
[Re] Latent Embedding Feedback and Discriminative Features
for Zero-Shot Classification

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

In this study, we show our results and experience during replicating the paper titled "Latent Embedding Feedback and2

Discriminative Features for Zero-Shot Classification". We have updated the model for the recent PyTorch version. We3

were able to reproduce both the quantitative and qualitative results, as reported in the paper which includes inductive,4

finetuning and reconstruction of the original images from synthesized features. The authors have open-sourced their5

code for inductive setting. We have implemented the codes for the finetuning setting and reconstruction of the images.6

Scope of Reproducibility7

TF-VAEGAN [11] proposes to enforce a semantic embedding decoder (SED) at training, feature synthesis and classification8

stages of (generalized) zero-shot learning. They introduce a feedback loop, from SED for iteratively refining the9

synthesized features during both the training and feature synthesis stages. The synthesized features, along with their10

corresponding latent embeddings from the SED are then transformed into the discriminative features and utilized during11

the classification stage to reduce ambiguities among the categories.12

Methodology13

As the TF-VAEGAN method was available in PyTorch 0.3.1, we ported the entire pipeline to PyTorch 1.6.0 along with14

implementing the finetuning and reconstruction codes from scratch. Our implementation is based on the original code15

and on the discussions with the authors.1 Total training times for each method ranged from 2-8 hours on Caltech-UCSD-16

Birds [16] (CUB), Oxford Flowers [12] (FLO), SUN Attribute [13] (SUN), and Animals with Attributes2 [17] (AWA2)17

on a single NVIDIA Tesla V100 GPU. Further details are presented in Table 3.18

Results19

We were able to reproduce the results quantitatively on all the four datasets as reported in the original paper as well as20

reconstruct the original images from the generated features.21

What was easy22

The authors’ code was well written and documented, and we were able to reproduce the preliminary results using the23

documentation provided with the code. The authors were also extremely responsive and helpful via email.24

What was difficult25

The feature reconstruction codes from [5, 10, 4] are not available in PyTorch. Therefore, we had to implement it in26

PyTorch along with a hyperparameter search to get the images. We also performed a hyperparameter search for getting27

the finetuning results.28

Communication with original authors29

We reached out to the authors a few times via email to ask for clarifications and additional implementation details.30

1Our implementation can be found at https://anonymous.4open.science/r/ZSL_Generative-D397/.

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

https://anonymous.4open.science/r/ZSL_Generative-D397/

1 Introduction31

Zero-shot learning (ZSL) is a challenging vision task that involves classifying images into new "unseen" categories at test32

time, without having been provided any corresponding visual example during training. In the generalized variant, the test33

samples can further belong to seen or unseen categories. Most recent work in ZSL and GZSL recognition [18, 6, 19, 8, 9]34

are based on Generative Adversarial Networks (GANs), where a generative model is learned using the seen class feature35

instances and the corresponding class-specific semantic embeddings. Feature instances of the unseen categories, whose36

real features are unavailable during training, are then synthesized using the trained GAN and used along with the real37

feature instances from the seen categories to train zero-shot classifiers in a fully-supervised setting. In this reproducibility38

report, we study the proposed work by Narayan et al. [11] in detail, which consists of implementing the architecture39

described in the paper, running experiments, reporting the important details about certain issues encountered during40

reproducing, and comparing the obtained results with the ones reported in the original paper. We report our numbers on41

seen accuracy, unseen accuracy and Harmonic mean in Table 4.42

2 Scope of Reproducibility43

The core finding of the paper is that utilizing semantic encoder decoder (SED) at all stages (i.e training, feature synthesis,44

and classification) of a VAE-GAN based ZSL framework helped to obtain absolute gains of 4.6%, 7.1%, 1.7%, and 3.1%45

on CUB [16], FLO [12], SUN [13], and AWA2 [17], respectively for generalized zero-shot (GZSL) object recognition46

on comparing to baseline. To achieve this, the authors introduced the following two methods:47

• A feedback module that transforms the latent embeddings of the SED and modulates the latent representations48

of the generator for utilizing SED during training and feature synthesis.49

• A discriminative feature transformation, used at the classification stage, utilizes the latent embeddings of SED50

along with respective features.51

In order to provide effective re-implementation, we make sure that the quantitative results are reproduced with marginal52

errors, which might have caused due to porting the codes to a newer PyTorch, TorchVision and CUDA Toolkit version.53

We also assure that our visual results look similar to those presented in the original paper.54

3 Methodology55

Firstly, we ran the authors’ publicly available code on all the four CUB, FLO, SUN and AWA2 datasets to get the56

preliminary results. Secondly, We ported the publicly available code to a recent PyTorch version and made sure that to57

get on-par results to the original code. Thirdly, We used the authors shared fine-tuned features to train the inductive58

method code to get fine-tuned results along with the hyperparameter search. Lastly, we implemented the code for59

reconstructing the images from the synthesized features. Furthermore, we integrated WandB [2] library to the training60

loop to track our experiments during training.61

3.1 TF-VAEGAN62

TF-VAEGAN architecture is an VAE-GAN based network with an additional semantic decoder (SED) �42 at both the63

feature synthesis and (G)ZSL classification stages. The authors introduced a feedback module � which is used during64

training and features synthesis stage along with the Decoder �42. We employ the same architecture as that of the65

authors in which the VAE-GAN consists of an Encoder � , Generator � and Discriminator �. Real features of seen66

classes G and the semantic embeddings 0 are input to � which gives the parameters of a noise distribution as the output.67

The KL divergence (L !) loss is applied between these parameters and a zero-mean unit-variance Gaussian prior68

distribution. The network � synthesizes the features Ĝ using noise I and embeddings 0 as inputs. Further, a binary69

cross-entropy loss L��� is integrated between the synthesized features Ĝ and the original features G. The discriminator70

� takes either G or Ĝ along with embeddings 0 as input and outputs a real number, thus determining whether the input is71

real or fake. The WGAN loss L, is used at the output of � that learns to distinguish between the real and fake features.72

The architecture design focuses on the integration of an additional semantic embedding decoder (SED) �42 at both73

the feature synthesis and (G)ZSL classification stages. The paper proposes to use a feedback module �, along with74

�42, during the training and feature synthesis. Both �42 and � collectively address the objectives of enhanced feature75

synthesis and reduces vagueness among categories during classification. The �42 takes either G or Ĝ and reconstructs76

the embeddings 0̂. It is trained using a cycle-consistency loss L'. The learned �42 is subsequently used in the (G)ZSL77

classifiers. The feedback module � transforms the latent embedding of �42 and feeds it back to the latent representation78

2

Figure 1: Representation of the TF-VAEGAN architecture. Obtained from the paper [11]. A seen class is fed to
a backbone network to extract seen visual features G which is then input to the encoder � with the corresponding
embeddings 0. Latent code I is been generated by the encoder, which is then combined with embeddings 0 and fed to
the generator � for synthesizing features Ĝ. The discriminator � is learnt to distinguish between real and synthesized
features G and Ĝ, respectively. A binary cross-entropy loss (L���) and the KL divergence (L !) is been used to
train the VAE (comprising � and �). A WGAN loss (L,) is used to train both � and � forming the GAN. Authors
introduced a semantic embedding decoder �42 (Sec. 3.1.1) to reconstruct the embeddings 0̂ using a cycle-consistency
loss (L'). To transform the latent embedding ℎ̂ of �42 and feed it back to�, for iteratively refining Ĝ authors introduced
a feedback module � (Sec. 3.1.3).

of generator � to achieve improved feature synthesis. The SED �42 and feedback module � are described in detail in79

Sec. 3.1.1 and 3.1.3.80

3.1.1 Semantic Embedding Decoder81

The authors introduce a semantic embedding decoder �42 : X → A, which reconstructs the semantic embeddings 082

from the generated features Ĝ. This helps to enforce a cycle-consistency on the reconstructed semantic embeddings83

thus ensuring that the generated features are transformed to the same embeddings that generated them. As a result,84

semantically consistent features are obtained during feature synthesis. The cycle-consistency of the semantic embeddings85

was achieved using the reconstruction loss, ℓ1 as:86

L' = E[| |�42(G) − 0 | |1] + E[| |�42(Ĝ) − 0 | |1] . (1)

The loss formulation for training the proposed TF-VAEGAN can be defined as:87

LC>C0; = LE0460= + VL', (2)

where V is a hyper-parameter for weighting the decoder reconstruction error. The authors utilized SED at all three88

stages of VAE-GAN based ZSL pipeline: training, feature synthesis and classification.89

3.1.2 Discriminative feature transformation90

Next, the authors introduce a discriminative feature transformation scheme to effectively utilize the auxiliary information91

in semantic embedding decoder (SED) at the ZSL classification stage. The generator � learns a per-class “single92

semantic embedding to many instances” mapping using only the seen class features and embeddings. The SED was93

trained using only the seen classes but learns a per-class “many instances to one embedding” inverse mapping. Thus,94

the generator � and SED �42 are likely to encode complementary information of the categories. Here, the authors95

propose to use the latent embedding from SED as a useful source of information at the classification stage. The detailed96

overview of the architecture is presented in Figure 2a.97

3.1.3 Feedback Module98

Lastly, the authors introduce a feedback loop for iteratively refining the feature generation during both the training99

and the feature synthesis phase. The feedback loop was added between the semantic embedding decoder �42 and100

the generator �, via the incorporated feedback module � (see Fig. 1. The proposed module � enables the effective101

3

(a) Discriminative Feature Transformation (b) Feedback Module

Figure 2: (a) Integration of SED: Taken from the original paper [11]. Authors used the �42 at the ZSL/GZSL
classification stage. The input seen visual features G are concatenated (⊕) with the respective latent embedding ℎ from
SED for feature transformation. These transformed discriminative features are then used for ZSL/GZSL classification.
(b) Feedback module brief: Taken from the original paper [11]. Firstly, the initial features Ĝ [0] are synthesized using
the generator �. These initial features are then passed through the �42. Secondly, the latent embedding ℎ from �42
are transformed to Ĝ 5 using the module �, which represents the feedback to �. Then, the enhanced features Ĝ [1] are
synthesized by the generator � using the same I and 0 along with the feedback Ĝ 5 .

utilization of �42 during both training and feature synthesis stages. Let 6; denote the ;Cℎ layer output of � and Ĝ 5102

denote the feedback component that additively modulates 6; . The feedback modulation of output 6; is given by,103

6; ← 6; + XĜ 5 , (3)

where Ĝ 5 = � (ℎ), with ℎ as the latent embedding of �42 and X controls the feedback modulation. The authors based104

their feedback loop on [15], which introduces a similar feedback module but for the task of image super-resolution. The105

authors make necessary modifications in the feedback module in order to use it for zero-shot recognition as a naive106

plug-and-play of the module provides sub-optimal performance for zero-shot recognition. The detailed overview of the107

feedback module is given in Figure 2b.108

3.2 Datasets109

We evaluated the TF-VAEGAN method on four standard zero-shot object recognition datasets: Caltech-UCSD-Birds [16]110

(CUB), Oxford Flowers [12] (FLO), SUN Attribute [13] (SUN), and Animals with Attributes2 [17] (AWA2) containing111

200, 102, 717 and 50 total categories, respectively. CUB contains 11,788 images from 200 different types of birds112

annotated with 312 attributes. SUN contains 14,340 images from 717 scenes annotated with 102 attributes. FLO dataset113

has 8189 images from 102 different types of flowers without attribute annotations. Finally, AWA2 is a coarse-grained114

dataset with 30,475 images, 50 classes and 85 attributes. We use the same splits as used in the original paper for AWA2,115

CUB, FLO and SUN insuring that none of the training classes are present in ImageNet [3]. Statistics of the datasets are116

presented in Table 3.117

3.3 Finetuning118

For fine-tuning results, we used the same approach as discussed in the original paper. We used the original ResNet-101 [7]119

that is pre-trained on ImageNet-1k[3] and fine-tune the last layer of ResNet-101 on the seen training dataset of CUB,120

AWA2, FLO, and SUN respectively. We further use the fine-tuned layer to extract seen visual features which is used for121

training the TF-VAEGAN method.122

3.4 Reconstruction123

We follow a strategy similar to [11] and used a upconvolutional neural network to invert feature embeddings to the124

image pixel space. A generator consisting of a fully connected layer followed by 5 upconvolutional blocks was used for125

reconstruction task. An upconvolutional block was build using an Upsampling layer, a 3x3 convolution, BatchNorm and126

ReLU non-linearity. We reconstructed the image with an image size of 64x64. Then, a discriminator is used to processes127

the image through 4 downsampling blocks, the feature embedding is sent to a linear layer and spatially replicated and128

concatenated with the image embedding, and this final embedding is passed through a convolutional and sigmoid layer129

to get the probability that the sample is real or fake. We used a L1 loss between the ground truth image and the inverted130

image, along with a perceptual loss, by passing both images through a pre-trained ResNet101, and then we calculated an131

L2 loss between the feature vectors at conv5_4 and average pooling layers. To improve the image quality of our image,132

4

Figure 3: Feature reconstruction results. Taken from the original paper [11]

Ground-truth Reconstructed

Balloon Flower

Baseline Feedback Ground-truth Reconstructed Baseline Feedback

Pink Primrose English Marigold

Wind Flower

Figure 4: Ours reproduced feature reconstruction results. From the above figure, we were able to show that the
TF-VAEGAN method is able to generate more visually similar features for the Ground-truth. The feedback provided from
the TF-VAEGANmethod also provides features which are more similar to the Ground-truth in terms of colours and shape.

we used an adversarial loss by feeding the image and feature embedding to a discriminator. We train this model on all133

the real feature-image pairs of the 102 classes of FLO [12] dataset, and use the trained generator to invert images from134

synthetic features. Reconstructed images can be seen in Figure 4.135

4 Implementation details136

4.1 Training strategy137

We follow the same training strategy as that of the paper for training discriminative feature transformation. First, the138

feature generator � and the semantic embedding decoder �42 are trained. Then, �42 is used to transform the features139

(real and synthesized) to the embedding space A. The latent embeddings from �42 are then combined with the140

respective visual features. Let ℎB and ℎ̂D ∈ H denote the hidden layer (latent) embedding from the �42 for inputs GB141

and ĜD , respectively. The transformed features are represented by: GB ⊕ ℎB and ĜD ⊕ ℎ̂D , where ⊕ denotes concatenation.142

In proposed TF-VAEGAN method, the transformed features are used to learn final ZSL and GZSL classifiers as,143

5IB; : X ⊕ H → YD and 56IB; : X ⊕ H → YB ∪ YD . (4)

As a result, the final classifiers learn to distinguish categories using transformed features properly. The authors used144

semantic embedding decoder �42 as the input, as it was used to reconstruct the class-specific semantic embeddings145

from features instances. In original paper � and � are trained alternately [15] to utilize the feedback for improved146

feature synthesis. In the proposed alternating training strategy, the generator training iteration is unchanged. However,147

during the training iterations of �, two sub-iterations are performed:148

• First sub-iteration: The noise I and semantic embeddings 0 are input to the generator � to yield an initial149

synthesized feature Ĝ [0] = � (I, 0), which is then passed through to the semantic embedding decoder �42.150

• Second sub-iteration: The latent embedding ℎ̂ from �42 is input to �, resulting in an output Ĝ 5 [C] = � (ℎ̂),151

which is added to the latent representation (denoted as 6; in Eq. 3) of �. The same I and 0 (used in the first152

sub-iteration) are used as input to � for the second sub-iteration, with the additional input Ĝ 5 [C] added to the153

5

latent representation 6; of generator �. The generator then outputs a synthesized feature Ĝ [C + 1], as,154

Ĝ [C + 1] = � (I, 0, Ĝ 5 [C]). (5)

The refined feature Ĝ [C + 1] is input to � and �42, and corresponding losses are computed (Eq. 2) for training. In155

practice, the second sub-iteration is performed only once. The feedback module � allows generator � to view the156

latent embedding of �42, corresponding to current generated features. This enables � to appropriately refine its157

output (feature generation) iteratively, leading to an enhanced feature representation. The detail overview of the model158

architecture is given in Table 1.159

4.2 Experimental Setup160

In this study, we have followed the same training procedures for all the settings, as described in the original paper. The161

parameters for all training settings can be found in the configuration file in our GitHub repository. Our implementation162

is open-sourced, and can be accessed at https://anonymous.4open.science/r/ZSL_Generative-D397/163

Visual features and embeddings: Following the same approach as discussed in the paper, we extracted the average-164

pooled feature instances of size 2048 from the ImageNet-1k [3] pre-trained ResNet-101 [7]. For semantic embeddings,165

we use the class-level attributes for CUB (312-d), SUN (102-d) and AWA2 (85-d). For FLO, fine-grained visual166

descriptions of image are used to extract 1024-d embeddings from a character-based CNN-RNN [14].167

4.3 Hyperparameters details168

The discriminator �, encoder � and generator � are implemented as two-layer fully-connected (FC) networks with169

4096 hidden units. The dimensions of I and 0 are set to be equal (R3I = R30). The semantic embedding decoder �42170

and feedback module � are also two-layer FC networks with 4096 hidden units. The input and output dimensions of �171

are set to 4096 to match the hidden units of �42 and �. We used to same activation function as used by the authors,172

therefore we used LeakyReLU activation with a negative slope of 0.2 everywhere, except at the output of �, where173

a Sigmoid activation is used for applying the BCE loss. The network is trained using the Adam optimizer with 10−4174

learning rate. Final ZSL/GZSL classifiers are single fully-connected layer networks with output units equal to number175

of test classes. Hyper-parameters U, V and X are set to 10, 0.01 and 1, respectively. The gradient penalty coefficient _ is176

initialized to 10 and WGAN is trained, similar to [1]. We also did a hyperparameter search for the SUN dataset for the177

Finetune-inductive setting. Detailed results can be seen in the Table 2.178

Class Name Module Name Input Features Output Features Non-linearity

Encoder
FC 1 2360 4096 Leaky ReLU(0.2)
FC 2 4096 624 Leaky ReLU(0.2)

Linear Means 624 312 -
Linear Log Vars 624 312 -

Generator FC 1 624 4096 Leaky ReLU(0.2)
FC 2 4096 2048 Sigmoid

Discriminator D1 FC 1 2360 4096 Leaky ReLU(0.2)
FC 2 4096 1 -

Feedback FC 1 4096 4096 Leaky ReLU(0.2)
FC 2 4096 4096 Leaky ReLU(0.2)

Attribute Decoder FC 1 2048 4096 Leaky ReLU(0.2)
FC 2 4096 312 Sigmoid

Table 1: Details of the model implementation for the CUB [16] dataset. For other datasets, values of input features
and output features of FC 1 and FC 2 respectively of the Encoder class changes accordingly. Similarly, both input
features and output features of Linear Means and Linear Log Vars changes for the encoder class. For the Generator and
Discriminator D1, only input features changes on varying the dataset. For the Attribute Decoder, only output features of
the FC 2 changes.

6

https://anonymous.4open.science/r/ZSL_Generative-D397/

GAN_lr Decoder_lr Feedback_lr a1 a2 zsl accuracy unseen accuracy seen accuracy H
0.00001 0.00001 0.00001 0.1 0.01 63.3 37.5 47.7 38.5
0.0001 0.0001 0.00001 0.1 0.01 64.3 42.2 47.0 44.4
0.0001 0.00001 0.00001 0.1 0.01 65.0 44.3 46.7 45.5
0.0001 0.00001 0.0001 0.1 0.01 64.3 42.6 49.3 45.7
0.0001 0.00001 0.00001 0.01 0.01 64.6 41.8 50.7 45.9
0.0001 0.00001 0.00001 0.1 0.01 64.6 42.4 50.0 45.9
0.0001 0.00001 0.000001 0.1 0.01 64.5 42.0 50.8 46.0
0.0001 0.00001 0.00001 0.1 0.1 65.0 42.3 50.8 46.1
0.0001 0.00001 0.000001 0.01 0.1 66.2 41.5 51.3 46.0

Table 2: Detailed results of the hyperparameter search for the SUN [13] dataset for the fine-tuned inductive setting. We
observe on changing the values of the lr of GAN, Decoder, and Feedback we were able to replicate the � with minimum
marginal difference of 0.2.

Dataset Attributes HB HD Training Time (h) Memory (GB)
CUB [16] 312 100 + 50 50 4 2.6
FLO [12] - 62 + 20 20 5.5 3.1
SUN [13] 102 580 + 65 72 7 2.6
AWA2 [17] 85 27 + 13 10 2.75 2.6

Table 3: CUB, SUN, FLO, AWA2 datasets, in terms of number of attributes per class (Attributes), number of classes in
training + validation (HB) and test classes (HD). Total training time and memory consumption in terms of GB taken by
each dataset is also reported in the above table.

4.4 Computational Requirements179

All the experiments were run on the NVIDIA TESLA V100 with 32 GPU memory. A breakdown total training time180

taken by each datasets is provided in Table 3.181

5 Results182

We have implemented the model from scratch by following the descriptions provided in the original paper. We were183

able to replicate the claimed results of TF-VAEGAN by referring to the published code. Overall, our implementation184

of the TF-VAEGAN achieved relatively close ZSL accuracy and Harmomic mean in Inductive and Finetuned-Inductive185

settings for all the four datasets CUB [16], FLO [12], SUN [13] and AWA2 [17] with a marginal difference. Also, we186

were able to generate similar looking reconstructed images from the features, thus showing the effectiveness of the187

TF-VAEGAN feature synthesis stage. In Table 4, we report the original and our reproduced results with the paper’s and188

our results on the two training setting Inductive and Finetune-Inductive.189

Caltech-UCSD-Birds:: Our implementation was able to replicate the results reported in the original paper with a190

marginal difference of 0.5 − 0.7%.191

Animals with Attributes2:: We were able to out-perform Generalized Zero-shot learning metric for seen classes with192

a difference of 1% and was able to replicate the others with marginal difference ranging from 0.2 − 1.0%. We saw a193

decrement in the performance for Zero-shot learning with a difference of 0.7%.194

Oxford Flowers:: Our implementation was able to out-perform Generalized Zero-shot learning metrics for unseen195

classes and harmonic mean with a difference of 0.6% and 0.1% respectively. We were also able to replicate the other196

results reported in the original paper with a marginal difference of 0.5 − 1.0%.197

SUN dataset:: We were able to improve Generalized Zero-shot learning metric for seen classes with a difference of198

0.8%. We were also able to replicate others results from the original paper with a marginal difference of 0.4 − 1.9%.199

7

Dataset Model Zero-shot Learning Generalized Zero-shot Learning
CUB FLO SUN AWA2 CUB FLO SUN AWA2
T1 T1 T1 T1 u s H u s H u s H u s H

Paper 64.9 70.8 66.0 72.2 52.8 64.7 58.1 62.5 84.1 71.7 45.6 40.7 43.0 59.8 75.1 66.6
Inductive

Ours 64.4 70.3 65.5 71.5 52.2 64.0 57.5 63.1 83.1 71.8 43.7 41.5 42.6 58.8 76.1 66.4
Paper 74.3 74.7 66.7 73.4 63.8 79.3 70.7 69.5 92.5 79.4 41.8 51.9 46.3 55.5 83.6 66.7

Finetune-Inductive
Ours 73.8 75.8 66.1 73.0 64.6 77.8 70.5 70.6 91.5 79.7 41.5 51.3 46.0 57.5 84.1 68.3

Table 4: Performance of our implementation on the different datasets on CUB, FLO, AWA2, and SUN. We compare our
results to the paper′s results and we were able to replicate the reported numbers in the original paper.

0 30 60 90 120 150 180 210 240 270 300
Number of epochs

5

15

25

35

45

55

Ha
rm

on
ic

M
ea

n
(H

)

(a) CUB Dataset

0 15 30 45 60 75 90 105 120
Number of epochs

5

15

25

35

45

55

65

Ha
rm

on
ic

M
ea

n
(H

)

(b) AWA2 Dataset

0 50 100 150 200 250 300 350 400 450 500
Number of epochs

20

30

40

50

60

70

Ha
rm

on
ic

M
ea

n
(H

)

(c) FLO Dataset

0 50 100 150 200 250 300 350 400
Number of epochs

20

25

30

35

40

Ha
rm

on
ic

M
ea

n
(H

)

(d) SUN Dataset

Figure 5: Harmonic mean curve for all the four datasets CUB, AWA2, FLO, and SUN.

Feature Visualization: To qualitatively assess the feature synthesis stage, we used the same approach as mentioned in200

the original paper and trained an upconvolutional network to invert the feature instances back to the image space by201

following a similar strategy as in [4, 19]. The model is trained on all real feature-image pairs of the 102 classes of FLO202

dataset [12]. The comparison between the original paper and ours reconstruction on Baseline and Feedback synthesized203

features on four example flowers are shown in Fig. 3 and Fig. 4 respectively. For each flower class, a ground-truth (GT)204

image along with three images inverted from its GT feature, Baseline and Feedback synthesized features, respectively205

are shown. Generally, inverting the features synthesized by the Feedback Module yields an image that is semantically206

closer to the GT image than the Baseline synthesized feature, suggesting that the Feedback module improves the feature207

synthesis stage over the Baseline, where no feedback is present.208

6 Discussion209

We found that the proposed feedback module in the VAE-GANmodel helps modulate the generator’s latent representation,210

improving the feature synthesis. By enforcing the generation of semantically-consistent features at all stages, the authors211

were able to outperform previous zero-shot approaches on four challenging datasets. The qualitative results generated212

with our replication are similar to those shown in the paper. Thus strengthening the authors’ claim of highly-effective213

feedback module. As per out replicated quantitative results, we affirm that our implementation of TF-VAEGAN is214

consistent to the one provided by the authors. Overall, the paper and the provided code were sufficient for replicating the215

results on Inductive and Finetune-Inductive settings. For re-implementing the model from scratch, we have ported the216

code to a relatively new PyTorch version, and ended up with a comparative performance with the ones in the paper on217

all settings. Lastly, to provide an insight for run-time, we use the same hardware used by the authors, a Tesla V100 GPU218

card, on which we showing the runtimes on the four datasets.219

Recommendations for reproducibility: Overall, the paper was clearly written and it was easy to follow the explanation220

and reasoning of the experiments. We ran into several obstacles while making a fairly-old environment of PyTorch 0.3.1.221

For reproducing the quantitative results, we had to assure that most, if not all, training/evaluation details were true to the222

experiments in the paper. We are extremely grateful to the original authors who gave swift responses to our questions.223

Nevertheless, it would have been easier to reproduce the results with latest PyTorch version compatibility. We hope our224

report and published code help future use of the paper.225

Recommendations for reproducing papers: We recommend communicating early with the original authors to226

determine undisclosed parameters and pin down the experimental setup. Lastly, for reproducing training processes in227

particular, we suggest checking how training is progressing in as many different ways as possible. In our process, this228

involved looking at the progression of H i.e Harmonic mean between GZSL and ZSL, examining training curves for229

individual loss function terms, both of which helped us pinpoint our issues.230

8

References231

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017. 6232

[2] Lukas Biewald. Experiment tracking with weights and biases. Software available from wandb. com, 2020. 2233

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In234

CVPR, 2009. 4, 6235

[4] Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics based on deep networks. In236

NeurIPS, 2016. 1, 8237

[5] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks. In Proceedings of the238

IEEE conference on computer vision and pattern recognition, pages 4829–4837, 2016. 1239

[6] Rafael Felix, B. G. Vĳay Kumar, Ian Reid, and Gustavo Carneiro. Multi-modal cycle-consistent generalized zero-shot learning.240

In ECCV, 2018. 2241

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016. 4, 6242

[8] He Huang, Changhu Wang, Philip S Yu, and Chang-Dong Wang. Generative dual adversarial network for generalized zero-shot243

learning. In CVPR, 2019. 2244

[9] Jingjing Li, Mengmeng Jing, Ke Lu, Zhengming Ding, Lei Zhu, and Zi Huang. Leveraging the invariant side of generative245

zero-shot learning. In CVPR, 2019. 2246

[10] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting them. In Proceedings of the247

IEEE conference on computer vision and pattern recognition, pages 5188–5196, 2015. 1248

[11] Sanath Narayan, Akshita Gupta, Fahad Shahbaz Khan, Cees GM Snoek, and Ling Shao. Latent embedding feedback and249

discriminative features for zero-shot classification. In ECCV, 2020. 1, 2, 3, 4, 5250

[12] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In ICVGIP,251

2008. 1, 2, 4, 5, 7, 8252

[13] Genevieve Patterson and James Hays. Sun attribute database: Discovering, annotating, and recognizing scene attributes. In253

CVPR, 2012. 1, 2, 4, 7254

[14] Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele. Learning deep representations of fine-grained visual descriptions.255

In CVPR, 2016. 6256

[15] Firas Shama, Roey Mechrez, Alon Shoshan, and Lihi Zelnik-Manor. Adversarial feedback loop. In ICCV, 2019. 4, 5257

[16] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and Pietro Perona. Caltech-ucsd258

birds 200. Technical Report CNS-TR-2010-001, Caltech, 2010. 1, 2, 4, 6, 7259

[17] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning-a comprehensive evaluation of the260

good, the bad and the ugly. TPAMI, 2018. 1, 2, 4, 7261

[18] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature generating networks for zero-shot learning. In CVPR,262

2018. 2263

[19] Yongqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep Akata. f-vaegan-d2: A feature generating framework for any-shot264

learning. In CVPR, 2019. 2, 8265

9

