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Abstract

Statistical tests for dataset shift are susceptible to
false alarms: they are sensitive to minor differences
when there is in fact adequate sample coverage
and predictive performance. We propose instead a
framework to detect adverse shifts based on out-
lier scores, D-SOS for short. D-SOS holds that the
new (test) sample is not substantively worse than
the reference (training) sample, and not that the
two are equal. The key idea is to reduce observa-
tions to outlier scores and compare contamination
rates at varying weighted thresholds. Users can de-
fine what worse means in terms of relevant notions
of outlyingness, including proxies for predictive
performance. Compared to tests of equal distribu-
tion, our approach is uniquely tailored to serve
as a robust metric for model monitoring and data
validation. We show how versatile and practical
D-SOS is on a wide range of real and simulated
data.

1 INTRODUCTION

Suppose we fit a predictive model on a training set and
predict on a test set. Dataset shift, also known as data or
population drift, occurs when training and test distributions
are not alike [Kelly et al., 1999, Quionero-Candela et al.,
2009]. This is essentially a sample mismatch problem. Some
regions of the data space are either too sparse or absent
during training and gain importance at test time. We want
methods that alert users to the presence of unexpected inputs
in the test set [Rabanser et al., 2019]. To do so, a measure
of divergence between training and test set is required. Can
we not use the many modern off-the-shelf multivariate tests
of equal distributions for this?

One reason for moving beyond tests of equal distributions
is that they are often too strict. They require high fidelity

between training and test set everywhere in the input domain.
However, not all changes in distribution are a cause for
concern – some changes are benign. Practitioners distrust
these tests because of false alarms. Polyzotis et al. [2019]
comment:

statistical tests for detecting changes in the data
distribution [. . . ] are too sensitive and also unin-
formative for the typical scale of data in machine
learning pipelines, which led us to seek alterna-
tive methods to quantify changes between data
distributions.

Even when the difference is small or negligible, tests of
equal distributions reject the null hypothesis of no differ-
ence. Monitoring model performance and data quality is a
critical part of deploying safe and mature models in pro-
duction [Paleyes et al., 2020, Zhang et al., 2020]. An alarm
should only be raised if a shift warrants intervention. Re-
training models when distribution changes are benign is
both costly and ineffective [Vovk et al., 2021]. To tackle
these challenges, we propose D-SOS instead.

In comparing the test set to the training set, D-SOS pays
more attention to the regions — typically, the outlying re-
gions — where we are most vulnerable. To confront false
alarms, it uses a robust test statistic, the weighted area under
the receiver operating characteristic curve (WAUC). The
weights in the WAUC discount the safe regions of the dis-
tribution. As best we know, this is the first time that the
WAUC is being used as a test statistic in this context. The
goal of D-SOS is to detect non-negligible adverse shifts.
This is reminiscent of noninferiority tests [Wellek, 2010],
widely used in healthcare to determine if a new treatment
is in fact not inferior to an older one. Colloquially, D-SOS
holds that the new sample is not substantively worse than
the old sample, and not that the two are equal.

D-SOS moves beyond tests of equal distributions and lets
users specify which notions of outlyingness to probe. The
choice of the score function plays a central role in formaliz-

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

https://orcid.org/0000-0002-4451-3743
mailto:vathy.kamulete@rbccm.com


ing what we mean by worse. These scores can come from
out-of-distribution (outlier) detection, two-sample classifica-
tion, uncertainty quantification, residual diagnostics, density
estimation, dimension reduction, and more. While some of
these scores are underused and underappreciated in two-
sample statistical tests, they can be more telling than the
density-based scores.

In this paper, we make the following contribution. We derive
D-SOS, a novel and robust two-sample test for no adverse
shift, from tests of goodness-of-fit. The main takeaway is
that given a generic method to assign an outlier score to a
data point, D-SOS turns these scores into a two-sample test
for no adverse shift. It converts arbitrary outlier scores into
interpretable probabilities, namely p−values. The field is
replete with tests of equal distribution and goodness-of-fit.
We have comparatively fewer options for tests of no adverse
shift. We have created an accompanying R package dsos
for our method. In addition, all code and data used in this
paper are publicly available.

2 MOTIVATIONAL EXAMPLE

For illustration, we apply D-SOS to the canonical iris
dataset [Anderson, 1935]. The task is to classify the species
of Iris flowers based on d = 4 covariates (features) and
n = 50 observations for each species. We show how D-SOS
helps diagnose false alarms. We highlight that (1) changes in
distribution do not necessarily hurt predictive performance,
and (2) points in the densest regions of the distribution can
be the most difficult – unsafe – to predict.

We consider four tests of no adverse shift. Each test uses a
different score. For two-sample classification, this score is
the probability of belonging to the test set. For density-based
out-of-distribution (OOD) detection, the score comes from
isolation forest; this score is inversely related to the local
density. For residual diagnostics, it is the out-of-sample (out-
of-bag) prediction error from random forests. Finally, for
confidence-based OOD detection, it is the standard error
of the mean prediction from random forests, a proxy for
prediction (resampling) uncertainty similar to [Schulam and
Saria, 2019]. Only the first notion of outlyingness – two-
sample classification – pertains to modern tests of equal
distributions; the others capture other meaningful notions of
adverse shifts. For all these scores, higher is worse: higher
scores indicate that the observation is diverging from the
desired outcome or that it does not conform to the training
set.

For the subsequent tests, we split iris into 2/3 training and
1/3 test set. The train-test pairs correspond to two partition-
ing strategies: (1) random sampling and (2) in-distribution
(most dense) examples in the test set. How do these sample
splits fare with respect to the aforementioned tests? Let s
and p denote s−value and p−value. The results are reported

on the s = − log2(p) scale because it is intuitive and lends
itself to comparison. We return to the advantages of using
s−value for comparison later. An s−value of k can be in-
terpreted as seeing k independent coin flips with the same
outcome – all heads or all tails – if the null is that of a fair
coin [Greenland, 2019]. This conveys how incompatible the
data is with the null.

In Figure 1, the case with (1) random sampling exemplifies
the type of false alarms we want to avoid. Two-sample
classification, standing in for tests of equal distributions, is
incompatible with the null of no adverse shift (a s−value of
around 8). But this shift does not carry over to the other tests.
Residual diagnostics, density-based and confidence-based
OOD detection are all fairly compatible with the view that
the test set is not worse. Had we been entirely reliant on
two-sample classification, we may not have realized that
this shift is essentially benign. Tests of equal distributions
alone give a narrow perspective on dataset shift.

Returning to Figure 1, density-based OOD detection does
not flag the (2) in-distribution test set as expected. We might
be tempted to conclude that the in-distribution observations
are safe, and yet, the tests based on residual diagnostics and
confidence-based OOD detection are fairly incompatible
with this view. Some of the densest points are concentrated
in a region where the classifier does not discriminate well:
the species ‘versicolor’ and ‘virginica’ overlap. That is, the
densest observations are not necessarily safe. Density-based
OOD detection glosses over this: the trouble may well come
from inliers that are difficult to predict. We get a more
holistic perspective of dataset shift because of these comple-
mentary notions of outlyingness.

3 STATISTICAL FRAMEWORK

The theoretical framework builds on Zhang [2002]. Take
an i.i.d. training set Xtr = {xtr

i }ntr

i=1 and a test set
Xte = {xte

i }nte

i=1. Each dataset Xo with origin o ∈
{tr(ain), te(st)} lies in d-dimensional domain X ⊆ Rd

with sample sizes no, cumulative distribution function
(CDF) F o

X and probability density function (PDF) fo
X .

Let ϕ : X → S ⊆ R be a score function and define
the threshold score s ∈ S. The proportion above the
threshold s in dataset o is in effect the contamination rate
Co(s) = Pr (ϕ(xo

i ) ≥ s). The contamination rate is the
complementary CDF of the scores, F o(s) = 1 − Co(s).
As before, F o and fo now denote the CDF and PDF of the
scores.

Consider the null hypothesis H0 : F te
X = F tr

X of equal dis-
tribution against the alternative H1 : F te

X ̸= F tr
X . In tandem,

consider the null of equal contamination Hs
0 : Cte(s) =

Ctr(s) against the alternative Hs
1 : Cte(s) ̸= Ctr(s) at a

given threshold score s. To evaluate goodness-of-fit, Zhang
[2002] shows that testing H0 is equivalent to testing Hs

0 for
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∀s ∈ S . If z(s) is the relevant test statistic for equal contam-
ination, a global test statistic Z for goodness-of-fit can be
constructed from z(s), its local counterpart. One such Z is

Z =

∫
z(s) · w(s) · d(s) (1)

where w(s) are threshold-dependent weights. For concision,
we sometimes suppress the dependence on the threshold
score s and denote weights, contamination statistics and
rates as w, z and Co respectively. D-SOS differs from the Z
statistic in Equation (1) in three ways: the score function ϕ,
the weights w and the contamination statistic z. We address
each in turn.

D-SOS scores instances from least to most abnormal ac-
cording to a specified notion of outlyingness. To be con-
crete, for density estimation, the negative log density is a
natural score for outlyingness [Kandanaarachchi and Hyn-
dman, 2021]. This property of the score function ϕ can be
expressed as

ϕ(xi) ≤ ϕ(xj) ⇒ Pr(f tr
X (xi) ≥ f tr

X (xj)) ≥ 1− ϵ (2)

for xi, xj ∈ X and ϵ, a (sufficiently small) approximation
error. Accordingly, instances in high-density regions of the
training set Xtr (nominal points or inliers) score low; those
in low-density regions (outliers) score high. Here, the score
function ϕ can be thought of as a density-preserving projec-
tion. More generally, higher scores, e.g. wider prediction
intervals and larger residuals, indicate worse outcomes; the
higher the score, the more unusual the observation. The
structure in ϕ is the catalyst for adjusting the weights w and
the statistic z.

D-SOS updates the weights w to be congruent with the
score function ϕ. When projecting to the outlier subspace,
high scores imply unusual points, whereas both tails are
viewed as extremes in the Zhang framework. Univariate
tests such as the Anderson-Darling and the Cramér-von
Mises tests fit the framework in Equation (1): they make
different choices for ϕ, z and w. These classical tests place
more weight at the tails to reflect the severity of tail ex-
ceedances relative to deviations in the center of the dis-
tribution. D-SOS corrects for outliers being projected to
the upper (right) tail of scores via the score function. The
D-SOS weights w are specified as

w(s) =
(
F tr(s)

)2
(3)

The weights in Equation (3) shift most of the mass from
low to high-threshold regions. As a result, D-SOS is highly
tolerant of negligible shifts associated with low scores, and
conversely, it is attentive to the shifts associated with high

scores. Low (high) thresholds map to high (low) contami-
nation rates and low (high) values of the CDF, F tr

X . At the
lowest threshold, every point in the training set is an outlier;
at the highest threshold, none is. Within this spectrum, high
thresholds better reflect the assumption that the training set
does not contain too many outliers1. Thus, we put more
weights on high, rather than low, thresholds. Zhang [2002]
posits other functional forms, but the quadratic relation-
ship between weights and contaminations as in Equation (3)
gives rise to one of the most powerful variants of the test
and so, we follow suit.

D-SOS constructs a test statistic based on the score ranks,
not on the levels. The weighted area under the receiver
operating characteristic curve (WAUC) is a robust statistic
that is invariant to changes in levels so long as the underlying
ranking is unaffected. The WAUC, denoted T , can be written
as

T =

∫
F tr(s) · f te(s) · w(s) · d(s) (4)

See Equation (1) in Hand [2009] for details. T in Equation
(4) is formally the D-SOS test statistic for adverse shift.
The (W)AUC is also threshold-invariant, meaning that it
averages (discriminative) performance over thresholds of
varying importance. The upside is we do not have to commit
to a single threshold. The downside is, if not careful, the
(W)AUC summarizes performances over irrelevant regions
e.g. low-threshold regions. As a generalization of the AUC,
the WAUC puts non-uniform weights on thresholds [Li and
Fine, 2010]. D-SOS seizes on this to give more weight to
the outlying regions of the data2. These data-driven (adap-
tive) weights conform to the training (reference) distribution,
relieving us of the burden of introducing additional hyper-
parameters.

The null of no adverse shift Hds
0 is that most instances in

the test set are not worse than those in the training set. The
alternative Hds

1 is that the test set contains more outliers
than expected, if the training set is the reference distribution.
D-SOS specifies its null as Hds

0 : T0 ≤ T | H0 against the
alternative Hds

1 : T0 > T | H0. T0 is the observed WAUC
and T | H0, the WAUC under the null of exchangeable
samples. When the test set is cleaner than the training set,
tests of goodness-of-fit and of equal distributions both reject
the null of no difference, whereas D-SOS by design does
not reject its null of no adverse shift. These shifts do not
trigger the alarm as they otherwise would had D-SOS been
a two-tailed test.

1We do not assume that the training set only consists of inliers.
It may be contaminated, but hopefully not too badly compromised
i.e. it is clean enough to be the reference distribution.

2Weng and Poon [2008] also advocates for the WAUC as a
performance metric for imbalanced datasets because it can capture
disparate misclassification costs.



We make a few remarks to further distinguish D-SOS from
other two-sample statistical tests. Firstly D-SOS does not
need to specify the equivalence margin, the minimum mean-
ingful difference needed to sound the alarm [Wellek, 2010].
This margin is often a prerequisite of noninferiority tests
and similar approaches3. Choosing this margin or minimum
effect size is often a non-trivial task, requiring substantive
domain knowledge [Betensky, 2019]. D-SOS sidesteps mar-
gin elicitation from experts and relies solely on the training
set being an adequate reference distribution. Secondly, tests
of equal distributions ignore that the training set precedes the
test set, and not vice versa. D-SOS, like tests of goodness-
of-fit, improve on the former because they use the training
set as the reference distribution. Lastly, D-SOS deviates
from tests of goodness-of-fit. It emphasizes robustness to
fight false alarms, it narrows its scope to detecting adverse
shifts, not any distribution shift, and it accomodates any
outlier score4.

4 RELATED WORK

Outlier scores. Density ratios and class probabilities often
serve as scores in comparing distributions [Menon and Ong,
2016] These scores, however, do not directly account for
the predictive performance. Prediction intervals and resid-
uals, on the other hand, do. Intuitively, they both reflect
poor predictive performance in some regions of the fea-
ture space. Confidence-based OOD detection leans on this
insight and tracks uncertain predictions e.g. Snoek et al.
[2019], Berger et al. [2021]. This is in contrast to density-
based OOD detection e.g. Morningstar et al. [2021]. The
classical approach, which also accounts for the predictive
performance, is based on residual diagnostics and under-
pin misspecification tests. Janková et al. [2020] is a recent
example of this approach with a machine learning twist.
Other methods such as trust scores can also flag unreliable
predictions [Jiang et al., 2018]. Because all these scores
represent distinct notions of outlyingness, the contrasts are
often insightful. In this respect, D-SOS is in some sense
a unifying framework. Bring your own outlier scores and
D-SOS would morph into the equivalent two-sample test
for no adverse shift.

Dimension reduction. In practice, the reconstruction errors
from dimension reduction can separate inliers from outliers.
Recently, Rabanser et al. [2019] uses dimension reduction,
as a preprocessing step, to detect distributional shifts. Some
methods gainfully rely on the supervised predictions for
their low-rank representation [Cieslak and Chawla, 2009,
Lipton et al., 2018]. This last approach, to add a cautionary

3For example, Podkopaev and Ramdas [2022] sets in advance
what drop in accuracy, say 5%, constitutes a non-negligible adverse
shift.

4The score in Zhang [2002] is inspired from the likelihood
ratio.

note, entangles the supervised model, subject to its own
sources of errors such as misspecification and overfitting,
with dataset shift [Wen et al., 2014]. But it also points to the
effectiveness of projecting to a lower and more informative
subspace to circumvent the curse of dimensionality. Indeed,
the classifier two-sample test uses univariate scores to de-
tect changes in multivariate distributions [Cai et al., 2020].
Inspired by this approach, D-SOS uses outlier scores as a
device for dimension reduction.

Statistical tests. The area under the receiver operating char-
acteristic curve (AUC) has a long tradition of being used as
a robust test statistic in two-sample comparison. Demidenko
[2016] proposes an AUC-like test statistic as an alternative
to the classical tests at scale because the latter “do not make
sense with big data: everything becomes statistically signif-
icant” while the former attenuates the strong bias toward
large sample size. D-SOS is firmly rooted in the tradition of
two-sample comparison. Inference is at the sample level. At
the instance level, we may want to check if a given test point
is an outlier to the training set. Bates et al. [2021] for ex-
ample tests for individual outliers via conformal p−values.
Turning pointwise outlier score into an interpretable (stan-
dardized) measure such as a probability is a common and
useful desideratum [Kriegel et al., 2009, 2011]. Podkopaev
and Ramdas [2022], on the other hand, casts the problem of
detecting harmful shifts in a sequential setting and controls
for the false alarm rate due to continuous monitoring. In se-
quential settings, statistical process control e.g. [Qiu, 2020]
is often used for a similar purpose.

5 IMPLEMENTATION

In this section, we turn our attention to deriving valid
p−values. Without loss of generality, let D = [Xtr, Xte]
be the pooled training and test set. The score function
ϕ = Φ(D, λ) is estimated from data D and hyperparam-
eters λ ∈ Λ. This calibration procedure Φ : X × Λ → ϕ
returns the requisite score function ϕ : X → S ⊆ R. The
asymptotic null distribution of the WAUC, however, is in-
valid when the same data is used both for calibration and
scoring. We circumvent this issue with permutations, sample
splitting, and/or out-of-bag predictions.

Permutations use the empirical, rather than the asymptotic,
null distribution. The maximum number of permutations
is set to R = 1000. We refer to this variant as DSOS-PT.
Unless stated otherwise, this is the default used in Section 6.
For speed, DSOS-PT is implemented as a sequential Monte
Carlo test, which terminates early when the resampling risk
is unlikely to affect the final result materially [Gandy, 2009].
Even so, permutations can be computationally prohibitive.

A faster alternative, based on sample splitting, relies on the
asymptotic null distribution. It incurs a cost in calibration
accuracy in the first step because it holds out half the data
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Figure 1: Tests of no adverse shift for iris. The tests cover 4 notions of outlyingness for two train-test splits. The x-axis
indicates the test type and the colour, the sampling (splitting) strategy. The dotted black line is the common, if not commonly
abused, p−value = 0.05 threshold. We clip s−values to a low and high of 1 and 10 respectively and display a secondary
y-axis with the p−value as a cognitive bridge.

for scoring in the second step. This tradeoff is common in
two-sample tests, which requires calibration. We randomly
split each dataset in half: Xtr = Xtr

1 ∪ Xtr
2 and Xte =

Xte
1 ∪Xte

2 . The first halves are used for calibration, and the
second for scoring. We describe this split-sample procedure
in Algorithm 1, and refer to it as DSOS-SS in Section 6.
Given the weights in Equation 3, the WAUC under the null
T | H0 is asymptotically normally distributed as

T | H0 ∼ N (
1

12
, σ(ntr, nte)) (5)

with mean = 1
12 and standard deviation σ(ntr, nte), which

depends on the sample sizes. Equation 5 follows trivially
from results in Li and Fine [2010] with a little bit of tedious
algebra – see Equation (9) therein for the variance.

A third option, an obvious extension to sample splitting, is
to use cross-validation instead. In k−fold cross-validation,
the number of folds k mediates between calibration accu-
racy and inferential robustness. At the expense of refitting k
times, this approach uses most of the data for calibration and
can leverage the asymptotic null distribution, provided that
the scores are out-of-sample predictions. This strategy is
also called cross-fitting in semiparametric inference. It com-
bines the best of both worlds, namely calibration accuracy
and inferential speed. We refer to this variant as DSOS-CV

in Section 6. We show in simulations that this approach
either matches or exceeds the performance of DSOS-PT
and DSOS-SS.

Algorithm 1: Split-sample test (DSOS-SS)
Data: Calibration set D1 = [Xtr

1 , Xte
1 ], Inference set

D2 = [Xtr
2 , Xte

2 ], calibration procedure Φ and
hyperparameters λ

1 Label: Assign labels y = I(x ∈ Xte
2 ), ∀x ∈ D2;

2 Calibrate: Fit the score function ϕ = Φ(D1, λ);
3 Score: Score observations s = ϕ(x), ∀x ∈ D2;
4 Test: Compute the observed WAUC

T0 = WeightedAUC(s, y) using Equation (4);
5 Asymptotic null: Under the null, T is asymptotically

normally distributed as in Equation (5);

Output: p− value = 1− Pr(T ≤ T0)

6 EXPERIMENTS

We make the following pragmatic choices for ease of use;
typically, the selected score functions perform well out-of-
the-box with little to no costly hyperparameter tuning. For
density-based OOD detection, we use isolation forest. To



Table 1: Number of wins for test comparisons based on
simulations. 1Number of ties, not shown, when s-value dif-
ference is within ROPE.

Contender Outcome1

(1) (2) Win (1) Win (2)

ctst energy 12 43
ctst DSOS-SS 0 34
ctst DSOS-PT 0 60
ctst DSOS-CV 0 64
DSOS-CV energy 37 26
DSOS-SS DSOS-CV 0 36
DSOS-SS DSOS-PT 0 32
DSOS-CV DSOS-PT 0 0

investigate other notions of outlyingness, we use random
forests. As in Hediger et al. [2022], random forests allow
us to use the out-of-sample variant of D-SOS (DSOS-CV)
for free, so to speak. Out-of-bag predictions are viable sur-
rogates for out-of-sample scores. This out-of-bag variant is,
when feasible, often convenient as it improves on sample
splitting, which sacrifices calibration accuracy for inferen-
tial robustness. Details about the experimental setup are in
the supplementary material.

6.1 SIMULATED SHIFTS

We compare D-SOS to two modern tests of equal distribu-
tion in unsupervised settings. These benchmarks illustrate
the simplicity and performance of our approach where we
have an abundance of choice. The field has been churning
out new and powerful two-sample tests of equal distribution.
These tests are a natural baseline for D-SOS because they
are commonly used to detect distribution shift. We look
at both the energy and the classifier test. We show that
overall, D-SOS performs favorably. We lose little by using
a test for no adverse shift instead of a test of equal distribu-
tion. D-SOS seldom loses and often matches or exceeds the
performance of these tests.

The first test is the energy test, a type of kernel-based
(distance-based) test [Székely et al., 2004]. The second,
arguably the main inspiration for D-SOS, is a classifier two-
sample test, ctst [Kim et al., 2021]. ctst tests whether a
classifier can reliably identify training from test instances. If
so, it is taken as evidence against the null. Both D-SOS and
ctst leverage the same underlying classifier and classifica-
tion scores. As this score increases, so does the likelihood
that an observation belongs to the test set, as opposed to the
training set. Following Clémençon et al. [2009], this ctst
variant uses sample splitting, as does DSOS-SS, but the
AUC rather than the WAUC as a test statistic. The weighting
scheme is what differentiates the two.

We simulate distribution shifts from a two-component mul-
tivariate Gaussian mixture model and specify distinct shift
type (setting): no shift (the base case), label shift, corrupted
sample, mean shift, noise shift, and dependency shift. This
is described in detail in the supplementary material. When
applicable, the shift intensity toggles between low, medium,
and high for each shift type. We also vary sample size and
dimension. For each combination of shift type, shift inten-
sity, sample size, and dimension, we repeat the experiment
500 times.

To compare the D-SOS, ctst and energy tests, we em-
ploy the Bayesian signed rank test [Benavoli et al., 2014]. To
do so, we specify a region of practical equivalence (ROPE)
on the s-value scale and a suitable prior. We deem two statis-
tical tests practically equivalent if the absolute difference in
s-value is ≤ 1. This difference corresponds to one more coin
flip turning up as heads (or tails), keeping the streak alive.
Anything greater arouses suspicion that one test is more
powerful, and that the difference is not negligible. Specify-
ing a ROPE on the s-value scale is less cumbersome than
the p-value scale. p-values, let alone p-value differences, are
notoriously difficult to interpret [Wasserstein et al., 2016].
The Bayesian signed rank test yields the posterior probabil-
ity that one method is better, practically equivalent or worse
than the other. The prior for these experiments adds one
pseudo experiment, distinct from the 500 real simulations,
where the difference is 0, i.e. no practical difference exists
out of the gate.

Table 1 summarizes the findings across all settings: dimen-
sion, sample size, shift type and shift intensity. The full
tables for comparison are provided as supplementary ma-
terial. For simplicity, we say that one method wins if the
posterior probability that it is better is ≥ 0.5; similarly, they
draw if the posterior probability that they are practically
equivalent is ≥ 0.5. This way of comparing methods re-
sembles the Pitman closeness criterion. We make several
observations:

1. DSOS-PT and DSOS-CV dominate DSOS-SS.
DSOS-SS pays a hefty price in inferential accuracy
due to sample splitting. Sample splitting, as evidenced
in DSOS-SS and ctst, clearly trails behind the com-
petition. Even so, DSOS-SS outperforms this ctst
variant: the weights in DSOS-SS clearly pay dividends.
The WAUC improves upon the plain AUC and offers a
compelling alternative to the Mann-Whitney-Wilcoxon
(AUC-based) tests when robustness is a chief concern.

2. DSOS-CV (or DSOS-PT) lag behind energy in set-
tings with (1) label shift and (2) corrupted samples.
There are 26 such cases. This is because DSOS is ro-
bust to outliers and more forgiving than nonrobust
tests when the bulk of the distributions is largely un-
affected. In all other configurations, DSOS-CV either
wins or draws. In particular, there are 37 cases where



DSOS-CV beats energy. This is because, like tests
of goodness-of-fit, D-SOS benefits from conditioning
on the the reference distribution while being robust to
outliers.

3. When there is indeed a shift, power (s-value) increases
when sample size and shift intensity increases and de-
creases when dimension increases, all else equal. This
trend is consistent and is as expected. However, the rel-
ative efficiency of these tests in small samples and/or at
low shift intensity can at times be striking. The 26 cases
where D-SOS loses to the energy test can be char-
acterized as such. In large samples and/or high shift
intensity, asymptotics kick in and they all converge.

4. DSOS-PT and DSOS-CV are practically equivalent
across all settings. Notwithstanding the gains in in-
ferential speed that one may hold over the other, the
inferential accuracy (power) is – should be – the same.
This is a good sanity check that the implementation is
correct. Similarly, for the simulations with no distribu-
tion shift, all tests are practically equivalent.

6.2 PARTITION-INDUCED SHIFTS

In supervised settings, since the core task is prediction, the
D-SOS tests based on residual diagnostics or predictive un-
certainty are more informative than, and can be at odds with,
classifier (density-based) tests. D-SOS creates rigorous sta-
tistical tests from these scores so that they can be held to
the same standard of evidence as null hypothesis statistical
test. This experiment scales beyond the motivational – ad-
mittedly, somewhat contrived – example in Section 2 and
shows that those findings extend to and are stable across
datasets.

To investigate how different notions of outlyingness are
correlated, we analyze via cross-validation 62 classifica-
tion tasks from the OpenML-CC18 benchmark [Casalic-
chio et al., 2017]5. As in Section 2, we look at tests of no
adverse shift based on two-sample classification, residual
diagnostics, and predictive uncertainty (no density-based
OOD detection in this round). Cross-validation mimics ran-
dom sampling variation, and is helpful in assessing stability
[Moreno-Torres et al., 2012, Lim and Yu, 2016]; it generates
partition-induced shifts, rather than worst-case (adversarial)
perturbations [Subbaswamy et al., 2021].

For each dataset, we estimate a fixed (mean) effect re-
ported on the s−value scale, which measures how sensitive
a dataset is to these partition-induced shifts. The higher the
value, the more susceptible a dataset is to adverse shifts
caused by sampling variation. These fixed effects can be
interpreted in the usual way as the strength of evidence

5We exclude datasets with more than 500 features because of
long runtimes.

against the null of no adverse shift. We refer to the supple-
mentary material for further details about this experiment.
At a glance, Figure 2, created with the superheat pack-
age [Barter and Yu, 2018], tells the story quite succintly.

Across these 62 datasets, we see that tests of no adverse shift
based on two-sample classification, residual diagnostics, and
predictive uncertainty (confidence-based OOD detection)
are indeed highly correlated. Residual diagnostics and pre-
dictive uncertainty, both of which mirror the performance of
the underlying supervised algorithm, are the most correlated
(Pearson correlation coefficient is 0.82). This suggests that
they can be used interchangeably, and by virtue of focusing
on predictive performance, are suitable metrics for model
monitoring. Two-sample classification is not as strongly as-
sociated with residual diagnostics and predictive uncertainty
(Pearson correlation coefficient is 0.5 and 0.47 respectively).
This arcs back to the point made in Section 2; namely, tests
of equal distribution alone are ill-equiped, by definition, to
detect whether a shift is benign or harmful for predictive
tasks.

Notice the datasets clustered together at the very top of Fig-
ure 2 with low s−values for two-sample classification but
high s−values for residual diagnostics and predictive un-
certainty. For these datasets, the distribution seems fine but
prediction suffers. To a somewhat lesser extent, also notice
the reverse effect at the bottom of Figure 2. These are the
false alarms we previously highlighted where we have rel-
atively higher s−values for two-sample classification than
for the other two notions of outlyingness. For these datasets,
prediction seems fine but the distribution is not. The link
between distribution shift and predictive performance can be
more tenuous than what we typically assume. When faced
with dataset shift, by rote we often reach for tests of equal
distribution. It may be more productive to deliberate over
the appropriate notions of outlyingness to detect adverse
shift.

7 CONCLUSION

D-SOS is a wrapper to turn outlier scores into a statistical
test. This framework, derived from tests of goodness-of-fit,
detects non-negligible adverse shifts. It can confront the
data with more pertinent hypotheses than tests of equal dis-
tribution. This works well when mapping to the relevant
outlier subspace discriminates between safe and unsafe re-
gions of the data distribution. Our method accommodates
different notions of outlyingness. It lets users define, via
a score function, what is meant by worse off. Besides the
outlier scores explored in this paper, we stress that other
sensible choices for the score functions ϕ and the weights w
abound. These can be adjusted to account for domain knowl-
edge. Looking ahead, future research could investigate other
weighting schemes. The functional form of the postulated
weights could be worth tuning. Moreover, composite score
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Figure 2: Heatmap of fixed effects for 62 datasets from the OpenML-CC18 benchmark, ordered via hierarchical clustering.
Fixed effects are exponentiated and reported on the s-value scale for 3 types of D-SOS test. The brighter the color, the
higher the s-value, the more prone the dataset to adverse shift caused by sampling variation.

function, which would combine several notions of outly-
ingness together, would enrich the types of hypotheses we
can test. We imagine situations where we want to combine
the strengths of confidence-based and density-based OOD
detection into a single aggregate score for example.
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