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Abstract—Learning for Demonstration (LfD) enables robots to
acquire new skills by imitating expert demonstrations, allowing
users to communicate their instructions in an intuitive manner.
Recent progress in LfD often relies on kinesthetic teaching or
teleoperation as the medium for users to specify the demon-
strations. Kinesthetic teaching requires physical handling of the
robot, while teleoperation demands proficiency with additional
hardware. This paper introduces an alternative paradigm for
LfD called Diagrammatic Teaching. Diagrammatic Teaching aims
to teach robots novel skills by prompting the user to sketch
out demonstration trajectories on 2D images of the scene,
these are then synthesised as a generative model of motion
trajectories in 3D task space. Additionally, we present the Ray-
tracing Probabilistic Trajectory Learning (RPTL) framework
for Diagrammatic Teaching. RPTL extracts time-varying prob-
ability densities from the 2D sketches, applies ray-tracing to
find corresponding regions in 3D Cartesian space, and fits a
probabilistic model of motion trajectories to these regions. New
motion trajectories, which mimic those sketched by the user, can
then be generated. We validate our framework both in simulation
and on real robots, which include a fixed-base manipulator and
a quadruped-mounted manipulator.

I. INTRODUCTION

Learning from Demonstration (LfD) enables robots to learn
novel motions by mimicking a collected set of expert trajecto-
ries [1]. LfD is particularly appealing in its ability to specify
complex robot movements in the absence of explicit pro-
gramming or cost design, thereby empowering non-roboticists
to teach a robot how to act. Demonstrations are typically
collected via kinesthetic teaching where a human physically
handles the robot, or via teleoperation where the expert uses a
remote controller to collect demonstrations. These approaches
can be limiting, as they may require co-location with the robot
or proficiency with specialised hardware. These challenges are
further amplified when attempting to provide demonstrations
to mobile manipulators.

Fig. 1: An example of diagrammatically teaching a quadruped with a mounted arm to
shut a drawer, by sketching robot demonstrations over 2D images. User sketches are
shown in the left, middle.

This paper introduces Diagrammatic Teaching, as a
paradigm for LfD where a small number of demonstrations
are provided by the user through sketches over static two-
dimensional images of the environment scene from different
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views. These images can either be captured by a camera or
generated from a scene representation, such as a NeRF model
[2]. Diagrammatic Teaching seeks to enable the teaching of
new skills to the robot from the sketched demonstrations. We
note that humans have a remarkable ability to infer instructions
from crude diagrammatic sketches, and we wish to endow
robots with this same capability.

Correspondingly, we present Ray-tracing Probabilistic Tra-
jectory Learning (RPTL), a framework for Diagrammatic
Teaching. RPTL extracts time-varying probability distributions
from user-provided sketches over 2D images, and then uses
ray tracing to fit a probabilistic distribution of continuous
motion trajectories in the task space of a robot. This can
be achieved with sketched demonstrations on as few as two
images taken at different view poses. We can then adapt the
trained model to generate trajectories that account for novel
starting configurations. We present extensive evaluations of
RPTL in simulation and on real-world robots.

II. RELATED WORK

Learning for Demonstration (LfD) is broadly a strategy to
teach robots novel skills by learning on a small set of expert
demonstrations. Many attempts at LfD collect demonstrations
by Kinesthetic Teaching, where the user physically handles the
robot to show it the desired motion while recording the robot’s
joint or end-effector coordinates. These include Dynamical
Movement Primitive (DMP) approaches [3], [4], Probabilistic
Movement Primitives [5], and stable dynamical system ap-
proaches [6], [7], [8]. In these methods, demonstrations can be
difficult to obtain as it requires the user to physically interact
with the robot. Another approach for obtaining demonstra-
tions is teleoperation, where a human provides demonstrations
via a remote controller. This enables humans to provide
demonstrations even when not co-located with the robot,
allowing for larger demonstration datasets to be collected [9].
However, collecting trajectories via teleoperation is non-trivial
and requires proficiency with the remote controller. Compared
these approaches, the Diagrammatic Teaching introduced is
distinct in enabling sketching as a medium for to specify
demonstrations.

III. THE DIAGRAMMATIC TEACHING PROBLEM

Diagrammatic teaching follows the typical setup for Learn-
ing for Demonstration: we are assumed to have a small dataset
of demonstrated trajectories and seek to learn a generative
model which produces trajectories to imitate the demonstra-
tions. Diagrammatic Teaching is unique in that the trajectories



provided are not trajectories in the robot’s Cartesian end-
effector space nor its configuration space, but are instead 2D
trajectories sketched onto images, while the desired generative
model produces end-effector trajectories.

Formally, we have a dataset D = {(vj , ζj
i )

nj

i=1}2j=1, where
v1 and v2 denote two unique views from which the demonstra-
tions are collected, and ζj

i denotes the ith trajectory collected
from the jth view. The user is shown images of the scene
rendered from the views, and the user sketches how the
end-effector movement is expected to look from the views.
Images from different views may come from a NeRF scene
representation or cameras at different locations. The collected
view space trajectories ζ contain sequences of normalised
pixel coordinates (x, y) along with a normalised time t, i.e.
ζ = {tk, xk, yk}lk=1. The length of the trajectory is denoted
by l. We assume that x, y, t are all normalised to be in [0, 1].

We aim to learn the generative model of trajectories p(ξ|D),
where ξ denotes motion trajectories in the robot’s end-effector
task space. Here, ξ are represented as functions that map from
normalised time t ∈ [0, 1] to Cartesian space x ∈ R3. Figure 1
shows an example of applying Diagrammatic Teaching to
teach a quadruped robot with a mounted manipulator to shut
a draw by providing it demonstrations as sketches.

IV. RPTL

In this section, we propose Ray-tracing Probabilistic Trajec-
tory Learning (RPTL), a framework to solve the Diagrammatic
Teaching problem. The user is prompted to sketch trajectories
onto images of the scene, which could be generated from
a NeRF model or taken by cameras in multiple poses. The
camera poses can be accurately estimated by tools such as
COLMAP [10], [11], or with identifiable shared objects,
such as an AprilTag [12], in the images taken. RPTL con-
structs time-varying density estimates over the collected 2D
trajectories and then uses ray-tracing to find regions in 3D
Cartesian space corresponding to the densities. Subsequently,
a distribution of continuous-time motion trajectories can be
fitted over these regions.

A. Density Estimation in View Space

We begin by estimating the time-varying densities over 2D
coordinates of demonstrations from each view, which we de-
note as p(xj , yj |t) for j ∈ {1, 2}. We use flexible normalizing
flow models [13] to estimate the joint distribution pj(t, xj , yj),
and assume that p(t) is uniform over [0, 1]. A normalizing
flow model uses neural networks to learn an invertible and
differentiable function that transforms the arbitrarily complex
data distribution into a known base distribution, typically
a standard Gaussian. Let yj = [t, xj , yj ] be time-stamped
coordinates from demonstrated trajectories from the jth view
and ŷj ∈ R3 be corresponding latent variables linked by
invertible functions gj , such that ŷj = gj(yj). The densities
over yj and ŷj are linked by the change of variables,

p(yj) = p(gj(yj))|detJj(yj)|, (1)

p(ŷj) = p(gj
−1

(ŷj))|detJj(gj
−1

(ŷj))|−1 (2)

where det is the determinant and Jj is the Jacobian of gj . We
wish to learn gj such that the distribution of latent variables
matches a standard Gaussian, i.e. p(ŷj) = p(gj(yj)) ≈
N (0, I). To ensure gj is invertible, we model them as in-
vertible neural network models described in [14], [15], with
trainable parameters. We can then train gj from each view, by
minimising the negative log-likelihood of gj(yj) being drawn
from a standard Gaussian over dataset D. We arrive at the
following loss [16]:

L = −
∑
yj∈D

{
log p(gj(yj)) + log|detJ(yj)|

}
. (3)

As the number of demonstrations is typically small, to prevent
the densities from collapsing into a delta function during
training, we inject a small Gaussian noise into the data.
After training up normalizing flow density estimators for each
view, we can obtain densities p(xj , yj |t) over each view by
evaluating eq. (1).

B. Trajectory Distribution Fitting via Ray-Tracing

We apply ray-tracing along the 2D pixels of high estimated
density from both views to find regions in 3D space where
the rays intersect. We can then fit our generative model
onto these regions. In this section, we shall (1) introduce
the parameterisation of our generative model, and then (2)
elaborate on finding and fitting the model on corresponding
regions. An example of learning to push a box is provided
as fig. 2, where the view space density and the resulting
distribution over trajectories are visualised.

Fig. 2: Learning to push a box. Top: sketches
over two different views. Middle: Robot ex-
ecuting learned skill. Bottom: Densities in
2D view space with time axis collapsed and
trajectories in 3D task space.

Distributions of Trajec-
tories: Generated motion
trajectories are represented
as functions ξ : t →
x, where t ∈ [0, 1] is
a normalised time variable
and x ∈ R3 is a corre-
sponding location. Trajec-
tories are modelled by a
linear combination of M
basis functions ϕi : t → R
for m = 1, . . . ,M , and are
parameterised by a matrix
of weights W ∈ RM×3. We have:

ξ(t) = W⊤Φ(t), Φ(t) = [ϕ1(t), . . . , ϕM (t)]⊤ (4)
where Φ is a M -dimension feature vector with each basis
function evaluated once for each spatial dimension in Cartesian
space. The basis functions can be selected to enforce a priori
assumptions on the motion trajectories, such as smoothness of
periodicity. In this work, each basis is a squared exponential
function that enforces the smoothness of motion, specifically,
ϕi(t) = exp (−γ||t− ti||22), for i = 1, . . . ,M , where γ is a
length-scale hyper-parameter where smaller values correspond
to smoother trajectories. The M times, ti, are evenly spaced
values between 0 and 1.

We can extend our parameterisation of a single trajectory to
a distribution of trajectories p(ξ), by estimating a distribution
over the weight matrix W. For tractability, we assume inde-



pendent Gaussian distributions over each element in W. Let
us denote each element in W as wm,n where m = 1, . . . ,M
and n = 1, 2, 3, then the joint distribution over W is simply
the product of the distribution over each element,

p(W) =

M∏
m=1

3∏
n=1

p(wm,n) =

m∏
m=1

3∏
n=1

N (µm,n, σ
2
m,n), (5)

where the means and standard deviations of the distribution
over each wm,n are denoted as µm,n and σm,n. Fitting the
distribution of trajectories involves finding each µm,n and
σm,n to match given data.

Ray-tracing from view space densities: Provided time-
varying densities over pixels from different views, p(xj , yj |t)
for j ∈ {1, 2}, we wish to fit a trajectory distribution p(ξ) by
tracing the path of rays. We follow classical rendering methods
[17] used for NeRF models [2] and assume pin-hole cameras at
each view. We construct the ray in 3D which passes through
each coordinate in 2D view space as, fr(d, x

j , yj) = oj +
ω(xj , yj)d, where oj is the origin of the camera, ω(xj , yj)
is a direction, and d is a distance bounded between dnear and
dfar. These are given by the camera in use. From each view,
the region corresponding to the density above threshold ϵ at a
given time t is the codomain of fr. We define this as the set:
Rj

t = {x ∈ R3|fr(d, xj , yj), for all d ∈ [dnear, dfar]

and xj , yj ∈ [0, 1], such that p(xj , yj |t) ≥ ϵ}.
We seek the intersection of the 3D regions which corre-

sponds to densities from both views, i.e. R1
t ∩R2

t . This can be
approximated by sampling regular-spaced grid points over d
and view space coordinates (xj , yj), for both views. If the
distance between a sample from one view and its closest
sample from the other view is below a specified distance
threshold δ, then we consider both samples to be in the
intersecting region. In practice, the nested loops are vectorised
and can be efficiently executed on GPUs using deep learning
frameworks, such as PyTorch [18]. We can obtain a set of ns

intersecting 3D spatial coordinates along the normalised time
t, i.e. S = {(ti,xi)}ns

i=1.
To fit our generative model on S, we need to compute the

time-conditional distributions in Cartesian space, i.e. p(ξ|t).
Let us first stack our train-able mean and variance parameters
from eq. (5),

M =

 µ1,1 µ1,2 µ1,3

...
...

...
µM,1 µM,2 µM,3

 Λ =

 σ2
1,1 σ2

1,2 σ2
1,3

...
...

...
σ2
M,1 σ2

M,2 σ2
M,3

 . (6)

As the weight distribution p(W) is Gaussian and involves a
linear transformation with Φ, as given in eq. (4), we have:

p(ξ|t) = N (M⊤Φ(t),Diag(Λ⊤Φ(t)2)), (7)
where Diag(·) produces a square matrix with the inputted
vector as its diagonal. We minimise the Gaussian negative
log-likelihood of p(ξ|t) over S to fit parameters M, Λ.

C. Trajectory Generation

After training to obtain fitted means, M, and variances,
Λ, we can generate a collection of trajectories by sampling
elements in W from wi,j ∼ N (µi,j , σ

2
i,j), and then evaluate

eq. (4). However, often times we have additional knowledge

Fig. 3: We use Diagrammatic Teaching to teach the robot to follow “R” characters.
Left: The x, y, z positions of sampled trajectories over normalised time t. The initial
positions of the trajectory samples are enforced at the black marker. Right: Three end-
effector trajectories, conditioned to start from the current position.

Fig. 4: We teach the manipulator motion in the table top, box, and shelf environments
(left, middle, right respectively). The top row images are two camera views provided to
the user, and the red trajectories are 2D demonstrations sketched by the user. We draw
five 3D motion trajectories from the trajectory distribution model and illustrate them in
red in the images on the bottom row.

of where the trajectory shall be at the starting position. For
example, the generated task space trajectory at the initial
time should match its current end-effector position (xeef ), i.e.
enforcing, ξ(0) = xeef .

Let us begin by defining notation: let W1 be the first
row of W, and W2: be the others; let Φ(0)1 be the first
element in Φ(0) and Φ(0)2: denote the others. For a specific
sampled trajectory, we draw a sample of W and then alter
W1 from the enforced condition. Specifically, at the beginning
of the trajectory, we wish to enforce ξ(0) = W⊤

1 Φ(0)1 +
W⊤

2:Φ(0)2: = xeef , allowing us to solve for W1, together
with the known W2:. An example of generated trajectories
conforming to starting at the current end-effector position is
shown in fig. 3.

V. EXPERIMENTAL EVALUATION

We explore the performance of RPTL for Diagrammatic
Teaching. Specifically, we examine the quality of the trained
model, checking if motion produced is consistent with user
expectations. Then, we examine using RPTL to teach the
tracing of challenging alphabet characters. Finally, we test the
robustness of RPTL on real robots.

A. Quality and Consistency of RPTL

We set up three simulated environments with a Franka ma-
nipulator, following the table top, box, and shelf environment
types in [19], using the physics simulator PyBullet [20]. We
place cameras at three different poses in the environment and
ask the user to provide three demonstrations per camera view
to reach a cylindrical goal object. The goal position is not
given to the model, and the only specifications given are the
diagrammatic demonstrations. We select two views and their
demonstrations for training and retain those from the third
view as a test set. To benchmark motion trajectories generated,
we project the 3D trajectories into the 2D view of the
third and compute distances between the projected trajectories
and the retained test trajectories. Distances computed are all
normalised by the width of the test image. By testing against a
hidden test set, we can access whether the produced motions



Fig. 5: We diagrammatically teach the manipulator to sketch out the letters “B”, ”Z”,
“U”, and sample three trajectories from the trained model.

Table Box Shelf

RPTL (Ours) MFD (×10−2) 3.1± 0.2 3.9± 0.2 5.3± 0.9
WD (×10−2) 2.6 2.9 3.8

Linear MFD (×10−2) 10.6± 0.3 7.4± 0.1 9.7± 1.0
WD (×10−2) 6.9 6.9 6.3

NN MFD (×10−2) 17.8± 0.8 33.2± 0.6 7.9± 0.9
WD (×10−2) 10.3 19.1 9.2

TABLE I: Comparison of RPTL and baselines on different environments. Lower distances
indicate better performance. Lowest in bold.

match the expectation of the user and are consistent when
viewed from a different pose.

Metrics: We use the following metrics to measure the
quality of the learned trajectory distribution. (1) Mean Fréchet
distance (MFD): We compute the discrete Fréchet distance
[21] between the mean of the trajectory distribution model
and each of the test trajectory, then record the averages
and standard deviations. The Fréchet distance measures the
distance between curves and can account for the ordering of
points and handle varying lengths. (2) Wasserstein Distance
(WD): We compute the 2-Wasserstein distance implemented
in [22] between five trajectories drawn from our model and
the set of test trajectories. Crucially, the WD can measure
distances between distributions beyond simply considering
the mean of the probabilistic model. Baselines: We evaluate
our model with respect to the following baseline models. (1)
Linear: We provide the mean start and end positions of the
test trajectories and assume a linear curve between them.
(2) Nearest Neighbour (NN): We predict the trajectories as
those taken from the nearest camera in the training set. The

Fig. 6: RPTL applied on real-world robot platforms. We diagrammatically teach the
robot for the tasks Drop into cup, Drop into box, and Tip box (left, middle, right
respectively). The sketched demonstrations are shown in the top row. The task Close
drawer is shown in fig. 1 and Push box is shown in fig. 2.

quantitative performance of our method, along with baseline
comparisons, are given in table I. The low distances between
our learned model and the test set highlight the ability of our
method to train a generative model that is consistent with the
trajectories a human user would expect. This is reiterated when
qualitatively examining fig. 4, where the top row consists of
two images along with user-sketched trajectories at different
views, and the bottom rows contain samples from the 3D tra-
jectory model. We observe the produced end-effector motions
are highly consistent with the sketches provided.

B. Tracing Out Letters: a Case of Intricate Trajectories

We seek to investigate whether RPTL can be applied to
learn more complex distributions of motion trajectories which
may involve multiple turns or swerves. To this end, we
diagrammatically teach a simulated Franka to trace out the
letters “B”, “Z”, “U”. This requires motion that deviates
greatly from a linear trajectory and would be challenging to
describe with a motion planning cost function. We randomly
select different robot starting configurations facing a surface,
and sample motion trajectories to sketch out the letters on the
surfaces. These are illustrated in fig. 5. An additional tracing of
the letter “R” is shown in fig. 3 We observe that RPTL is able
to generate trajectories that accurately capture the intricacies
of each of the characters.

C. Diagrammatic Teaching in the Real-world

To test the robustness of RPTL in the real world, we
diagrammatically teach a 6-DOF Unitree Z1 manipulator new
skills. Additionally, we also demonstrate the applicability of
RPTL to a Unitree Aliengo quadruped with the Z1 arm
attached. We take two photos with a camera, find the camera
poses via AprilTags [12], and collect demonstrations from the
user. The robot end-effector, along with the quadruped, then
tracks trajectories sampled from the trained models.

We diagrammatically teach skills for the following tasks
to the Z1 arm: Push box: Push a box from its side, such
that it drops off the table; Drop into cup: Move past a mug,
and hover right over a paper cup. The gripper is subsequently
released and the held object shall be dropped into the paper
cup; Tip box: Reach into a box and tip it by moving in a
“U”-shaped motion. We then mount the arm onto a quadruped
and teach the quadruped + arm robot skills for the following
tasks: Drop into box: Reach out towards a box on the floor.
The gripper is released and the object held is placed into the
box; Close drawer: Close an open drawer.

Images of the provided demonstrations and subsequent
execution are given in figs. 1, 2 and 6. We observe that RPTL
can robustly teach the robot the specified skills. Moreover,
Diagrammatic Teaching demonstrates its utility on mobile
manipulators where kinesthetic teaching would be impractical.
In particular, the task Drop into box requires the dog to bend
its knees while the arm moves towards the box for the mounted
arm to reach sufficiently low. The task Close drawer requires
even more coordination between the dog and the arm, as the
dog needs to concurrently march forward towards the drawer
as the arm shuts the drawer.

VI. CONCLUSIONS

We introduce Diagrammatic Teaching, with which a user
specifies desired motion via sketched curves, as a novel
paradigm for learning from demonstration. We present Ray-
tracing Probabilistic Trajectory Learning (RTPL) as a frame-
work for Diagrammatic Teaching. RPTL estimates probability
densities over 2D user sketches and traces rays into the robot’s
task space to fit a distribution of motion trajectories. We
evaluate RTPL in both simulation and on real-world robots.
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