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Figure 1: The inference efficiency were obtained on a 5090 GPU with an input resolution of 480 X
832 over 81 frames. The inference speed is calculated as Num Frames [ Inference Duration. Latency
is defined as the time elapsed from receiving an input frame to producing the corresponding output
frame. RT-Remover reduces inference time and latency by a factor of 14 and 285, respectively,
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(a) The Inference Speed of Different Methods.

ABSTRACT

With the rapid advancement of video diffusion, video editing techniques, espe-
cially video object removal, have garnered increasing attention. Existing methods
generally rely on separate object tracking and inpainting stages, leading to com-
plex and slow pipelines that are unsuitable for real-time and interactive applica-
tions. This paper is committed to designing a real-time video object remover with
the minimum latency, termed as RT-Remover. To this end, we introduce three
key innovations in this paper to enable the real-time object removal in videos.
First, different from previous methods that perform tracking and inpainting indi-
vidually, we compose them into a joint process. Our model only requires an initial
mask for the first frame from the user and automatically removes the target objects
across the whole video. Second, we leverage an auto-regressive diffusion model
for a real-time video object remover. We use an auto-regressive form to predict
the next chunk based on previous chunks, while use diffusion model to iteratively
predict the current chunk. Meanwhile, we incorporate a fixed-length key-value
cache to minimize both memory usage and computational overhead. Third, to
further speed up the inference, we propose to distill the auto-regressive diffusion
model using distribution matching distillation and flow matching loss, and thus
reduce the number of sampling steps from 25 to 2 while preserving background
consistency. All three contributions significantly simplify the pipeline and enable
real-time performance. Our method achieves 33 FPS and 0.12s latency on a 5090
GPU with our trained faster VAE. Extensive experiments show that our approach
achieves the lowest latency among existing methods while maintaining competi-
tive visual quality.

33.06

Latency (s, log scale)

compared to Minimax-Remover.

(b) The Inference Latency of Different Methods.



Under review as a conference paper at ICLR 2026

Original Ours Original Ours Original

Ours

Figure 2: Visualization of our RT-Remover. We present three sets of results. For instance, the first
row shows some frames from the source video, and the second row displays the outcomes after
object removal.

1 INTRODUCTION

In recent years, video editing techniques have witnessed rapid advancements. Early methods such
as AnimateDiff 2023), VideoComposer (Wang et all 2024), and VideoCrafter2
[2024) leveraged convolutional neural networks to train diffusion models. With access to
millions of training videos, these approaches achieved impressive visual quality. More recently,
diffusion transformer (DiT) architectures have become dominant in video generation (Peebles &
2022). Models like HunyuanVideo (Kong et al., [2024) and Wan2.1 (Wang et al. 2025) are
trained on billions of videos, producing not only visually appealing outputs but also demonstrating
strong motion consistency.

Concurrently, video editing methods have evolved alongside video generation techniques. Broadly,
video editing can be divided into two categories: (1) General-purpose editing, and (2) Specific-
purpose editing. General-purpose editing aims to manipulate videos based on user-provided
prompts, allowing flexible modifications across any region or type of edit. Representative meth-
ods include Tune-A-Video [2023), TokenFlow (Geyer et al.l2023), and Senorita
[2025b). In contrast, specific-purpose editing targets a defined task with a specialized design, often
receiving tailored inputs and producing constrained outputs. Examples include video stylization and
video inpainting. Generally, specific-purpose methods exhibit greater reliability and stability within
their targeted domains, which has contributed to their growing popularity in recent years.

Among various specific-purpose tasks, video object removal has gained significant attention. A
common approach combines an object tracker with a video inpainting model: the tracker generates a
mask sequence, while the inpainting model fills the masked regions with plausible content. Research
on video inpainting has a long history. For instance, ProPainter is a non-diffusion
method that uses flow completion to guide a transformer-based inpainting module. More recent
techniques employ diffusion models. FFF-VDI 2025) incorporates optical flow to guide
the inpainting process. Senorita-Remover uses dual contrastive objectives to learn
object removal and content generation simultaneously. FloED 2024) employs a dual-
branch network and a two-stage training strategy for high-quality results. DiffuEraser (Li et al]
leverages DDIM inversion and vision priors to enhance inpainting fidelity. Notably, MiniMax-
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Table 1: Comparison of latency improvements from Traditional Remover (i.e., Minimax-Remover)
to RT-Remover, highlighting the sources of acceleration.

Method Mask Tracking VAE Encode Mask | Modeling Type | Sampling Steps | Latency (s) |Speedup Ratio
Traditional Remover v Wan2.1 VAE v Diffusion 6 34.20 1.0
Model-1 X Wan2.1-VAE v Diffusion 6 15.16 (-19.04) 225
Model-2 X Wan2.1-LeanVAE v Diffusion 6 8.79 (-6.37) 3.89
Model-3 X Wan2.1-LeanVAE X Diffusion 6 8.64 (-0.15) 3.95
Model-4 X Wan2.1-LeanVAE X AR+Diffusion 6 0.32 (-8.32) 106.87
RT-Remover (ours) X Wan2.1-LeanVAE X AR+Diffusion 2 0.12 (-0.20) 285.00

Remover (Zi et al., |2025a) introduces adversarial training to improve removal quality, achieving
appealing results with only six sampling steps without using classifier-free guidance.

However, current object removal methods still suffer from many drawbacks, the most notable one is
the slow inference and high latency. This drawback is mainly due to three perspectives. First, current
methods require a separate object tracking step prior to removal to get the mask sequence, which
adds significant preprocessing time. Second, existing methods are non-auto-regressive and require
simultaneous processing of all frames in a clip, resulting in high computational latency. Third,
current approaches often depend on multiple sampling steps, further increasing inference time.

To address the above challenges, we propose RT-Remover, a real-time video object removal. In
RT-Remover, we compose tracking and removal into a joint learning model, eliminating the over-
head of an external tracking stage. Meanwhile, we employ an auto-regressive diffusion transformer
that generates frames sequentially using a limited length key-value (KV) cache strategy, reducing
memory and computation while maintaining long-term dependencies. In addition, we speed up the
inference by distilling the auto-regressive diffusion model using distribution matching distillation
and flow matching loss, and thus reduce the number of sampling steps from 25 to 2 while preserving
background consistency.

Our main contributions are summarized as follows:

* We compose object tracking and removal into a single model that learns object tracking and object
removal jointly, and thus remove the necessity for a separate tracking component. This integration
significantly simplies the overall efficiency of the video object removal pipeline.

* We develop an auto-regressive diffusion framework with efficient KV cache mechanism that bal-
ances temporal consistency and resource efficiency. Moreover, we perform the distribution match-
ing distillation of auto-regressive remover and thus the model can inference with only 2 sampling
steps. In addition, we train a faster VAE for our RT-Remover.

» Through extensive visualizations, quantitative comparisons, and ablation studies, we demonstrate
the effectiveness of RT-Remover in real-time object removal, validating the impact of each pro-
posed component. Finally, as shown in Figure[T]and Table [T} RT-Remover reduces inference time
and latency by a factor of 14 and 285, respectively, compared to Minimax-Remover.

2 METHODOLOGY

RT-Remover has three major improvements compared with traditional remover, including compos-
ing object tracking and object removal into a joint learning process that avoids an individual ob-
ject tracking, a new video object removal model based on auto-regressive diffusion model, and a
lightweight VAE encoding/decoding. First, removing mask tracking brings in most improvement.
Second, changing prediction method from diffusion model with full attention to auto-regressive dif-
fusion model with unidirectional attention, further reduces the latency. Finally, distilling the original
Wan2.1 VAE into a lightweight VAE further speeds up the inference.

2.1 ARCHITECTURE OVERVIEW

We adopt Wan2.1 (Wang et al. [2025)) as our base model but remove the cross-attention module,
following Minimax-Remover (Zi et al.}2025a)), to enhance efficiency. Our model employs a 2-stage
strategy. In Stage-1, we train an auto-regressive inpainter on a large-scale video dataset. In Stage-2,
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Figure 3: Our AR-Remover consists of two training stages. In Stage-1, we train an auto-regressive
inpainter on a large-scale video dataset. In Stage-2, we use a general object remover model to distill
our video object removal model that is initialized by the model from Stage-1. Two key differences in
the inputs between models in Stage-1 and Stage-2 are the masked source video vs the source video,
and the object masks for all frames vs the object mask for only the first frame. This distilled model
after Stage-2 is capable of simultaneously tracking and removing objects in auto-regressive form.

we train video object removal based on the model obtained from Stage-1. We only use the initial
mask of the first frame as our mask input. In summary, Stage-1 serves as a pretrained model, and
Stage-2 is our final targeted video object removal model.

Stage-1 Architecture. Inputs are concatenated as [x;, T,,, m], where &, ,, € RP*X/X"xw denote
noisy and masked latents, and m is the resized binary mask sequence. The initial mask my is
duplicated across four channels, while each subsequent m_ n encodes four reshaped masks from
frames 1 to 4N 4 1. We use causal block-wise attention with limited KV length, which predicts the
next frame auto-regressively, shown in Figure 3]

Stage-2 Architecture. Stage-2 adopts the same model architecture but modifies the input strategy.
For the mask, only the first frame contains the resized initial mask, while subsequent frames are zero-
padded. Instead of using the masked video, we directly input the source video. This design removes
the need for an explicit object-tracking module, compelling the model to learn object removal and
tracking jointly. At the same time, it allows the model to leverage Stage-1’s inpainting capability in
an auto-regressive manner, progressively achieving both tracking and object removal.

2.2 TRAINING PIPELINE

Our training pipeline consists of two successive stages. Stage 1 adapts the Wan2.1 backbone to
causal attention form with limited KV length. We remove the cross attention modules from the
model for faster inference. Stage 2 distills a general-purpose remover into a joint object tracking
and video remover model.

2.2.1 STAGE 1: TRAINING AUTOREGRESSIVE FOUNDATION

In the first stage, we train an inpainter on the large-scale annotated dataset WebVid-10M (Bain
et al. 2021) with uni-directional attention to establish the autoregressive foundation. This setup
enforces an autoregressive learning scheme that maintains consistency between background and
masked regions, ensures temporal coherence across frames.
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Figure 4: The inference pipeline of our AR-Remover. Given the video and the object mask for only
the first frame, the system auto-regressively generates removal results chunk-by-chunk in real time.

We adopt diffusion forcing to construct an autoregressive inpainter due to its efficiency and memory
advantages. Specifically, it consumes only 1-4 of the GPU memory in attention compared to teacher
forcing 2025), and unlike self-forcing, it does not rely on the generation of previous
frames. During training, random masks are applied to the original videos to generate masked inputs,
denoted as [x¢, x,,, m]. These inputs are concatenated and fed into a DiT model. Each frame is
assigned a distinct diffusion timestep by introducing different noise levels. Meanwhile, block-wise
causal attention with row-wise sparsity ensures that each block can only attend to its preceding
blocks. Our model is trained with a flow-matching objective using an MSE loss, where the target
is defined as € — x, with € representing random noise and x denoting the latent representation
of the target video. After training, the inpainter can autoregressively complete masked regions by
leveraging the KV cache, thereby maintaining both spatial and temporal coherence.

2.2.2 STAGE 2: JOINT TRACKING AND REMOVAL

Building Unified AR-Remover. Inspired by the PropGen (Liu et al., [2024) and Senorita (Zi et al.|
2025b)), which only provides the first edited frame and then propagates the information to the whole

video, we believe that the DiT model has strong ability of propagating information. It is natural to
expand: the DiT can edit the video with only the information given in the first frame, no matter what
types of this information. Moreover, multitask learning in one model is common in the computer
vision field, thus we compose the tasks of object tracking and object removal into a single model.
Therefore, we assume that only giving the first initial mask and the DiT model can removes marked
object successfully. The input for the AR-Remover model is denoted as [z, x5, M|, where x; rep-
resents noisy latents obtained by adding noise to the target latents according to the noise scheduler,
x; refers to the source latents encoded from the source video, and m is the mask condition.

AR-Remover and the Stage-1 model have the following two distinct differences.

* They have different mask inputs, m vs m. In AR-Remover, only the first frame contains the mask
information, while all subsequent frames are zero-padded. In Stage-1 model, region masks in all
frames need to be provided,

* They have different source inputs, s vs x,,. In AR-Remover, the input s denotes the latent of
the original source video, but in Stage-1 model, x,,, denotes the latent of the masked source video.

In training, we use the same KV length as in Stage-1, but enforces the model can only access the
left N blocks, the training target is the flow matching target, using v = € — x; as the target. After
training, our remover learns to track and remove objects simultaneously in an auto-regressive form.

Fast Distillation. The diffusion process typically requires a large number of iterative steps, resulting
in substantial computational overhead and high latency in inference. Such inefficiency hinders the
feasibility of real-time inference. To accelerate the process, we adopt the DMD2 framework
to distill the auto-regressive model. However, since the original distillation objective
is tailored for video generation and neglects the static background in video object removal, we
introduce a modified loss function:

£ = DMD2(f(z)) + MSE(f(x), v). (1)
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The MSE loss in this formulation explicitly requires to promise the reconstruction quality of the
background while preserving the advantages of DMD?2 distillation. After training, our approach
reduces the number of inference steps from 50 to just 2 while still preserving a high quality of video
object removal. Our distillation enables an efficient and real-time deployment.

VAE Optimization. The original Wan2.1 VAE demonstrates strong performance in video recon-
struction but suffers from slow inference, making it impractical for real-time setting. To address this
limitation, we finetune LeanVAE (Cheng & Yuan, |2025) to align it with the latent space of Wan2.1
VAE. We term this new VAE as Wan-LeanVAE. Wan-LeanVAE achieves a significant speedup by
a factor of 12 compared to the original Wan2.1 VAE, while preserves a comparable reconstruction
quality as Wan2.1 VAE. Therefore, Wan-LeanVAE is more suitable for a real-time deployment.

After putting AR-Remover, fast distillation and Wan-LeanVAE togather, we reach a strong and real-
time video object removal, termed as RT-Remover.

3 EXPERIMENTS

3.1 EXPERIMENTS SETUP

Dataset. We use the watermark-free WebVid-10M (Bain et al.| 2021) and 400K videos from the
Pexels(Pexels, [2024). We use CogVLM2 Hong et al.| (2024)) to get object names by asking the 1Im.
We then use the grounded-sam?2 (Liu et al. 2023; Ravi et al., 2024) to get the masks, where the
groundingdino we use is the model with Swin Base backbone (Liu et al.,[2021), while the SAM2 we
choose is the hiera large version. We use the Scenedetect (Castellano| (2014) to filter out the video
that has more than one scene, the threshold is 20.

Training Details of Stage-1 Model. Table 2: Performance comparison of different methods on
We use AdamW (Loshchilov & Hut-| server with one 5090 GPU. To make fair comparison, we
ter, 2017) as the optimizer, with a disable the external library, such as flash-attn. The best re-
learning rate of le-5 and a weight sults are boldfaced.

decay of le-6. The model architec-

ture is same as the minimax-remover, Method fggg‘; Ll;'g:cs;"(';) Lafgf\c/lyz(s) L;:Z:Z;lzs)
the parameters are initialized with 55— 225 16.85 35.89
Wan2.1. The learning rate sched- COCOCO 0.31 238.08 257.12
uler is set to constant. We use full FloED 0.64 107.17 126.21
fine-tuning, which means all param- Diffuseraser 1.70 28.36 19.04 47.40
eters are trained. The batch size is VideoPainter 0.12 617.6 636.64
set to 32, the resolution of video is VACE 0.32 226.5 245.54
480 X 832’ the frames are 81. Ad- MiniMax-Remover 2.36 15.16 34.20
ditionally, mixed precision and gradi- ~_RT-Remover Qurs) | 33.06 0.12 0 0.12

ent checkpointing are employed to re-

duce GPU memory usage and accelerate the training process. We use 10 days to train the stage-1
model on 2 A800 nodes. The patch embbedding layer is extended from 16 channels to 36 channels,
the first 16 channels are initialized with Wan2.1 parameters and the rest 20 channels are initialized
with zeros. We use flow matching(Lipman et al.| [2023)) scheduler to train, making DiT model to
predict the velocity and setting shift with 3.

Training Details of Stage-2 Model. We initialized stage-2 model with the parameters of stage-1
model. The minimax-remover is used for dataset construction, with 12 inference steps, the resolution
is 480 x 832 and 81 frames. We obtained 300K videos to train our stage-2 model using GPT-5 to
filter the edited videos. We trained on these videos for 10 epochs and spent 2 days on 2 A800 nodes.
The rest setting is same as the stage-1 model.

The Training Details of Fast Distillation. We use DMD?2 (Yin et al., 2024)) to distill our model. The
learning rate is le-5, the training steps is 6000, the batch size is 32. The rest experiment details are
same as the training details of stage-2 model.

Inference Details of AR-Remover. We conduct inference on a 5090 GPU. The inference process is
configured with two steps, a resolution of 480 x 832, and a frame length of 81. Our model does
not employ classifier-free guidance. Under this setting, the model achieves a GPU memory usage
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Table 3: Comparison of different methods on the DAVIS and Pexels datasets. The best results are
highlighted in bold. “TC” denotes temporal consistency, “VQ” stands for visual quality, and “Succ”
represents the success rate. We implemented baselines for the video object removal task.

DAVIS Dataset Pexels Dataset
Quantitative Results | GPT-5 Eval | Quantitative Results | GPT-5 Eval
SSIM  PSNR TC |VQ Succ |SSIM  PSNR TC |VQ Succ
Diffusion-forcing 0.9567 33.27 0.9636/4.54 46.67%(0.9824 36.34 0.9920/3.91 23.50%
Self-Forcing 0.9532 3335 0.9621)5.25 57.78%(0.9812 36.22 0.99105.16 52.50%
Teacher-Forcing 0.9297 32.69 0.9596/4.94 54.44%(0.9687 35.42 0.9885/4.41 36.00%
Ours 0.9688 33.62 0.96855.70 65.56%0.9846 37.02 0.9924/6.12 72.50%

Method

of 12.4 GB, runs at 33 FPS, and maintains a latency of 0.12 s. For evaluation, we adopt the DAVIS
dataset, which contains 90 videos, and a set of 200 videos from Pexels.

3.2 EXPERIMENTAL RESULTS

Quantitative Results. As shown in Table[3] our Taple 4: User study. The best results are
method consistently outperforms all baselines i, hold. D-Forcing, T-Forcing and S-Foricing
on both the DAVIS(Pont-Tuset et al., 2017) and  mean Diffusion-Foricing, Teacher-Forcing and
Pexels datasets(Pexels, 2024). On DAVIS, we  gelf-Forcing.

achieve the highest SSIM of 0.9688, PSNR
of 33.62, and temporal consistency of 0.9685.
These results indicate that our approach pre-
serves fine-grained structures, produces sharper 22.05% 38.97% 30.76% | 82.05%
reconstructions of background, and maintains
stable temporal dynamics better than competing methods. Similarly, on the Pexels dataset, our
model reaches an SSIM of 0.9846, PSNR of 37.02, and temporal consistency of 0.9924, all sur-
passing prior approaches by a clear margin. Interestingly, Diffusion-forcing has higher background
and temporal consistency than teacher-forcing and self-forcing on quantitative results, which gives
the rationality to use it as the first-stage pretraining method. These consistent gains across datasets
demonstrate both the accuracy and robustness of our method.

D-Forcing T-Forcing S-Forcing Ours

Qualitative Results. Beyond quantitative measurements, our method also shows clear advantages in
qualitative results. The GPT-5 based analysis rates our approach the highest in terms of visual quality
and removal success. On DAVIS, our method attains a score of 5.70 with a success rate of 65.56%,
outperforming all baselines. On Pexels, the improvements are even more pronounced, with a visual
quality score of 6.12 and success rate of 72.50%, higher than the second best performance with the
score of 5.16 and 52.50% (i.e., self-forcing). User studies further confirm these findings, showing
a strong preference for our outputs compared with CausVid(Y1n et al.| [2025), self-forcing(Huang
et al.,|2025)), and teacher-forcing(Zhou et al.| 2025) methods. We also conduct a user study in which
users are asked to select their preferred options from a set of given videos. As shown in Table[d] the
results demonstrate that our method achieves the best performance according to human evaluations.

3.3 ABLATION STUDY

We conduct ablation studies to evalu-  Taple 5: Comparison of different VAEs. The evaluation
ate the contributions of different design  regolution is 480 x 832 with 81 frames. The speed was

choices, focusing on two aspects: (1) tested on 5090 GPUs. The best results are in bold.
the impact of pretraining weights, and

(2) the effect of window size.

VAE FPS | SSIM PSNR L1xe™? L2 xe™?
Comparing  different pretrained Wan2.1 16.03(0.9786 38.75 200  1.97
weights. Table [6] compares the perfor-
mance of several pretraining models. TAEHV 343.2/0.9655 36.89  2.75 3.62
Wan2.1 and MiniMax-Remover Wan-LeanVAE (ours)|206.3/0.9743 38.13  2.17 2.40

weights produce reasonable results, but
the proposed Stage-1 model consis-
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Figure 5: Qualitative comparison of different methods. For the baselines and our remover, only the
mask for the first frame is given. D-Forcing, T-Forcing and S-Foricing donate Diffusion-Foricing,
Teacher-Forcing and Self-Forcing. Undesired objects or artifacts are highlighted with red rectangles.

tently delivers superior performance. With the support of a causal attention mechanism, Stage-1
achieves the highest quantitative scores. It also receives the best evaluations in GPT-5 Eval with
visual quality 5.70 and success rate 65.56%. These results show that Stage-1 is closer to the final
weights and leads to significantly improved task-specific performance.

Table 6: Ablation study. We compare different pretraining weights and prove the effectiveness of
The Stage-1 model. The best results are in bold.

Method Pr;flr:égling Task Attention Quantitative Results GPT-5 Eval
SSIM  PSNR TC vQ Suce
Ab-1 Wan2.1 Gen Bidirectional | 0.9522 336 09610 | 3.58 27.78%
Ab-2 MiniMax-Remover | Remove | Bidirectional | 0.9539  33.52 0.9655 | 497 57.78%
Ab-3 Stage-1 Model Remove | Unidirectional | 0.9688 33.62 0.9685 | 5.70 65.56%
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Table 7: Ablation study of different window size. The speed and GPU memory consumption was
tested on 5090 GPUs. “All” means window size is infinite. The best results are in bold.

Method Wil}dow Performance Quantitative Results GPT-5 Eval
Size Memory FPS Latency | SSIM PSNR TC VQ Succ
Ab-1 3 11.7GB  35.84 0.1076s | 0.9621 34.04 09685 | 5.10 55.56%
Ab-2 5 124GB  33.06 0.1200s | 0.9688 33.62 0.9685 | 570 65.56%
Ab-3 9 13.5GB 2852  0.1432s | 09621 3321 09695 | 582 67.78%
Ab-4 8 185GB 2547 0.2113s | 09629 3390 09687 | 580 68.89%

Comparing different VAEs. We train Lean-VAE (Cheng & Yuan, [2025) to align its latent space
with that of Wan2.1. The experimental results are presented in Table [5] We can see that Wan-
LeanVAE obtains comparable performance with Wan2.1, while achieves a much higher performance
than tachv (Boer Bohan, [2025)).

Ablation study of different window size. Table|7|analyzes the trade-offs introduced by different
window sizes. A small window such as size 3 offers the best efficiency in terms of memory usage,
with 11.7GB, and speed, reaching 35.84 FPS, but it shows a slight drop in quality. Increasing
the window size to 5 or 9 provides a better balance, with size 9 achieving the highest temporal
consistency and visual quality. Using a full window, referred as All, further improves the successful
rate to 68.89%, but requires significantly more memory at 18.5GB and results in slower inference
speed of 25.47 FPS. These results indicate that practical deployment demands a careful trade-off
between accuracy and efficiency. Therefore, we choose window size as 5 in our experiment to
balance the speed and performance.

Visualization of Attention Map. To justify the choice of a window size of 5, we visualize the
attention maps. Specifically, we sample 100 videos from the Pexels dataset and evaluate them using
a bidirectional model where only the first mask is provided. We then compute the average attention
map across 30 layers at different timesteps. The result is shown in Figure[6] We cna see that queries
tend to attend to nearby keys more strongly.

Chunk-0 Chunk-1 Chunk-2 Chunk-3 Chunk-4 Chunk-5

Chunk-15 Chur}k-16 Chunk-17 Chunk-18 Chunk-19 Chur|1k-20
L ]

Current

Query Query-20

Key-0
Key-1 [:

Key-17

II ><I

Historical
Key

Key-18

Current Keyald
Key Key-20

~_—
Sliding Window of KV Cache
Figure 6: Visualization of the Attention Map in the Bidirectional-Attention Video Object Remover.
We use a video consisting of 81 frames, which is encoded into 21 latent chunks. We can see that
queries tend to attend to nearby keys more strongly.

4 CONCLUSION

In conclusion, we presented RT-Remover, a novel real-time video object removal that achieves an
unprecedented low latency. By composing object tracking and inpainting into a joint process, em-
ploying an auto-regressive diffusion model with a caching mechanism, and leveraging model distil-
lation to drastically reduce sampling steps, our approach simplifies the pipeline and enables real-time
inference. Extensive experiments demonstrate that RT-Remover achieves state-of-the-art latency of
0.12s and a high inference of 33 FPS, while maintaining competitive visual quality, making it a
practical solution for real-time interactive video editing.
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Ethics statement This work adheres to the ICLR Code of Ethics. Our research does not involve hu-
man subjects, studies with potential for harm, or methodologies raising concerns regarding discrim-
ination, bias, fairness, privacy, or security. No human-annotated datasets were used in the process;
all data processing and model training rely on publicly available or synthetically generated resources
in compliance with legal and ethical standards. We have ensured research integrity through rigorous
documentation and reproducibility efforts, as detailed in the Reproducibility Statement.

Reproducibility Statement To facilitate reproducibility of our results and to ensure that our method-
ology can be reliably adopted in future research, we provide extensive details on the training pa-
rameters, including hyperparameter configurations, optimization strategies, and model initialization
procedures, which are systematically reported in the Experiments section.
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A LLM USAGE

In preparing this manuscript, we used ChatGPT solely for language polishing and minor refinements
aimed at improving clarity, grammar, and overall flow. Sections of the draft were provided to the
LLM for suggested revisions, which were subsequently reviewed, edited, and incorporated by the
authors where appropriate. All core ideas, research contributions, technical details, and analyses are
entirely the work of the authors and were not generated or conceived by the LLM. No other large
language models were utilized during the research process.

B DATASET INTRODUCTION

Our dataset consists of two main sources: the watermark-free Webvid-10M (Bain et al., [2021) and
400K videos collected from Pexels.com (Pexels} 2024). We annotate these videos using a combi-
nation of LLM-based labeling and Grounded-SAM?2. Specifically, we employ CogVLM?2 (Hong
et al |2024) to extract object categories from each video, and then apply Grounded-SAM2 (Liu
et al.l 2023} Rav1 et al. [2024) to detect and track the corresponding objects throughout the en-
tire sequence. To ensure consistency, we further filter out videos containing multiple scenes using
PySceneDetect (Castellano, |2014). In the stage-1 training, we only use the WebVid-10M videos. In
the second stage of training, we leverage Minimax-Remover to construct video triplets with Pexels
videos and filtered by GPT-5 (OpenAll [2025)), each consisting of a source video, an edited video,
and the associated masks. This process yields a total of 300K high-quality video triplets, which
serve as the foundation for robust model training.

C RELATED WORKS

C.1 VIDEO INPAINTING

Video inpainting methods can generally be divided into two categories: text-guided and non-text-
guided approaches. The former completes masked regions based on textual prompts, while the latter
focuses on removing objects or repairing corrupted areas without relying on text.

In recent years, a number of text-guided video inpainting methods Wang et al.| (2024)); |[Zhang et al.
(2023b); Z1 et al.| (2024)); Bian et al.| (2025); Yang et al.|(2025); Zi1 et al.[(2025azb)); Hu et al.| (2024);
Jiang et al. (2025) have emerged. Early work such as VideoComposer (Wang et al., [2024) demon-
strated the feasibility of combining multiple input conditions to guide inpainting with text. Building
upon this idea, AVID incorporated image inpainting models and introduced a motion layer trained to
propagate edits across frames. COCOCO (Zi et al.,2024)) further enhanced this approach by adding
damped global attention and textual cross-attention, significantly improving temporal consistency
and user control. It also introduced a mechanism for personalized video inpainting. Meanwhile,
VIVID (Hu et al.| [2024) contributed a large-scale dataset containing 10 million image and video
pairs for localized editing, which enabled the training of a powerful text-guided inpainting model.
Expanding the application scope, MTV-Inpaint (Yang et al.,|2025) unified both conventional scene
completion and novel object insertion within a single framework. Additionally, VideoPainter (Bian
et al.l 2025) leveraged a DiT-based architecture with an efficient context encoder to handle masked
inputs and inject background priors into a pre-trained video DiT, allowing plug-and-play inpainting.
VACE (Jiang et al.l [2025) pushed this further by integrating an inpainting model with Control-
Net (Zhang et al.l [2023a)) to support diverse editing tasks, achieving state-of-the-art results. Lastly,
Senorita-Remover (Zi1 et al., [2025b), designed for the Senorita-2M dataset, adopted a contrastive
prompt strategy to specialize in object removal from videos.

On the other hand, non-text-guided video inpainting, also known as video object removal, typically
avoids the use of text prompts and focuses instead on direct content manipulation.(Zhou et al., 2023}
Lee et al.|[2025;|Gu et al.}[2024; [Li et al.| 2025} Zi et al.,[2025a) For example, ProPainter(Zhou et al.,
2023)) was an early method that first completed optical flow and then used a vision transformer
to fill masked regions. Following this, FFF-VDI(Lee et al., 2025) introduced a diffusion-based
approach that propagates noise latents from future frames into masked regions and fine-tunes a pre-
trained image-to-video diffusion model for final synthesis. FIoOEDGu et al.| (2024)) combined optical
flow and optional textual embeddings, injecting both into the inpainting pipeline to enhance object
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removal. Building upon existing work, DiffuEraser(Li et al., |2025) utilized ProPainter to generate
initial removal results, which were then inverted into latents and reconstructed using a specialized
video inpainting model. More recently, MiniMax-Remover(Z1 et al.l 2025a)) introduced a robust
training strategy using minimax optimization: the inner loop searches for adversarial noise that
hinders inpainting performance, while the outer loop trains the model to succeed even under such
challenging conditions.

C.2 STREAMING VIDEO GENERATION

Generating video auto-regressively become more and more popular in recent days. Recent advances
in video generation have primarily followed two distinct paradigms: language model-based token
prediction and diffusion-based synthesis. We review representative works from both lines of re-
search, with a focus on their approaches to temporal modeling and efficiency.

LLM-Based Video Generation. VideoPoet (Kondratyuk et al.,[2023)) demonstrates a unified gener-
ative framework that models video, image, audio, and text as token sequences. It leverages a visual
tokenizer (i.e., MagViT-v2 (Yu et al.,[2023)) to convert video frames into discrete tokens, and uses
a large language model to autoregressively predict the next token in the sequence. This approach
benefits from the scalability and long-range modeling capabilities of LLMs, enabling coherent video
generation over extended durations.

Diffusion-Based Video Generation. Diffusion models have become the dominant approach for
high-quality video synthesis, owing to their strong generative fidelity. However, generating long
videos with standard per-frame diffusion is computationally intensive. Recent work has proposed
more efficient variants based on chunk-wise prediction (Yin et al., [2025; Huang et al., [2025} |(Chen
et al.| 2025;/Sand.ai et al., [2025; Deng et al., [2024; Jin et al., [2025).

CausVid (Yin et al.l [2025)) adapts a bidirectional DiT into an autoregressive transformer that gen-
erates frames in a causal order. It introduces a novel distillation framework, reducing a 50-step
diffusion process into 4 steps by initializing the student from the teacher’s ODE trajectories and
applying asymmetric supervision. SkyReels-V2 (Chen et al., [2025) proposes a diffusion forcing
strategy with a non-decreasing noise schedule to restrict the generation search space. This approach
enables efficient long-range video synthesis with stable temporal dynamics. MAGI-1(Sand.ai et al.,
2025) models the denoising process at the chunk level, where noise levels increase monotonically
over time. This design facilitates causal temporal modeling and supports streaming generation with
consistent frame quality. NOVA (Deng et al., 2024) preserves causal modeling across frames while
introducing bidirectional attention within individual frames. This hybrid design improves genera-
tion quality without compromising temporal consistency. PyramidFlow (Jin et al., [2025) adopts a
hierarchical strategy, where each stage predicts the next frame conditioned on prior stages. This
promotes a coarse-to-fine generation process, balancing quality and efficiency. Self-Forcing (Huang
et al., 2025)) introduces autoregressive rollout during training, where each frame is conditioned on
self-generated outputs. It combines a few-step diffusion model with stochastic gradient truncation
and a rolling key-value cache mechanism, significantly improving autoregressive video extrapola-
tion efficiency.

Remark. Most of previous video object removal methods rely on object tracking, as a preprocess-
ing step, to generate mask sequences across all frames. This process significantly hampers infer-
ence speed and remains a major bottleneck for real-world applications. Meanwhile, these models
operate in a non-auto-regressive form, and thus increases latency and diminishes interactivity. In
RT-Remover, we compose the object tracking and video object removal into a single auto-regressive
diffusion model. Meanwhile, we also largely reduce the sampling steps in inference from 25 to 2
by a model distillation and speed up the VAE encoder and decoder via training a lightweight and
well-performing VAE. Our model is the first real-time video object removal.

D WHY WE CAN TRUST GPT-5 FOR EVALUATION?

Here, we report the evaluation results of GPT-5 on a benchmark of 100 video object removal sam-
ples, consisting of an equal split between success cases (50%) and failure cases (50%). As shown in
Table[8] GPT-5 demonstrates the strongest performance among all evaluated large language models,
achieving 97% agreement with human judgments. Notably, GPT-5 exhibits both high accuracy in
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Table 8: LLM performance on evaluating video object removal.

Success Rate GPT-40 GPT-40-mini GPT-4-turbo GPT-O3 GPT-5
Acc in Failure Cases 94.0% 98.0% 86.0% 96.0% 98.0%
Acc in Success Cases 88.0% 26.0% 58.0% 94.0% 96.0%
Overall Accuracy 91.0% 62.0% 72.0% 95.0% 97.0%

distinguishing successful removals and strong reliability in identifying failure cases, highlighting its
robustness and consistency in assessing video object removal quality.
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E MORE QUALITATIVE RESULTS OF OUR RT-REMOVER

More qualitative results can be seen in Figure[7]

Original Ours Original Ours Original Ours Original Ours Original Ours Original

Ours

Figure 7: More visual results of our RT-Remover.
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