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ABSTRACT

Reinforcement Learning (RL) has proven highly effective for autoregressive lan-
guage models, but adapting these methods to diffusion large language models
(dLLMs) presents fundamental challenges. The core difficulty lies in likelihood
approximation: while autoregressive models naturally provide token-level condi-
tional probabilities essential for token-level RL objectives (e.g., GRPO), dLLMs
generate sequences through iterative non-autoregressive denoising steps that lack
this factorization. To address this fundamental mismatch, we propose ELBO-
based Sequence-level Policy Optimization (ESPO), a principled RL framework
that treats entire sequence generation as a single action and uses the ELBO as
a tractable sequence-level likelihood proxy. Our method incorporates per-token
normalization of importance ratios and robust KL-divergence estimation to en-
sure stable large-scale training. Extensive experiments on mathematical reason-
ing, coding, and planning tasks demonstrate that ESPO significantly outperforms
token-level baselines, achieving dramatic improvements of 20-40 points on the
Countdown task, while maintaining consistent gains on math and coding bench-
marks. Our approach establishes sequence-level optimization as a principled and
empirically effective paradigm for RL in dLLMs.

1 INTRODUCTION

Large language models (LLMs) (OpenAI, 2023) have become a cornerstone of modern natural lan-
guage processing, achieving remarkable progress across math (Guo et al., 2025), coding (Hui et al.,
2024), and planning tasks (Yao et al., 2023). While autoregressive (AR) modeling has long dom-
inated this field, recent advances in diffusion large language models (dLLMs) have demonstrated
strong potential as an alternative formulation (Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024;
Nie et al., 2025; Ye et al., 2025). By modeling language generation as an iterative denoising process,
dLLMs bypass the left-to-right dependency of AR models and offer advantages in long context (Liu
et al., 2025a), multimodal (Yang et al., 2025; You et al., 2025a; Li et al., 2025; Yu et al., 2025) and
fast inference (Inception Labs et al., 2025; DeepMind, 2025; Song et al., 2025).

With the advent of powerful pretrained dLLMs, the next frontier lies in post-training (Ouyang et al.,
2022) to further enhance their capabilities. Among various post-training paradigms, reinforcement
learning (RL) has emerged as a powerful approach that enables test-time scaling (Snell et al., 2025)
through verifiable rewards (Guo et al., 2025). It has yielded substantial gains on reasoning tasks in
recent AR models (OpenAI, 2024), such as math (Cobbe et al., 2021b), coding (Chen et al., 2021),
and reasoning (Liu et al., 2023b). Motivated by this success, a natural question arises: how can we
extend reinforcement learning to dLLMs?

Applying RL to dLLMs, however, is nontrivial. Mainstream RL algorithms in language model-
ing (e.g., GRPO (Shao et al., 2024)) assume a left-to-right factorization of the sequence likelihood
and rely on token-level importance ratios πθ(y

k|x,y<k)
πθold (y

k|x,y<k)
. In contrast, dLLMs generate sequences

non-autoregressively, making such token-level conditionals either ill-defined or computationally ex-
pensive. Prior attempts to address this discrepancy have resorted to heuristic approximations—such
as mean-field surrogates (Zhao et al., 2025) or token-level ELBO contributions (Yang et al., 2025;
Gong et al., 2025)—or else computationally heavy trajectory-level formulations (Huang et al., 2025).
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None of these approaches fully resolves the mismatch between autoregressive RL objectives and the
holistic generation process of dLLMs.

In this work, we address this fundamental conflict by introducing ELBO-based Sequence-level Policy
Optimization (ESPO), a sequence-level reinforcement learning framework tailored for dLLMs. Our
key insight is that dLLMs should not be forced into an autoregressive token-level action space.
Instead, we treat the generation of an entire sequence as a single action, leveraging the ELBO as
a tractable proxy for the intractable sequence log-likelihood. We further incorporate stabilization
techniques essential for large-scale training, including per-token normalization of the ELBO ratio
and robust KL-regularization. Our method eliminates the inconsistencies introduced by heuristic
token-level approximations and enables stable, computationally efficient training.

Empirically, we validate the effectiveness of our design through extensive ablation studies, which
confirm that combining sequence-level optimization with the ELBO/K2 objective provides a stable
and principled foundation for reinforcement learning in dLLMs. Beyond ablations, we further eval-
uate our method on mainstream tasks spanning mathematics, coding, and planning. Across both
LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025), our approach consistently outperforms prior
dLLM-RL baselines such as d1 (Zhao et al., 2025) and wd1 (Tang et al., 2025), with particularly
strong gains on planning tasks that require global consistency.

In summary, we make the following contributions:

• We provide a systematic analysis of why standard autoregressive RL objectives are incompatible
with the non-autoregressive dLLMs, clarifying the limitations of existing heuristic approaches.

• We propose ESPO, a principled sequence-level RL framework that leverages the ELBO as a
tractable proxy for sequence likelihood and introduces stabilized ratio and KL estimators for
robust large-scale training.

• We demonstrate through comprehensive experiments and ablation studies that ESPO yields sta-
ble optimization and consistent improvements across math, coding, and planning benchmarks,
surpassing prior dLLM-RL methods.

2 BACKGROUND

2.1 DIFFUSION LARGE LANGUAGE MODELS

Diffusion Large Language Models (dLLMs), or more specifically Masked Diffusion Models
(MDMs), define a forward process that gradually corrupts the clean input by replacing tokens with
the mask token M. Given the prompt x and the clean completions y, the forward process qt(yt | y, x)
at time t is defined as follows:

qt(yt|y, x) =
L∏

i=1

qt(y
i
t|yi, x) and qt(y

i
t|yi, x) =

{
t, yit = yi,

1− t, yit = M,
(1)

Unlike autoregressive models, the exact log-likelihood log πθ(y|x) in dLLMs is typically approxi-
mated via the evidence lower bound (ELBO) (Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024):

Lθ(y|x) ≜ Et∼U [0,1]Eyt∼qt(yt|y,x)

[
1

t

L∑
i=1

1[yit = M] log pθ(y
i|yt, x)

]
≤ log πθ(y|x), (2)

As noted in Ou et al. (2024); Nie et al. (2025); Zhu et al. (2025), Eq. (2) has an equivalent, lower-
variance variant that replaces the continuous masking ratio t with a discrete number of masked
tokens l:

L′
θ(y|x) ≜ El∼U({1,2,...,L})Eyl∼ql(yl|y,x)

[
L

l

L∑
i=1

1[yil = M] log pθ(y
i|yl, x)

]
, (3)

where l denotes the number of tokens masked (sampled uniformly), and yl represents the corrupted
sequence obtained by masking l tokens without replacement.

2
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2.2 REINFORCEMENT LEARNING

Policy gradient methods have been shown to be highly effective for post-training LLMs (Ouyang
et al., 2022). Among them, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is
widely adopted as it eliminates this need for a value model (Schulman et al., 2017) by replacing it
with a simpler Monte Carlo estimation: Given a prompt x, GRPO samples a group of G candidate
completions {y(i)}Gi=1 from the old policy πθold . Instead of estimating the baseline with a learned
value function, it computes the relative advantage of each sample as its reward minus the group
mean reward (Liu et al., 2025c). Incorporating a KL penalty, the resulting optimization objective is:

JGRPO(πθ) = Ex∼D,y(1),...,y(G)∼πθold (·|x)[
1

G

G∑
i=1

1

|y(i)|

|y(i)|∑
k=1

min(ρk,(i)Â(i), clip(ρk,(i), 1− ϵ, 1 + ϵ)Â(i))− βDKL(πθ, πref)

]
, (4)

where ρk,(i) = πθ(y
k,(i)|x,y<k,(i))

πθold (y
k,(i)|x,y<k,(i))

is the token-level importance ratio between policies, and Â(i) =

R(x, y(i))− 1
G

∑G
j=1 R(x, y(j)) denotes the group-relative advantage.

3 THE CHALLENGE OF THE TOKEN-LEVEL PERSPECTIVE IN DLLMS

The core challenge in applying Reinforcement Learning to dLLMs stems from a fundamental mis-
match between the dLLMs’ probabilistic modeling and the assumptions inherent in standard RL
algorithms. Mainstream policy gradient algorithms, including GRPO as formulated in Eq. (4), are
intrinsically designed for autoregressive models that factorize the sequence likelihood into a product
of conditional probabilities as πθ(y|x) =

∏L
k=1 πθ(y

k|x, y<k). This factorization naturally defines
a sequence of actions, allowing the objective to assign rewards at the token level via the impor-
tance ratio πθ(y

k|x,y<k)
πθold (y

k|x,y<k)
. However, dLLMs generate text non-autoregressively, refining a complete

sequence over iterative denoising steps. Consequently, the autoregressive conditional probability
πθ(y

k|x, y<k) is ill-defined or hard to compute, forcing existing methods to rely on heuristic prox-
ies to bridge this gap.

Early attempts to resolve this incompatibility focused on finding a suitable token-level substitute
for the AR conditional probability πθ(y

k|x, y<k). For instance, d1 (Zhao et al., 2025) employed a
mean-field approximation log pθ(y

k|x) as a proxy for log πθ(y
k|x, y<k). This approach is inaccu-

rate as it ignores the context provided by other tokens in the sequence y. Recognizing this limitation,
subsequent work such as UniGRPO (Yang et al., 2025) and Coupled-GRPO (Gong et al., 2025)
proposed a more sophisticated proxy: the token’s contribution to the ELBO, Lk

θ(y|x)1:

Lk
θ(y|x) ≜ Et∼U [0,1]Eyt∼qt(yt|y,x)

[
1

t
1[ykt = M] log pθ(y

k|yt, x)
]
. (5)

The Lk
θ(y|x) is better aligned with the nature of dLLM generation, since its computation involves

predicting a masked token given both x and the surrounding unmasked context from y. However, the
ELBO, Lθ(y|x) =

∑L
k=1 Lk

θ(y|x), is only valid on sequence level as lowerbound of log πθ(y|x). An
individual component Lk

θ(y|x) has no formal probabilistic interpretation as a conditional likelihood.
Therefore, the decomposition of ELBO at the token level and its heuristic substitution into the GRPO
objective (Eq. (4)) introduces an unknown inconsistency.

As analyzed above, the core issue is not merely about finding a better token-level proxy, but that
the token-level decomposition itself fundamentally does not fit for dLLMs. Forcing a dLLM into a
token-level AR framework rests on an improper assumption. This motivates our approach: instead
of adapting the dLLM model to fit the algorithm, we must adapt the algorithm to respect the holistic,
sequence-level nature of the dLLM model.

1Implementations may vary; for instance, UniGRPO’s ELBO-like term omits the 1
t

coefficient from Eq. (5),
akin to the simplified objective in DDPM (Ho et al., 2020).
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4 A PRINCIPLED SEQUENCE-LEVEL RL FRAMEWORK FOR DLLMS

Motivated by analysis in Section 3, we propose ELBO-based Sequence-level Policy Optimization
(ESPO) algorithm, which is tailored for dLLMs. Our approach is built on a sequence-level action
space, uses the ELBO as a tractable proxy for the sequence log-likelihood, and incorporates crucial
stabilization techniques for both the policy gradient objective and the KL-divergence regularizer.

4.1 THE SEQUENCE-LEVEL POLICY OBJECTIVE WITH ELBO APPROXIMATION

We begin by reformulating the RL objective to align with the nature of dLLM generation.

Sequence-Level Objective. Instead of viewing each token as an independent action, we treat the
generation of the entire sequence y as a single, atomic action. This naturally leads to a sequence-level
adaptation of the GRPO framework (Eq. (4)), where the token-level summation is removed. The ob-
jective now depends on a sequence-level importance ratio πθ(y

(i)|x)
πθold (y

(i)|x) . By substituting the intractable

log-likelihood log π(y(i)|x) with its ELBO approximation L(y(i)|x), we obtain the sequence-level
ratio for dLLM:

ρ(i)seq =
expLθ(y

(i)|x)
expLθold(y

(i)|x)
= exp(Lθ(y

(i)|x)− Lθold(y
(i)|x)) (6)

Plugging this into the GRPO objective gives us a vanilla sequence-level objective2 :

Jseq(πθ) =Ex∼D,y(1),...,y(G)∼πθold (·|x)

[
1

G

G∑
i=1

min(ρ(i)seqÂ
(i), clip(ρ(i)seq, 1− ϵ, 1 + ϵ)Â(i))

]
, (7)

While this sequence-level formulation correctly avoids the pitfall of splitting the ELBO at the token
level, we found this vanilla formulation to be practically unusable. The magnitude of the raw ELBO
difference, Lθ(y

(i)|x) − Lθold(y
(i)|x), typically scales linearly with the sequence length L. The

subsequent exponentiation results in astronomically large or infinitesimally small ratios, causing
unstable optimization.

To address this instability, we draw inspiration from GSPO (Zheng et al., 2025) and normalize the
log-ratio by the sequence length L. This transforms the unstable, raw log-likelihood difference into
a stable, per-token scale. Our final, stabilized importance ratio is:

ρ(i)seq = exp

(
1

L
(Lθ(y

(i)|x)− Lθold(y
(i)|x))

)
= exp

(
1

L

L∑
k=1

(Lk
θ(y

(i)|x)− Lk
θold

(y(i)|x))

)
. (8)

Plugging this stabilized ratio into the sequence-level objective (Eq. (7)) enables effective training.

Empirical Validation. To validate our design choices of using a sequence-level action space with
an ELBO approximation, we conduct a complete ablation study on the Sudoku benchmark. We
compare four variants: token-level actions with a mean-field likelihood, token-level with ELBO,
sequence-level with mean-field, and our proposed sequence-level with ELBO. The precise mathe-
matical formulations are detailed in Appendix B.1. As shown in Fig. 1, the results provide strong
empirical support for our analysis:

• Mean-field is a poor proxy. Both mean-field variants (orange and green curve) fail to learn
effectively, confirming that this approximation is fundamentally misaligned with the conditional
denoising process.

• Token-level ELBO is unstable. The Token-level + ELBO approach (red curve), while initially
promising, suffers from high instability and eventual collapse. This highlights the inconsistency
of breaking the ELBO’s integrity across tokens.

• Sequence-level ELBO is superior. Our proposed method (blue curve) is the only one to achieve
fast, stable learning that converges to the highest reward, validating that the sequence-level action
space paired with the holistic ELBO proxy is the correct and most effective approach.

2The KL term is omitted here for simplicity; a detailed discussion is provided later in Section 4.2.
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Figure 1: Training performance on the Sudoku
task under different action space (Token-level
vs. Sequence-level) and likelihood approxi-
mations (Mean-field vs. ELBO). Our method
(blue) combines a sequence-level action space
with an ELBO approximation, yielding the most
stable and highest performance.
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Figure 2: Training performance on the Sudoku
task with different KL-divergence estimators.
The k2 estimator (blue) achieves stable and su-
perior performance. The k1 estimator (orange) is
highly unstable and collapses, while the k3 esti-
mator (green) stagnates.

4.2 STABLE KL-DIVERGENCE ESTIMATION

The complete GRPO objective includes a KL-divergence term to regularize policy updates against
a reference policy. A common choice for token-level autoregressive models is the k3 estimator
(Schulman, 2017). However, a direct application of the k3 estimator to our sequence-level objective
is highly problematic. Its formulation, when approximating log-likelihoods with the ELBO, is:

K̂Lk3 = exp
(
Lref(y

(i)|x)− Lθ(y
(i)|x)

)
− 1−

(
Lref(y

(i)|x)− Lθ(y
(i)|x)

)
. (9)

As the formula shows, the k3 estimator contains an exponential term, which reintroduces the unsta-
ble problem similar to Eq. (6). To circumvent this exponential instability, we adopt the more robust
k2 estimator (Schulman, 2017), which is known to yield a correct gradient for KL optimization
(Tang & Munos, 2025b). Our practical and stable KL estimate becomes:

K̂Lk2 = 1
2

(
Lθ(y

(i)|x)− Lref(y
(i)|x)

)2
. (10)

Unlike the k3 estimator, the k2 estimator is a simple quadratic function of the ELBO difference.
This polynomial form avoids the exponential term entirely, ensuring that the gradient signal from
the KL regularizer remains stable and well-behaved, even for long sequences.

Empirical Validation. To demonstrate the critical impact of the KL estimator, we conduct an
ablation study on the Sudoku task comparing the performance of the k1, k2, and k3 estimators.
More details can be referenced in Appendix B.2. As shown in Fig. 2, the choice of estimator is
crucial for stable learning. The k3 estimator (green) fails to learn, with rewards stagnating at a
low level, which is consistent with our analysis of its unstable property. The k1 estimator (orange)
is also highly unstable; while it shows some initial progress, its performance violently fluctuates
before collapsing to zero midway through training. In stark contrast, the k2 estimator (blue) enables
stable and efficient learning, consistently improving and ultimately converging to the highest reward.
This result empirically validates that the k2 estimator is the most robust and effective choice for our
sequence-level framework.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Models & Tasks We apply our ESPO algorithm to two open-source dLLMs: LLaDA-8B-
Instruct (Nie et al., 2025) and Dream-7B-Instruct (Ye et al., 2025). For reference, we also report
evaluation results on LLaDA-1.5 for comparison. Following prior work (Zhao et al., 2025; Tang

5
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Table 1: Model performance on mathematics and planning benchmarks. For each task, we train
a separate model. Countdown results with † for LLaDA-8B-Instruct, diffu-GRPO, and wd1 are from
Zhao et al. (2025); Tang et al. (2025), while other results are reproduced as detailed in Section 5.1.

GSM8K(0) MATH(0) Countdown Sudoku
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512

LLaDA-8B-Instruct 71.3 76.2 80.2 34.4 35.2 41.4 20.7† 19.5† 16.0† 24.8 16.2 6.0
+ diffu-GRPO (d1) 74.6 78.1 81.2 34.9 36.6 41.7 33.2† 31.3† 37.1† 26.7 24.1 15.9
+ wd1 77.2 80.8 82.3 33.3 37.7 39.8 47.7 51.2† 46.1† 22.6 22.0 24.6

+ ESPO (ours) 80.0 82.3 83.7 36.0 39.0 43.4 81.6 82.0 79.3 92.7 84.7 80.5
∆ (vs. Best Baseline) +2.8 +1.5 +1.4 +1.1 +1.3 +1.7 +33.9 +30.8 +33.2 +66.0 +60.6 +55.9

Dream-7B-Instruct 75.8 81.3 80.7 38.2 45.7 48.0 8.5 7.8 17.4 9.3 2.1 14.0
+ diffu-GRPO (d1) 77.0 81.9 81.7 39.4 46.9 48.9 27.3 27.7 37.5 64.4 69.7 51.1

+ ESPO (ours) 79.6 82.3 82.0 40.3 47.4 50.3 68.8 66.8 64.8 71.7 72.3 71.3
∆ (vs. Best Baseline) +2.6 +0.4 +0.3 +0.9 +0.5 +1.4 +41.5 +39.1 +27.3 +7.3 +2.6 +20.2

Table 2: Model performance on coding benchmarks. We train a single model and evaluate it
across multiple coding benchmarks (HumanEval and MBPP) at different sequence lengths. ESPO
consistently enhances the performance while even achieving competitive results compared with
LLaDA-1.5, which was trained on a privately collected dataset at a significantly larger scale.

HumanEval(0) MBPP(3)
- Plus - Plus

Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 26.8 37.8 48.8 23.2 30.5 41.5 38.2 37.0 38.2 36.8 36.8 37.8
+ ESPO (ours) 28.1 42.1 50.0 24.4 36.6 42.7 47.4 44.6 44.2 38.9 41.6 42.6
∆ (vs. Baseline) +1.3 +4.3 +1.2 +1.2 +6.1 +1.2 +9.2 +7.6 +6.0 +2.1 +4.8 +4.8
LLaDA-1.5 29.3 39.6 51.9 23.2 32.3 45.1 39.6 39.9 38.8 38.8 40.4 37.3

et al., 2025), we focus on three categories of reasoning tasks: (i) Mathematics: GSM8K (Cobbe
et al., 2021a) and MATH (Hendrycks et al., 2021), (ii) Coding: HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021b), EvalPlus (HumanEval+ and MBPP+) (Liu et al., 2023a) and (iii)
Planning: Countdown and Sudoku (Ye et al., 2024). For mathematical tasks, we train on the official
training split of each dataset. For coding tasks, we follow Gong et al. (2025) and train on a subset
of AceCoder-87K (Zeng et al., 2025). For planning tasks (Countdown and Sudoku), we train on
synthetic training data following Zhao et al. (2025).

Training To evaluate ESPO’s effectiveness, we apply it directly to the models without additional
task-specific SFT. For stable training, we adopt two standard variance reduction techniques: fol-
lowing Zhu et al. (2025), we use antithetic sampling, which shares the same noise level and mask
positions when estimating ELBO differences; and, inspired by Gong et al. (2025), we employ a
coupled-sampling scheme. All experiments use 2 Monte Carlo samples and a policy update value of
µ = 8, with further details provided in Appendices C and D.2.

Evaluation Following d1, we evaluate all benchmarks at generation lengths of 128, 256, and 512.
For mathematics and coding tasks, we use the official evaluation scripts provided by the LLaDA and
Dream repositories, respectively. For planning tasks, we adopt the evaluation code from d1, with the
exception of Sudoku, which is evaluated under a 1-shot prompting setup. To ensure fair comparison,
we re-run only those baselines whose reported settings differ from ours or whose results are missing
for specific lengths (e.g., when length-128 results were not originally reported).

5.2 BENCHMARK RESULTS

As shown in Table 1 and Table 2, our sequence-level RL algorithm, ESPO, consistently and
significantly outperforms both the original models and prior token-level RL baselines like diffu-
GRPO (Zhao et al., 2025) and wd1 (Tang et al., 2025), while achieving performance on coding tasks
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Figure 3: Training dynamics with different methods for Countdown and Sudoku tasks.

that is comparable to LLaDA-1.5. Notably, although our models are trained only on the sequence
length of 256, the improvements generalize effectively to other lengths.

Dominant Performance on Planning Tasks. The most dramatic improvements remain in plan-
ning tasks. On Countdown, ESPO consistently outperforms the strongest baselines by 20–40 abso-
lute points, while on the Sudoku tasks, the gains are up to over 60 points depending on the sequence
length. This strongly validates our core hypothesis: a sequence-level objective is superior for tasks
requiring holistic consistency, a property that token-level optimization fails to capture effectively.

Consistent Gains on Mathematics and Coding. On established mathematics and coding bench-
marks, the gains are more modest but still consistently positive. Note that the pre-existing knowledge
of the base models acts as a performance ceiling, limiting the maximum achievable gains through
RL fine-tuning alone. Despite this, our method reliably enhances performance, surpassing all previ-
ous token-level dLLM-RL methods and comparable with LLaDA-1.5. This demonstrates the broad
effectiveness of our approach even on knowledge-intensive tasks.

5.3 TRAINING DYNAMICS

Fig. 3 shows the training reward dynamics on Countdown and Sudoku, highlighting our method’s
superior performance. The difference is most pronounced on Sudoku, where our sequence-level
method rapidly converges to a near-optimal policy, while the token-level d1 and wd1 baselines
completely stagnate at low rewards. Similar trends can be observed on the Countdown task.

5.4 ABLATION EXPERIMENTS

Number of Monte Carlo Samples We investigate the impact of the number of Monte Carlo (MC)
samples used to estimate the ELBO. For this ablation, all other hyperparameters match those in our
main experiments. As shown in Fig. 4, increasing the number of MC samples consistently improves
training performance, though the magnitude of the effect is task-dependent. On the Sudoku task,
the impact is dramatic: MC=1 results in slow convergence, whereas increasing to MC=2 and MC=4
makes it significantly faster. This suggests that a more stable and lower-variance ELBO estimation
is crucial for navigating Sudoku’s reward landscape. For the Countdown task, the trend is similar
but less pronounced.

Number of different policy update values µ In these experiments, we varied µ while keeping all
other settings identical to our main setup. Our method demonstrates remarkable robustness to the
number of policy updates (µ) per data collection phase, as shown in Fig. 5. On both Countdown and
Sudoku, our approach successfully scales to large µ values, converging to a similarly high reward
across all settings, though smaller values (e.g., 8, 12) exhibit faster initial convergence on Sudoku.
We hypothesize that this robustness is linked to task complexity. While the policy for relatively
simple planning tasks can be updated aggressively, more complex domains like mathematics and
coding may have more brittle reward landscapes. In such cases, a large µ could lead to instability,
making smaller, more conservative update frequencies a safer and more effective choice.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Training Steps

0.0

0.2

0.4

0.6

0.8

R
ew

ar
ds

Countdown

MC=1
MC=2
MC=4

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.0

0.2

0.4

0.6

0.8

R
ew

ar
ds

Sudoku

MC=1
MC=2
MC=4

Figure 4: Ablation study on the number of Monte Carlo samples for Countdown and Sudoku.
We evaluate training performance with different MC sample counts (1, 2, 4), showing the effect of
increased sampling on reward optimization.
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Figure 5: Ablation study on the policy update values (µ) for Countdown and Sudoku. The
reward curves illustrate performance across a range of µ values. While smaller values (e.g., 8,
12) lead to faster initial convergence on Sudoku, the method is robust and achieves similarly high
rewards across all settings for Countdown and Sudoku tasks.

5.5 DISCUSSION OF TRAINING EFFICIENCY

In reinforcement learning for dLLMs, the total training time can be roughly decomposed into two
components: data generation (sampling) and policy updates (training). For dLLMs, the generation
phase typically dominates: each step requires non-autoregressive denoising over the full sequence,
preventing extensive reuse of KV cache. In contrast, the number of Monte Carlo samples M used
for ELBO estimation only affects the policy update phase, which is less computationally intensive.

To quantify the computational cost, we use FLOPs as a hardware-agnostic proxy. For a model
with N parameters and sequence length D, the forward and backward passes approximately require
Cforward = 2ND and Cbackward = 4ND FLOPs (Kaplan et al., 2020), respectively. We obtain the
total FLOPS per sample with coupled sampling as 2ND(K + 6µM) (see Appendix E for details),
where K is the sampling step, µ is the policy update values, and M is the number of MC samples.

We further validate this analysis on coding tasks using the same training configuration as in Sec-
tion 5.1, except that the number of MC samples M is varied from 1, 2, and 4. The resulting theoret-
ical FLOPs and empirical wall-clock training time are summarized in Table 3.

First, we observe that the theoretical FLOPs capture the overall trend of wall-clock time, consistent
with the fact that dLLM inference is a compute-bound process. The small discrepancy may be
attributed to factors such as GPU utilization, memory bandwidth, and communication overhead.

Second, focusing on the relative growth as M increases, our approach shows a much more moderate
increase in training cost. Since generation costs are fixed (dominated by K), increasing M only adds
to the policy update term, which is minor when M is within a proper range. For example, increasing
M from 1 to 4 raises the total FLOPs by only about 47% in our case, consistent with the observed
wall-clock time. In contrast, for ELBO-based DPO algorithms such as VRPO (Zhu et al., 2025),
their training time scales almost linearly with M (e.g., a 4× increase from M = 1 to M = 4).
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Table 3: Training cost under different numbers of Monte Carlo (MC) samples for 100 steps on
the coding task. Following the setting in Section 5.1, the training parameters are set as denoising
steps K = 256 and policy updates value µ = 8 . Experiments are conducted under H200 GPUs.

MC Samples (M ) 1 2 4
Wall-clock Time (hrs) 5.61 (100%) 6.78 (121%) 9.06 (161%)
Theoretical FLOPs 608ND (100%) 704ND (116%) 896ND (147%)

6 RELATED WORK

Diffusion language models. dLLMs have recently emerged as a powerful approach for sequence
modeling, leveraging discrete diffusion (Austin et al., 2021a; Campbell et al., 2022; Meng et al.,
2023; Lou et al., 2024; Zhao et al., 2024), or in particular masked diffusion models (Ou et al.,
2024; Sahoo et al., 2024; Shi et al., 2024). Distinct from autoregressive models (OpenAI, 2023)
that heavily rely on the left-to-right causal factorization of the sequence, dLLMs instead operate
directly on the sequence-level for each diffusion step and enable flexible order sampling (Kim et al.,
2025) and parallel decoding (Arriola et al., 2025). While they have shown great promise in various
domains (Kwon et al., 2025; Ma et al., 2025; Liu et al., 2025b; Wu et al., 2025; Hu et al., 2025; You
et al., 2025b) when scaled up (Nie et al., 2024; Prabhudesai et al., 2025; Ni & the team, 2025), and
their adaptation to downstream tasks with specific reward signals still has room for exploration.

RL for language models. Reinforcement learning (Schulman et al., 2017) has proven effective in
enhancing language model performance, particularly when rewards can be obtained via automated
verifiers, a paradigm known as reinforcement learning with verifiable rewards (RLVR) (OpenAI,
2024). Methods such as GRPO (Shao et al., 2024; Guo et al., 2025) and related works (Luo et al.,
2025) have improved reasoning capabilities and achieved strong performance across diverse tasks.
However, directly applying these techniques to dLLMs is challenging, primarily due to the difficulty
of likelihood computation.

RL for diffusion language models. Several works have explored leveraging RL to enhance the
performance of dLLMs. For general discrete diffusion models, Zhang et al. (2025) proposes a
framework by target concrete score matching, and Zekri & Boullé (2025) proposes score entropy
policy optimization. For masked diffusion models, LLadou (Huang et al., 2025) uses RL and trains
an additional module to predict the position for decoding. It models each denoising step as an
action, stores the entire trajectory, and optimizes the conditional probability of each intermediate
state. However, in offline settings, optimizing over multi-step trajectories requires repeated forward
and backward passes growing linearly with the number of denoising steps, which is prohibitive for
large-scale models. Various works (Zhao et al., 2025; Tang et al., 2025) have proposed mean-field
surrogates of the likelihood that are efficient to compute to enhance efficiency. Yet, the approxima-
tions significantly trade off with quality and hinder the multi-step generation capability of the model.
Our work instead develops a discrete diffusion RL objective from a principled sequence-level likeli-
hood evaluation via efficient MC estimate, different from Yang et al. (2025); Gong et al. (2025) that
evaluates the likelihood on the token-level heuristics.

7 CONCLUSION

In this work, we identified the fundamental incompatibility between autoregressive RL objectives
and the non-autoregressive nature of dLLMs, and proposed ESPO, a principled sequence-level rein-
forcement learning framework that leverages the ELBO as a tractable proxy for sequence likelihood.
By treating sequence generation as a single action and introducing stabilized importance ratios and
KL regularization, ESPO eliminates inconsistencies in prior token-level approaches and enables ro-
bust and efficient large-scale training. Extensive experiments on math, coding, and planning bench-
marks demonstrate that our method consistently outperforms existing dLLM-RL baselines. Our
results establish sequence-level optimization as a principled and empirically effective paradigm for
RL in diffusion language models.
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ETHICS STATEMENT

This work is purely methodological and does not involve human subjects or sensitive data. Ex-
periments are conducted on publicly available benchmarks, and results are reported in aggregate.
We highlight that while our techniques improve efficiency and accuracy, they should be applied
responsibly to avoid potential misuse.

REPRODUCIBILITY STATEMENT

We will open-source our code and checkpoints after the blind review. Comprehensive explanation
and details of our theory and experiments can be found in Appendices B to D.
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learning. https://github.com/huggingface/trl, 2020.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. ArXiv preprint, abs/2505.22618, 2025.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. ArXiv preprint, abs/2505.15809, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning, 2024.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025.

Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
Li. Llada-v: Large language diffusion models with visual instruction tuning. arXiv preprint
arXiv:2505.16933, 2025a.

Zebin You, Jingyang Ou, Xiaolu Zhang, Jun Hu, Jun Zhou, and Chongxuan Li. Effective and
efficient masked image generation models, 2025b.

Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
model with parallel decoding. ArXiv preprint, abs/2505.16990, 2025.
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A THE USE OF LARGE LANGUAGE MODELS

During the writing of this work, Large Language Models (LLMs) were used as auxiliary tools to
assist with language polishing, grammar checking, and improving the readability of tables and figure
captions. We will take full responsibility for all parts of the paper.

B DETAILS FOR ABLATION STUDY IN SECTION 4

B.1 ABLATION FOR ACTION SPACE AND LIKELIHOOD APPROXIMATION

To better analyze the objectives used in the ablation study ( Fig. 1), we start by revisiting the GRPO
formulation in Eq. (4). For clarity, we focus on its form for a single data sample (x, y(i)) of length
L. This yields the single-sample objective:

J (x, y(i)|θ) = Â(i)

L

L∑
k=1

min
(
ρk,(i), clip(ρk,(i), 1− ϵ, 1 + ϵ)

)
, (11)

where ρk,(i) = πθ(y
k,(i)|x,y<k,(i))

πθold (y
k,(i)|x,y<k,(i))

.

To highlight the core mechanism, we omit the clipping operator and obtain the simplified form:

J (x, y(i)|θ) = Â(i)

L

L∑
k=1

ρk,(i). (12)

Building on the simplified form in Eq. (12), we now extend the formulation to dLLMs. Since dLLMs
do not provide autoregressive conditional probabilities directly, prior work replaces or approximates
ρk,(i) with diffusion-based likelihood surrogates. This gives rise to four variants used in our ablation:

• Token-level + Mean-field (Orange Curve): This approach, introduced by d1 (Zhao et al.,
2025), applies a token-wise importance ratio using the mean-field approximation.

J (x, y(i)|θ) = Â(i)

L

L∑
k=1

pθ(y
k,(i)|x)

pθold(y
k,(i)|x)

=
Â(i)

L

L∑
k=1

exp
(
log pθ(y

k,(i)|x)− log pθold(y
k,(i)|x)

)
.

(13)

• Sequence-level + Mean-field (Green Curve): This baseline extends the mean-field approach
to the sequence level.

J (x, y(i)|θ) = Â(i) · exp

(
1

L

L∑
k=1

[
log pθ(y

k,(i)|x)− log pθold(y
k,(i)|x)

])
. (14)
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• Token-level + ELBO (Red Curve): This method replaces the mean-field term with the token’s
contribution to the ELBO, but problematically computes the ratio for each token individually.
Gong et al. (2025); Yang et al. (2025) follows this approach.

J (x, y(i)|θ) = Â(i)

L

L∑
k=1

exp
(
Lk
θ(y

(i)|x)− Lk
θold

(y(i)|x)
)
. (15)

• Sequence-level + ELBO (Ours, Blue Curve): Our proposed method. It uses the ELBO as
a proxy for the entire sequence log-likelihood and normalizes the log-ratio for stability, as de-
scribed in Eq. (7) and Eq. (8).

J (x, y(i)|θ) = Â(i) · exp
(
1

L

[
Lθ(y

(i)|x)− Lθold(y
(i)|x)

])
= Â(i) · exp

(
1

L

L∑
k=1

[
Lk
θ(y

(i)|x)− Lk
θold

(y(i)|x)
])

. (16)

B.2 ABLATION FOR KL DIVERGENCE ESTIMATOR

Pitfalls in the k3 estimator. The k3 estimator commonly adopted in GRPO is given by

K̂Lk3(πθ, πref) = Ey∼πθ

[
πθ(y)

πref(y)
− 1 + log

πθ(y)

πref(y)

]
, (17)

where πθ and πref are the target and reference policies. However, we argue that the k3 estimator has
several pitfalls.

First, the k3 estimator introduces training instability. For a model with the output instead directly
parameterizes the log policy, or logits, the k3 estimator requires to take the exponent:

K̂Lk3 = Ey∼πθ

[
exp

(
gθ(y)

gref(y)

)
− 1 +

gθ(y)

gref(y)

]
, (18)

where gθ(y) = log πθ(y) and gref(y) = log πref(y). We empirically find that during RL training
gθ(y) may incur instability which will be magnified by the exponent, i.e., the first term in Eq. 18.

Besides, while the k3 estimator itself is an unbiased estimate of KL-divergence, its gradient is
not (Tang & Munos, 2025a). In fact, it is shown that its gradient is instead an unbiased estimate
of reverse-KL (Tang & Munos, 2025a):

E
[
∇̂KLk3(πθ, πref)

]
= E

[
∇̂KL(πref , πθ)

]
̸= E

[
∇̂KL(πθ, πref)

]
. (19)

Therefore, the optimization using k3 estimator will exploit gradients that indeed optimize towards
the reverse-KL, which will empirically lead to a different converged policy with bounded model
capacity.

Pitfalls in the k1 estimator. Another alternative is the original k1 estimator for KL-divergence,
which is given by

K̂Lk1(πθ, πref) = Ey∼πθ

[
log

πθ(y)

πref(y)

]
. (20)

However, by taking the gradient w.r.t. θ on Eq. 20, it is proved(Tang & Munos, 2025a) that the
gradient equals zero, which means the k1estimator has no signal of the KL constraint. Our empirical
observation in Fig. 2 also reflects this finding, where the RL training with k1 KL estimator leads to
model collapse as evidenced by the remarkable drop in reward in late training steps.

The k2 estimator. We propose to employ the k2 estimator

K̂Lk2(πθ, πref) = Ey∼πθ

[
1

2
(log πθ(y)− log πref(y))

2

]
, (21)
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which leads to

K̂Lk2 = Ey∼πθ

[
1

2
(gθ(y)− gref(y))

2

]
, (22)

under the log parameterization. The k2 estimator takes the form of an MSE loss that does not involve
exponential term, and we observe that it significantly enhances training stability. Furthermore, the
gradient of the k2 estimator is indeed unbiased (Tang & Munos, 2025a):

E
[
∇̂KLk2(πθ, πref)

]
= E

[
∇̂KL(πθ, πref)

]
(23)

as opposed to the biased estimate in k3 estimator. The benefits of leveraging k2 estimator is also
empirically verified by extensive experiments, as we have demonstrated in Fig. 2.

C VARIANCE REDUCTION

As discussed in Section 2.1, there are two equivalent formulations of the ELBO. Empirically, Eq. (3)
exhibits lower variance than Eq. (2) (Ou et al., 2024; Nie et al., 2025). Therefore, we adopt Eq. (3)
as our estimator for the ELBO. To further stabilize training, we incorporate two variance reduction
techniques: antithetic sampling through mask sharing (Zhu et al., 2025) and coupled sampling
(Gong et al., 2025), which we describe below.

Antithetic Sampling through Mask Sharing. Antithetic sampling through mask sharing is used
when computing the difference between two ELBO terms, such as Lθ(y|x)−Lθold(y|x) in Eq. (8) and
Lθ(y|x)−Lθref(y|x) in Eq. (10). Concretely, we share the sampled timesteps and masked positions
between the Monte Carlo estimators of the two policies, thereby reducing variance through negative
correlation.

Coupled Sampling. Coupled sampling was originally proposed for the ELBO in the form of
Eq. (2) (Gong et al., 2025), but we adapt it to Eq. (3). Note that Eq. (3) is equivalent to

El∼U({0,1,2,...,L})Eyl∼q(yl|l,y,x)[ℓθ(yl, l, y|x)], (24)

where

ℓθ(yl, l, y|x) ≜


L+ 1

l

L∑
i=1

1[yil = M] log pθ(y
i | yl, x), l > 0,

0, l = 0.

(25)

Based on this formulation, we introduce a complementary masking strategy. For each sampled
mask yl, we construct a complementary mask ỹl such that the two masks partition the token set:
every token masked in yl is unmasked in ỹl, and vice versa. We then average the two losses, which
is also equivalent:

El∼U({0,1,2,...,L})Eyl∼q(yl|l,y,x)

[
ℓθ(yl, l, y|x) + ℓθ(ỹl, L− l, y|x)

2

]
. (26)

This construction guarantees that every token contributes at least once to the learning signal. Further,
the estimator achieves lower variance and yields a more stable optimization objective.

D EXPERIMENT DETAILS

As described in Section 5.1, we train separate models for each of the GSM8K, Math, Sudoku, and
Countdown tasks using their respective training datasets. For code tasks, we train a unified model on
AceCoder-87K (Zeng et al., 2025) and evaluate it on four benchmarks: HumanEval, HumanEval-
Plus, MBPP, and MBPP-Plus.

All models are trained with a maximum sequence length of 256, while evaluation is performed at
sequence lengths of 128, 256, and 512 to better assess length generalization.
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D.1 INFERENCE SETTING

For simpler planning tasks (Sudoku and Countdown), we unmask 2 tokens per denoising step, re-
sulting in L/2 total denoising steps (where L = 256 is the sequence length). For other tasks, the
number of denoising steps is set equal to the sequence length to improve performance.

Sampling strategies are model-specific:

• LLaDA: We employ low-confidence sampling (Chang et al., 2022) combined with a semi-
autoregressive decoding strategy (Arriola et al., 2025; Nie et al., 2025), with block length set
to 32 for all tasks. Training and evaluation share most sampling settings, except that the temper-
ature is 0.9 during training and 0 (greedy decoding) during evaluation, following the evaluation
codebase (Nie et al., 2025).

• Dream: We use top negative entropy remasking and pure diffusion sampling, without semi-
autoregressive decoding (Ye et al., 2025). Temperature is set to 0.9 during training and 0.1 during
evaluation, while other sampling settings remain consistent.

D.2 TRAINING DETAILS

All reinforcement learning training is conducted using the TRL library (von Werra et al., 2020).

Parameter-Efficient Fine-Tuning For GSM8K, Math, Countdown, and Sudoku, we apply
LoRA (Hu et al., 2022) with rank r = 128 and scaling factor α = 64. For code tasks, full pa-
rameter fine-tuning is used to maximize performance.

Optimization Policy update value is set to µ = 8, and the number of Monte Carlo (MC) samples
is M = 2 for computational efficiency. Models are optimized using AdamW (Loshchilov & Hutter,
2019) with β1 = 0.9, β2 = 0.99. A constant learning rate schedule is used. For LoRA-based tasks,
the learning rate is 3 · 10−6 with weight decay 0.01 and gradient clipping 0.2. For code tasks, the
learning rate is 1 · 10−6, weight decay 0.1, and gradient clipping 0.8.

Batching We set the group size G in Eq. (7) and total batch size according to the difficulty of the
tasks: GSM8K, Countdown, Sudoku use G = 6 and total batch size 96, Math uses G = 16 and
batch size 256, and code tasks use G = 10 and batch size 160. Gradient accumulation is applied to
enlarge the effective batch size.

Training Steps Models are evaluated when the reward curve converges. Code tasks are trained
for 2k steps, Math for 3k steps, LLaDA planning tasks for 10k steps, and Dream planning tasks for
8k steps.

Special Notes on Sudoku The Sudoku setup in Dream (Ye et al., 2025) differs from d1 (Zhao
et al., 2025). The prompt and data format in Dream are inconsistent with d1 (see Appendix F.1).
Additionally, Dream restricts the generation length to 24 tokens, encouraging direct answers without
intermediate reasoning. In contrast, d1 uses longer generation lengths (128/256/512), allowing the
model to produce both intermediate reasoning steps and final answers.

In the main text, we report results under the d1 setting, as it better reflects the ability of models to
perform multi-step reasoning when guided by our reinforcement learning algorithm. For complete-
ness, we also present model performance under the Dream setting in Table 4.

E DETAILS OF TRAINING FLOPS

Recent advances in dLLMs (Wu et al., 2025; Ma et al., 2025; Liu et al., 2025b) enable partial usage
of KV cache, but it will lead to the loss of downstream performance. Therefore, our analysis focuses
on the vanilla case without KV cache.

As we mentioned in Section 5.5, for a model with N parameters and sequence length D, we use
Cforward = 2ND and Cbackward = 4ND to approximate the forward and backward passes FLOPS
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Table 4: Model performance on Sudoku under the Dream setting (generation length = 24).
Unlike the d1 setting, the Dream setting restricts generation to 24 tokens, encouraging models to
output answers directly without intermediate reasoning.

Model Accuracy (%)
Dream-7B-Instruct 98.1
+ diffu-GRPO (d1) 96.0
+ ESPO (ours) 98.0

according to Kaplan et al. (2020). Combining the costs of generation and policy updates, we obtain
the naive formula of total FLOPs per sample:

Ftotal = K · Cforward + µM(Cforward + Cbackward) = 2ND(K + 3µM), (27)

where K is the sampling step, µ is the policy update values, and M is the number of MC samples.
When using the coupled-sampling technique ,we will double the FLOPS of policy updates step,
which leads to:

Ftotal = K · Cforward + 2µM(Cforward + Cbackward) = 2ND(K + 6µM), (28)

Which indicates increasing M only adds to the policy update term (6µM in Eq. (28)). When K ≫
6µM , the overall training cost grows mildly with M .
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F TEXT DEMOS

F.1 SUDOKU PROMPTS

One-shot prompt for Sudoku task (d1-style settings):

Please solve the following 4x4 Sudoku puzzle. The puzzle is provided as a
16-character string reading left-to-right, top-to-bottom, where ’0’

represents empty cells.

**Rules:**
- Fill empty cells with digits 1-4.
- Each row must contain digits 1-4 exactly once.
- Each column must contain digits 1-4 exactly once.
- Each 2x2 box must contain digits 1-4 exactly once.

**Example:**
Puzzle: 0401002010030310
This puzzle grid looks like this:
0 4 | 0 1
0 0 | 2 0
----+----
1 0 | 0 3
0 3 | 1 0

Solution: 2431312412434312
The solved grid looks like this:
2 4 | 3 1
3 1 | 2 4
----+----
1 2 | 4 3
4 3 | 1 2

**Important:** Your solution must be a COMPLETE 16-character string with
only the digits 1-4, representing your final solved grid.

Respond in this exact format:
<reasoning>
Your step-by-step solving process
</reasoning>
<answer>
[16-character solution string with no spaces or separators]
</answer>

Now, solve the following Sudoku puzzle: 1240300020140100
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One-shot prompt for Sudoku task (dream-style settings):

<|im_start|>system
You are an AI assistant skilled at solving Sudoku puzzles.<|im_end|>
<|im_start|>user
Fill the positions where the values are 0 in a 4x4 grid with digits 1-4

so that each column, each row, and each of the four 2x2 subgrids that
compose the grid contains all of the digits from 1 to 4.

Input:
0321
0030
0400
2100
Output:
4321
1234
3412
2143

Input:
0001
2100
1430
3000
Output:
<|im_end|>
<|im_start|>assistant

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.2 SUDOKU ANSWERS

Below, we show demos for answers for LLaDA+d1 and LLaDA+ ESPO:

Answer from LLaDA+d1:

To solve this 4x4 Sudoku puzzle, we need to fill in the empty cells with
digits 1-4 such that each row, column, and 2x2 box contains all
digits exactly once. We can start by examining the given digits and
trying to fill them in according to the Sudoku rules.

1. The first row has the 0’ and the 4’s in the first and fourth columns.
2. The second row has the 4’s in the first and fourth columns.
3. The third row has the 3 in the second column.
4. The fourth row has the 2 in the fourth column.
5. The fifth row has the 1 in the first column.
6. The fourth row has the 3 in the first column.
7. The first row has the 4 in the fourth column.

Using this information, we can start filling in the grid. We need to
ensure that each row, column, and 2x2 box contains the digits 1-4
exactly once.

</reasoning>
<answer>
12340
40221
30114
</answer>

Answer from LLaDA+ ESPO (ours):

<reasoning>
To solve the 4x4 Sudoku puzzle, we need to fill in the grid with digits

1-4 such that each row, column, and 2x2 box contains all the digits
exactly once. We can start by filling in the cells with the given
digits and check for conflicts.

First, let’s fill in the grid with the given digits:
3 2 0 4
0 0 3 0
1 4 0 0
2 0 0 1

Next, let’s try filling fill in the remaining with digits 1-4, ensuring
each row, column, and 2x2 box contains all the digits once.

After trying different combinations, we find a valid solution:
3 2 1 4
4 1 3 2
1 4 2 3
2 3 4 1

This solution satisfies all the rules: each row, column, and box contains
all digits 1-4 exactly once.

</reasoning>

<answer>
3214413214232341
</answer>
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F.3 COUNTDOWN

Countdown (LLaDA+d1): Target: 94 — Numbers: [77, 73, 98]

<reasoning>
To create an arithmetic expression that evaluates to 94 using the numbers

[77, 73, 98], we need to find the correct combination of operations
(+, -, *, /) that will inbalance the the larger number 98 and the
smaller numbers to 94.

</reasoning>
<answer>
77*73-98
</answer>

Countdown (LLaDA+ESPO): Target: 67 — Numbers:[72, 92, 47]

<reasoning>
To create an arithmetic expression that evaluates to exactly 67 using the

numbers [72, 92, 47], we need to consider the operations +, -, *,
and / Let’s start by examining the largest numbers and see if they
can combine to give us target 67.

1. If we add 92 and 72, we get 164, which is too than 67.
2. If we subtract 92 and 72, we get 20, which is less than 67.
3. If we add 92 and 47, we get 139, which is more than 67.
4. If we subtract 72 and 47, we get 25, which is less than 67.

. If we combine 92 and 72, we get 164, which is more than 67.

Combining 92 and 47 will the closest answer to 67.
</reasoning>
<answer>
92 -72 + 47
</answer>
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