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ABSTRACT

The number of exploitable vulnerabilities in software continues to increase, the
speed of bug fixes and software updates have not increased accordingly. It is
therefore crucial to analyze the source code and identify vulnerabilities in the
early phase of software development. In this paper, a fine-grained source code
vulnerability detection model based on Graph Neural Networks (GNNs) is pro-
posed with the aim of locating vulnerabilities at the function level and line level.
First of all, detailed information about the source code is extracted through multi-
dimensional program feature encoding to facilitate learning about patterns of vul-
nerability. Second, extensive experiments are conducted on both a public hybrid
dataset and our proposed dataset, which is collected entirely from real software
projects. It is demonstrated that our proposed model outperforms the state-of-the-
art methods and achieves significant improvements even when faced with more
complex real-project source code. Finally, a novel location module is designed
to identify potential key vulnerable lines of code. And the effectiveness of the
model and its contributions to reducing human workload in practical production
are evaluated.

1 INTRODUCTION

According to a report released by the National Institute of Standards and Technology (NIST)
(Jonathan Greig , 2021), the number of vulnerabilities found in 2021 has reached 18378. Cyber
security industry insiders have pointed out that the persistence of many exploitable vulnerabilities
in software applications indicate that these vulnerabilities have not been alleviated in time, meaning
that it is increasingly difficult to defend software against attacks. These bugs, which should have
been optimized early in the development process, appear to have become an insurmountable secu-
rity debt for security practitioners. The record number of vulnerabilities found over five consecutive
years, along with the fact that bug fixes and software updates have not kept pace mean that we are
now facing higher security risks than ever before. Consequently, in order to improve system secu-
rity and code audit efficiency, as well as to further standardize programmers’ coding behavior, it is
crucial to identify potential vulnerabilities in the programs and fix these in a timely fashion through
source code analysis in the early stage of software development.

Early source code-oriented static vulnerability analysis techniques can be divided into code
similarity-based, rule-based, and symbolic execution-based methods. Although almost all of these
methods can achieve high accuracy under specific deployment scenarios, they are also overly reliant
on having complete prior knowledge of vulnerabilities, a high workload for human programmers,
and limited scope of application; as a result, they cannot flexibly deal with new vulnerabilities and
sophisticated vulnerability variants.

Moreover, the accuracy of conventional machine learning (ML) algorithms (i.e. Support Vector
Machine, Decision Tree, Random Forest, etc.) for static source code analysis largely depends on
the feature engineering completed by domain experts. When faced with sophisticated functions and
increasingly large scales of software source code, this work undoubtedly becomes very onerous and
impractical (Malhotra, 2015; Singh & Chaturvedi, 2020).

By contrast, deep learning (DL) technology solves the drawbacks of conventional ML and can au-
tomatically extract features from objects provided that heuristic guidance strategies have been ob-
tained. However, source code is typically a structured language. In the feature extraction stage, deep
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neural networks such as Convolution Neural Network (CNN), and Recurrent Neural Network (RNN)
often regard such code as a natural language (Chen, 2015; Wu et al., 2017; Lin et al., 2017; Russell
et al., 2018). As a result, the serialized flat intermediate representation only retains the semantics
of the code, which leads to serious loss of program logic and structure information, and moreover
limits the great potential of DL model to perform vulnerability feature learning to a certain extent.

In recent years, the emergence of GNNs (Bruna et al., 2013) has provided new insights into the static
vulnerability analysis of source code. Some existing studies (Chakraborty et al., 2021; Zhou et al.,
2019; Cao et al., 2021; Zheng et al., 2021) have extracted specific source code properties, such as
abstract syntax trees (AST), control flow graphs (CFG), and data flow graphs (DFG), as intermediate
representations, and combined them with GNNs to identify potential vulnerabilities.

At present, there is an urgent need for relatively complete and recognized datasets of vulnerabilities
in this field of research. Notably, most of the datasets leveraged in current research are collected
through time-consuming and laborious manual labeling or using automatic labeling tools, which
may cause a certain rate of errors and a high sample repetition rate. Furthermore, many ML-based
vulnerability detection models are trained on datasets that are partially or wholly composed of syn-
thetic samples. The research shows that because the form of these samples is too simple compared
with the vulnerabilities that exist in real projects, the model’s vulnerability detection accuracy is
significantly reduced when facing real source code data (Chakraborty et al., 2021).

Moreover, due to the limitation of the granularity of dataset labeling and the model itself, vulner-
ability location in most studies tends to concentrate at the function level. However, when faced
with large-scale source code projects, there are often only a few lines of code that lead to vulner-
abilities, which undoubtedly imposes a burden on further code audits. By contrast, although some
fine-grained locations at the slice level (Li et al., 2018c; 2021b) or line level (Li et al., 2021a) can
more directly reflect the location of vulnerabilities is often accompanied by strict data labeling re-
quirements and laborious data preprocessing process.

In brief, it is necessary to achieve accurate vulnerability location and an efficient and automated
source code vulnerability detection. To this end, we propose a new fine-grained vulnerability detec-
tion model based on GNNs, which can identify key vulnerability lines while also realizing function-
level source code vulnerability detection.

First of all, we convert the source code file into an intermediate representation, namely Code Prop-
erty Graphs (CPGs), at the function level. We then attempt to capture more abundant source code
information through multidimensional program feature encoding in order to achieve the effective
extraction of important vulnerability features. Second, the pooling layer of the GNNs is improved,
meaning that the proposed model can still efficiently incorporate node feature information into the
training process to identify functions and achieve higher accuracy compared with other baselines.
We demonstrate the performance and availability of our method on a widely used hybrid dataset,
along with our proposed dataset, which is derived entirely from real projects. Finally, another key
innovation of our work is that we design a unique location module that employs a learnable param-
eterized weight matrix in combination with a self-attention mechanism to identify key graph nodes,
which are mapped to the source file to locate lines of code with high vulnerability scores. It is
worth noting that our proposed method can achieve efficient fine-grained source code vulnerability
detection without the need for heavy manual engineering.

The contributions of our work can be summarized as follows:

• We propose a novel GNN-based source code vulnerability detection model, which learns
source code information through the intermediate representation of multidimensional pro-
gram features in order to capture potential vulnerability feature patterns and achieve effi-
cient automated vulnerability detection.

• Our model is evaluated on a public hybrid dataset and our proposed dataset, which is col-
lected from 13 real-world projects. It outperforms all other state-of-the-art methods by a
large margin, which demonstrates its superior vulnerability identification performance.

• The results of locating potential vulnerability lines on four projects from the proposed
dataset demonstrate the effectiveness of the location module in our model, which can con-
tribute to reducing developers’ workload during practical code audits.
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Figure 1: The architecture of our model.

2 RELATED WORKS

As the earliest DL-based vulnerability detection systems, Vuldeepecker (Li et al., 2018c) and Sysevr
(Li et al., 2021b) utilize Bi-directional Long Short-Term Memory (BiLSTM ) to apply fine-grained
program representation in order to locate vulnerabilities at the slice level. Follow up studies included
µVuldeepecker (Zou et al., 2021) and VulDeeLocator (Li et al., 2021a). In addition, many studies
extract code semantics based on AST and adopt vulnerability detection models in combination with
BiLSTM (Lin et al., 2017; 2018; Fan et al., 2019; Liu et al., 2019), which attempt to achieve high
classification precision at the function level.

The CPG was first proposed by Yamaguchi et al. (2014), providing a new insight into source code
vulnerability feature extraction. Some studies have realized function-level source code vulnerability
identification based on GNNs (Chakraborty et al., 2021; Zhou et al., 2019; Cao et al., 2021). These
studies prove that these methods can effectively capture the program structure and node information
carried by the CPG and its variants (Zhou et al., 2019; Duan et al., 2019; Zheng et al., 2021). This
compensates for the loss of important code logic and structural information in other deep learning
models due to their use of a serialized feature learning process.

3 METHOD

Inspired by the graph classification model SAGPool (Lee et al., 2019), our model aims to better
capture the inter-node dependencies in CPGs while learning the important feature information of
the program. Based on the novel node influence score calculation method, the localization layer
is proposed in order to output nodes with high scores and thereby locate potential vulnerable code
lines. In addition, an improved global pooling method is adopted to more effectively aggregate the
global information of CPGs and achieve more accurate function-level vulnerability identification.

Objective The goal of our vulnerability detection model is to predict the label yi ∈ Y = {0, 1}m of
the CPG Gi ∈ G corresponding to a given source code function Ci ∈ C with a mapping function
f : G → Y . Here, C represents the set of source code function, while m is the total number of
function instances; moreover, a vulnerable function is labeled with 1, and otherwise 0. To this end,
our model is designed to learn an entire CPG representation hg through a set of node representations
{Hv|v ∈ V } obtained by a feature encoder that is used to decide a label f(G) = ŷ; here v refers to
the node feature vector, and ŷ is the prediction result. The mapping function f is then learned with
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Figure 2: The node feature embedding process.

a cross-entropy loss by minimizing the negative loglikelihood below:

min
∑
i=1

−yi log ŷi. (1)

Given the source code files, without the need for domain experts to manually predefine vulnerabil-
ity features, the vulnerability pattern can be automatically learned by the proposed model, which
enables it to determine whether the program is vulnerable or not. The architecture of our model,
illustrated in Figure 1, comprises the following three modules: 1) Embedding module. The CPGs,
which combines five kinds of code properties, is adopted as the intermediate representation of the
source code. A multidimensional program feature encoding scheme is then designed to convert the
CPGs into vectors, which forms the input of the model. 2) Location module. A novel location
module is designed to capture important nodes of CPGs according to their IS value and return the
corresponding potential vulnerable lines of code. 3) Classification module. BiLSTM is introduced
as a readout function that further considers the dependencies and inter-node relationships among the
key nodes and generates the global representation of CPG for identifying vulnerable functions.

3.1 EMBEDDING MODULE

3.1.1 CODE PROPERTY GRAPH GENERATION

The key insight behind using this function-level composite graph as an intermediate representation is
that the important information of the source code can be more fully retained and that the vulnerability
pattern can be explored in the feature extraction phase. Compared with using a single property, CPGs
have been shown to be able to model more common vulnerability types (Yamaguchi, 2015), enabling
it to achieve efficient vulnerability mining.

As for the implementation, Joern (Yamaguchi et al., 2014) is adopted to generate a joint data struc-
ture composed of five code properties for source code. In addition to the three data structures inte-
grated in earlier versions of CPG, a control dependency graph (CDG) and a data dependency graph
(DDG) also added.

3.1.2 GRAPH EMBEDDING OF MULTIDIMENSIONAL PROGRAM FEATURES

The spatial characteristic of graphic data is embodied through two aspects: node and structure. The
node embedding method is designed to encode program features from a multidimensional point of
view. Moreover the spatial feature of CPG is represented by its adjacency matrix.

The node information of CPG consists of two parts: attributes and code. In order to more compre-
hensively and effectively integrate the node features, and then further associate them with the vulner-
ability patterns, a node compound feature embedding method is designed to encode the source code
from multiple dimensions, including function calls, logical operations, variable types, semantics,
and syntax. The process of node feature embedding is summarized in Figure 2.

Node Attribute Embedding The node attribute feature consists of vectors of five fields. According
to the tag, all the nodes are divided into 12 categories, representing the different roles played by
nodes in the CPG. Moreover, the Vop field contains the encoding for predefined program operations,
such as assignment, judgment, comparison, and so on. Similarly, the Vfunc field reflects the call
relationship between the program and specific functions. Moreover, nodes with the tag CALL are
associated with these two fields. In addition, Vlite describes the variables involved in the operation
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of the program, such as characters and numbers, while Vtype corresponds to 16 fixed parameter
types in the C/C++ language. All the vectors of Vattribute are encoded via one-hot before being
concatenated.

Node Code Embedding Each node of CPG is associated with code in the source file. Therefore,
the corresponding code statements of nodes are vectorized to encode semantic information. As
for implementation, after cleaning the comments and removing non-ASCII characters, the code
is normalized to alleviate the burden of feature encoding caused by the presence of numerous user-
defined functions and variables independent of vulnerabilities. Finally, the tokenized code sequences
are mapped to feature vectors based on the pre-trained Word2Vec model to obtain the fixed-size
Vcode and concatenate it with Vattribute.

3.2 LOCATION MODULE

3.2.1 GCN LAYERS

To aggregate the neighborhood information, we use graph convolutional network (GCN), first pro-
posed by Kipf & Welling (2016). GCN can realize the end-to-end learning of graph data, and the
supervision signal of the entire neural network guides both the GCN layer and the parameters of
subsequent graph representation learning; as a result, the feature representations of nodes are more
adaptive to the classification tasks of different source code vulnerabilities downstream.

Moreover, given that source code is a structured language, the learning of both CPG structure infor-
mation and property information in the GCN layer will jointly affect the final node representation,
making it highly important to explore the potential vulnerability patterns it contains. In addition,
this function-level representation also limits the size of the graph structure to some extent. Based
on the above considerations, we deem GCN to be more suitable for CPG node feature learning than
other neural networks.

For a CPG Gi with n nodes and dv dimensional features, the definition of GCN is as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)). (2)

Here, H(l) is the node representation of the l-th layer and is initialized by the node features matrix
X ∈ Rn×dv , Ã ∈ Rn×n is the adjacency matrix with self-connections, Ã = A+ IN , D̃ ∈ Rn×n is
the degree matrix of Ã, W ∈ Rdin×dout is the weight matrix with input feature dimension din and
output feature dimension dout, and σ(·) refers to the ReLU function (Nair & Hinton, 2010), which
is used as the activation function.

3.2.2 LINE-LEVEL LOCATION

To ensure that more attention is paid to the important nodes with high influence on vulnerabilities,
the node score Z ∈ Rn×1 is obtained by two-layer GCN learning, as follows:

Z(H,A) = tanh(D̃− 1
2 ÃD̃− 1

2H(l)W (l)). (3)

In the real world, differences between vulnerable and benign code may be subtle, but it is related to
many nodes reflected in CPG, as shown in Figure 3. On the other hand, the stacked GCNs cause the
over-smoothing of node features to some extent (Li et al., 2018a; Xu et al., 2018), and their impact
should be taken into consideration even if our network is relatively shallow. Consequently, to make
the node features after message-passing more distinguishable and attempt to capture more detailed
vulnerability feature patterns, a learnable parameter matrix θl ∈ Rn×1 is introduced to alleviate the
above problems. Finally, the Influence Score : IS ∈ Rn×1 of CPG nodes can be expressed, as
follows:

IS(H,A) = LN(Z + θl), (4)

where LN is a layer normalization (Ba et al., 2016).

On this basis, the dkne CPG nodes with the highest IS would be retained; here, k is the keep
ratio. Subsequently, according to the graph mapping files (generated by Joern), the node indexes are
mapped to the relevant lines of code in the source code file to locate the vulnerability on the line
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Figure 3: (a): Example of a vulnerable function with an Out-of-bounds Read Error (CWE-125) from
Ffmpeg; (b): The fixed vulnerable function; (c): The simplified CPG of the vulnerable function in
(a). The red nodes in the CPG corresponding to the red line of code labeled as vul Loc in (a).

level. The locating process can be described as follows:

idx = top rank(IS, dkne), (5)

Ĥ = Hidx, (6)
Loc = map(idx), map : idx→ line num (7)

where top rank returns the indices of the retained nodes, Ĥ ∈ Rkn×1 is the new feature matrix
used as the input of the next layer, and Loc represents the set of line numbers of code mapped by
idx.

3.3 CLASSIFICATION MODULE

The purpose of the readout layer (Xu et al., 2018; Cangea et al., 2018) is to obtain a fixed-size global
graph representation. It is worth noting that there is often a strong correlation between multiple lines
of code that contribute to a specific vulnerability, which in turn correspond to the key nodes in the
CPG. However, some commonly used approaches to graph pooling (Atwood & Towsley, 2016;
Simonovsky & Komodakis, 2017) ignore the interaction between nodes, or cause the loss of node
information (Zhang et al., 2018; Gao & Ji, 2019). For this purpose, when CPG is summarized
as dkne important nodes, BiLSTM is introduced as a readout function that further considers the
dependencies and inter-node relationships among these nodes to learn a dv-dimensional meaningful
graph representation ri ∈ Rdv , as follows:

ri = BiLSTM(Ĥ). (8)

Finally, the function-level prediction ŷi is achieved through the two fully connected layers with
softmax outputs, as follows:

ŷi = Softmax(W (2)
F (W

(1)
F ri + b(1)) + b(2)), (9)

where W (·)
F and b(·) are parameters of the layer.

4 EXPERIMENTS

In this section, we conduct extensive experiments on two datasets to evaluate the performance of
the proposed model and compare it with that of state-of-the-art vulnerability detection methods.
Furthermore, we conduct experiments on different real software applications to demonstrate the
effectiveness of the proposed model in performing fine-grained vulnerability location. Finally, we
conduct ablation experiments to study the effectiveness of our proposed improvements.

4.1 DATASETS

The experiments are carried out on two datasets: the Hybrid Dataset (HD) and the Real-project
Dataset (RD). The details of the datasets are shown in Table 1.
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Table 1: The details of Hybrid Dataset (HD) and Real-project Dataset (RD).
Programs CPGs PVF* CWE Type

HD 16137 154430 5.5% CWE-119, CWE-399

RD 17752 1129800 8.7%
CWE-119, CWE-399,
CWE-668, CWE-020,

CWE-264 ...
* Percentage of vulnerable functions.

Hybrid Dataset (HD) In order to verify the impact of different levels of dataset complexity on the
performance of vulnerability detection methods, along with the gap between these methods and
practice, the dataset proposed by VuleDeepecker (Li et al., 2018c) is utilized in the experiments. It
is the first dataset suitable for evaluating DL-based vulnerability detection systems and is composed
of real-project data from National Vulnerability Database (NVD) and synthetic data from Software
Assurance Reference Dataset (SARD), which includes two known vulnerabilities: Memory Buffer
Errors (CWE-119) and Resource Management Errors(CWE-399).

In the data pre-processing phase, 16137 C/C++ programs were further processed and applied to our
vulnerability detection model in the form of graph data, rather than in the slicing form adopted by
Vuldeepecker (Li et al., 2018c) in the original dataset.

Real-project Dataset (RD) According to statistics, samples from real projects account for only a
small proportion of HD. To further prove that our proposed model retains efficient automatic vulner-
ability detection capability when faced with real software application scenarios, and can accordingly
make a real contribution to the code security audit in actual production, we collect the dataset RD
from completely real projects.

RD contains 17752 programs with function-level and partial line-level data labeling for 13 popu-
lar C/C++ libraries, including Asterisk, FFmpeg, Libpng, OpenSSL, ImageMagick, Libtiff, Linux
kernel, PHP, Qemu, VLC media player, Chrome, Wireshark, and Xen.

In the training phase, we set dropout to 0.5, the dimension of hidden states to 32, and ReLU as
the activation function for both GCN layers and fully connected layers. The graph representation is
fixed at 64. We employ the Adam optimizer with a learning rate of 5e-3 and weight decay of 5e-4.
We run experiments on a machine with NVIDIA Quadro RTX 6000 GPU and Intel Xeon Gold 6240
CPU operating at 2.60GHz.

4.2 BASELINES

We select two kinds of methods in the field of static source code vulnerability analysis for perfor-
mance comparison: the state-of-the-art ML-based vulnerability detection models, and commercial
code analysis tools widely used in practical production.

ML-based Vulnerability Detection Models We utilize XGBoost and CNN to conduct the compari-
son with conventional ML models and classical CNN. Vuldeepecker (Li et al., 2018c) applies slice-
level program representation to BiLSTM high-level representation learning to achieve fine-grained
vulnerability detection. We use the same experimental settings to compare the performance of our
proposed method with that of the typical DL model. Devign (Zhou et al., 2019) adopt GNNs as
the backbone to predict source code vulnerability at the function level. We conduct experiments on
the reproducible version of this method released by Chakraborty et al. (2021) to further evaluate the
performance of our model compared with other GNN-based methods.

Commercial Code Analysis Tools Cppcheck is a static analysis tool for analyzing C/C++ code with
the goal of having a very low rate of false positives. Flawfinder is a useful tool for scanning C/C++
code and reporting potential security vulnerabilities, which can be used as a simple guide to static
source code analysis tools. RATS is a rough auditing tool developed by Secure Software Inc. that
greatly aids manual code inspection. Flint++ is a cross-platform, zero-dependency port of Flint,
developed and used on Facebook to flag errors and bad practices for review.
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Table 2: Comparison of function-level classification of known CWE types on HD and RD datasets.

Method
HD RD

CWE-119 CWE-399 CWE-119 CWE-399 CWE-668 CWE-264
P F1 P F1 P F1 P F1 P F1 P F1

ML-based
XGBoost 88.7 86.6 86.9 86.8 29.1 29.5 30.6 28.1 31.2 31.0 35.1 33.0

Models
CNN 89.3 85.1 90.8 93.1 57.0 62.7 45.7 56.2 52.3 50.3 57.9 63.8

Vuldeepecker 91.7 86.6 94.6 95.0 54.1 61.4 46.6 63.6 49.6 66.3 49.8 66.5
Devign 88.6 87.9 91.3 89.9 80.0 72.7 75.0 66.7 50.0 60.0 55.6 66.7

Commercial
Cppcheck 52.8 52.6 70.9 19.2 49.7 28.1 50.0 17.8 50.2 22.8 50.1 14.6

Tools
Flawfinder 25.0 27.7 34.1 37.4 49.9 61.5 50.4 57.6 50.3 59.5 50.3 56.9

RATS 19.4 20.2 35.0 35.6 50.4 51.2 49.9 44.7 5.2 46.8 50.1 39.4
Flint++ 58.8 60.7 65.4 67.1 50.5 65.2 50.3 65.6 50.2 64.8 50.1 61.2

Ours 98.1 97.4 98.8 99.0 81.3 85.0 87.5 87.4 88.7 88.6 78.9 80.6

Table 3: Comparison of function-level classification of real-world projects with unknown CWE
types on RD datasets.

Method
RD

FFmpeg Linux Kernel Openssl Qemu Wireshark Xen
P F1 P F1 P F1 P F1 P F1 P F1

ML-based
XGBoost 27.8 30.3 33.2 33.1 32.1 32.9 40.4 35.4 26.0 25.8 42.0 39.8

Models
CNN 50.7 65.1 50.8 32.5 52.9 61.7 57.1 32.0 50.0 57.1 72.7 8.1

Vuldeepecker 50.7 66.4 44.8 41.2 57.0 66.2 56.7 36.6 46.3 57.1 55.6 9.8
Devign 75.0 54.5 50.0 60.0 50.0 61.5 50.0 55.6 53.8 63.6 50.0 66.7

Commercial
Cppcheck 50.0 18.0 50.0 13.9 49.8 4.8 47.0 22.8 49.9 19.9 50.1 17.8

Tools
Flawfinder 49.8 60.3 50.3 59.2 50.0 59.8 51.7 64.9 50.3 53.1 49.9 55.6

RATS 50.0 34.1 50.0 32.8 49.6 62.4 49.0 50.8 49.5 36.8 50.0 31.4
Flint++ 49.8 61.4 50.3 64.7 50.0 66.3 53.9 67.8 50.0 66.8 49.9 65.1

Ours 82.1 85.2 86.7 85.5 67.3 67.1 74.2 72.3 70.7 77.4 87.6 83.0

4.3 RESULTS

4.3.1 RESULTS ON FUNCTION-LEVEL CLASSIFICATION

For the function-level classification task, we conduct experiments on HD and RD respectively to
explore the effect of the vulnerability detection methods when facing source code with known types
of vulnerability, along with the impact of different levels of data complexity on their performances.
Furthermore, experiments are carried out on different projects of unknown vulnerability types on
our proposed RD dataset to evaluate the effectiveness of different detection methods in practical
applications.The experimental results are reported in Tables 2 and 3.

In summary, our proposed model achieves state-of-the-art performance and significant improve-
ments on both datasets. In particular, when faced with the sophisticated real-project samples from
RD, the efficiency of almost all methods can be seen to significantly decrease; however, the relative
precision (P) and F1 score (%) gains achieved by our model is an average of 17.0% and 12.0%.
It is further demonstrated that our proposed model can still maintain good vulnerability detection
performance compared with other methods in practical applications.

4.3.2 LINE-LEVEL LOCATION RESULTS

The line-level localization performance of the model is evaluated on four projects contained in our
proposed RD; more detailed statistics are shown in Table 4.

Table 4: Detailed line-level statistics of RD.
ALP1 AFL2 PVFP3 PVP4

Asterisk 8546 160 0.16% 0.12%
Wireshark 5680 265 0.70% 0.02%

Libtiff 2871 96 1.18% 0.43%
Openssl 1592 184 0.68% 0.07%

1 Average number of code lines per program.
2 Average number of code lines per function.
3 Percentage of vulnerable functions in the projects.
4 Percentage of vulnerable code lines in the projects.
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Figure 4: Line-level location results on four projects. (a): The model’s coverage and hit rate of
vulnerability lines with k = 0.5; (b): The model’s coverage of vulnerability lines under different k
value; (b): The model’s hit rate of vulnerability lines under different k value.

As is evident, vulnerability lines account for only a very small part of a program, and our goal is
to more efficiently implement source code security audits during the software development phase.
Therefore, we introduce two indicators of hit rate and vulnerability line coverage of the model,
which are expressed as follows:

HitRate = Nhits/

m∑
i=0

dkne, (10)

Coverage = hits/total err, (11)

where Nhits represents the number of correctly located CPG nodes related to the vulnerability code,
and hits is the number of correctly located vulnerability code lines, while total err is the total
number of vulnerability code lines contained in this project. We graph the experimental results in
Figure 4. In addition to function-level vulnerability location, we further divide three location ranges
according to AFL to verify the effectiveness of the method under different granularities. It can be
observed that, in most cases, the model’s coverage of vulnerability lines can be maintained at a high
level. Furthermore, a vulnerability location within 50 lines can reduce the amount of code required
for function-level code auditing by at least 47.9% while still maintaining a ralatively promising hit
rate.

Furthermore, we conduct ablation study on different feature encoding methods and pooling methods
to demonstrate that our improved methods aid the model to further realize effective vulnerability
identification. The detailed of ablation study is shown in Appendix A.1.

5 CONCLUSION

In this paper, we propose a novel GNN-based source code vulnerability detection model designed to
achieve fine-grained potential vulnerable code identification at a function level and line level through
the intermediate representation of multidimensional program features. Extensive experiments reveal
the superior performance of our model compared with other state-of-the-art methods. It is further
demonstrated that our approach can be applied to support the source code vulnerability detection of
real projects, which greatly reduces the workload associated with manual code audits.
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A APPENDIX

A.1 ABLATION STUDY

To study how our proposed multidimensional program feature encoding method influences the
model’s effective learning of source code vulnerability features, several feature variables are as-
sessed. The details and results of the ablation study are shown in Table 5. We provide the following
analysis of these results:

Table 5: Ablation study on feature encoding methods

Feature CWE-119 CWE-399
P F1 P F1

Vattribute 90.8 91.8 58.2 46.0
Vcode 92.1 93.1 65.3 47.2
Ours 98.2 97.4 98.9 99.0

Our proposed feature encoding method achieves better performance than other variables. It is
demonstrated that this method aids the model to further realize effective vulnerability feature learn-
ing. And compared with Vattribute, Vcode makes more significant contributions to vulnerability
identification.

Furthermore, we conduct an ablation study to underline the importance of the BiLSTM-based read-
out layer to generating graph representations in order to achieve accurate vulnerable function iden-
tification. Three kinds of graph pooling methods —namely max pooling (Li et al., 2018b), average
pooling (Atwood & Towsley, 2016), and SAGPool (Lee et al., 2019) —are adopted to aggregate the
node information output from the upper layer. The results are shown in Table 6:

Table 6: Ablation study on pooling methods

Method CWE-119 CWE-399
P F1 P F1

Max Pooling 85.9 90.6 73.8 48.2
Average Pooling 84.7 91.5 68.8 50.6

SAGPool 88.1 92.5 60.8 53.0
Ours 98.2 97.4 98.9 99.0

Our BiLSTM-based readout layer achieves the best performance, which proves its effectiveness in
obtaining the dependencies and inter-node relationships among key nodes and generating meaning-
ful graph representation for further classification.
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