particular, DABF exploits the common scenario where a deployed model is thoroughly
inspected and deemed clean but then retrained with additional data. This situation frequently arises
in practice when a model is updated to improve performance, adapted to new data distributions, or
learned new tasks (Wang et al., 2024). The model owner may collect additional training data over
time and fine-tune the model, unaware that this process could activate a hidden backdoor.

Furthermore, DABF offers an additional layer of protection for the attacker. Even if continuous mon-
itoring eventually detects the backdoor after its activation, the attacker can plausibly avoid suspicion.
This is because at the time of the model’s deployment and initial security checks, no backdoor was
detectable. The backdoor’s activation occurs solely due to the routine actions of the model’s own-
ers or users, without any further intervention from the attacker. This temporal disconnect between
the attacker’s actions and the backdoor’s activation makes it extremely challenging to attribute the
backdoor to any specific individual or action.

To achieve DABF, we propose DeferBad, leveraging the key insight that neural networks have an
inherent tendency to rediscover suppressed behavior during benign retraining (Qi et al., 2023). This
novel two-phase approach consisting of an initial backdoor injection phase followed by a strategic
partial model update for concealment. Our method selectively updates a subset of the model’s
layers during the concealment phase, creating an unstable equilibrium in the network. This carefully
crafted state is designed to be easily disrupted by subsequent fine-tuning, regardless of the specific
fine-tuning strategy employed, establishing a comprehensive method that effectively ensures covert
backdoor reactivation.

Our main contributions are as follows:
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Feature Conventional Latent UBA-Inf DeferBad
(ours)(Gu et al., 2017) (Yao et al., 2019) (Huang et al., 2024)

Deferred backdoor ✗ ✓ ✓ ✓
Normal behavior w/ trigger ✗ ✗ ✓ ✓

Attacker’s intervention ✗ ✓ ✗ ✓

Activation mechanism - fine-tuning
k ≪ (# all layers) unlearning fine-tuning

k ≤ (# all layers)

Table 1: Comparison of related papers and the proposed DeferBad.

• We propose Deferred Activated Backdoor Functionality (DABF), a novel approach de-
signed to fundamentally bypass existing backdoor detection methods. To the best of our
knowledge, DABF is the first method to temporarily conceal the very functionality that
defines a backdoor and reactivate it afterward. Consequently, our approach offers the po-
tential to evade detection even in scenarios where defenders have knowledge of the trigger,
where all previous backdoor attacks fail.

• We introduce DeferBad, a specific implementation of DABF. DeferBad effectively
conceals backdoors and ensures their reactivation in line with DABF principles. Impor-
tantly, DeferBad demonstrates robustness across various fine-tuning scenarios and back-
door trigger types, showcasing its versatility and general applicability.

• We empirically evaluate the effectiveness of DeferBad across two datasets (i.e.,
CIFAR10, TinyImageNet), three model architectures (i.e., ResNet18, VGG16, and
EfficientNet-B0), and two backdoor attack types (i.e., BadNets, ISSBA). We explore var-
ious fine-tuning scenarios, including different numbers of updated layers and distribu-
tion shift retraining (using CIFAR10-C and TinyImageNet-C). Furthermore, we analyze
DeferBad’s stealthiness against seven state-of-the-art backdoor detection and mitigation
methods (i.e., Neural Cleanse, STRIP, Fine-Pruning, GradCAM, RCS, Scale-Up, and IBD-
PSC).

Our work not only presents a novel attack strategy but also reveals critical vulnerabilities in current
machine learning practices, emphasizing the need for continuous security measures throughout a
model’s lifecycle.

2 RELATED WORK

2.1 BACKDOOR ATTACKS

Backdoor attacks in deep neural networks (DNNs) have emerged as a significant security concern,
particularly in image processing applications. Gu et al. (2017) demonstrated DNNs’ vulnerability
to such attacks and proposed BadNets, which injects backdoors by poisoning training data with
specific trigger patterns. Following this, research has focused on enhancing the stealth of backdoor
attacks through various trigger designs. Chen et al. (2017) employed a blended strategy for more
covert triggers, while Nguyen & Tran (2020) developed input-aware dynamic triggers. Li et al.
(2021b); Doan et al. (2021); Wang et al. (2022b) further advanced stealth by creating invisible,
sample-specific backdoor triggers. Additionally, clean label poisoning methods (Turner et al., 2019;
Saha et al., 2020; Zeng et al., 2023) have been explored to make backdoor attacks even more difficult
to detect during the training process. Recent works Chen et al. (2022); Jha et al. (2023) have shown
that backdoors can be injected using only clean images with poisoned labels, further enhancing the
stealthiness of the attack. These advancements in backdoor attack techniques have predominantly
focused on scenarios where the backdoor functionality is immediately activated upon the model’s
deployment, leaving a gap in understanding delayed activation mechanisms.

The concept of deferred backdoor activation has been explored in different ways. Yao et al. (2019)
proposed latent backdoors that implant backdoors in the latent representation of pre-trained models
without including the target class. These backdoors remain dormant in the pre-trained model and
activate only when fine-tuned on a dataset with the target class. However, these latent backdoors
do not maintain normal behavior in the presence of triggers during the dormant phase, as they pro-
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duce significantly different latent representations for triggered inputs. Moreover, their effectiveness
diminishes as more layers are fine-tuned.

More recently, several studies have explored unlearning-based deferred backdoor attacks (Di et al.,
2022; Liu et al., 2024; Huang et al., 2024). These approaches implement deferred backdoor attacks
using unlearning as their activation mechanism. While these approaches maintain normal behavior
with triggers during the dormant phase, their practical applicability is limited due to the restricted
availability of unlearning services and the requirement for attacker intervention in the activation
process. In contrast, as shown in Table 1, DeferBad addresses these limitations by leveraging
commonly used fine-tuning processes for backdoor activation. This approach is particularly practical
as fine-tuning is ubiquitously supported across major deep learning frameworks, requires no attacker
intervention, and remains effective regardless of which layers are fine-tuned.

2.2 BACKDOOR DEFENSES

Numerous techniques have been developed to detect and mitigate against backdoor attacks in deep
neural networks. These methods can be broadly categorized into detection and mitigation strategies.

Detection methods aim to identify the presence of backdoors in trained models or input data. STRIP
(Gao et al., 2019) detects whether an input contains a strong backdoor trigger by analyzing the
model’s output entropy under input perturbations. Activation Clustering (Chen et al., 2018) identi-
fies anomalous activation patterns caused by backdoors in the neural network’s intermediate layers.
Spectral Signatures (Tran et al., 2018) leverages singular value decomposition to identify a concen-
trated distribution of backdoored training samples. SentiNet (Chou et al., 2020) utilizes GradCAM
(Selvaraju et al., 2017) to identify trigger regions in input images and detect potential backdoors.
Random Channel Shuffling (RCS) (Cai et al., 2022) exploits the observation that trigger information
tends to be concentrated in specific channels by analyzing class-wise variations under channel per-
turbations. Scale-Up (Guo et al., 2023) examines prediction consistency under image amplification
to detect backdoors. IDB-PSC (Hou et al., 2024) analyzes the model’s behavior under batch nor-
malization parameter scaling to identify potential backdoors. Other defense strategies, on the other
hand, focus on mitigating or removing backdoors from compromised models. Neural Cleanse (Wang
et al., 2019) uses optimization techniques to reverse engineer potential triggers and subsequently re-
move them. Fine-pruning (Liu et al., 2018a) aims to eliminate neurons that are unimportant for
clean data, thereby weakening the backdoor without significantly affecting the model’s primary task
performance. Neural Attention Distillation (NAD) (Li et al., 2021a) employs model distillation to
transfer knowledge from a clean teacher model to remove backdoors. CLP (Zheng et al., 2022)
detects and eliminates trigger-sensitive channels in a data-free manner.

However, it is crucial to note that many of these detection and defense techniques operate under
the assumption that backdoored models will exhibit anomalous behavior in the presence of trigger
inputs (Gao et al., 2019; Wang et al., 2019; Chou et al., 2020; Guo et al., 2023). This fundamental
assumption limits their effectiveness against DABF attack that do not immediately activate upon
deployment. Moreover, while knowing the backdoor trigger can significantly enhance detection
and mitigation capabilities, it often provides an unrealistic advantage to defenders. In contrast, our
proposed DABF challenges this paradigm. Even with knowledge of the trigger, DABF can poten-
tially evade detection methods as it remains dormant until activated through fine-tuning, presenting
a novel challenge to existing backdoor defense strategies.

3 THREAT MODEL: DEFERRED BACKDOOR ATTACK

We propose a novel threat model centered on a Deferred Activated Backdoor Functionality (DABF)
attack, which represents a significant evolution in the landscape of adversarial machine learning.
This attack exploits the common practice of fine-tuning in the deep learning model lifecycle, pre-
senting unique challenges to current security paradigms. In the DABF attack scenario, an adversary
crafts a model with a latent backdoor that remains dormant during initial deployment but activates
upon fine-tuning with clean data. This approach differs fundamentally from traditional backdoor
attacks in two critical aspects:

• Initial dormancy: The backdoor remains inactive during post-deployment, with the model
exhibiting normal behavior on all inputs, including those containing triggers.
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• Deferred activation: The backdoor activates automatically during fine-tuning on clean data,
without further adversarial intervention.

The attack targets the fine-tuning stage of the deep learning lifecycle, which typically follows initial
training and deployment. This stage, crucial for transfer learning and domain adaptation, inadver-
tently serves as the activation mechanism for the latent backdoor. The adversary’s capabilities are
limited to the initial training phase, with no access or influence during the subsequent fine-tuning
process. We formalize the DABF attack as an optimization problem: Let f ∈ F be the backdoored
model, L01(·, ·) be the classification error, T (x) be the backdoor-trigger injection function, η(y) be
the target label function, and g = ft(f,D) be the fine-tuned model derived from f using a dataset D
for fine-tuning. The objective is defined as:

min
f

(i)︷ ︸︸ ︷
E(x,y)∼D[L01(g(T (x)), η(y))] +

(ii)︷ ︸︸ ︷
E(x,y)∼D[L01(g(x), y)] (1)

subj. to E(x,y)∼D[L01(f(T (x)), η(y))] ≥ 1− ϵ︸ ︷︷ ︸
(iii)

, E(x,y)∼D[L01(f(x), y)] ≤ ϵ′︸ ︷︷ ︸
(iv)

.

Here, the objective is finding an initial model f , if it is finetuned, i.e., g, an implemented backdoor
is activated, i.e., small (i), while the finetuned model is still performant on normal data, i.e., small
(ii). But, the constraints ensure that the initial model f should not trigger backdoors, i.e., satisfying
(iii), but is still performant on clean data, i.e., satisfying (iv), to effectively conceal the backdoor in
the pre-fine-tuning stage for some small ϵ and ϵ′.

4 METHODOLOGY: DEFERBAD

This section presents our approach to creating a Deferred Activated Backdoor Functionality
(DABF). We first provide the intuition behind our method, followed by a detailed description of
the implementation.

4.1 INTUITION

Our approach is inspired by observations in machine learning, particularly in the context of safety
alignment in Large Language Models (LLMs) and backdoor learning. It has been observed that after
safety alignment training, subsequent fine-tuning on general data often results in a partial degrada-
tion of the safety measures (Qi et al., 2023). This phenomenon aligns with our observations in
backdoor learning, where after a typical cycle of backdoor learning followed by backdoor unlearn-
ing (generally achieved through parameter updates), subsequent fine-tuning often resulted in a par-
tial reactivation of the backdoor, i.e., E(x,y)∼D[L(g(T (x)), η(y))], is reduced. This heuristically
achieves the goal of attackers in (1).

Based on these insights, we hypothesized that if we could design a method to effectively counteract
backdoor unlearning when optimized on clean data, we could achieve our objective of creating a
deferred backdoor activation. This hypothesis led us to formulate a key question: How can we
structure the initial model such that fine-tuning on clean data effectively cancels out the backdoor
unlearning process? To address this challenge, we developed a novel two-phase method: backdoor
injection followed by partial model update for concealment.

4.2 METHOD

Our method consists of two main steps: backdoor injection and partial concealment.

Backdoor Injection: We first train the model on a poisoned dataset Dpoison, defined as:

Dpoison = {(T (x), η(y)) with probability p, else (x, y) | (x, y) ∈ D}, (2)

where p is the poison rate, and D is the clean dataset.

Backdoor Concealment: After injecting the backdoor, We then perform a partial update of the
model to conceal the backdoor. This is done using an unlearning dataset Dunlearn:
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Dunlearn = {(T (x), y) with probability p, else (x, y) | (x, y) ∈ D} (3)

Crucially, we update a subset of the model’s layers, denoted by θupdate, according to:

θ′update = θupdate − α∇θupdateE(x,y)∼Dunlearn [L(fθ(x), y)] (4)

where α is the learning rate and L is the convex loss function of the classification error L01.

Algorithm 1 DeferBad: Attacker’s Algorithm

Require: Dataset D, Model M , Trigger function T , Target label yt
Ensure: Backdoored model Mb

1: Mb ← BackdoorInjection(M , D, T , yt) ▷ See Table 2
2: Mb ← BackdoorConcealment(Mb, D, T ) ▷ See Table 2
3: return Mb

Algorithm 2 User’s Fine-tuning Algorithm

Require: Backdoored model Mb, Fine-tuning dataset Df

Ensure: Fine-tuned model Mf

1: Mf ←Mb

2: Train Mf on Df according to user’s preferences ▷ See Table 2
3: return Mf

The choice of which layers to update (i.e., θupdate) is carefully designed based on the model’s ar-
chitecture, with particular attention to the presence or absence of batch normalization (BN) layers.
This distinction is crucial because BN layers significantly influence the model’s behavior during
fine-tuning, which is key to our backdoor activation mechanism.

For models without BN, we update the last k layers, setting θupdate = θlast-k. This approach cre-
ates a temporary equilibrium where the modified last layers compensate for the backdoor behavior
of the earlier layers, effectively concealing the backdoor. By concentrating our concealment ef-
forts in these final layers, we address the common practice of fine-tuning only the last few layers
of a pre-trained model, which is often done to save computational resources or prevent overfitting.
When such partial fine-tuning occurs, it directly impacts these carefully calibrated layers, easily
disrupting the concealment and reactivating the backdoor. This method also works effectively in a
full-fine-tuning scenario. When all layers are updated during fine-tuning, the earlier layers, which
still contain latent backdoor information, are optimized alongside the last layers. This simultaneous
optimization creates a synergistic effect: as the earlier layers evolve, they push the model towards
rediscovering the backdoor pattern, while the changes in the last layers further destabilize the con-
cealment state. This dual movement significantly contributes to backdoor reactivation, leveraging
the model’s inherent tendency to rediscover suppressed patterns during retraining.

For models with BN, we update the first k layers (θupdate = θfirst-k) while disabling BN statistic up-
dates, instead using running averages. This approach exploits BN layers’ sensitivity to distribution
shifts. By modifying early layers and freezing BN statistics, we create a scenario where fine-tuning,
whether partial or full, causes significant distribution shifts in BN layers, triggering backdoor reac-
tivation. Specifically, unlearning the first layers suppresses backdoor activations without completely
eliminating them. During subsequent fine-tuning, as BN layers adapt, they amplify these suppressed
activations, effectively reactivating the backdoor. This method is robust across various fine-tuning
scenarios, including partial updates, full fine-tuning, or even cases where only BN statistics are
updated.

5 EXPERIMENTS

In this section, we evaluate DeferBad from different perspectives. We first present the experiment
setup in Section 5.1. In Section 5.2, we show the effectiveness in term of backdoor dormancy and
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Table 2: Comprehensive Experiment Settings and Hyperparameters

Stage Parameter Value (BN models) Value (non-BN models)

Backdoor
Injection

Poisoning Rate 10% 10%
Epochs 100 100
Optimizer SGD with cosine annealing SGD with cosine annealing
Learning Rate 0.001 0.001

Backdoor
Concealment

Poisoning Rate 50% 10%
Optimizer Adam Adam
Learning Rate 0.0001 0.0001
ASR Threshold Empirically determined Empirically determined
BN Update Disabled N/A
Layers to Update First k layers Last k layers
Layers to Freeze Last (n− k) layers First (n− k) layers

User
Fine-tuning

Layers to Update Last k layers, k ≤ n (user-defined)
Learning Rate α (user-defined)
Epochs E (user-defined)
BN Behavior Default (enabled)
Optimizer User’s choice

activation after fine-tuning. Then, we evaluate DeferBad’s resistance to existing defenses during
the dormancy phase in Section 5.3.

5.1 EXPERIMENTAL SETUP

We evaluate DeferBad on CIFAR-10 (Krizhevsky & Hinton, 2009) and Tiny ImageNet (Li, 2015)
datasets. CIFAR-10 contains 50,000 training and 10,000 test images of size 32x32 in 10 classes,
while Tiny ImageNet has 100,000 training and 10,000 test images of size 64x64 in 200 classes. For
both datasets, we further split the test set into 5,000 validation and 5,000 test images to ensure ro-
bust evaluation. We experiment with three DNN architectures: ResNet18 (He et al., 2016), VGG16
(Simonyan & Zisserman, 2014), and EfficientNet-B0(Tan, 2019). To explore various backdoor trig-
gers, we implemented both BadNets (Gu et al., 2017) and ISSBA (Li et al., 2021b). For BadNets,
we used a 3x3 pixel pattern trigger for CIFAR-10 and a 6x6 pixel pattern trigger for Tiny ImageNet,
while ISSBA employed a StegaStamp encoder with a 100-bit secret.

Our experimental procedure follows three main stages as outlined in Table 2: Backdoor Injection,
Backdoor Concealment, and User Fine-tuning. For the Backdoor Injection stage, we first train the
model benignly, then inject the backdoor using the parameters specified in the table. The Back-
door Concealment stage employs different strategies based on the model architecture, particularly
differentiating between models with and without batch normalization (BN) layers.

For fine-tuning, we explore two scenarios:

1. Retraining on new data from a similar distribution by excluding 5,000 images from the
training set during the initial stages and including them during fine-tuning.

2. Fine-tuning on different distributions using corruption datasets CIFAR10-C (Hendrycks &
Dietterich, 2019), applying fog, noise, and JPEG compression corruptions at severity levels
1, 3, and 5.

Overall, we set k to 4, freezing the corresponding 4 convolutional layers, and then performed fine-
tuning. detailed information about the hyperparameters, optimization strategies, and specific settings
for each stage and model type, please refer to Table 2. All experiments were conducted on a single
RTX 3090 GPU.

5.1.1 EVALUATION SETUP

To evaluate the stealthiness and effectiveness of DeferBad, we measure the clean accuracy (CA)
and attack success rate (ASR) of the backdoored model at each stage of the attack pipeline. CA is
the classification accuracy on clean test inputs, while ASR is the fraction of triggered test inputs that
are misclassified into the attacker’s target class. A successful DeferBad model should have high
CA and low ASR after backdoor concealment to evade detection, but high ASR after fine-tuning to
be effective.
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Table 3: Results for all stages of DeferBad using different attack types on CIFAR-10. Values
represent Clean Accuracy (CA)/Attack Success Rate (ASR) in percentage.

Model Attack 1: Injection (↑)/(↑) 2: Concealment (↑)/(↓) 3: After FT (↑)/(↑)
ResNet18 BadNet 95.26 / 97.09 94.90 / 0.07 95.28 / 94.07

ISSBA 95.16 / 99.98 94.54 / 0.27 95.08 / 84.65
VGG16 BadNet 91.24 / 96.65 90.10 / 0.04 91.60 / 93.23

ISSBA 91.22 / 99.69 91.20 / 0.60 91.62 / 48.54
EfficientNet-B0 BadNet 91.36 / 97.35 91.48 / 0.49 90.66 / 86.13

ISSBA 91.10 / 99.80 91.04 / 0.38 89.82 / 58.17

Table 4: Clean Accuracy (CA) and Attack Success Rate (ASR) for different models and attack types
on CIFAR10-C dataset (JPEG compression) across severities, before and after fine-tuning (FT).
Values represent Clean Accuracy (CA)/Attack Success Rate (ASR) in percentage.

Model Attack Severity 1 Severity 3 Severity 5
Before FT (↑)/(↑) After FT (↑)/(↓) Before FT (↑)/(↑) After FT (↑)/(↓) Before FT (↑)/(↑) After FT (↑)/(↓)

ResNet18 BadNet 87.06 / 0.19 90.05 / 94.28 80.48 / 0.52 84.40 / 91.53 75.59 / 0.80 79.84 / 76.67
ISSBA 87.00 / 0.70 89.69 / 80.28 79.36 / 0.65 84.59 / 72.18 73.15 / 1.14 70.13 / 75.30

VGG16 BadNet 83.83 / 0.0 86.70 / 98.34 78.44 / 0.0 83.41 / 97.90 74.21 / 0.0 80.03 / 84.45
ISSBA 85.64 / 0.98 85.99 / 97.98 80.93 / 1.29 82.35 / 98.91 77.51 / 1.62 78.98 / 98.95

EfficientNet-B0 BadNet 83.38 / 0.66 83.64 / 59.52 76.81 / 0.98 77.55 / 45.93 71.49 / 0.91 73.88 / 42.36
ISSBA 83.29 / 0.36 83.15 / 61.68 76.43 / 0.57 77.28 / 59.18 71.64 / 0.61 72.71 / 68.15

5.2 EFFECTIVENESS ON BACKDOOR INJECTION, CONCEALMENT, AND REACTIVATION

We evaluate the effectiveness of our DeferBad approach across different model architectures,
attack types, and datasets. Table 3 presents the results for CIFAR-10, showing Clean Accuracy
(CA) and Attack Success Rate (ASR) for each stage of our attack.

Our results demonstrate that DeferBad successfully conceals backdoors to near-undetectable lev-
els while achieving significant ASR after fine-tuning across all tested scenarios. We observe that
after the concealment stage, the ASR drops to near-zero levels (0.07% - 0.60%), effectively hid-
ing the backdoor. Crucially, after fine-tuning, the ASR significantly increases, reaching 94.07% for
ResNet18 with BadNet, 93.23% for VGG16 with BadNet, and 97.35% for EfficientNet with BadNet,
while maintaining or increasing high clean accuracy. This confirms the success of our deferred ac-
tivation mechanism. ISSBA attacks show lower but still significant ASR after fine-tuning (84.65%
for ResNet18, 48.54% for VGG16, and 61.68% for EfficientNet), suggesting that more complex
triggers might be slightly more challenging to reactivate but still remain highly effective.

We further tested our approach under distribution shift scenarios using CIFAR10-C, as shown in Ta-
ble 4. The results for JPEG compression at different severity levels reveal that our backdoor remains
effective even under data distribution changes. Notably, in some cases (highlighted in bold), the ASR
under distribution shift is even higher than in the original distribution, particularly for VGG16. This
unexpected behavior suggests that our backdoor might be leveraging certain robustness properties
of the model, an intriguing area for future investigation.

Our experiments with varying numbers of fine-tuned layers (Fig. 2) reveal interesting trends. Gen-
erally, ASR tends to increase when fewer layers are fine-tuned. For models with BN (e.g., Efficient-
Net), even minimal layer updates provide sufficient conditions for reactivation, while updating more
layers can interfere with this process. For models without BN (e.g., VGG16), ASR is highest when
fine-tuning focuses on the last few layers where reactivation-related features are concentrated, with
additional layer updates potentially disrupting these patterns. However, fine-tuning more layers, es-
pecially in VGG16 ISSBA and EfficientNet, occasionally resulted in ASR dropping below 10%. De-
spite this, most scenarios maintained significant ASR. Notably, VGG16 showed lower performance
when only the layer used for unlearning was fine-tuned, suggesting that fine-tuning preceding layers
helps align with the concealed layer. Overall, these results demonstrate that DeferBad remains
effective across various fine-tuning strategies, highlighting its robustness and versatility as an attack
vector. Further results for Tiny ImageNet and additional corruption types are presented in Appendix
A, B, showing consistent performance across different datasets and perturbation types.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: Impact of the number of fine-tuned layers on Clean Accuracy (CA) and Attack Success
Rate (ASR) for ResNet18 on CIFAR-10.

5.3 STEALTHINESS

To evaluate the stealthiness of DeferBad, we tested it against seven state-of-the-art backdoor de-
tection and mitigation methods: Neural Cleanse (Wang et al., 2019), STRIP (Gao et al., 2019),
GradCAM (Selvaraju et al., 2017), Fine-Pruning (FP) (Liu et al., 2018a), Random Channel Shuf-
fling (RCS) (Cai et al., 2022), Scale-Up (Guo et al., 2023), and IDB-PSC (Hou et al., 2024). We
conducted experiments on ResNet18, using Badnet, which was detectable by all methods when in-
jected using conventional techniques.

Neural Cleanse: DeferBad fundamentally evades detection by Neural Cleanse. As shown in
Figure 3b, the anomaly index for DeferBad-infected models (0.672) was even lower than that of
clean models (0.778) on CIFAR-10, while similar trends were observed on Tiny-ImageNet (1.796 vs
1.220). In both cases, BadNet models showed significantly higher anomaly indices (4.02 and 3.549
respectively). This result demonstrates DeferBad is resilient to Neural Cleanse as expected.

STRIP: Similarly, STRIP fails to detect DeferBad because the trigger does not alter the model’s
output before backdoor activation. Figure 3d demonstrates that the entropy distribution for
DeferBadmodels was actually higher than that of normal models. Given that lower entropy is typi-
cally associated with a higher likelihood of a backdoor, this result further demonstrates DeferBad’s
ability to evade detection.

GradCAM: Our analysis using GradCAM, as illustrated in Figure 3a, revealed minimal difference
in the activation maps between clean inputs and triggered inputs for DeferBad models. While
backdoor models show distinct attention patterns focused on the trigger area, DeferBad models
exhibit saliency maps very similar to clean models. This similarity in model attention further un-
derscores the stealthy nature of DeferBad, as it does not introduce easily detectable changes in
the model’s decision-making process. Consequently, DeferBad is likely to evade detection meth-
ods that rely on visual explanations, such as SentiNet (Chou et al., 2020) and Februus (Doan et al.,
2020). Note that GradCAM is only used for qualitative measures for inspecting backdoors (Li et al.,
2021b; Doan et al., 2021)

Fine-Pruning (FP): We evaluated FP’s effectiveness in mitigating DeferBad by fine-tuning mod-
els after the fine-pruning process across different datasets. Our results reveal dataset-dependent
patterns in the defense’s effectiveness. On CIFAR-10, as shown in Figure 3c, FP was only partially
effective: ASR remained relatively stable around 40% after fine-tuning, regardless of the prun-
ing level, while clean accuracy decreased with increased pruning. However, experiments on Tiny
ImageNet showed markedly different results. When fine-tuning the pruned models, FP proved to
be highly effective on this dataset, with ASR dropping to nearly 0% as pruning progressed. This
contrast in effectiveness suggests that the resilience of DeferBad against pruning-based defenses
varies significantly depending on the dataset complexity.

We conducted additional experiments with three recent detection methods: RCS (Cai et al., 2022),
Scale-Up (Guo et al., 2023), and IDB-PSC (Hou et al., 2024). While RCS showed some capability
in detecting DeferBad, the detection scores were significantly lower compared to conventional
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BadNet attacks. Scale-Up and IDB-PSC were effectively evaded by DeferBad. Detailed results
for these additional experiments are presented in Appendix D.

These results demonstrate that while DeferBad may not completely evade all detection methods,
it significantly reduces detection signals compared to conventional backdoor attacks. By fundamen-
tally changing how the backdoor manifests in the model, DeferBad shows improved stealthiness
against most detection methods.

(a) GradCAM (b) Neural Cleanse

(c) Fine-Pruning (d) STRIP

Figure 3: Results of various backdoor detection techniques applied to our DABF model. (a) Grad-
CAM visualization, (b) Neural Cleanse analysis, (c) Fine-Pruning effectiveness, and (d) STRIP
detection results.

6 CONCLUSION

In this paper, we introduced Deferred Activated Backdoor Functionality (DABF), a novel backdoor
attack strategy that fundamentally challenges current approaches to AI security. DABF addresses
the key limitation of existing backdoor techniques by keeping the backdoor dormant during the ini-
tial deployment phase and activating it through routine model updates like fine-tuning. Our imple-
mentation, DeferBad, has demonstrated remarkable effectiveness across various datasets, model
architectures, and attack scenarios. Key achievements of DeferBad include successful conceal-
ment of backdoors during initial deployment, significant attack success rates after fine-tuning while
maintaining competitive clean accuracy, and robustness against various fine-tuning strategies and
distribution shifts. Notably, DeferBad has shown the ability to bypass multiple state-of-the-art
backdoor detection and mitigation techniques. Our work underscores critical vulnerabilities in the
lifecycle management of AI models, emphasizing that the absence of immediate backdoor indica-
tors does not guarantee long-term security. This finding calls for a paradigm shift in AI security
practices, necessitating the development of continuous and evolving detection methods throughout
a model’s operational life. However, our research also has limitations. The current study focuses ex-
clusively on vision tasks, and the effectiveness of DABF in other domains, such as natural language
processing or speech recognition, remains to be explored. Looking ahead, it would be interesting to
investigate the applicability of DABF to other AI domains and explore its interaction with different
model architectures and learning paradigms. Furthermore, It would also be intriguing to examine
how DABF performs not only under fine-tuning scenarios but also with other model update tech-
niques such as pruning, quantization, or knowledge distillation. These investigations could further
our understanding of the vulnerabilities and resilience of AI models throughout their lifecycle.
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A RESULTS ON TINY IMAGENET

Table 5 presents the results for all stages of DABF using different attack types on Tiny ImageNet.
The table shows Clean Accuracy (CA) and Attack Success Rate (ASR) for various models and attack
types across different stages of the DABF process.

Table 5: Results for all stages of DABF using different attack types on Tiny ImageNet. Values
represent Clean Accuracy (CA)/Attack Success Rate (ASR) in percentage.

Model Attack 1: Injection (↑)/(↑) 2: Concealment (↑)/(↓) 3: After FT (↑)/(↑)
ResNet18 BadNet 59.40 / 99.83 59.04 / 0.46 59.14 / 32.70

ISSBA 59.06 / 99.82 57.20 / 0.04 59.84 / 82.16
VGG16 BadNet 52.52 / 98.51 51.54 / 0.18 52.52 / 27.00

ISSBA 52.62 / 99.59 51.18 / 0.12 53.00 / 71.51
EfficientNet-B0 BadNet 59.06 / 99.82 59.26 / 0.34 59.44 / 0.04

ISSBA 58.96 / 99.62 56.90 / 0.26 58.64 / 16.52

Overall, we observe that the results on Tiny ImageNet follow a similar pattern to those on CIFAR10,
demonstrating the consistency of our approach across different datasets. However, the ASR val-
ues are generally lower compared to CIFAR10, which we attribute to the increased complexity of
the Tiny ImageNet dataset. This complexity may make it more challenging for the backdoor to
be effectively concealed and subsequently reactivated. Interestingly, we note a unique case with
EfficientNet-B0 using the BadNet attack. After fine-tuning, the ASR drops to 0%, which appears
to indicate a complete failure of the backdoor activation. However, when we conducted additional
experiments with k = 0 (i.e., fine-tuning all layers), we observed an ASR of near 30%. This sug-
gests that the effectiveness of DABF can vary significantly across different model architectures,
highlighting the need for tailored strategies in future research to optimize backdoor activation for
specific model-attack combinations.

To further understand the behavior of DABF on Tiny ImageNet, we analyzed the impact of vary-
ing numbers of fine-tuned layers, as shown in Figure 4. Unlike CIFAR10, where ASR generally
increased with fewer fine-tuned layers, Tiny ImageNet shows more diverse patterns. Several mod-
els, including ResNet18 BadNet, VGG16 BadNet, and EfficientNet, exhibited inconsistent ASR
improvements when fine-tuning only the later layers. This behavior is particularly pronounced in
EfficientNet with BadNet attack, where fine-tuning only the last few layers resulted in minimal ASR
improvement.

Despite these variations, DeferBad demonstrated successful backdoor activation across multiple
fine-tuning scenarios, albeit with lower ASR compared to CIFAR10. These results highlight not
only the effectiveness of our approach across different datasets but also the complex relationship
between model architecture, dataset complexity, and fine-tuning strategies in backdoor activation.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 4: Impact of the number of fine-tuned layers on Clean Accuracy (CA) and Attack Success
Rate (ASR) for ResNet18 on Tiny-ImageNet.

Table 6: Clean Accuracy (CA) and Attack Success Rate (ASR) for different models and attack types
on CIFAR10-C dataset across corruption types and severities, before and after fine-tuning (FT).
Values represent Clean Accuracy (CA)/Attack Success Rate (ASR) in percentage.

(a) Gaussian Noise Corruption

Model Attack Severity 1 Severity 3 Severity 5
Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑)

ResNet18 BadNet 80.99 / 0.20 90.65 / 86.39 46.79 / 0.23 81.43 / 72.09 34.30 / 0.09 77.65 / 64.47
ISSBA 77.1 / 1.29 90.50 / 91.41 40.26 / 1.50 80.73 / 91.03 29.28 / 1.16 76.30 / 91.78

VGG16 BadNet 77.65 / 0.01 83.7 / 98.20 54.16 / 0.0 67.88 / 98.12 43.91 / 0.01 58.84 / 98.69
ISSBA 77.10 / 1.29 90.50 / 91.41 40.26 / 1.50 80.73 / 91.03 29.28 / 1.16 76.3 / 91.78

EfficientNet-B0 BadNet 68.14 / 0.85 83.44 / 51.56 34.36 / 0.43 72.18 / 25.29 27.31 / 0.58 65.08 / 31.46
ISSBA 67.96 / 0.39 82.93 / 59.50 36.54 / 0.15 71.09 / 63.84 28.84 / 0.08 64.73 / 67.48

(b) Fog Corruption

Model Attack Severity 1 Severity 3 Severity 5
Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑)

ResNet18 BadNet 93.95 / 0.18 95.29 / 97.22 91.94 / 0.42 94.50 / 89.15 75.38 / 0.91 89.15 / 79.65
ISSBA 94.05 / 0.49 94.98 / 89.66 91.69 / 0.75 94.20 / 93.84 75.90 / 1.34 89.19 / 90.16

VGG16 BadNet 87.85 / 0.00 90.20 / 99.00 83.71 / 0.00 86.91 / 98.93 61.61 / 0.00 73.74 / 54.07
ISSBA 90.23 / 0.70 89.59 / 95.74 85.53 / 0.98 86.98 / 97.55 66.08 / 1.10 73.79 / 99.76

EfficientNet-B0 BadNet 90.65 / 0.57 89.95 / 62.64 86.34 / 0.84 88.45 / 44.09 66.36 / 1.12 80.78 / 30.21
ISSBA 90.06 / 0.40 89.19 / 68.62 85.68 / 0.44 87.40 / 58.57 64.29 / 0.31 79.49 / 37.65

B ADDITIONAL RESULTS ON CORRUPTED DATASETS: CIFAR10-C, TINY
IMAGENET-C

Tables 6 and 7 show the Clean Accuracy (CA) and Attack Success Rate (ASR) for different models
and attack types on CIFAR10-C and Tiny ImageNet-C (Hendrycks & Dietterich, 2019). These
results encompass various corruption types (Noise, Blur, and Fog) and severity levels.

In CIFAR10-C, our backdoor maintains its effectiveness across different corruption types and sever-
ities. Notably, VGG16 exhibits particularly interesting behavior, where the ASR under distribution
shift significantly exceeds its performance on the original distribution. For instance, under Gaussian
noise corruption, the ASR reaches up to 99.76% (compared to 48.54% on clean data), suggesting
that distribution shifts might actually enhance backdoor effectiveness in certain model architectures.

The results on Tiny ImageNet-C reveal even more dramatic patterns. ResNet18 shows remarkably
increased ASR under corruption compared to the uncorrupted dataset, achieving over 95% ASR
across multiple corruption types and severities (compared to 32.70% on clean data). However, we
observe a striking contrast with VGG16 under the BadNet attack, where the ASR drops to nearly 0%
after fine-tuning across all corruption types and severities. This stark difference in behavior between
architectures highlights the complex interplay between model architecture, dataset complexity, and
distribution shifts in backdoor attacks.
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Table 7: Clean Accuracy (CA) and Attack Success Rate (ASR) for different models and attack types
on TinyImagenet-C dataset across corruption types and severities, before and after fine-tuning (FT).
Values represent Clean Accuracy (CA)/Attack Success Rate (ASR) in percentage.

(a) JPEG compression Corruption

Model Attack Severity 1 Severity 3 Severity 5
Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑)

ResNet18 BadNet 32.58 / 6.76 58.24 / 97.41 31.15 / 7.19 55.15 / 96.21 27.12 / 8.09 49.25 / 96.37
ISSBA 29.16 / 0.65 55.50 / 96.14 27.64 / 0.64 52.71 / 95.43 23.85 / 0.65 46.36 / 95.49

VGG16 BadNet 29.54 / 0.03 40.27 / 0.00 29.00 / 0.03 38.86 / 0.00 26.38 / 0.08 36.27 / 0.00
ISSBA 29.15 / 1.61 41.61 / 77.90 28.54 / 1.71 39.25 / 77.06 25.38 / 2.13 35.08 / 74.52

EfficientNet-B0 BadNet 33.69 / 7.90 55.73 / 3.13 33.26 / 8.37 53.70 / 2.34 29.14 / 9.51 48.98 / 0.72
ISSBA 32.21 / 4.32 55.80 / 16.55 32.21 / 4.62 55.43 / 18.57 27.86 / 4.85 48.81 / 7.86

(b) Gaussian Noise Corruption

Model Attack Severity 1 Severity 3 Severity 5
Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑)

ResNet18 BadNet 33.39 / 6.27 59.12 / 94.64 8.43 / 1.55 45.11 / 83.40 2.66 / 0.45 36.80 / 84.23
ISSBA 32.27 / 0.48 56.70 / 95.20 11.29 / 0.14 42.10 / 77.14 4.45 / 0.06 33.45 / 57.75

VGG16 BadNet 29.85 / 0.04 42.40 / 0.00 10.00 / 0.08 26.44 / 0.00 4.19 / 0.15 16.19 / 0.00
ISSBA 29.69 / 0.71 41.02 / 74.32 9.97 / 0.35 25.84 / 77.14 3.80 / 0.12 16.46 / 54.91

EfficientNet-B0 BadNet 34.25 / 7.82 57.34 / 2.55 11.32 / 5.50 42.54 / 11.50 4.71 / 2.36 33.42 / 1.72
ISSBA 33.26 / 3.14 57.06 / 31.45 12.13 / 1.22 41.70 / 42.46 5.49 / 0.71 32.66 / 36.99

(c) Fog Corruption

Model Attack Severity 1 Severity 3 Severity 5
Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑) Before FT (↑)/(↓) After FT (↑)/(↑)

ResNet18 BadNet 32.49 / 11.54 59.62 / 94.16 21.41 / 18.44 52.94 / 89.58 7.06 / 21.01 40.84 / 56.66
ISSBA 28.32 / 0.83 56.49 / 97.51 17.62 / 1.28 51.64 / 95.47 5.56 / 1.05 38.24 / 97.48

VGG16 BadNet 28.59 / 0.01 39.39 / 0.00 18.99 / 0.03 33.25 / 0.00 6.17 / 0.01 17.99 / 0.00
ISSBA 28.86 / 1.21 41.05 / 80.63 18.81 / 1.34 32.96 / 84.75 6.31 / 1.43 17.29 / 65.20

EfficientNet-B0 BadNet 32.52 / 10.61 57.42 / 11.85 21.31 / 14.94 52.14 / 2.44 6.70 / 14.63 39.11 / 0.28
ISSBA 31.26 / 9.31 56.20 / 15.27 18.78 / 17.13 51.61 / 7.00 5.85 / 18.23 39.13 / 5.81

C DISCUSSION ON CONCEALMENT MECHANISM

We provide insights into why our concealment mechanism through selective layer updates creates
a state that can be effectively disrupted by fine-tuning, based on our empirical observations. Our
experiments suggest that during concealment, the updated layers adapt to counteract backdoor be-
havior present in other layers. We observe this creates a delicate balance where:

• The updated layers learn parameter values that appear to suppress backdoor signals from
other layers

• This suppression represents an unstable solution that differs from natural parameter config-
urations for the model’s primary task

• The concealment effectiveness relies on maintaining specific parameter relationships

When fine-tuning occurs, we observe:

• The optimization process alters these carefully balanced parameters

• This disrupts the suppression mechanism

• The model shifts to a state where backdoor features become active again

While the exact mathematical nature of this mechanism warrants further theoretical investigation,
our extensive experiments consistently demonstrate this behavior across different architectures and
scenarios.

D ADDITIONAL DETECTION METHODS

We evaluated DeferBad against three additional state-of-the-art backdoor detection methods: Ran-
dom Channel Shuffling (RCS), Scale-Up, and IDB-PSC.
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(a) Scale-Up Detection (b) IDB-PSC Detection (c) RCS Detection

Figure 5: Detection results of DeferBad against additional backdoor detection methods. (a) Scale-
Up detection shows similar consistency scores between DeferBad (0.2906) and benign models
(0.3072). (b) IDB-PSC detection demonstrates DeferBad’s effectiveness in evading detection
with scores (0.1048) close to benign models (0.1187). (c) RCS detection reveals some capability in
detecting DeferBad (3.43) compared to benign models (1.49), but significantly lower than BadNet
(6.62).

Random Channel Shuffling (RCS): RCS (Cai et al., 2022) exploits the observation that trigger in-
formation tends to be concentrated in specific channels by randomly shuffling channels and observ-
ing class-wise variations. Our experiments showed that while RCS could detect DeferBad with
an anomaly score of 3.43 (compared to 1.49 for benign models), this was significantly lower than
the score of 6.62 for conventional BadNet attacks (Figure 5c). This suggests that while DeferBad
is detectable by RCS, it demonstrates improved stealthiness compared to conventional attacks. Fur-
thermore, this relative improvement indicates potential for future refinements of DeferBad to com-
pletely evade RCS detection.

Scale-Up Detection: Scale-Up (Guo et al., 2023) detects backdoors by examining prediction consis-
tency under image amplification. DeferBad successfully evaded this detection method, achieving
an SPC score of 0.2906, which is slightly lower than benign models (0.3072) and significantly dif-
ferent from BadNet attacks (1.0), as shown in Figure 5a.

IDB-PSC Detection: IDB-PSC (Hou et al., 2024) detects backdoors by analyzing consistency under
batch normalization parameter scaling. Our experiments demonstrated that DeferBad effectively
evaded this detection method, with a score of 0.1048 compared to 0.1187 for benign models and 1.0
for BadNet attacks (Figure 5b).

These additional experiments further validate the stealthiness of DeferBad across a broader range
of detection methods, particularly showing strong evasion capabilities against Scale-Up and IDB-
PSC detection methods.

E ANALYSIS OF LATENT BACKDOOR BEHAVIOR

To better understand the differences between our approach and latent backdoors (Yao et al., 2019),
we analyzed the behavior of latent backdoors during their dormant phase. Specifically, we examined
the model’s output distributions for clean and triggered inputs using the PubFigure dataset, where
each class has an equal number of samples.

Figure 6 shows the mean and variance of model predictions across different classes for both clean
and triggered inputs. For clean inputs, we observe that the model’s predictions follow a relatively
uniform distribution across classes, which is expected given the balanced nature of the dataset.
However, when presented with triggered inputs, the model exhibits anomalous behavior: certain
classes show unusually high confidence (high mean) in predictions, while multiple classes display
near-zero variance in their prediction distributions. This stark contrast in behavior is particularly
suspicious given that the dataset has a uniform class distribution.

This observation reveals a critical weakness in latent backdoors. Even during their dormant phase,
they process triggered inputs in a distinctly different manner that manifests in the model’s output
distributions. The presence of highly confident predictions and unnaturally low variances for cer-
tain classes, despite the uniform class distribution in the dataset, creates a clear signal that could be
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Figure 6: Analysis of model predictions for clean and triggered inputs in a dormant latent backdoor
model (Yao et al., 2019) on the PubFigure dataset. Left: For clean inputs, predictions show ex-
pected uniformity across classes. Right: For triggered inputs, certain classes exhibit unusually high
confidence (mean) and multiple classes show near-zero variance, despite the balanced dataset.

exploited for detection. In contrast, as shown in Figure 7b, DeferBad maintains natural output dis-
tributions for both clean and triggered inputs during its dormant phase, achieving true concealment
of the backdoor.

F ANALYSIS OF MODEL OUTPUT DISTRIBUTIONS

We analyzed the output distributions of different backdoor approaches during their dormant phase
using the CIFAR-10 dataset. Figure 7 shows the mean and variance of model predictions across
different classes for both clean and triggered inputs.

(a) Conventional backdoor (Gu et al., 2017) distinctly different patterns between clean and triggered inputs.

(b) DeferBad exhibits nearly identical distributions between clean and triggered inputs.

Figure 7: Comparison of model output distributions for clean (left) and triggered (right) inputs
during the dormant phase. Output distributions are visualized using means and variances across
classes.

As shown in the figure, conventional backdoors (Gu et al., 2017) produce noticeably different output
patterns when presented with triggered inputs, making them potentially detectable through output
distribution analysis. In contrast, DeferBad maintains virtually indistinguishable output distribu-
tions between clean and triggered inputs, successfully concealing the backdoor’s presence.
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