

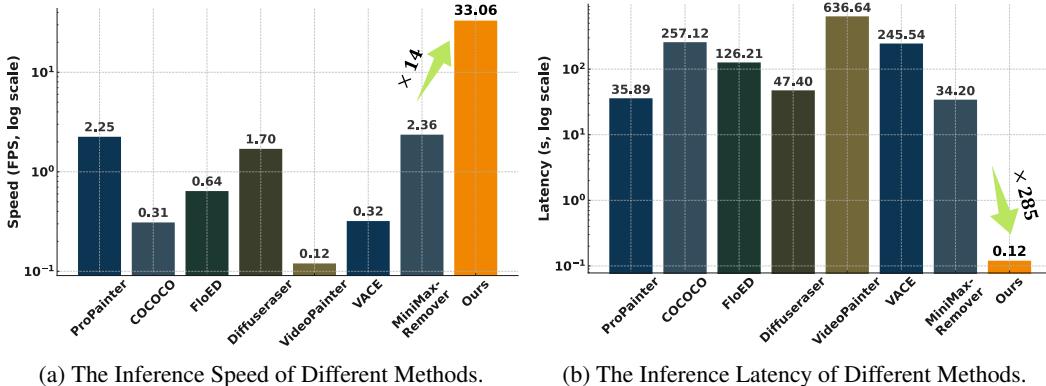
RT-REMOVER: A REAL-TIME VIDEO OBJECT REMOVAL BY COMPOSING TRACKING AND REMOVAL IN AUTO-REGRESSIVE DIFFUSION TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

With the rapid advancement of video diffusion, video editing techniques, especially video object removal, have garnered increasing attention. Existing methods generally rely on separate object tracking and inpainting stages, leading to complex and slow pipelines that are unsuitable for real-time and interactive applications. This paper is committed to designing a real-time video object remover with the minimum latency, termed as **RT-Remover**. To this end, we introduce three key innovations in this paper to enable the real-time object removal in videos. First, different from previous methods that perform tracking and inpainting individually, we compose them into a joint process. Our model only requires an initial mask for the first frame from the user and automatically removes the target objects across the whole video. Second, we leverage an auto-regressive diffusion model for a real-time video object remover. We use an auto-regressive form to predict the next chunk based on previous chunks, while use diffusion model to iteratively predict the current chunk. Meanwhile, we incorporate a fixed-length key-value cache to minimize both memory usage and computational overhead. Third, to further speed up the inference, we propose to distill the auto-regressive diffusion model using distribution matching distillation and flow matching loss, and thus reduce the number of sampling steps from 25 to 2 while preserving background consistency. All three contributions significantly simplify the pipeline and enable real-time performance. Our method achieves **33 FPS** and **0.12s latency** on a 5090 GPU with our trained faster VAE. Extensive experiments show that our approach achieves the lowest latency among existing methods while maintaining competitive visual quality.



(a) The Inference Speed of Different Methods.

(b) The Inference Latency of Different Methods.

Figure 1: The inference efficiency were obtained on a 5090 GPU with an input resolution of 480×832 over 81 frames. The inference speed is calculated as *Num Frames/Inference Duration*. Latency is defined as the time elapsed from receiving an input frame to producing the corresponding output frame. *RT-Remover* reduces inference time and latency by a factor of 14 and 285, respectively, compared to *Minimax-Remover*.

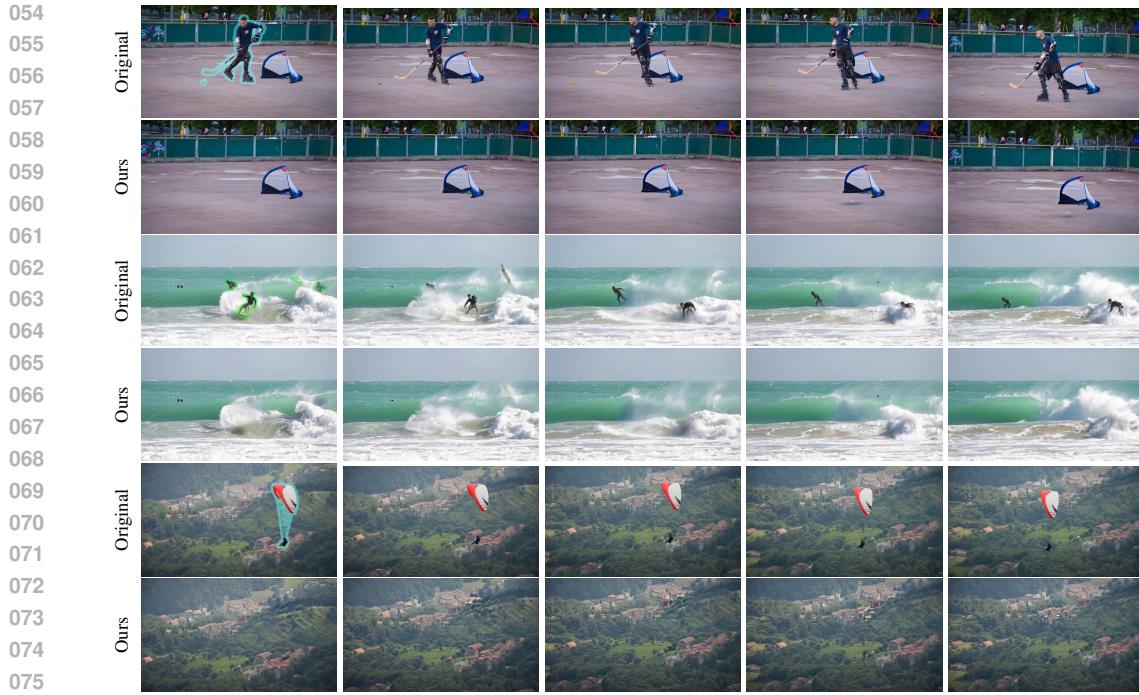


Figure 2: Visualization of our RT-Remover. We present three sets of results. For instance, the first row shows some frames from the source video, and the second row displays the outcomes after object removal.

1 INTRODUCTION

In recent years, video editing techniques have witnessed rapid advancements. Early methods such as AnimateDiff (Guo et al., 2023), VideoComposer (Wang et al., 2024), and VideoCrafter2 (Chen et al., 2024) leveraged convolutional neural networks to train diffusion models. With access to millions of training videos, these approaches achieved impressive visual quality. More recently, diffusion transformer (DiT) architectures have become dominant in video generation (Peebles & Xie, 2022). Models like HunyuanVideo (Kong et al., 2024) and Wan2.1 (Wang et al., 2025) are trained on billions of videos, producing not only visually appealing outputs but also demonstrating strong motion consistency.

Concurrently, video editing methods have evolved alongside video generation techniques. Broadly, video editing can be divided into two categories: (1) **General-purpose editing**, and (2) **Specific-purpose editing**. General-purpose editing aims to manipulate videos based on user-provided prompts, allowing flexible modifications across any region or type of edit. Representative methods include Tune-A-Video (Wu et al., 2023), TokenFlow (Geyer et al., 2023), and Senorita (Zi et al., 2025b). In contrast, specific-purpose editing targets a defined task with a specialized design, often receiving tailored inputs and producing constrained outputs. Examples include video stylization and video inpainting. Generally, specific-purpose methods exhibit greater reliability and stability within their targeted domains, which has contributed to their growing popularity in recent years.

Among various specific-purpose tasks, video object removal has gained significant attention. A common approach combines an object tracker with a video inpainting model: the tracker generates a mask sequence, while the inpainting model fills the masked regions with plausible content. Research on video inpainting has a long history. For instance, ProPainter (Zhou et al., 2023) is a non-diffusion method that uses flow completion to guide a transformer-based inpainting module. More recent techniques employ diffusion models. FFF-VDI (Lee et al., 2025) incorporates optical flow to guide the inpainting process. Senorita-Remover (Zi et al., 2025b) uses dual contrastive objectives to learn object removal and content generation simultaneously. FloED (Gu et al., 2024) employs a dual-branch network and a two-stage training strategy for high-quality results. DiffuEraser (Li et al., 2025) leverages DDIM inversion and vision priors to enhance inpainting fidelity. Notably, MiniMax-

108 Table 1: Comparison of latency improvements from Traditional Remover (i.e., Minimax-Remover)
 109 to RT-Remover, highlighting the sources of acceleration.

Method	Mask Tracking	VAE	Encode Mask	Modeling Type	Sampling Steps	Latency (s)	Speedup Ratio
Traditional Remover	✓	Wan2.1 VAE	✓	Diffusion	6	34.20	1.0
Model-1	✗	Wan2.1-VAE	✓	Diffusion	6	15.16 (-19.04)	2.25
Model-2	✗	Wan2.1-LeanVAE	✓	Diffusion	6	8.79 (-6.37)	3.89
Model-3	✗	Wan2.1-LeanVAE	✗	Diffusion	6	8.64 (-0.15)	3.95
Model-4	✗	Wan2.1-LeanVAE	✗	AR+Diffusion	6	0.32 (-8.32)	106.87
RT-Remover (ours)	✗	Wan2.1-LeanVAE	✗	AR+Diffusion	2	0.12 (-0.20)	285.00

110
 111 Remover (Zi et al., 2025a) introduces adversarial training to improve removal quality, achieving
 112 appealing results with only six sampling steps without using classifier-free guidance.

113 However, current object removal methods still suffer from many drawbacks, the most notable one is
 114 the slow inference and high latency. This drawback is mainly due to three perspectives. First, current
 115 methods require a separate object tracking step prior to removal to get the mask sequence, which
 116 adds significant preprocessing time. Second, existing methods are non-auto-regressive and require
 117 simultaneous processing of all frames in a clip, resulting in high computational latency. Third,
 118 current approaches often depend on multiple sampling steps, further increasing inference time.

119 To address the above challenges, we propose **RT-Remover**, a real-time video object removal. In
 120 RT-Remover, we compose tracking and removal into a joint learning model, eliminating the over-
 121 head of an external tracking stage. Meanwhile, we employ an auto-regressive diffusion transformer
 122 that generates frames sequentially using a limited length key-value (KV) cache strategy, reducing
 123 memory and computation while maintaining long-term dependencies. In addition, we speed up the
 124 inference by distilling the auto-regressive diffusion model using distribution matching distillation
 125 and flow matching loss, and thus reduce the number of sampling steps from 25 to 2 while preserving
 126 background consistency.

127 **Our main contributions are summarized as follows:**

128

- 129 • We compose object tracking and removal into a single model that learns object tracking and object
 130 removal jointly, and thus remove the necessity for a separate tracking component. This integration
 131 significantly simplies the overall efficiency of the video object removal pipeline.
- 132 • We develop an auto-regressive diffusion framework with efficient KV cache mechanism that bal-
 133 ances temporal consistency and resource efficiency. Moreover, we perform the distribution match-
 134 ing distillation of auto-regressive remover and thus the model can inference with only 2 sampling
 135 steps. In addition, we train a faster VAE for our RT-Remover.
- 136 • Through extensive visualizations, quantitative comparisons, and ablation studies, we demonstrate
 137 the effectiveness of RT-Remover in real-time object removal, validating the impact of each pro-
 138 posed component. Finally, as shown in Figure 1 and Table 1, *RT-Remover reduces inference time*
 139 *and latency by a factor of 14 and 285, respectively, compared to Minimax-Remover.*

140 **2 METHODOLOGY**

141 RT-Remover has three major improvements compared with traditional remover, including compos-
 142 ing object tracking and object removal into a joint learning process that avoids an individual ob-
 143 ject tracking, a new video object removal model based on auto-regressive diffusion model, and a
 144 lightweight VAE encoding/decoding. First, removing mask tracking brings in most improvement.
 145 Second, changing prediction method from diffusion model with full attention to auto-regressive dif-
 146 fusion model with unidirectional attention, further reduces the latency. Finally, distilling the original
 147 Wan2.1 VAE into a lightweight VAE further speeds up the inference.

148 **2.1 ARCHITECTURE OVERVIEW**

149 We adopt Wan2.1 (Wang et al., 2025) as our base model but remove the cross-attention module,
 150 following Minimax-Remover (Zi et al., 2025a), to enhance efficiency. Our model employs a 2-stage
 151 strategy. In Stage-1, we train an auto-regressive inpainter on a large-scale video dataset. In Stage-2,

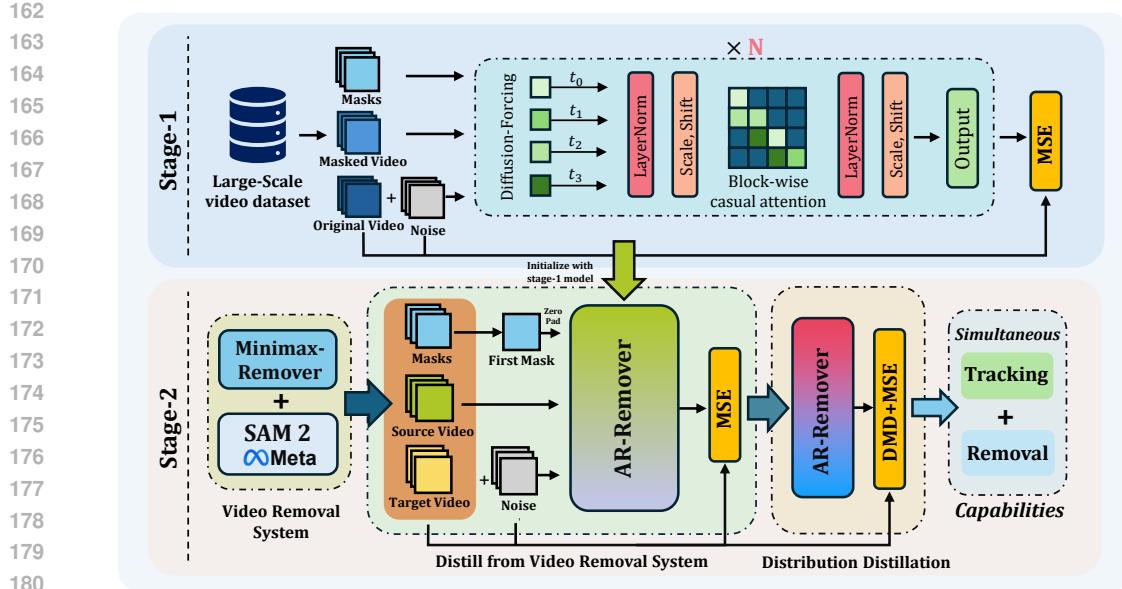


Figure 3: Our AR-Remover consists of two training stages. In Stage-1, we train an auto-regressive inpainter on a large-scale video dataset. In Stage-2, we use a general object remover model to distill our video object removal model that is initialized by the model from Stage-1. Two key differences in the inputs between models in Stage-1 and Stage-2 are the masked source video vs the source video, and the object masks for all frames vs the object mask for only the first frame. This distilled model after Stage-2 is capable of simultaneously tracking and removing objects in auto-regressive form.

we train video object removal based on the model obtained from Stage-1. We only use the initial mask of the first frame as our mask input. In summary, Stage-1 serves as a pretrained model, and Stage-2 is our final targeted video object removal model.

Stage-1 Architecture. Inputs are concatenated as $[\mathbf{x}_t, \mathbf{x}_m, \mathbf{m}]$, where $\mathbf{x}_t, \mathbf{x}_m \in \mathbb{R}^{b \times c \times f \times h \times w}$ denote noisy and masked latents, and \mathbf{m} is the resized binary mask sequence. The initial mask \mathbf{m}_0 is duplicated across four channels, while each subsequent \mathbf{m}_{1-N} encodes four reshaped masks from frames 1 to $4N + 1$. We use causal block-wise attention with limited KV length, which predicts the next frame auto-regressively, shown in Figure 3.

Stage-2 Architecture. Stage-2 adopts the same model architecture but modifies the input strategy. For the mask, only the first frame contains the resized initial mask, while subsequent frames are zero-padded. Instead of using the masked video, we directly input the source video. This design removes the need for an explicit object-tracking module, compelling the model to learn object removal and tracking jointly. At the same time, it allows the model to leverage Stage-1’s inpainting capability in an auto-regressive manner, progressively achieving both tracking and object removal.

2.2 TRAINING PIPELINE

Our training pipeline consists of two successive stages. **Stage 1** adapts the Wan2.1 backbone to causal attention form with limited KV length. We remove the cross attention modules from the model for faster inference. **Stage 2** distills a general-purpose remover into a joint object tracking and video remover model.

2.2.1 STAGE 1: TRAINING AUTOREGRESSIVE FOUNDATION

In the first stage, we train an inpainter on the large-scale annotated dataset WebVid-10M (Bain et al., 2021) with uni-directional attention to establish the autoregressive foundation. This setup enforces an autoregressive learning scheme that maintains consistency between background and masked regions, ensures temporal coherence across frames.

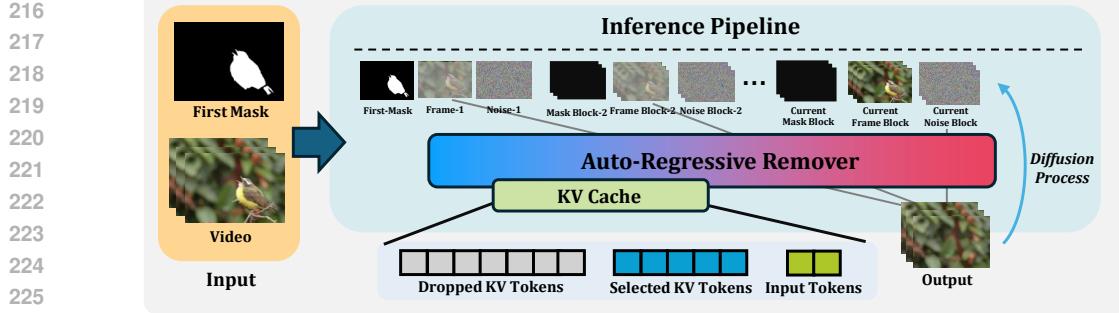


Figure 4: The inference pipeline of our AR-Remover. Given the video and the object mask for only the first frame, the system auto-regressively generates removal results chunk-by-chunk in real time.

We adopt diffusion forcing to construct an autoregressive inpainter due to its efficiency and memory advantages. Specifically, it consumes only 1-4 of the GPU memory in attention compared to teacher forcing (Zhou et al., 2025), and unlike self-forcing, it does not rely on the generation of previous frames. During training, random masks are applied to the original videos to generate masked inputs, denoted as $[x_t, x_m, m]$. These inputs are concatenated and fed into a DiT model. Each frame is assigned a distinct diffusion timestep by introducing different noise levels. Meanwhile, block-wise causal attention with row-wise sparsity ensures that each block can only attend to its preceding blocks. Our model is trained with a flow-matching objective using an MSE loss, where the target is defined as $\epsilon - x$, with ϵ representing random noise and x denoting the latent representation of the target video. After training, the inpainter can autoregressively complete masked regions by leveraging the KV cache, thereby maintaining both spatial and temporal coherence.

2.2.2 STAGE 2: JOINT TRACKING AND REMOVAL

Building Unified AR-Remover. Inspired by the PropGen (Liu et al., 2024) and Senorita (Zi et al., 2025b), which only provides the first edited frame and then propagates the information to the whole video, we believe that the DiT model has strong ability of propagating information. It is natural to expand: the DiT can edit the video with only the information given in the first frame, no matter what types of this information. Moreover, multitask learning in one model is common in the computer vision field, thus we compose the tasks of object tracking and object removal into a single model. Therefore, we assume that only giving the first initial mask and the DiT model can removes marked object successfully. The input for the AR-Remover model is denoted as $[x_t, x_s, \bar{m}]$, where x_t represents noisy latents obtained by adding noise to the target latents according to the noise scheduler, x_t refers to the source latents encoded from the source video, and \bar{m} is the mask condition.

AR-Remover and the Stage-1 model have the following two distinct differences.

- They have different mask inputs, \bar{m} vs m . In AR-Remover, only the first frame contains the mask information, while all subsequent frames are zero-padded. In Stage-1 model, region masks in all frames need to be provided,
- They have different source inputs, x_s vs x_m . In AR-Remover, the input x_s denotes the latent of the original source video, but in Stage-1 model, x_m denotes the latent of the masked source video.

In training, we use the same KV length as in Stage-1, but enforces the model can only access the left N blocks, the training target is the flow matching target, using $v = \epsilon - x_s$ as the target. After training, our remover learns to track and remove objects simultaneously in an auto-regressive form.

Fast Distillation. The diffusion process typically requires a large number of iterative steps, resulting in substantial computational overhead and high latency in inference. Such inefficiency hinders the feasibility of real-time inference. To accelerate the process, we adopt the DMD2 framework (Yin et al., 2024) to distill the auto-regressive model. However, since the original distillation objective is tailored for video generation and neglects the static background in video object removal, we introduce a modified loss function:

$$\mathcal{L} = \text{DMD2}(f(x)) + \text{MSE}(f(x), v). \quad (1)$$

270 The MSE loss in this formulation explicitly requires to promise the reconstruction quality of the
 271 background while preserving the advantages of DMD2 distillation. After training, our approach
 272 reduces the number of inference steps from 50 to just 2 while still preserving a high quality of video
 273 object removal. Our distillation enables an efficient and real-time deployment.

274 **VAE Optimization.** The original Wan2.1 VAE demonstrates strong performance in video recon-
 275 struction but suffers from slow inference, making it impractical for real-time setting. To address this
 276 limitation, we finetune LeanVAE (Cheng & Yuan, 2025) to align it with the latent space of Wan2.1
 277 VAE. We term this new VAE as **Wan-LeanVAE**. Wan-LeanVAE achieves a significant speedup by
 278 a factor of 12 compared to the original Wan2.1 VAE, while preserves a comparable reconstruction
 279 quality as Wan2.1 VAE. Therefore, Wan-LeanVAE is more suitable for a real-time deployment.

280 After putting AR-Remover, fast distillation and Wan-LeanVAE together, we reach a strong and real-
 281 time video object removal, termed as **RT-Remover**.

284 3 EXPERIMENTS

286 3.1 EXPERIMENTS SETUP

289 *Dataset.* We use the watermark-free WebVid-10M (Bain et al., 2021) and 400K videos from the
 290 Pexels(Pexels, 2024). We use CogVLM2 Hong et al. (2024) to get object names by asking the llm.
 291 We then use the grounded-sam2 (Liu et al., 2023; Ravi et al., 2024) to get the masks, where the
 292 groundingdino we use is the model with Swin Base backbone (Liu et al., 2021), while the SAM2 we
 293 choose is the hiera large version. We use the Scenedetect Castellano (2014) to filter out the video
 294 that has more than one scene, the threshold is 20.

295 *Training Details of Stage-1 Model.* We use AdamW (Loshchilov & Hutter, 2017) as the optimizer, with a
 296 learning rate of 1e-5 and a weight
 297 decay of 1e-6. The model architec-
 298 ture is same as the minimax-remover,
 299 the parameters are initialized with
 300 Wan2.1. The learning rate sched-
 301 uler is set to constant. We use full
 302 fine-tuning, which means all param-
 303 eters are trained. The batch size is
 304 set to 32, the resolution of video is
 305 480×832 , the frames are 81. Ad-
 306 ditionally, mixed precision and gradi-
 307 ent checkpointing are employed to re-
 308 duce GPU memory usage and accelerate the training process. We use 10 days to train the stage-1
 309 model on 2 A800 nodes. The patch embedding layer is extended from 16 channels to 36 channels,
 310 the first 16 channels are initialized with Wan2.1 parameters and the rest 20 channels are initialized
 311 with zeros. We use flow matching(Lipman et al., 2023) scheduler to train, making DiT model to
 312 predict the velocity and setting shift with 3.

313 *Training Details of Stage-2 Model.* We initialized stage-2 model with the parameters of stage-1
 314 model. The minimax-remover is used for dataset construction, with 12 inference steps, the resolution
 315 is 480×832 and 81 frames. We obtained 300K videos to train our stage-2 model using GPT-5 to
 316 filter the edited videos. We trained on these videos for 10 epochs and spent 2 days on 2 A800 nodes.
 317 The rest setting is same as the stage-1 model.

318 *The Training Details of Fast Distillation.* We use DMD2 (Yin et al., 2024) to distill our model. The
 319 learning rate is 1e-5, the training steps is 6000, the batch size is 32. The rest experiment details are
 320 same as the *training details of stage-2 model*.

322 *Inference Details of AR-Remover.* We conduct inference on a 5090 GPU. The inference process is
 323 configured with two steps, a resolution of 480×832 , and a frame length of 81. Our model does
 not employ classifier-free guidance. Under this setting, the model achieves a GPU memory usage

288 Table 2: Performance comparison of different methods on
 289 server with one 5090 GPU. To make fair comparison, we
 290 disable the external library, such as flash-attn. The best re-
 291 sults are **boldfaced**.

Method	Speed (FPS)	Diffusion Latency (s)	SAM2 Latency (s)	Overall Latency (s)
ProPainter	2.25	16.85		35.89
COCCOC	0.31	238.08		257.12
FloED	0.64	107.17		126.21
Diffuseraser	1.70	28.36	19.04	47.40
VideoPainter	0.12	617.6		636.64
VACE	0.32	226.5		245.54
MiniMax-Remover	2.36	15.16		34.20
RT-Remover (Ours)	33.06	0.12	0	0.12

Table 3: Comparison of different methods on the DAVIS and Pexels datasets. The best results are highlighted in **bold**. “TC” denotes temporal consistency, “VQ” stands for visual quality, and “Succ” represents the success rate. We implemented baselines for the video object removal task.

	DAVIS Dataset					Pexels Dataset				
Method	Quantitative Results			GPT-5 Eval		Quantitative Results			GPT-5 Eval	
	SSIM	PSNR	TC	VQ	Succ	SSIM	PSNR	TC	VQ	Succ
Diffusion-forcing	0.9567	33.27	0.9636	4.54	46.67%	0.9824	36.34	0.9920	3.91	23.50%
Self-Forcing	0.9532	33.35	0.9621	5.25	57.78%	0.9812	36.22	0.9910	5.16	52.50%
Teacher-Forcing	0.9297	32.69	0.9596	4.94	54.44%	0.9687	35.42	0.9885	4.41	36.00%
Ours	0.9688	33.62	0.9685	5.70	65.56%	0.9846	37.02	0.9924	6.12	72.50%

of **12.4 GB**, runs at **33 FPS**, and maintains a latency of **0.12 s**. For evaluation, we adopt the DAVIS dataset, which contains 90 videos, and a set of 200 videos from Pexels.

3.2 EXPERIMENTAL RESULTS

Quantitative Results. As shown in Table 3, our method consistently outperforms all baselines on both the DAVIS(Pont-Tuset et al., 2017) and Pexels datasets(Pexels, 2024). On DAVIS, we achieve the highest SSIM of 0.9688, PSNR of 33.62, and temporal consistency of 0.9685. These results indicate that our approach preserves fine-grained structures, produces sharper reconstructions of background, and maintains stable temporal dynamics better than competitor model reaches an SSIM of 0.9846, PSNR of 34.01, and temporal consistency of 0.9681, surpassing prior approaches by a clear margin. Interestingly, our model achieves higher SSIM and temporal consistency than teacher-forcing and our model demonstrates the rationality to use it as the first-stage pretraining. We also demonstrate both the accuracy and robustness of our model on Pexels dataset.

Qualitative Results. Beyond quantitative measurements, our method also shows clear advantages in qualitative results. The GPT-5 based analysis rates our approach the highest in terms of visual quality and removal success. On DAVIS, our method attains a score of 5.70 with a success rate of 65.56%, outperforming all baselines. On Pexels, the improvements are even more pronounced, with a visual quality score of 6.12 and success rate of 72.50%, higher than the second best performance with the score of 5.16 and 52.50% (i.e., self-forcing). User studies further confirm these findings, showing a strong preference for our outputs compared with CausVid(Yin et al., 2025), self-forcing(Huang et al., 2025), and teacher-forcing(Zhou et al., 2025) methods. We also conduct a user study in which users are asked to select their preferred options from a set of given videos. As shown in Table 4, the results demonstrate that our method achieves the best performance according to human evaluations.

3.3 ABLATION STUDY

We conduct ablation studies to evaluate the contributions of different design choices, focusing on two aspects: (1) the impact of pretraining weights, and (2) the effect of window size.

Comparing different pretrained weights. Table 6 compares the performance of several pretraining models. Wan2.1 and MiniMax-Remover weights produce reasonable results, but the proposed Stage-1 model consis-

Table 4: User study. The best results are in **bold**. D-Forcing, T-Forcing and S-Forcing mean Diffusion-Forcing, Teacher-Forcing and Self-Forcing.

D-Forcing	T-Forcing	S-Forcing	Ours
22.05%	38.97%	30.76%	82.05%

competing methods. Similarly, on the Pexels dataset, our R of 37.02, and temporal consistency of 0.9924, all surpass. Interestingly, Diffusion-forcing has higher background forcing and self-forcing on quantitative results, which gives our retraining method. These consistent gains across datasets attest the robustness of our method.

Table 5: Comparison of different VAEs. The evaluation resolution is 480×832 with 81 frames. The speed was tested on 5090 GPUs. The best results are in **bold**.

VAE	FPS	SSIM	PSNR	$L1 \times e^{-2}$	$L2 \times e^{-3}$
Wan2.1	16.03	0.9786	38.75	2.00	1.97
TAEHV	343.2	0.9655	36.89	2.75	3.62
Wan-LeanVAE (ours)	206.3	0.9743	<u>38.13</u>	2.17	<u>2.40</u>

415 Figure 5: Qualitative comparison of different methods. For the baselines and our remover, only the
 416 mask for the first frame is given. D-Forcing, T-Forcing and S-Foricing donate Diffusion-Foricing,
 417 Teacher-Forcing and Self-Forcing. Undesired objects or artifacts are highlighted with red rectangles.

418
 419 tently delivers superior performance. With the support of a causal attention mechanism, Stage-1
 420 achieves the highest quantitative scores. It also receives the best evaluations in GPT-5 Eval with
 421 visual quality 5.70 and success rate 65.56%. These results show that Stage-1 is closer to the final
 422 weights and leads to significantly improved task-specific performance.

423 Table 6: Ablation study. We compare different pretraining weights and prove the effectiveness of
 424 The Stage-1 model. The best results are in **bold**.
 425

426 427 Method	428 429 Pretraining 430 Model	431 Task	432 Attention	433 Quantitative Results			434 GPT-5 Eval	
				435 SSIM	436 PSNR	437 TC	438 VQ	439 Succ
431 Ab-1	432 Wan2.1	433 Gen	434 Bidirectional	435 0.9522	436 33.6	437 0.9610	438 3.58	439 27.78%
431 Ab-2	432 MiniMax-Remover	433 Remove	434 Bidirectional	435 0.9539	436 33.52	437 0.9655	438 4.97	439 57.78%
431 Ab-3	432 Stage-1 Model	433 Remove	434 Unidirectional	435 0.9688	436 33.62	437 0.9685	438 5.70	439 65.56%

432 Table 7: Ablation study of different window size. The speed and GPU memory consumption was
 433 tested on 5090 GPUs. ‘‘All’’ means window size is infinite. The best results are in **bold**.

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485			434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485			
			Memory	FPS	Latency	SSIM	PSNR	TC	VQ
Ab-1	3	11.7GB	35.84	0.1076s	0.9621	34.04	0.9685	5.10	55.56%
Ab-2	5	12.4GB	33.06	0.1200s	0.9688	33.62	0.9685	5.70	65.56%
Ab-3	9	13.5GB	28.52	0.1432s	0.9621	33.21	0.9695	5.82	67.78%
Ab-4	8	18.5GB	25.47	0.2113s	0.9629	33.90	0.9687	5.80	68.89%

Comparing different VAEs. We train Lean-VAE (Cheng & Yuan, 2025) to align its latent space with that of Wan2.1. The experimental results are presented in Table 5. We can see that WanLeanVAE obtains comparable performance with Wan2.1, while achieves a much higher performance than taehv (Boer Bohan, 2025).

Ablation study of different window size. Table 7 analyzes the trade-offs introduced by different window sizes. A small window such as size 3 offers the best efficiency in terms of memory usage, with 11.7GB, and speed, reaching 35.84 FPS, but it shows a slight drop in quality. Increasing the window size to 5 or 9 provides a better balance, with size 9 achieving the highest temporal consistency and visual quality. Using a full window, referred as All, further improves the successful rate to 68.89%, but requires significantly more memory at 18.5GB and results in slower inference speed of 25.47 FPS. These results indicate that practical deployment demands a careful trade-off between accuracy and efficiency. Therefore, we choose window size as 5 in our experiment to balance the speed and performance.

Visualization of Attention Map. To justify the choice of a window size of 5, we visualize the attention maps. Specifically, we sample 100 videos from the Pexels dataset and evaluate them using a bidirectional model where only the first mask is provided. We then compute the average attention map across 30 layers at different timesteps. The result is shown in Figure 6. We can see that queries tend to attend to nearby keys more strongly.

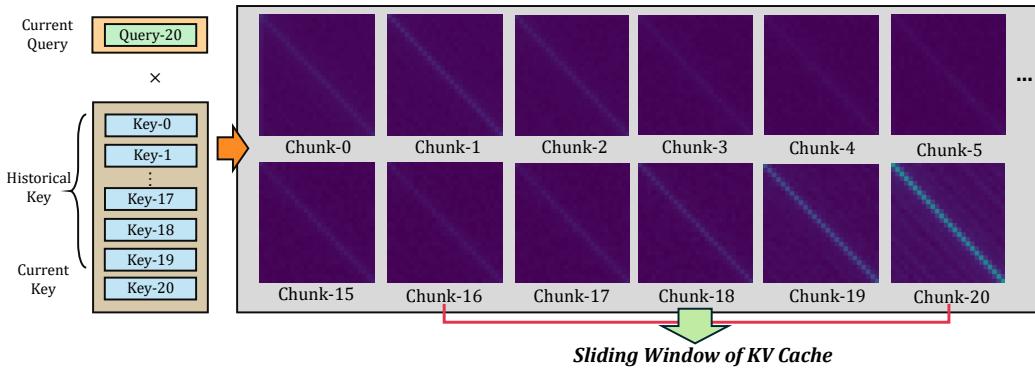


Figure 6: Visualization of the Attention Map in the Bidirectional-Attention Video Object Remover. We use a video consisting of 81 frames, which is encoded into 21 latent chunks. We can see that queries tend to attend to nearby keys more strongly.

4 CONCLUSION

In conclusion, we presented RT-Remover, a novel real-time video object removal that achieves an unprecedented low latency. By composing object tracking and inpainting into a joint process, employing an auto-regressive diffusion model with a caching mechanism, and leveraging model distillation to drastically reduce sampling steps, our approach simplifies the pipeline and enables real-time inference. Extensive experiments demonstrate that RT-Remover achieves state-of-the-art latency of 0.12s and a high inference of 33 FPS, while maintaining competitive visual quality, making it a practical solution for real-time interactive video editing.

486 **Ethics statement** This work adheres to the ICLR Code of Ethics. Our research does not involve human subjects, studies with potential for harm, or methodologies raising concerns regarding discrimination, bias, fairness, privacy, or security. No human-annotated datasets were used in the process; 487 all data processing and model training rely on publicly available or synthetically generated resources 488 in compliance with legal and ethical standards. We have ensured research integrity through rigorous 489 documentation and reproducibility efforts, as detailed in the Reproducibility Statement.

490 **Reproducibility Statement** To facilitate reproducibility of our results and to ensure that our methodology 491 can be reliably adopted in future research, we provide extensive details on the training parameters, 492 including hyperparameter configurations, optimization strategies, and model initialization 493 procedures, which are systematically reported in the Experiments section.

494 REFERENCES

495 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1728–1738, 2021.

496 Yuxuan Bian, Zhaoyang Zhang, Xuan Ju, Mingdeng Cao, Liangbin Xie, Ying Shan, and Qiang Xu. Videopainter: Any-length video inpainting and editing with plug-and-play context control. *arXiv preprint arXiv:2503.05639*, 2025.

497 Ollin Boer Bohan. Taehv: Tiny autoencoder for hunyuan video. <https://github.com/madebyollin/taehv>, 2025. Commit: 5ce7381, Accessed: 2025-09-05.

498 Brandon Castellano. Pyscenedetect: Video scene cut detection and analysis tool. <https://www.scenedetect.com/>, 2014.

499 Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Juncheng Zhu, Mingyuan Fan, Hao Zhang, Sheng Chen, Zheng Chen, Chengchen Ma, Weiming Xiong, Wei Wang, Nuo Pang, Kang Kang, Zhiheng Xu, Yuzhe Jin, Yupeng Liang, Yubing Song, Peng Zhao, Boyuan Xu, Di Qiu, Debang Li, Zhengcong Fei, Yang Li, and Yahui Zhou. Skyreels-v2: Infinite-length film generative model, 2025.

500 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.

501 Yu Cheng and Fajie Yuan. Leanvae: An ultra-efficient reconstruction vae for video diffusion models. *arXiv preprint arXiv:2503.14325*, 2025.

502 H. Deng, T. Pan, H. Diao, et al. Autoregressive video generation without vector quantization. *arXiv preprint arXiv:2412.14169*, 2024.

503 Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Tokenflow: Consistent diffusion features for consistent video editing. *arXiv preprint arXiv:2307.10373*, 2023.

504 Bohai Gu, Hao Luo, Song Guo, and Peiran Dong. Advanced video inpainting using optical flow-guided efficient diffusion. *arXiv preprint arXiv:2412.00857*, 2024.

505 Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

506 Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng, Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and video understanding. *arXiv preprint arXiv:2408.16500*, 2024.

507 Jiahao Hu, Tianxiong Zhong, Xuebo Wang, Boyuan Jiang, Xingye Tian, Fei Yang, Pengfei Wan, and Di Zhang. Vivid-10m: A dataset and baseline for versatile and interactive video local editing. *arXiv preprint arXiv:2411.15260*, 2024.

540 Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging
 541 the train-test gap in autoregressive video diffusion. *arXiv preprint*, arXiv:2506.08009, 2025.
 542

543 Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one
 544 video creation and editing. *arXiv preprint arXiv:2503.07598*, 2025.

545 Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang,
 546 Yang Song, Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video
 547 generative modeling. In *ICLR*, 2025. URL <https://openreview.net/forum?id=66NzcRQuOq>.
 548

550 Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Rachel Hornung, Hartwig
 551 Adam, Hassan Akbari, Yair Alon, Vighnesh Birodkar, et al. Videopoet: A large language model
 552 for zero-shot video generation. *arXiv preprint arXiv:2312.14125*, 2023.

553 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 554 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 555 models. *arXiv preprint arXiv:2412.03603*, 2024.

556

557 Minhyeok Lee, Suhwan Cho, Chajin Shin, Jungho Lee, Sunghun Yang, and Sangyoun Lee. Video
 558 diffusion models are strong video inpainter. In *Proceedings of the AAAI Conference on Artificial
 559 Intelligence*, volume 39, pp. 4526–4533, 2025.

560 Xiaowen Li, Haolan Xue, Peiran Ren, and Liefeng Bo. Diffueraser: A diffusion model for video
 561 inpainting. *arXiv preprint arXiv:2501.10018*, 2025.

562

563 Yotam Lipman, Jonathan Ho, Tim Salimans, Yair Carmon, David Duvenaud, Phillip Isola, and
 564 Gabi Doron. Flow matching for generative modeling. In *International Conference on Machine
 565 Learning (ICML)*, 2023. URL <https://arxiv.org/abs/2210.02747>.

566

567 Shaoteng Liu, Tianyu Wang, Jui-Hsien Wang, Qing Liu, Zhifei Zhang, Joon-Young Lee, Yi-
 568 jun Li, Bei Yu, Zhe Lin, Soo Ye Kim, et al. Generative video propagation. *arXiv preprint
 569 arXiv:2412.19761*, 2024.

570 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
 571 Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
 572 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023.

573

574 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 575 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 576 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 10012–10022, 2021.

577 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 578 arXiv:1711.05101*, 2017.

579

580 OpenAI. Gpt-5 system card. Technical report, 2025. URL <https://cdn.openai.com/gpt-5-system-card.pdf>. August 13, 2025.

581

582 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint
 583 arXiv:2212.09748*, 2022.

584

585 Pexels. <https://www.pexels.com/>, 2024. URL <https://www.pexels.com/>.

586

587 Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and
 588 Luc Van Gool. The 2017 davis challenge on video object segmentation. *arXiv preprint
 589 arXiv:1704.00675*, 2017.

590 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 591 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
 592 sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
 593 ichtenhofer. Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*,
 2024. URL <https://arxiv.org/abs/2408.00714>.

594 Sand.ai, Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tian-
 595 ning Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang,
 596 Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli
 597 Su, Hanwen Sun, Hong Pan, Jie Wang, Jiexin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng
 598 Yin, Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang,
 599 and Yuqiao Li. Magi-1: Autoregressive video generation at scale, 2025.

600 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 601 Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
 602 Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pan-
 603 deng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing
 604 Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou,
 605 Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou,
 606 Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu,
 607 Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han,
 608 Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. *arXiv*
 609 preprint arXiv:2503.20314, 2025.

610 Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yujun Shen,
 611 Deli Zhao, and Jingren Zhou. Videocomposer: Compositional video synthesis with motion con-
 612 trollability. *Advances in Neural Information Processing Systems*, 2024.

613 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
 614 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
 615 models for text-to-video generation. In *Proceedings of the IEEE/CVF International Conference*
 616 *on Computer Vision*, pp. 7623–7633, 2023.

617 Shiyuan Yang, Zheng Gu, Liang Hou, Xin Tao, Pengfei Wan, Xiaodong Chen, and Jing Liao. Mtv-
 618 inpaint: Multi-task long video inpainting. *arXiv preprint arXiv:2503.11412*, 2025.

619 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
 620 William T Freeman. Improved distribution matching distillation for fast image synthesis. In
 621 *NeurIPS*, 2024.

622 Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman, and
 623 Xun Huang. From slow bidirectional to fast autoregressive video diffusion models. In *CVPR*,
 624 2025.

625 Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 626 Cheng, Agrim Gupta, Xiuye Gu, Alexander G. Hauptmann, Boqing Gong, Ming-Hsuan Yang,
 627 Irfan Essa, David A. Ross, and Lu Jiang. Language model beats diffusion — tokenizer is key to
 628 visual generation, 2023.

629 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 630 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 631 pp. 3836–3847, 2023a.

632 Zhixing Zhang, Bichen Wu, Xiaoyan Wang, Yaqiao Luo, Luxin Zhang, Yinan Zhao, Peter Vajda,
 633 Dimitris Metaxas, and Licheng Yu. Avid: Any-length video inpainting with diffusion model.
 634 *arXiv preprint arXiv:2312.03816*, 2023b.

635 Deyu Zhou, Quan Sun, Yuang Peng, Kun Yan, Runpei Dong, Duomin Wang, Zheng Ge, Nan Duan,
 636 Xiangyu Zhang, Lionel M. Ni, and Heung-Yeung Shum. Taming teacher forcing for masked
 637 autoregressive video generation. In *CVPR*, June 2025. arXiv preprint arXiv:2501.12389.

638 Shangchen Zhou, Chongyi Li, Kelvin CK Chan, and Chen Change Loy. Propainter: Improving
 639 propagation and transformer for video inpainting. In *Proceedings of the IEEE/CVF International*
 640 *Conference on Computer Vision*, 2023.

641 Bojia Zi, Shihao Zhao, Xianbiao Qi, Jianan Wang, Yukai Shi, Qianyu Chen, Bin Liang, Kam-Fai
 642 Wong, and Lei Zhang. Cococo: Improving text-guided video inpainting for better consistency,
 643 controllability and compatibility. *arXiv preprint arXiv:2403.12035*, 2024.

648 Bojia Zi, Weixuan Peng, Xianbiao Qi, Jianan Wang, Shihao Zhao, Rong Xiao, and Kam-Fai
649 Wong. Minimax-remover: Taming bad noise helps video object removal, 2025a. URL <https://arxiv.org/abs/2505.24873>.
650
651 Bojia Zi, Penghui Ruan, Marco Chen, Xianbiao Qi, Shaozhe Hao, Shihao Zhao, Youze Huang, Bin
652 Liang, Rong Xiao, and Kam-Fai Wong. Senorita-2m: A high-quality instruction-based dataset
653 for general video editing by video specialists. *arXiv preprint arXiv:2502.06734*, 2025b.
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A LLM USAGE

In preparing this manuscript, we used ChatGPT solely for language polishing and minor refinements aimed at improving clarity, grammar, and overall flow. Sections of the draft were provided to the LLM for suggested revisions, which were subsequently reviewed, edited, and incorporated by the authors where appropriate. All core ideas, research contributions, technical details, and analyses are entirely the work of the authors and were not generated or conceived by the LLM. No other large language models were utilized during the research process.

B DATASET INTRODUCTION

Our dataset consists of two main sources: the watermark-free Webvid-10M (Bain et al., 2021) and 400K videos collected from Pexels.com (Pexels, 2024). We annotate these videos using a combination of LLM-based labeling and Grounded-SAM2. Specifically, we employ CogVLM2 (Hong et al., 2024) to extract object categories from each video, and then apply Grounded-SAM2 (Liu et al., 2023; Ravi et al., 2024) to detect and track the corresponding objects throughout the entire sequence. To ensure consistency, we further filter out videos containing multiple scenes using PySceneDetect (Castellano, 2014). In the stage-1 training, we only use the WebVid-10M videos. In the second stage of training, we leverage Minimax-Remover to construct video triplets with Pexels videos and filtered by GPT-5 (OpenAI, 2025), each consisting of a source video, an edited video, and the associated masks. This process yields a total of 300K high-quality video triplets, which serve as the foundation for robust model training.

C RELATED WORKS

C.1 VIDEO INPAINTING

Video inpainting methods can generally be divided into two categories: **text-guided** and **non-text-guided** approaches. The former completes masked regions based on textual prompts, while the latter focuses on removing objects or repairing corrupted areas without relying on text.

In recent years, a number of **text-guided video inpainting** methods Wang et al. (2024); Zhang et al. (2023b); Zi et al. (2024); Bian et al. (2025); Yang et al. (2025); Zi et al. (2025a;b); Hu et al. (2024); Jiang et al. (2025) have emerged. Early work such as VideoComposer (Wang et al., 2024) demonstrated the feasibility of combining multiple input conditions to guide inpainting with text. Building upon this idea, AVID incorporated image inpainting models and introduced a motion layer trained to propagate edits across frames. COCOCO (Zi et al., 2024) further enhanced this approach by adding damped global attention and textual cross-attention, significantly improving temporal consistency and user control. It also introduced a mechanism for personalized video inpainting. Meanwhile, VIVID (Hu et al., 2024) contributed a large-scale dataset containing 10 million image and video pairs for localized editing, which enabled the training of a powerful text-guided inpainting model. Expanding the application scope, MTV-Inpaint (Yang et al., 2025) unified both conventional scene completion and novel object insertion within a single framework. Additionally, VideoPainter (Bian et al., 2025) leveraged a DiT-based architecture with an efficient context encoder to handle masked inputs and inject background priors into a pre-trained video DiT, allowing plug-and-play inpainting. VACE (Jiang et al., 2025) pushed this further by integrating an inpainting model with Control-Net (Zhang et al., 2023a) to support diverse editing tasks, achieving state-of-the-art results. Lastly, Senorita-Remover (Zi et al., 2025b), designed for the Senorita-2M dataset, adopted a contrastive prompt strategy to specialize in object removal from videos.

On the other hand, **non-text-guided video inpainting**, also known as video object removal, typically avoids the use of text prompts and focuses instead on direct content manipulation.(Zhou et al., 2023; Lee et al., 2025; Gu et al., 2024; Li et al., 2025; Zi et al., 2025a) For example, ProPainter(Zhou et al., 2023) was an early method that first completed optical flow and then used a vision transformer to fill masked regions. Following this, FFF-VDI(Lee et al., 2025) introduced a diffusion-based approach that propagates noise latents from future frames into masked regions and fine-tunes a pre-trained image-to-video diffusion model for final synthesis. FloEDGu et al. (2024) combined optical flow and optional textual embeddings, injecting both into the inpainting pipeline to enhance object

removal. Building upon existing work, DiffuEraser(Li et al., 2025) utilized ProPainter to generate initial removal results, which were then inverted into latents and reconstructed using a specialized video inpainting model. More recently, MiniMax-Remover(Zi et al., 2025a) introduced a robust training strategy using minimax optimization: the inner loop searches for adversarial noise that hinders inpainting performance, while the outer loop trains the model to succeed even under such challenging conditions.

762 C.2 STREAMING VIDEO GENERATION

763 Generating video auto-regressively become more and more popular in recent days. Recent advances
 764 in video generation have primarily followed two distinct paradigms: language model-based token
 765 prediction and diffusion-based synthesis. We review representative works from both lines of re-
 766 search, with a focus on their approaches to temporal modeling and efficiency.

767 **LLM-Based Video Generation.** VideoPoet (Kondratyuk et al., 2023) demonstrates a unified gener-
 768 ative framework that models video, image, audio, and text as token sequences. It leverages a visual
 769 tokenizer (i.e., MagViT-v2 (Yu et al., 2023)) to convert video frames into discrete tokens, and uses
 770 a large language model to autoregressively predict the next token in the sequence. This approach
 771 benefits from the scalability and long-range modeling capabilities of LLMs, enabling coherent video
 772 generation over extended durations.

773 **Diffusion-Based Video Generation.** Diffusion models have become the dominant approach for
 774 high-quality video synthesis, owing to their strong generative fidelity. However, generating long
 775 videos with standard per-frame diffusion is computationally intensive. Recent work has proposed
 776 more efficient variants based on chunk-wise prediction (Yin et al., 2025; Huang et al., 2025; Chen
 777 et al., 2025; Sand.ai et al., 2025; Deng et al., 2024; Jin et al., 2025).

778 CausVid (Yin et al., 2025) adapts a bidirectional DiT into an autoregressive transformer that gen-
 779 erates frames in a causal order. It introduces a novel distillation framework, reducing a 50-step
 780 diffusion process into 4 steps by initializing the student from the teacher’s ODE trajectories and
 781 applying asymmetric supervision. SkyReels-V2 (Chen et al., 2025) proposes a diffusion forcing
 782 strategy with a non-decreasing noise schedule to restrict the generation search space. This approach
 783 enables efficient long-range video synthesis with stable temporal dynamics. MAGI-1(Sand.ai et al.,
 784 2025) models the denoising process at the chunk level, where noise levels increase monotonically
 785 over time. This design facilitates causal temporal modeling and supports streaming generation with
 786 consistent frame quality. NOVA (Deng et al., 2024) preserves causal modeling across frames while
 787 introducing bidirectional attention within individual frames. This hybrid design improves genera-
 788 tion quality without compromising temporal consistency. PyramidFlow (Jin et al., 2025) adopts a
 789 hierarchical strategy, where each stage predicts the next frame conditioned on prior stages. This
 790 promotes a coarse-to-fine generation process, balancing quality and efficiency. Self-Forcing (Huang
 791 et al., 2025) introduces autoregressive rollout during training, where each frame is conditioned on
 792 self-generated outputs. It combines a few-step diffusion model with stochastic gradient truncation
 793 and a rolling key-value cache mechanism, significantly improving autoregressive video extrapola-
 794 tion efficiency.

795 **Remark.** Most of previous video object removal methods rely on object tracking, as a preprocess-
 796 ing step, to generate mask sequences across all frames. This process significantly hampers infer-
 797 ence speed and remains a major bottleneck for real-world applications. Meanwhile, these models
 798 operate in a non-auto-regressive form, and thus increases latency and diminishes interactivity. In
 799 RT-Remover, we compose the object tracking and video object removal into a single auto-regressive
 800 diffusion model. Meanwhile, we also largely reduce the sampling steps in inference from 25 to 2
 801 by a model distillation and speed up the VAE encoder and decoder via training a lightweight and
 802 well-performing VAE. Our model is the first real-time video object removal.

803 D WHY WE CAN TRUST GPT-5 FOR EVALUATION?

804 Here, we report the evaluation results of GPT-5 on a benchmark of 100 video object removal sam-
 805 ples, consisting of an equal split between success cases (50%) and failure cases (50%). As shown in
 806 Table 8, GPT-5 demonstrates the strongest performance among all evaluated large language models,
 807 achieving 97% agreement with human judgments. Notably, GPT-5 exhibits both high accuracy in

810
811
812 Table 8: LLM performance on evaluating video object removal.
813
814
815
816
817
818

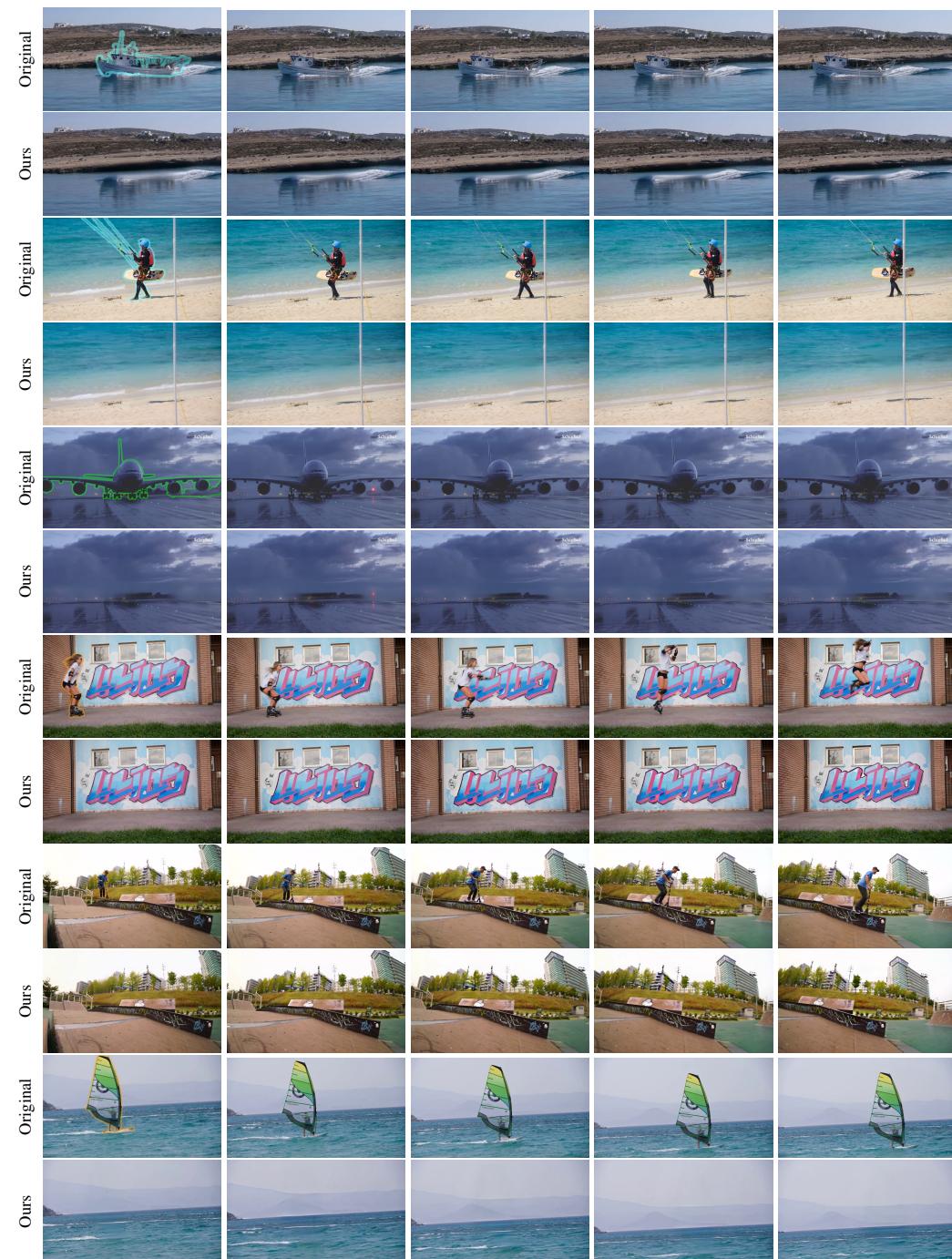
Success Rate	GPT-4O	GPT-4O-mini	GPT-4-turbo	GPT-O3	GPT-5
Acc in Failure Cases	94.0%	98.0%	86.0%	96.0%	98.0%
Acc in Success Cases	88.0%	26.0%	58.0%	94.0%	96.0%
Overall Accuracy	91.0%	62.0%	72.0%	95.0%	97.0%

819 distinguishing successful removals and strong reliability in identifying failure cases, highlighting its
 820 robustness and consistency in assessing video object removal quality.

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865
E MORE QUALITATIVE RESULTS OF OUR RT-REMOVER
866
867

More qualitative results can be seen in Figure 7.

912
913
914
915
916
917
Figure 7: More visual results of our RT-Remover.