
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRINCIPLED RL FOR DIFFUSION LLMS EMERGES
FROM A SEQUENCE-LEVEL PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) has proven highly effective for autoregressive lan-
guage models, but adapting these methods to diffusion large language models
(dLLMs) presents fundamental challenges. The core difficulty lies in likelihood
approximation: while autoregressive models naturally provide token-level condi-
tional probabilities essential for token-level RL objectives (e.g., GRPO), dLLMs
generate sequences through iterative non-autoregressive denoising steps that lack
this factorization. To address this fundamental mismatch, we propose ELBO-
based Sequence-level Policy Optimization (ESPO), a principled RL framework
that treats entire sequence generation as a single action and uses the ELBO as
a tractable sequence-level likelihood proxy. Our method incorporates per-token
normalization of importance ratios and robust KL-divergence estimation to en-
sure stable large-scale training. Extensive experiments on mathematical reason-
ing, coding, and planning tasks demonstrate that ESPO significantly outperforms
token-level baselines, achieving dramatic improvements of 20-40 points on the
Countdown task, while maintaining consistent gains on math and coding bench-
marks. Our approach establishes sequence-level optimization as a principled and
empirically effective paradigm for RL in dLLMs.

1 INTRODUCTION

Large language models (LLMs) (OpenAI, 2023) have become a cornerstone of modern natural lan-
guage processing, achieving remarkable progress across math (Guo et al., 2025), coding (Hui et al.,
2024), and planning tasks (Yao et al., 2023). While autoregressive (AR) modeling has long dom-
inated this field, recent advances in diffusion large language models (dLLMs) have demonstrated
strong potential as an alternative formulation (Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024;
Nie et al., 2025; Ye et al., 2025). By modeling language generation as an iterative denoising process,
dLLMs bypass the left-to-right dependency of AR models and offer advantages in long context (Liu
et al., 2025a), multimodal (Yang et al., 2025; You et al., 2025a; Li et al., 2025; Yu et al., 2025) and
fast inference (Inception Labs et al., 2025; DeepMind, 2025; Song et al., 2025).

With the advent of powerful pretrained dLLMs, the next frontier lies in post-training (Ouyang et al.,
2022) to further enhance their capabilities. Among various post-training paradigms, reinforcement
learning (RL) has emerged as a powerful approach that enables test-time scaling (Snell et al., 2025)
through verifiable rewards (Guo et al., 2025). It has yielded substantial gains on reasoning tasks in
recent AR models (OpenAI, 2024), such as math (Cobbe et al., 2021b), coding (Chen et al., 2021),
and reasoning (Liu et al., 2023b). Motivated by this success, a natural question arises: how can we
extend reinforcement learning to dLLMs?

Applying RL to dLLMs, however, is nontrivial. Mainstream RL algorithms in language model-
ing (e.g., GRPO (Shao et al., 2024)) assume a left-to-right factorization of the sequence likelihood
and rely on token-level importance ratios πθ(y

k|x,y<k)
πθold (y

k|x,y<k)
. In contrast, dLLMs generate sequences

non-autoregressively, making such token-level conditionals either ill-defined or computationally ex-
pensive. Prior attempts to address this discrepancy have resorted to heuristic approximations—such
as mean-field surrogates (Zhao et al., 2025) or token-level ELBO contributions (Yang et al., 2025;
Gong et al., 2025)—or else computationally heavy trajectory-level formulations (Huang et al., 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

None of these approaches fully resolves the mismatch between autoregressive RL objectives and the
holistic generation process of dLLMs.

In this work, we address this fundamental conflict by introducing ELBO-based Sequence-level Policy
Optimization (ESPO), a sequence-level reinforcement learning framework tailored for dLLMs. Our
key insight is that dLLMs should not be forced into an autoregressive token-level action space.
Instead, we treat the generation of an entire sequence as a single action, leveraging the ELBO as
a tractable proxy for the intractable sequence log-likelihood. We further incorporate stabilization
techniques essential for large-scale training, including per-token normalization of the ELBO ratio
and robust KL-regularization. Our method eliminates the inconsistencies introduced by heuristic
token-level approximations and enables stable, computationally efficient training.

Empirically, we validate the effectiveness of our design through extensive ablation studies, which
confirm that combining sequence-level optimization with the ELBO/K2 objective provides a stable
and principled foundation for reinforcement learning in dLLMs. Beyond ablations, we further eval-
uate our method on mainstream tasks spanning mathematics, coding, and planning. Across both
LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025), our approach consistently outperforms prior
dLLM-RL baselines such as d1 (Zhao et al., 2025) and wd1 (Tang et al., 2025), with particularly
strong gains on planning tasks that require global consistency.

In summary, we make the following contributions:

• We provide a systematic analysis of why standard autoregressive RL objectives are incompatible
with the non-autoregressive dLLMs, clarifying the limitations of existing heuristic approaches.

• We propose ESPO, a principled sequence-level RL framework that leverages the ELBO as a
tractable proxy for sequence likelihood and introduces stabilized ratio and KL estimators for
robust large-scale training.

• We demonstrate through comprehensive experiments and ablation studies that ESPO yields sta-
ble optimization and consistent improvements across math, coding, and planning benchmarks,
surpassing prior dLLM-RL methods.

2 BACKGROUND

2.1 DIFFUSION LARGE LANGUAGE MODELS

Diffusion Large Language Models (dLLMs), or more specifically Masked Diffusion Models
(MDMs), define a forward process that gradually corrupts the clean input by replacing tokens with
the mask token M. Given the prompt x and the clean completions y, the forward process qt(yt | y, x)
at time t is defined as follows:

qt(yt|y, x) =
L∏

i=1

qt(y
i
t|yi, x) and qt(y

i
t|yi, x) =

{
t, yit = yi,

1− t, yit = M,
(1)

Unlike autoregressive models, the exact log-likelihood log πθ(y|x) in dLLMs is typically approxi-
mated via the evidence lower bound (ELBO) (Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024):

Lθ(y|x) ≜ Et∼U [0,1]Eyt∼qt(yt|y,x)

[
1

t

L∑
i=1

1[yit = M] log pθ(y
i|yt, x)

]
≤ log πθ(y|x), (2)

As noted in Ou et al. (2024); Nie et al. (2025); Zhu et al. (2025), Eq. (2) has an equivalent, lower-
variance variant that replaces the continuous masking ratio t with a discrete number of masked
tokens l:

L′
θ(y|x) ≜ El∼U({1,2,...,L})Eyl∼ql(yl|y,x)

[
L

l

L∑
i=1

1[yil = M] log pθ(y
i|yl, x)

]
, (3)

where l denotes the number of tokens masked (sampled uniformly), and yl represents the corrupted
sequence obtained by masking l tokens without replacement.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 REINFORCEMENT LEARNING

Policy gradient methods have been shown to be highly effective for post-training LLMs (Ouyang
et al., 2022). Among them, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is
widely adopted as it eliminates this need for a value model (Schulman et al., 2017) by replacing it
with a simpler Monte Carlo estimation: Given a prompt x, GRPO samples a group of G candidate
completions {y(i)}Gi=1 from the old policy πθold . Instead of estimating the baseline with a learned
value function, it computes the relative advantage of each sample as its reward minus the group
mean reward (Liu et al., 2025c). Incorporating a KL penalty, the resulting optimization objective is:

JGRPO(πθ) = Ex∼D,y(1),...,y(G)∼πθold (·|x)[
1

G

G∑
i=1

1

|y(i)|

|y(i)|∑
k=1

min(ρk,(i)Â(i), clip(ρk,(i), 1− ϵ, 1 + ϵ)Â(i))− βDKL(πθ, πref)

]
, (4)

where ρk,(i) = πθ(y
k,(i)|x,y<k,(i))

πθold (y
k,(i)|x,y<k,(i))

is the token-level importance ratio between policies, and Â(i) =

R(x, y(i))− 1
G

∑G
j=1 R(x, y(j)) denotes the group-relative advantage.

3 THE CHALLENGE OF THE TOKEN-LEVEL PERSPECTIVE IN DLLMS

The core challenge in applying Reinforcement Learning to dLLMs stems from a fundamental mis-
match between the dLLMs’ probabilistic modeling and the assumptions inherent in standard RL
algorithms. Mainstream policy gradient algorithms, including GRPO as formulated in Eq. (4), are
intrinsically designed for autoregressive models that factorize the sequence likelihood into a product
of conditional probabilities as πθ(y|x) =

∏L
k=1 πθ(y

k|x, y<k). This factorization naturally defines
a sequence of actions, allowing the objective to assign rewards at the token level via the impor-
tance ratio πθ(y

k|x,y<k)
πθold (y

k|x,y<k)
. However, dLLMs generate text non-autoregressively, refining a complete

sequence over iterative denoising steps. Consequently, the autoregressive conditional probability
πθ(y

k|x, y<k) is ill-defined or hard to compute, forcing existing methods to rely on heuristic prox-
ies to bridge this gap.

Early attempts to resolve this incompatibility focused on finding a suitable token-level substitute
for the AR conditional probability πθ(y

k|x, y<k). For instance, d1 (Zhao et al., 2025) employed a
mean-field approximation log pθ(y

k|x) as a proxy for log πθ(y
k|x, y<k). This approach is inaccu-

rate as it ignores the context provided by other tokens in the sequence y. Recognizing this limitation,
subsequent work such as UniGRPO (Yang et al., 2025) and Coupled-GRPO (Gong et al., 2025)
proposed a more sophisticated proxy: the token’s contribution to the ELBO, Lk

θ(y|x)1:

Lk
θ(y|x) ≜ Et∼U [0,1]Eyt∼qt(yt|y,x)

[
1

t
1[ykt = M] log pθ(y

k|yt, x)
]
. (5)

The Lk
θ(y|x) is better aligned with the nature of dLLM generation, since its computation involves

predicting a masked token given both x and the surrounding unmasked context from y. However, the
ELBO, Lθ(y|x) =

∑L
k=1 Lk

θ(y|x), is only valid on sequence level as lowerbound of log πθ(y|x). An
individual component Lk

θ(y|x) has no formal probabilistic interpretation as a conditional likelihood.
Therefore, the decomposition of ELBO at the token level and its heuristic substitution into the GRPO
objective (Eq. (4)) introduces an unknown inconsistency.

As analyzed above, the core issue is not merely about finding a better token-level proxy, but that
the token-level decomposition itself fundamentally does not fit for dLLMs. Forcing a dLLM into a
token-level AR framework rests on an improper assumption. This motivates our approach: instead
of adapting the dLLM model to fit the algorithm, we must adapt the algorithm to respect the holistic,
sequence-level nature of the dLLM model.

1Implementations may vary; for instance, UniGRPO’s ELBO-like term omits the 1
t

coefficient from Eq. (5),
akin to the simplified objective in DDPM (Ho et al., 2020).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 A PRINCIPLED SEQUENCE-LEVEL RL FRAMEWORK FOR DLLMS

Motivated by analysis in Section 3, we propose ELBO-based Sequence-level Policy Optimization
(ESPO) algorithm, which is tailored for dLLMs. Our approach is built on a sequence-level action
space, uses the ELBO as a tractable proxy for the sequence log-likelihood, and incorporates crucial
stabilization techniques for both the policy gradient objective and the KL-divergence regularizer.

4.1 THE SEQUENCE-LEVEL POLICY OBJECTIVE WITH ELBO APPROXIMATION

We begin by reformulating the RL objective to align with the nature of dLLM generation.

Sequence-Level Objective. Instead of viewing each token as an independent action, we treat the
generation of the entire sequence y as a single, atomic action. This naturally leads to a sequence-level
adaptation of the GRPO framework (Eq. (4)), where the token-level summation is removed. The ob-
jective now depends on a sequence-level importance ratio πθ(y

(i)|x)
πθold (y

(i)|x) . By substituting the intractable

log-likelihood log π(y(i)|x) with its ELBO approximation L(y(i)|x), we obtain the sequence-level
ratio for dLLM:

ρ(i)seq =
expLθ(y

(i)|x)
expLθold(y

(i)|x)
= exp(Lθ(y

(i)|x)− Lθold(y
(i)|x)) (6)

Plugging this into the GRPO objective gives us a vanilla sequence-level objective2 :

Jseq(πθ) =Ex∼D,y(1),...,y(G)∼πθold (·|x)

[
1

G

G∑
i=1

min(ρ(i)seqÂ
(i), clip(ρ(i)seq, 1− ϵ, 1 + ϵ)Â(i))

]
, (7)

While this sequence-level formulation correctly avoids the pitfall of splitting the ELBO at the token
level, we found this vanilla formulation to be practically unusable. The magnitude of the raw ELBO
difference, Lθ(y

(i)|x) − Lθold(y
(i)|x), typically scales linearly with the sequence length L. The

subsequent exponentiation results in astronomically large or infinitesimally small ratios, causing
unstable optimization.

To address this instability, we draw inspiration from GSPO (Zheng et al., 2025) and normalize the
log-ratio by the sequence length L. This transforms the unstable, raw log-likelihood difference into
a stable, per-token scale. Our final, stabilized importance ratio is:

ρ(i)seq = exp

(
1

L
(Lθ(y

(i)|x)− Lθold(y
(i)|x))

)
= exp

(
1

L

L∑
k=1

(Lk
θ(y

(i)|x)− Lk
θold

(y(i)|x))

)
. (8)

Plugging this stabilized ratio into the sequence-level objective (Eq. (7)) enables effective training.

Empirical Validation. To validate our design choices of using a sequence-level action space with
an ELBO approximation, we conduct a complete ablation study on the Sudoku benchmark. We
compare four variants: token-level actions with a mean-field likelihood, token-level with ELBO,
sequence-level with mean-field, and our proposed sequence-level with ELBO. The precise mathe-
matical formulations are detailed in Appendix B.1. As shown in Fig. 1, the results provide strong
empirical support for our analysis:

• Mean-field is a poor proxy. Both mean-field variants (orange and green curve) fail to learn
effectively, confirming that this approximation is fundamentally misaligned with the conditional
denoising process.

• Token-level ELBO is unstable. The Token-level + ELBO approach (red curve), while initially
promising, suffers from high instability and eventual collapse. This highlights the inconsistency
of breaking the ELBO’s integrity across tokens.

• Sequence-level ELBO is superior. Our proposed method (blue curve) is the only one to achieve
fast, stable learning that converges to the highest reward, validating that the sequence-level action
space paired with the holistic ELBO proxy is the correct and most effective approach.

2The KL term is omitted here for simplicity; a detailed discussion is provided later in Section 4.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Training Steps

0.0

0.2

0.4

0.6

0.8

Rewards
Token-level + Mean Field
Token-level + ELBO
Seq-level + Mean Field
Seq-level + ELBO

Figure 1: Training performance on the Sudoku
task under different action space (Token-level
vs. Sequence-level) and likelihood approxi-
mations (Mean-field vs. ELBO). Our method
(blue) combines a sequence-level action space
with an ELBO approximation, yielding the most
stable and highest performance.

0 500 1000 1500 2000 2500 3000 3500 4000
Training Steps

0.0

0.2

0.4

0.6

0.8

Rewards
k1
k2
k3

Figure 2: Training performance on the Sudoku
task with different KL-divergence estimators.
The k2 estimator (blue) achieves stable and su-
perior performance. The k1 estimator (orange) is
highly unstable and collapses, while the k3 esti-
mator (green) stagnates.

4.2 STABLE KL-DIVERGENCE ESTIMATION

The complete GRPO objective includes a KL-divergence term to regularize policy updates against
a reference policy. A common choice for token-level autoregressive models is the k3 estimator
(Schulman, 2017). However, a direct application of the k3 estimator to our sequence-level objective
is highly problematic. Its formulation, when approximating log-likelihoods with the ELBO, is:

K̂Lk3 = exp
(
Lref(y

(i)|x)− Lθ(y
(i)|x)

)
− 1−

(
Lref(y

(i)|x)− Lθ(y
(i)|x)

)
. (9)

As the formula shows, the k3 estimator contains an exponential term, which reintroduces the unsta-
ble problem similar to Eq. (6). To circumvent this exponential instability, we adopt the more robust
k2 estimator (Schulman, 2017), which is known to yield a correct gradient for KL optimization
(Tang & Munos, 2025b). Our practical and stable KL estimate becomes:

K̂Lk2 = 1
2

(
Lθ(y

(i)|x)− Lref(y
(i)|x)

)2
. (10)

Unlike the k3 estimator, the k2 estimator is a simple quadratic function of the ELBO difference.
This polynomial form avoids the exponential term entirely, ensuring that the gradient signal from
the KL regularizer remains stable and well-behaved, even for long sequences.

Empirical Validation. To demonstrate the critical impact of the KL estimator, we conduct an
ablation study on the Sudoku task comparing the performance of the k1, k2, and k3 estimators.
More details can be referenced in Appendix B.2. As shown in Fig. 2, the choice of estimator is
crucial for stable learning. The k3 estimator (green) fails to learn, with rewards stagnating at a
low level, which is consistent with our analysis of its unstable property. The k1 estimator (orange)
is also highly unstable; while it shows some initial progress, its performance violently fluctuates
before collapsing to zero midway through training. In stark contrast, the k2 estimator (blue) enables
stable and efficient learning, consistently improving and ultimately converging to the highest reward.
This result empirically validates that the k2 estimator is the most robust and effective choice for our
sequence-level framework.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Models & Tasks We apply our ESPO algorithm to two open-source dLLMs: LLaDA-8B-
Instruct (Nie et al., 2025) and Dream-7B-Instruct (Ye et al., 2025). For reference, we also report
evaluation results on LLaDA-1.5 for comparison. Following prior work (Zhao et al., 2025; Tang

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Model performance on mathematics and planning benchmarks. For each task, we train
a separate model. Countdown results with † for LLaDA-8B-Instruct, diffu-GRPO, and wd1 are from
Zhao et al. (2025); Tang et al. (2025), while other results are reproduced as detailed in Section 5.1.

GSM8K(0) MATH(0) Countdown Sudoku
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512

LLaDA-8B-Instruct 71.3 76.2 80.2 34.4 35.2 41.4 20.7† 19.5† 16.0† 24.8 16.2 6.0
+ diffu-GRPO (d1) 74.6 78.1 81.2 34.9 36.6 41.7 33.2† 31.3† 37.1† 26.7 24.1 15.9
+ wd1 77.2 80.8 82.3 33.3 37.7 39.8 47.7 51.2† 46.1† 22.6 22.0 24.6

+ ESPO (ours) 80.0 82.3 83.7 36.0 39.0 43.4 81.6 82.0 79.3 92.7 84.7 80.5
∆ (vs. Best Baseline) +2.8 +1.5 +1.4 +1.1 +1.3 +1.7 +33.9 +30.8 +33.2 +66.0 +60.6 +55.9

Dream-7B-Instruct 75.8 81.3 80.7 38.2 45.7 48.0 8.5 7.8 17.4 9.3 2.1 14.0
+ diffu-GRPO (d1) 77.0 81.9 81.7 39.4 46.9 48.9 27.3 27.7 37.5 64.4 69.7 51.1

+ ESPO (ours) 79.6 82.3 82.0 40.3 47.4 50.3 68.8 66.8 64.8 71.7 72.3 71.3
∆ (vs. Best Baseline) +2.6 +0.4 +0.3 +0.9 +0.5 +1.4 +41.5 +39.1 +27.3 +7.3 +2.6 +20.2

Table 2: Model performance on coding benchmarks. We train a single model and evaluate it
across multiple coding benchmarks (HumanEval and MBPP) at different sequence lengths. ESPO
consistently enhances the performance while even achieving competitive results compared with
LLaDA-1.5, which was trained on a privately collected dataset at a significantly larger scale.

HumanEval(0) MBPP(3)
- Plus - Plus

Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 26.8 37.8 48.8 23.2 30.5 41.5 38.2 37.0 38.2 36.8 36.8 37.8
+ ESPO (ours) 28.1 42.1 50.0 24.4 36.6 42.7 47.4 44.6 44.2 38.9 41.6 42.6
∆ (vs. Baseline) +1.3 +4.3 +1.2 +1.2 +6.1 +1.2 +9.2 +7.6 +6.0 +2.1 +4.8 +4.8
LLaDA-1.5 29.3 39.6 51.9 23.2 32.3 45.1 39.6 39.9 38.8 38.8 40.4 37.3

et al., 2025), we focus on three categories of reasoning tasks: (i) Mathematics: GSM8K (Cobbe
et al., 2021a) and MATH (Hendrycks et al., 2021), (ii) Coding: HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021b), EvalPlus (HumanEval+ and MBPP+) (Liu et al., 2023a) and (iii)
Planning: Countdown and Sudoku (Ye et al., 2024). For mathematical tasks, we train on the official
training split of each dataset. For coding tasks, we follow Gong et al. (2025) and train on a subset
of AceCoder-87K (Zeng et al., 2025). For planning tasks (Countdown and Sudoku), we train on
synthetic training data following Zhao et al. (2025).

Training To evaluate ESPO’s effectiveness, we apply it directly to the models without additional
task-specific SFT. For stable training, we adopt two standard variance reduction techniques: fol-
lowing Zhu et al. (2025), we use antithetic sampling, which shares the same noise level and mask
positions when estimating ELBO differences; and, inspired by Gong et al. (2025), we employ a
coupled-sampling scheme. All experiments use 2 Monte Carlo samples and a policy update value of
µ = 8, with further details provided in Appendices C and D.2.

Evaluation Following d1, we evaluate all benchmarks at generation lengths of 128, 256, and 512.
For mathematics and coding tasks, we use the official evaluation scripts provided by the LLaDA and
Dream repositories, respectively. For planning tasks, we adopt the evaluation code from d1, with the
exception of Sudoku, which is evaluated under a 1-shot prompting setup. To ensure fair comparison,
we re-run only those baselines whose reported settings differ from ours or whose results are missing
for specific lengths (e.g., when length-128 results were not originally reported).

5.2 BENCHMARK RESULTS

As shown in Table 1 and Table 2, our sequence-level RL algorithm, ESPO, consistently and
significantly outperforms both the original models and prior token-level RL baselines like diffu-
GRPO (Zhao et al., 2025) and wd1 (Tang et al., 2025), while achieving performance on coding tasks

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.0

0.2

0.4

0.6

0.8

R
ew

ar
ds

Countdown
ours
d1
wd1

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.0

0.2

0.4

0.6

0.8

R
ew

ar
ds

Sudoku
ours
d1
wd1

Figure 3: Training dynamics with different methods for Countdown and Sudoku tasks.

that is comparable to LLaDA-1.5. Notably, although our models are trained only on the sequence
length of 256, the improvements generalize effectively to other lengths.

Dominant Performance on Planning Tasks. The most dramatic improvements remain in plan-
ning tasks. On Countdown, ESPO consistently outperforms the strongest baselines by 20–40 abso-
lute points, while on the Sudoku tasks, the gains are up to over 60 points depending on the sequence
length. This strongly validates our core hypothesis: a sequence-level objective is superior for tasks
requiring holistic consistency, a property that token-level optimization fails to capture effectively.

Consistent Gains on Mathematics and Coding. On established mathematics and coding bench-
marks, the gains are more modest but still consistently positive. Note that the pre-existing knowledge
of the base models acts as a performance ceiling, limiting the maximum achievable gains through
RL fine-tuning alone. Despite this, our method reliably enhances performance, surpassing all previ-
ous token-level dLLM-RL methods and comparable with LLaDA-1.5. This demonstrates the broad
effectiveness of our approach even on knowledge-intensive tasks.

5.3 TRAINING DYNAMICS

Fig. 3 shows the training reward dynamics on Countdown and Sudoku, highlighting our method’s
superior performance. The difference is most pronounced on Sudoku, where our sequence-level
method rapidly converges to a near-optimal policy, while the token-level d1 and wd1 baselines
completely stagnate at low rewards. Similar trends can be observed on the Countdown task.

5.4 ABLATION EXPERIMENTS

Number of Monte Carlo Samples We investigate the impact of the number of Monte Carlo (MC)
samples used to estimate the ELBO. For this ablation, all other hyperparameters match those in our
main experiments. As shown in Fig. 4, increasing the number of MC samples consistently improves
training performance, though the magnitude of the effect is task-dependent. On the Sudoku task,
the impact is dramatic: MC=1 results in slow convergence, whereas increasing to MC=2 and MC=4
makes it significantly faster. This suggests that a more stable and lower-variance ELBO estimation
is crucial for navigating Sudoku’s reward landscape. For the Countdown task, the trend is similar
but less pronounced.

Number of different policy update values µ In these experiments, we varied µ while keeping all
other settings identical to our main setup. Our method demonstrates remarkable robustness to the
number of policy updates (µ) per data collection phase, as shown in Fig. 5. On both Countdown and
Sudoku, our approach successfully scales to large µ values, converging to a similarly high reward
across all settings, though smaller values (e.g., 8, 12) exhibit faster initial convergence on Sudoku.
We hypothesize that this robustness is linked to task complexity. While the policy for relatively
simple planning tasks can be updated aggressively, more complex domains like mathematics and
coding may have more brittle reward landscapes. In such cases, a large µ could lead to instability,
making smaller, more conservative update frequencies a safer and more effective choice.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Training Steps

0.0

0.2

0.4

0.6

0.8

R
ew

ar
ds

Countdown

MC=1
MC=2
MC=4

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.0

0.2

0.4

0.6

0.8

R
ew

ar
ds

Sudoku

MC=1
MC=2
MC=4

Figure 4: Ablation study on the number of Monte Carlo samples for Countdown and Sudoku.
We evaluate training performance with different MC sample counts (1, 2, 4), showing the effect of
increased sampling on reward optimization.

0 1000 2000 3000 4000 5000
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ew

ar
ds

Countdown

= 72
= 48
= 24
= 12
= 8

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

R
ew

ar
ds

Sudoku

= 8
= 12
= 24
= 48

Figure 5: Ablation study on the policy update values (µ) for Countdown and Sudoku. The
reward curves illustrate performance across a range of µ values. While smaller values (e.g., 8,
12) lead to faster initial convergence on Sudoku, the method is robust and achieves similarly high
rewards across all settings for Countdown and Sudoku tasks.

5.5 DISCUSSION OF TRAINING EFFICIENCY

In reinforcement learning for dLLMs, the total training time can be roughly decomposed into two
components: data generation (sampling) and policy updates (training). For dLLMs, the generation
phase typically dominates: each step requires non-autoregressive denoising over the full sequence,
preventing extensive reuse of KV cache. In contrast, the number of Monte Carlo samples M used
for ELBO estimation only affects the policy update phase, which is less computationally intensive.

To quantify the computational cost, we use FLOPs as a hardware-agnostic proxy. For a model
with N parameters and sequence length D, the forward and backward passes approximately require
Cforward = 2ND and Cbackward = 4ND FLOPs (Kaplan et al., 2020), respectively. We obtain the
total FLOPS per sample with coupled sampling as 2ND(K + 6µM) (see Appendix E for details),
where K is the sampling step, µ is the policy update values, and M is the number of MC samples.

We further validate this analysis on coding tasks using the same training configuration as in Sec-
tion 5.1, except that the number of MC samples M is varied from 1, 2, and 4. The resulting theoret-
ical FLOPs and empirical wall-clock training time are summarized in Table 3.

First, we observe that the theoretical FLOPs capture the overall trend of wall-clock time, consistent
with the fact that dLLM inference is a compute-bound process. The small discrepancy may be
attributed to factors such as GPU utilization, memory bandwidth, and communication overhead.

Second, focusing on the relative growth as M increases, our approach shows a much more moderate
increase in training cost. Since generation costs are fixed (dominated by K), increasing M only adds
to the policy update term, which is minor when M is within a proper range. For example, increasing
M from 1 to 4 raises the total FLOPs by only about 47% in our case, consistent with the observed
wall-clock time. In contrast, for ELBO-based DPO algorithms such as VRPO (Zhu et al., 2025),
their training time scales almost linearly with M (e.g., a 4× increase from M = 1 to M = 4).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Training cost under different numbers of Monte Carlo (MC) samples for 100 steps on
the coding task. Following the setting in Section 5.1, the training parameters are set as denoising
steps K = 256 and policy updates value µ = 8 . Experiments are conducted under H200 GPUs.

MC Samples (M) 1 2 4
Wall-clock Time (hrs) 5.61 (100%) 6.78 (121%) 9.06 (161%)
Theoretical FLOPs 608ND (100%) 704ND (116%) 896ND (147%)

6 RELATED WORK

Diffusion language models. dLLMs have recently emerged as a powerful approach for sequence
modeling, leveraging discrete diffusion (Austin et al., 2021a; Campbell et al., 2022; Meng et al.,
2023; Lou et al., 2024; Zhao et al., 2024), or in particular masked diffusion models (Ou et al.,
2024; Sahoo et al., 2024; Shi et al., 2024). Distinct from autoregressive models (OpenAI, 2023)
that heavily rely on the left-to-right causal factorization of the sequence, dLLMs instead operate
directly on the sequence-level for each diffusion step and enable flexible order sampling (Kim et al.,
2025) and parallel decoding (Arriola et al., 2025). While they have shown great promise in various
domains (Kwon et al., 2025; Ma et al., 2025; Liu et al., 2025b; Wu et al., 2025; Hu et al., 2025; You
et al., 2025b) when scaled up (Nie et al., 2024; Prabhudesai et al., 2025; Ni & the team, 2025), and
their adaptation to downstream tasks with specific reward signals still has room for exploration.

RL for language models. Reinforcement learning (Schulman et al., 2017) has proven effective in
enhancing language model performance, particularly when rewards can be obtained via automated
verifiers, a paradigm known as reinforcement learning with verifiable rewards (RLVR) (OpenAI,
2024). Methods such as GRPO (Shao et al., 2024; Guo et al., 2025) and related works (Luo et al.,
2025) have improved reasoning capabilities and achieved strong performance across diverse tasks.
However, directly applying these techniques to dLLMs is challenging, primarily due to the difficulty
of likelihood computation.

RL for diffusion language models. Several works have explored leveraging RL to enhance the
performance of dLLMs. For general discrete diffusion models, Zhang et al. (2025) proposes a
framework by target concrete score matching, and Zekri & Boullé (2025) proposes score entropy
policy optimization. For masked diffusion models, LLadou (Huang et al., 2025) uses RL and trains
an additional module to predict the position for decoding. It models each denoising step as an
action, stores the entire trajectory, and optimizes the conditional probability of each intermediate
state. However, in offline settings, optimizing over multi-step trajectories requires repeated forward
and backward passes growing linearly with the number of denoising steps, which is prohibitive for
large-scale models. Various works (Zhao et al., 2025; Tang et al., 2025) have proposed mean-field
surrogates of the likelihood that are efficient to compute to enhance efficiency. Yet, the approxima-
tions significantly trade off with quality and hinder the multi-step generation capability of the model.
Our work instead develops a discrete diffusion RL objective from a principled sequence-level likeli-
hood evaluation via efficient MC estimate, different from Yang et al. (2025); Gong et al. (2025) that
evaluates the likelihood on the token-level heuristics.

7 CONCLUSION

In this work, we identified the fundamental incompatibility between autoregressive RL objectives
and the non-autoregressive nature of dLLMs, and proposed ESPO, a principled sequence-level rein-
forcement learning framework that leverages the ELBO as a tractable proxy for sequence likelihood.
By treating sequence generation as a single action and introducing stabilized importance ratios and
KL regularization, ESPO eliminates inconsistencies in prior token-level approaches and enables ro-
bust and efficient large-scale training. Extensive experiments on math, coding, and planning bench-
marks demonstrate that our method consistently outperforms existing dLLM-RL baselines. Our
results establish sequence-level optimization as a principled and empirically effective paradigm for
RL in diffusion language models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work is purely methodological and does not involve human subjects or sensitive data. Ex-
periments are conducted on publicly available benchmarks, and results are reported in aggregate.
We highlight that while our techniques improve efficiency and accuracy, they should be applied
responsibly to avoid potential misuse.

REPRODUCIBILITY STATEMENT

We will open-source our code and checkpoints after the blind review. Comprehensive explanation
and details of our theory and experiments can be found in Appendices B to D.

REFERENCES

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 17981–17993, 2021a.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. ArXiv preprint, abs/2108.07732, 2021b.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
A. Doucet. A continuous time framework for discrete denoising models. In Advances in Neural
Information Processing Systems, 2022.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, pp. 11305–11315. IEEE, 2022. doi: 10.1109/
CVPR52688.2022.01103.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. ArXiv preprint, abs/2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. ArXiv preprint, abs/2110.14168,
2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. ArXiv preprint, abs/2110.14168, 2021b.

DeepMind. Gemini diffusion, 2025. URL https://deepmind.google/models/
gemini-diffusion/.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
eration, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. ArXiv preprint, abs/2501.12948, 2025.

10

https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S. Abdelfattah, Jae-sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion. ArXiv preprint, abs/2505.21467, 2025.

Zemin Huang, Zhiyang Chen, Zijun Wang, Tiancheng Li, and Guo-Jun Qi. Reinforcing the diffusion
chain of lateral thought with diffusion language models. ArXiv preprint, abs/2505.10446, 2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren,
Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, Aditya Grover, and
Volodymyr Kuleshov. Mercury: Ultra-fast language models based on diffusion, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. arXiv preprint
arXiv:2502.06768, 2025.

Taeyoun Kwon, Junhyuk Ahn, Taegeun Yun, Heeju Jwa, Yoonchae Choi, Siwon Park, Nam-Joon
Kim, Jangchan Kim, Hyun Gon Ryu, and Hyuk-Jae Lee. Whisfusion: Parallel asr decoding via a
diffusion transformer, 2025.

Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
model for multimodal understanding. ArXiv preprint, abs/2505.16839, 2025.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents, 2023b.

Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and Xipeng Qiu. Longllada:
Unlocking long context capabilities in diffusion llms, 2025a.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching,
2025b.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective. In Conference on Language
Modeling (COLM), 2025c.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. In International Conference on Machine Learning, ICML, 2024.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at o3-mini level, 2025. Notion Blog.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. ArXiv preprint, abs/2505.15781, 2025.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: General-
ized score matching for discrete data, 2023.

Jinjie Ni and the team. Diffusion language models are super data learners, 2025. Notion Blog.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. ArXiv preprint, abs/2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

OpenAI. Gpt-4 technical report. ArXiv preprint, abs/2303.08774, 2023.

OpenAI, Sep 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
ArXiv preprint, abs/2406.03736, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022.

Mihir Prabhudesai, Mengning Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffu-
sion beats autoregressive in data-constrained settings, 2025.

Subham S. Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T. Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language mod-
els. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: An-
nual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, 2024.

John Schulman. kl-approx blogpost. https://joschu.net/blog/kl-approx.html,
2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv preprint, abs/1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. ArXiv preprint, abs/2402.03300, 2024.

12

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://joschu.net/blog/kl-approx.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and gener-
alized masked diffusion for discrete data. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural In-
formation Processing Systems 38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth In-
ternational Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=4FWAwZtd2n.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, Yuwei Fu, Jing Su, Ge Zhang, Wenhao Huang, Mingxuan Wang,
Lin Yan, Xiaoying Jia, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Yonghui Wu, and Hao Zhou.
Seed diffusion: A large-scale diffusion language model with high-speed inference, 2025.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy opti-
mization for reasoning in diffusion language models, 2025.

Yunhao Tang and Rémi Munos. On a few pitfalls in kl divergence gradient estimation for rl. arXiv
preprint arXiv:2506.09477, 2025a.

Yunhao Tang and Rémi Munos. On a few pitfalls in kl divergence gradient estimation for rl, 2025b.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. ArXiv preprint, abs/2505.22618, 2025.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. ArXiv preprint, abs/2505.15809, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning, 2024.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025.

Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
Li. Llada-v: Large language diffusion models with visual instruction tuning. arXiv preprint
arXiv:2505.16933, 2025a.

Zebin You, Jingyang Ou, Xiaolu Zhang, Jun Hu, Jun Zhou, and Chongxuan Li. Effective and
efficient masked image generation models, 2025b.

Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
model with parallel decoding. ArXiv preprint, abs/2505.16990, 2025.

Oussama Zekri and Nicolas Boullé. Fine-tuning discrete diffusion models with policy gradient
methods. ArXiv preprint, abs/2502.01384, 2025.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis. ArXiv preprint, abs/2502.01718, 2025.

Ruixiang Zhang, Shuangfei Zhai, Yizhe Zhang, James Thornton, Zijing Ou, Joshua Susskind, and
Navdeep Jaitly. Target concrete score matching: A holistic framework for discrete diffusion.
ArXiv preprint, abs/2504.16431, 2025.

13

https://openreview.net/forum?id=4FWAwZtd2n
https://github.com/huggingface/trl

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lingxiao Zhao, Xueying Ding, Lijun Yu, and Leman Akoglu. Improving and unifying
discrete&continuous-time discrete denoising diffusion. ArXiv preprint, abs/2402.03701, 2024.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. ArXiv preprint, abs/2504.12216, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy op-
timization, 2025.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
optimization for large language diffusion models. ArXiv preprint, abs/2505.19223, 2025.

A THE USE OF LARGE LANGUAGE MODELS

During the writing of this work, Large Language Models (LLMs) were used as auxiliary tools to
assist with language polishing, grammar checking, and improving the readability of tables and figure
captions. We will take full responsibility for all parts of the paper.

B DETAILS FOR ABLATION STUDY IN SECTION 4

B.1 ABLATION FOR ACTION SPACE AND LIKELIHOOD APPROXIMATION

To better analyze the objectives used in the ablation study (Fig. 1), we start by revisiting the GRPO
formulation in Eq. (4). For clarity, we focus on its form for a single data sample (x, y(i)) of length
L. This yields the single-sample objective:

J (x, y(i)|θ) = Â(i)

L

L∑
k=1

min
(
ρk,(i), clip(ρk,(i), 1− ϵ, 1 + ϵ)

)
, (11)

where ρk,(i) = πθ(y
k,(i)|x,y<k,(i))

πθold (y
k,(i)|x,y<k,(i))

.

To highlight the core mechanism, we omit the clipping operator and obtain the simplified form:

J (x, y(i)|θ) = Â(i)

L

L∑
k=1

ρk,(i). (12)

Building on the simplified form in Eq. (12), we now extend the formulation to dLLMs. Since dLLMs
do not provide autoregressive conditional probabilities directly, prior work replaces or approximates
ρk,(i) with diffusion-based likelihood surrogates. This gives rise to four variants used in our ablation:

• Token-level + Mean-field (Orange Curve): This approach, introduced by d1 (Zhao et al.,
2025), applies a token-wise importance ratio using the mean-field approximation.

J (x, y(i)|θ) = Â(i)

L

L∑
k=1

pθ(y
k,(i)|x)

pθold(y
k,(i)|x)

=
Â(i)

L

L∑
k=1

exp
(
log pθ(y

k,(i)|x)− log pθold(y
k,(i)|x)

)
.

(13)

• Sequence-level + Mean-field (Green Curve): This baseline extends the mean-field approach
to the sequence level.

J (x, y(i)|θ) = Â(i) · exp

(
1

L

L∑
k=1

[
log pθ(y

k,(i)|x)− log pθold(y
k,(i)|x)

])
. (14)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Token-level + ELBO (Red Curve): This method replaces the mean-field term with the token’s
contribution to the ELBO, but problematically computes the ratio for each token individually.
Gong et al. (2025); Yang et al. (2025) follows this approach.

J (x, y(i)|θ) = Â(i)

L

L∑
k=1

exp
(
Lk
θ(y

(i)|x)− Lk
θold

(y(i)|x)
)
. (15)

• Sequence-level + ELBO (Ours, Blue Curve): Our proposed method. It uses the ELBO as
a proxy for the entire sequence log-likelihood and normalizes the log-ratio for stability, as de-
scribed in Eq. (7) and Eq. (8).

J (x, y(i)|θ) = Â(i) · exp
(
1

L

[
Lθ(y

(i)|x)− Lθold(y
(i)|x)

])
= Â(i) · exp

(
1

L

L∑
k=1

[
Lk
θ(y

(i)|x)− Lk
θold

(y(i)|x)
])

. (16)

B.2 ABLATION FOR KL DIVERGENCE ESTIMATOR

Pitfalls in the k3 estimator. The k3 estimator commonly adopted in GRPO is given by

K̂Lk3(πθ, πref) = Ey∼πθ

[
πθ(y)

πref(y)
− 1 + log

πθ(y)

πref(y)

]
, (17)

where πθ and πref are the target and reference policies. However, we argue that the k3 estimator has
several pitfalls.

First, the k3 estimator introduces training instability. For a model with the output instead directly
parameterizes the log policy, or logits, the k3 estimator requires to take the exponent:

K̂Lk3 = Ey∼πθ

[
exp

(
gθ(y)

gref(y)

)
− 1 +

gθ(y)

gref(y)

]
, (18)

where gθ(y) = log πθ(y) and gref(y) = log πref(y). We empirically find that during RL training
gθ(y) may incur instability which will be magnified by the exponent, i.e., the first term in Eq. 18.

Besides, while the k3 estimator itself is an unbiased estimate of KL-divergence, its gradient is
not (Tang & Munos, 2025a). In fact, it is shown that its gradient is instead an unbiased estimate
of reverse-KL (Tang & Munos, 2025a):

E
[
∇̂KLk3(πθ, πref)

]
= E

[
∇̂KL(πref , πθ)

]
̸= E

[
∇̂KL(πθ, πref)

]
. (19)

Therefore, the optimization using k3 estimator will exploit gradients that indeed optimize towards
the reverse-KL, which will empirically lead to a different converged policy with bounded model
capacity.

Pitfalls in the k1 estimator. Another alternative is the original k1 estimator for KL-divergence,
which is given by

K̂Lk1(πθ, πref) = Ey∼πθ

[
log

πθ(y)

πref(y)

]
. (20)

However, by taking the gradient w.r.t. θ on Eq. 20, it is proved(Tang & Munos, 2025a) that the
gradient equals zero, which means the k1estimator has no signal of the KL constraint. Our empirical
observation in Fig. 2 also reflects this finding, where the RL training with k1 KL estimator leads to
model collapse as evidenced by the remarkable drop in reward in late training steps.

The k2 estimator. We propose to employ the k2 estimator

K̂Lk2(πθ, πref) = Ey∼πθ

[
1

2
(log πθ(y)− log πref(y))

2

]
, (21)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

which leads to

K̂Lk2 = Ey∼πθ

[
1

2
(gθ(y)− gref(y))

2

]
, (22)

under the log parameterization. The k2 estimator takes the form of an MSE loss that does not involve
exponential term, and we observe that it significantly enhances training stability. Furthermore, the
gradient of the k2 estimator is indeed unbiased (Tang & Munos, 2025a):

E
[
∇̂KLk2(πθ, πref)

]
= E

[
∇̂KL(πθ, πref)

]
(23)

as opposed to the biased estimate in k3 estimator. The benefits of leveraging k2 estimator is also
empirically verified by extensive experiments, as we have demonstrated in Fig. 2.

C VARIANCE REDUCTION

As discussed in Section 2.1, there are two equivalent formulations of the ELBO. Empirically, Eq. (3)
exhibits lower variance than Eq. (2) (Ou et al., 2024; Nie et al., 2025). Therefore, we adopt Eq. (3)
as our estimator for the ELBO. To further stabilize training, we incorporate two variance reduction
techniques: antithetic sampling through mask sharing (Zhu et al., 2025) and coupled sampling
(Gong et al., 2025), which we describe below.

Antithetic Sampling through Mask Sharing. Antithetic sampling through mask sharing is used
when computing the difference between two ELBO terms, such as Lθ(y|x)−Lθold(y|x) in Eq. (8) and
Lθ(y|x)−Lθref(y|x) in Eq. (10). Concretely, we share the sampled timesteps and masked positions
between the Monte Carlo estimators of the two policies, thereby reducing variance through negative
correlation.

Coupled Sampling. Coupled sampling was originally proposed for the ELBO in the form of
Eq. (2) (Gong et al., 2025), but we adapt it to Eq. (3). Note that Eq. (3) is equivalent to

El∼U({0,1,2,...,L})Eyl∼q(yl|l,y,x)[ℓθ(yl, l, y|x)], (24)

where

ℓθ(yl, l, y|x) ≜


L+ 1

l

L∑
i=1

1[yil = M] log pθ(y
i | yl, x), l > 0,

0, l = 0.

(25)

Based on this formulation, we introduce a complementary masking strategy. For each sampled
mask yl, we construct a complementary mask ỹl such that the two masks partition the token set:
every token masked in yl is unmasked in ỹl, and vice versa. We then average the two losses, which
is also equivalent:

El∼U({0,1,2,...,L})Eyl∼q(yl|l,y,x)

[
ℓθ(yl, l, y|x) + ℓθ(ỹl, L− l, y|x)

2

]
. (26)

This construction guarantees that every token contributes at least once to the learning signal. Further,
the estimator achieves lower variance and yields a more stable optimization objective.

D EXPERIMENT DETAILS

As described in Section 5.1, we train separate models for each of the GSM8K, Math, Sudoku, and
Countdown tasks using their respective training datasets. For code tasks, we train a unified model on
AceCoder-87K (Zeng et al., 2025) and evaluate it on four benchmarks: HumanEval, HumanEval-
Plus, MBPP, and MBPP-Plus.

All models are trained with a maximum sequence length of 256, while evaluation is performed at
sequence lengths of 128, 256, and 512 to better assess length generalization.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.1 INFERENCE SETTING

For simpler planning tasks (Sudoku and Countdown), we unmask 2 tokens per denoising step, re-
sulting in L/2 total denoising steps (where L = 256 is the sequence length). For other tasks, the
number of denoising steps is set equal to the sequence length to improve performance.

Sampling strategies are model-specific:

• LLaDA: We employ low-confidence sampling (Chang et al., 2022) combined with a semi-
autoregressive decoding strategy (Arriola et al., 2025; Nie et al., 2025), with block length set
to 32 for all tasks. Training and evaluation share most sampling settings, except that the temper-
ature is 0.9 during training and 0 (greedy decoding) during evaluation, following the evaluation
codebase (Nie et al., 2025).

• Dream: We use top negative entropy remasking and pure diffusion sampling, without semi-
autoregressive decoding (Ye et al., 2025). Temperature is set to 0.9 during training and 0.1 during
evaluation, while other sampling settings remain consistent.

D.2 TRAINING DETAILS

All reinforcement learning training is conducted using the TRL library (von Werra et al., 2020).

Parameter-Efficient Fine-Tuning For GSM8K, Math, Countdown, and Sudoku, we apply
LoRA (Hu et al., 2022) with rank r = 128 and scaling factor α = 64. For code tasks, full pa-
rameter fine-tuning is used to maximize performance.

Optimization Policy update value is set to µ = 8, and the number of Monte Carlo (MC) samples
is M = 2 for computational efficiency. Models are optimized using AdamW (Loshchilov & Hutter,
2019) with β1 = 0.9, β2 = 0.99. A constant learning rate schedule is used. For LoRA-based tasks,
the learning rate is 3 · 10−6 with weight decay 0.01 and gradient clipping 0.2. For code tasks, the
learning rate is 1 · 10−6, weight decay 0.1, and gradient clipping 0.8.

Batching We set the group size G in Eq. (7) and total batch size according to the difficulty of the
tasks: GSM8K, Countdown, Sudoku use G = 6 and total batch size 96, Math uses G = 16 and
batch size 256, and code tasks use G = 10 and batch size 160. Gradient accumulation is applied to
enlarge the effective batch size.

Training Steps Models are evaluated when the reward curve converges. Code tasks are trained
for 2k steps, Math for 3k steps, LLaDA planning tasks for 10k steps, and Dream planning tasks for
8k steps.

Special Notes on Sudoku The Sudoku setup in Dream (Ye et al., 2025) differs from d1 (Zhao
et al., 2025). The prompt and data format in Dream are inconsistent with d1 (see Appendix F.1).
Additionally, Dream restricts the generation length to 24 tokens, encouraging direct answers without
intermediate reasoning. In contrast, d1 uses longer generation lengths (128/256/512), allowing the
model to produce both intermediate reasoning steps and final answers.

In the main text, we report results under the d1 setting, as it better reflects the ability of models to
perform multi-step reasoning when guided by our reinforcement learning algorithm. For complete-
ness, we also present model performance under the Dream setting in Table 4.

E DETAILS OF TRAINING FLOPS

Recent advances in dLLMs (Wu et al., 2025; Ma et al., 2025; Liu et al., 2025b) enable partial usage
of KV cache, but it will lead to the loss of downstream performance. Therefore, our analysis focuses
on the vanilla case without KV cache.

As we mentioned in Section 5.5, for a model with N parameters and sequence length D, we use
Cforward = 2ND and Cbackward = 4ND to approximate the forward and backward passes FLOPS

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Model performance on Sudoku under the Dream setting (generation length = 24).
Unlike the d1 setting, the Dream setting restricts generation to 24 tokens, encouraging models to
output answers directly without intermediate reasoning.

Model Accuracy (%)
Dream-7B-Instruct 98.1
+ diffu-GRPO (d1) 96.0
+ ESPO (ours) 98.0

according to Kaplan et al. (2020). Combining the costs of generation and policy updates, we obtain
the naive formula of total FLOPs per sample:

Ftotal = K · Cforward + µM(Cforward + Cbackward) = 2ND(K + 3µM), (27)

where K is the sampling step, µ is the policy update values, and M is the number of MC samples.
When using the coupled-sampling technique ,we will double the FLOPS of policy updates step,
which leads to:

Ftotal = K · Cforward + 2µM(Cforward + Cbackward) = 2ND(K + 6µM), (28)

Which indicates increasing M only adds to the policy update term (6µM in Eq. (28)). When K ≫
6µM , the overall training cost grows mildly with M .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F TEXT DEMOS

F.1 SUDOKU PROMPTS

One-shot prompt for Sudoku task (d1-style settings):

Please solve the following 4x4 Sudoku puzzle. The puzzle is provided as a
16-character string reading left-to-right, top-to-bottom, where ’0’

represents empty cells.

Rules:
- Fill empty cells with digits 1-4.
- Each row must contain digits 1-4 exactly once.
- Each column must contain digits 1-4 exactly once.
- Each 2x2 box must contain digits 1-4 exactly once.

Example:
Puzzle: 0401002010030310
This puzzle grid looks like this:
0 4 | 0 1
0 0 | 2 0
----+----
1 0 | 0 3
0 3 | 1 0

Solution: 2431312412434312
The solved grid looks like this:
2 4 | 3 1
3 1 | 2 4
----+----
1 2 | 4 3
4 3 | 1 2

Important: Your solution must be a COMPLETE 16-character string with
only the digits 1-4, representing your final solved grid.

Respond in this exact format:
<reasoning>
Your step-by-step solving process
</reasoning>
<answer>
[16-character solution string with no spaces or separators]
</answer>

Now, solve the following Sudoku puzzle: 1240300020140100

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

One-shot prompt for Sudoku task (dream-style settings):

<|im_start|>system
You are an AI assistant skilled at solving Sudoku puzzles.<|im_end|>
<|im_start|>user
Fill the positions where the values are 0 in a 4x4 grid with digits 1-4

so that each column, each row, and each of the four 2x2 subgrids that
compose the grid contains all of the digits from 1 to 4.

Input:
0321
0030
0400
2100
Output:
4321
1234
3412
2143

Input:
0001
2100
1430
3000
Output:
<|im_end|>
<|im_start|>assistant

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.2 SUDOKU ANSWERS

Below, we show demos for answers for LLaDA+d1 and LLaDA+ ESPO:

Answer from LLaDA+d1:

To solve this 4x4 Sudoku puzzle, we need to fill in the empty cells with
digits 1-4 such that each row, column, and 2x2 box contains all
digits exactly once. We can start by examining the given digits and
trying to fill them in according to the Sudoku rules.

1. The first row has the 0’ and the 4’s in the first and fourth columns.
2. The second row has the 4’s in the first and fourth columns.
3. The third row has the 3 in the second column.
4. The fourth row has the 2 in the fourth column.
5. The fifth row has the 1 in the first column.
6. The fourth row has the 3 in the first column.
7. The first row has the 4 in the fourth column.

Using this information, we can start filling in the grid. We need to
ensure that each row, column, and 2x2 box contains the digits 1-4
exactly once.

</reasoning>
<answer>
12340
40221
30114
</answer>

Answer from LLaDA+ ESPO (ours):

<reasoning>
To solve the 4x4 Sudoku puzzle, we need to fill in the grid with digits

1-4 such that each row, column, and 2x2 box contains all the digits
exactly once. We can start by filling in the cells with the given
digits and check for conflicts.

First, let’s fill in the grid with the given digits:
3 2 0 4
0 0 3 0
1 4 0 0
2 0 0 1

Next, let’s try filling fill in the remaining with digits 1-4, ensuring
each row, column, and 2x2 box contains all the digits once.

After trying different combinations, we find a valid solution:
3 2 1 4
4 1 3 2
1 4 2 3
2 3 4 1

This solution satisfies all the rules: each row, column, and box contains
all digits 1-4 exactly once.

</reasoning>

<answer>
3214413214232341
</answer>

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F.3 COUNTDOWN

Countdown (LLaDA+d1): Target: 94 — Numbers: [77, 73, 98]

<reasoning>
To create an arithmetic expression that evaluates to 94 using the numbers

[77, 73, 98], we need to find the correct combination of operations
(+, -, *, /) that will inbalance the the larger number 98 and the
smaller numbers to 94.

</reasoning>
<answer>
77*73-98
</answer>

Countdown (LLaDA+ESPO): Target: 67 — Numbers:[72, 92, 47]

<reasoning>
To create an arithmetic expression that evaluates to exactly 67 using the

numbers [72, 92, 47], we need to consider the operations +, -, *,
and / Let’s start by examining the largest numbers and see if they
can combine to give us target 67.

1. If we add 92 and 72, we get 164, which is too than 67.
2. If we subtract 92 and 72, we get 20, which is less than 67.
3. If we add 92 and 47, we get 139, which is more than 67.
4. If we subtract 72 and 47, we get 25, which is less than 67.

. If we combine 92 and 72, we get 164, which is more than 67.

Combining 92 and 47 will the closest answer to 67.
</reasoning>
<answer>
92 -72 + 47
</answer>

22

	Introduction
	Background
	Diffusion Large Language Models
	Reinforcement Learning

	The Challenge of the Token-Level Perspective in dLLMs
	A Principled Sequence-Level RL Framework for dLLMs
	The Sequence-Level Policy Objective with ELBO Approximation
	Stable KL-Divergence Estimation

	Experiment
	Experimental Setup
	Benchmark Results
	Training Dynamics
	Ablation Experiments
	Discussion of Training Efficiency

	Related work
	Conclusion
	The Use of Large Language Models
	Details for Ablation Study in sec:method
	Ablation for Action Space and Likelihood Approximation
	Ablation for KL Divergence Estimator

	Variance Reduction
	Experiment Details
	Inference Setting
	Training Details

	Details of Training FLOPs
	Text Demos
	Sudoku Prompts
	Sudoku Answers
	Countdown

