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ABSTRACT

The smoothness of control actions is a significant challenge faced by deep rein-
forcement learning (RL) techniques in solving optimal control problems. Existing
RL-trained policies tend to produce non-smooth actions due to high-frequency
input noise and unconstrained Lipschitz constants in neural networks. This article
presents a Smooth ODE (SmODE) network capable of simultaneously addressing
both causes of unsmooth control actions, thereby enhancing policy performance
and robustness under noise condition. We first design a smooth ODE neuron with
first-order low-pass filtering expression, which can dynamically filter out high
frequency noises of hidden state by a learnable state-based system time constant.
Additionally, we construct a state-based mapping function, g, and theoretically
demonstrate its capacity to control the ODE neuron’s Lipschitz constant. Then,
based on the above neuronal structure design, we further advanced the SmODE
network serving as RL policy approximators. This network is compatible with
most existing RL algorithms, offering improved adaptability compared to prior
approaches. Various experiments show that our SmODE network demonstrates
superior anti-interference capabilities and smoother action outputs than the multi-
layer perceptron and smooth network architectures like LipsNet.

1 INTRODUCTION

Recently, deep reinforcement learning (RL) has emerged as an effective method for solving optimal
control problems in the physical world Guan et al. (2022); Peng et al. (2021); Kaufmann et al. (2023);
Li (2023); Wang et al. (2024). RL algorithms commonly employ neural networks (NNs) to learn
optimal control policies due to their universal approximation capabilities Sonoda & Murata (2017);
Schäfer & Zimmermann (2006). However, in practical optimal control scenarios, the outputs of
NNs are often sensitive to noise disturbances, as noted by Molchanov et al. (2019). Inadequately
addressing this sensitivity can result in severe consequences. For instance, oscillations in control
actions may cause drone crashes Shi et al. (2019), increased wear in robotic arm components Yu et al.
(2021), and heightened safety risks in autonomous driving Wasala et al. (2020); Chen et al. (2021).

To optimize NN performance in optimal control scenarios, research has primarily concentrated on
improving the smoothness of NN-based control systems. Current approaches can be classified into
four principal categories: filtering methods, action penalty methods, adversarial perturbation methods,
and network enhancement methods.

Filtering methods like Kalman and extended Kalman filtering Chen et al. (2023) effectively suppress
noise and reduce output oscillation by estimating the current state from multi-step historical data.
These methods work well with Gaussian noise but struggle with non-Gaussian noise. Particle filtering
Wang et al. (2021), in contrast, samples directly from the probability density function to address
nonlinear and non-Gaussian noise, making it more suitable for such environments. However, it is
computationally intensive due to the need for many samples and can suffer from particle degeneracy,
affecting its accuracy Daum & Huang (2011).

Action penalty methods penalize significant shifts in actions to enhance stability and smoothness
during policy learning. Mysore et al. (2021) incorporated two regularization components within
the policy loss function: one mitigates variance between consecutive actions over time, and another
promotes action consistency across similar states. Similarly, Kobayashi (2022) introduced the L2C2
algorithm with dual losses: one for action congruence and another for coherence in the value function
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across similar states, adjusting action penalties based on value function congruity. While these
methods improve stability and smoothness, fine-tuning hyperparameters without diminishing system
performance is challenging.

Adversarial perturbation techniques aim to reduce oscillatory output actions by integrating optimized
perturbation data during training. The main goal is to enhance the agent’s resistance to noisy data
Zhao et al. (2022), improving control effectiveness in unpredictable or noisy environments. Shen
et al. (2020) employed projected gradient ascent to identify the most effective perturbation noise,
maximizing action divergence under genuine and adversarial conditions. This approach effectively
mitigates the oscillation issues caused by noise. However, the algorithm increases complexity by
generating adversarial states, and it faces compatibility challenges with mainstream RL algorithms
and limited generalizability.

The aforementioned methods each have their drawbacks: the filtering method necessitates multi-step
historical data, action penalties may compromise control optimality, and adversarial perturbations
complicate RL methods. Network enhancements add noise resistance directly to the NN through
structural improvements, avoiding major modifications to the RL algorithm. Miyato et al. (2018)
employed spectral normalization to reduce the NN’s Lipschitz constant, enhancing smoothness.
Similarly, Song et al. (2023) introduced LipsNet, which adaptively modulates the local Lipschitz
constant, effectively dampening action oscillation Gouk et al. (2021). Nonetheless, with high
observation noise, controlling the NN’s Lipschitz constant alone inadequately suppresses action
fluctuations. Additionally, the neural ordinary differential equation (ODE) network Chen et al. (2018);
Hasani et al. (2021); Asikis et al. (2022); Hasani et al. (2022); Ruiz-Balet & Zuazua (2023), defined
by ODEs, emerges as a promising approach due to its flexibility in autonomous ODE design. To the
best of our knowledge, we are the first to attempt using neural ODE to simultaneously address the
action non-smoothness problem in deep RL caused by high-frequency input noise and large Lipschitz
constant.

To address the aforementioned challenges, this study introduces the Smooth ODE (SmODE). Initially,
the research presents a smooth ODE neuron designed to estimate action rate changes near the current
state. Our theoretical proof demonstrates that this computation effectively controls the maximum
state transition between adjacent temporal neurons. We then developed a SmODE neural network
incorporating these smooth ODE neurons, which reduces action fluctuations by integrating additional
regularization terms into the original policy objective. The primary goal of this network is to enhance
control output smoothness and function as a versatile, plug-and-play policy approximator for a broad
range of RL algorithms.

The key contributions of this paper are the following:

• We design a smooth ODE to function as a neuron of a NN for smooth control. This ODE
neuron employs a mapping function to estimate the speed of change of the action in the
neighborhood of the current state. Utilizing the estimated rate of change, it is possible to
efficiently moderate the extent of neuronal hidden state alterations at contiguous time points,
consequently reducing the difference in output from neighboring temporal neurons.

• The SmODE network is developed by utilizing the smooth ODE as neurons. Our network
comprises three modules: the input module, the smooth ODE module, and the output module.
The input module is a multi-layer perceptron (MLP) network and the output module is a
linear transformation layer, with spectral normalization applied. The smooth ODE module
consists of three layers, and the number of smooth ODE neurons in each layer can be
selected according to the task complexity. This design endows the SmODE network with
disturbance rejection and smoothness capabilities.

• We propose an SmODE-based RL algorithm designed to smooth action fluctuations. This
algorithm incorporates the classical Actor-Critic architecture and integrates a SmODE
network as its policy network. Our method reduces action fluctuations by combining two
regularization terms with the original policy objective, aimed at augmenting state filtering
and controlling action fluctuation suppression in the SmODE network. In a three-degree-
of-freedom vehicle trajectory tracking task, our approach achieves an 81.7% reduction in
action fluctuation rate, while preserving performance, compared to using traditional MLPs
as the policy network, under a Gaussian noise variance setting of 0.2.
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Supplementary experimental outcomes confirm that the SmODE architecture surpasses MLPs and
LipsNet in smoothing output while incurring negligible performance trade-offs. To accelerate
adoption and further research, we have encapsulated SmODE as a PyTorch module, with the code
available in the attached files.

Section 2 provides a simple introduction to online RL, a metric for measuring the ratio of action fluc-
tuation in control outputs, and introduction to neural ODE. In Section 3, a new network architecture
called SmODE is proposed, which includes smooth ODE neurons to smooth control outputs. The
experimental results obtained from applying the proposed method are reported in Section 4. Section
5 provides the conclusions of this paper.

2 PRELIMINARIES

2.1 ONLINE REINFORCEMENT LEARNING

Standard RL settings involve discrete-time agent-environment interactions, typically modeled as
continuous-state and continuous-action Markov Decision Processes (MDP) Sutton & Barto (2018).
Feedback is provided through a bounded reward function r(st, at), and state transitions are determined
by the probability p(st+1|st, at). State-action pairs are represented as (s, a) for current and (s′, a′)
for subsequent. The agent’s actions at state st are guided by a stochastic policy π(at|st), assigning
probabilities to possible actions based on the current state.

In online RL, an agent learns and makes real-time decisions through interactions with its environment.
A transition, (st, at, rt, st+1), captures this interaction and is stored in an experience replay buffer,
R. During training, sampling fromR produces data batches, promoting stable model training. The
primary goal of online RL is to develop a policy that maximizes the expected cumulative return:

Jπ = E(si≥t,ai≥t)∼π

[ ∞∑
i=t

γi−tr(si, ai)
]
, (1)

where γ ∈ (0, 1) represents the discount factor. The Q-value for a state-action pair (s, a) is given by

Q(s, a) = Eπ

[ ∞∑
i=0

γir(si, ai)|s0 = s, a0 = a
]

(2)

RL primarily uses an actor-critic architecture Li (2023), consisting of a policy function, π, and a
corresponding Q-value function, Qπ. The policy iteration framework, used to derive the optimal
policy π∗, alternates between policy evaluation and policy improvement. During policy evaluation,
Qπ is updated based on the self-consistency principle of the Bellman equation:

Qπ(s, a) = r(s, a) + γEs′∼p,a′∼π[Q
π(s′, a′)]. (3)

In the policy improvement phase, an enhanced policy πnew is sought by optimizing current Q-value
Qπold :

πnew = argmax
π

Es∼dπ,a∼π[Q
πold(s, a)]. (4)

Practically, neural networks typically parameterize the policy and value functions, indicated as πθ

and Qϕ. These functions are honed using gradient descent techniques to minimize the actor and
critic loss functions, Lπ(θ) and Lq(ϕ), respectively, which are formulated based on equation 4 and
equation 3.

2.2 ACTION FLUCTUATION RATIO

To measure the action fluctuation of the control policy, Song et al. (2023) defined the action fluctuation
ratio for continuous action settings:

ε(π) = Eτ∼ρπ

[
1

T

T∑
t=1

∥at − at−1∥

]
, (5)

where ρπ is the state-action trajectory distribution induced by the policy π, T is the episode length,
at and at−1 represent the action value at the current and previous time steps, respectively. It can be
observed that the control smoothness is negatively correlated with the action fluctuation ratio ε(π).
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2.3 NEURAL ODE

Neural ODE treats the computation of NN as a process of solving ODE, enabling the model to
efficiently handle continuous-time sequence problems and describe its dynamics through differential
equation methods. Chen et al. (2018) proposed that the hidden state of a neural ODE can be defined
by the solution of

dx(t)

dt
= f (x(t), I(t), t, θ) , (6)

where x(t) represents the hidden states, I(t) represents the input, t represents time, f is a NN with
parameter θ.

In control theory, a first-order low-pass filter Yuce & Minaei (2012) can be expressed in terms of an
ODE as

dx(t)

dt
= −x(t)

τ
+

I(t)

τ
, (7)

where τ is a time constant of the system. A larger τ value corresponds to a higher degree of filtering.

Instead of directly defining the derivatives of the hidden state using a neural network f , a more stable
continuous-time recurrent neural network can be employed by the following equation Funahashi &
Nakamura (1993):

dx(t)

dt
= −x(t)

τ
+ f (x(t), I(t), t, θ) . (8)

Hasani et al. (2021) proposed the liquid time-constant (LTC), further explored the impact of the ODE
structure on representation performance and proposed replacing f (x(t), I(t), t, θ) in equation 8 with
f (x(t), I(t), t, θ) (A− x(t)), where A represents a learnable parameter.

Due to the reliance on advanced numerical ODE solvers, the training and inference speed of neural
ODE is slow. This issue worsens as the complexity of the data, tasks, and state space increases. To
address this, Hasani et al. (2022) derived a closed-form continuous-depth (CfC) model that preserves
the modeling capabilities of ODE-based models without requiring a solver for data modeling.

3 SMOOTH ODE NETWORK

In this section, we first introduce the design of the ODE neuron. Then, we will describe the structure
of the SmODE network in this paper. Following this, we propose an RL training approach devised to
improve the smoothness of the policy while maintaining good control performance.

3.1 SMOOTH ORDINARY DIFFERENTIAL EQUATION

In order to address both the issue of high-frequency noise and the action non-smoothness caused by
an unbounded Lipschitz constant, we have designed the ODE as follows.

To address the issue of high-frequency noise, we design the ODE with a low-pass structure, similar to
equation 7. While the large time constant of the system ensures excellent action smoothness, it also
introduces additional delay. These delays can significantly harm control performance when the system
needs a fast response. To address this issue, we introduce a learnable function f(x(t), I(t), t, θ) that
maps the input signal I(t) and the neuronal hidden state x(t) to the inverse of the time constant 1

τ .
The equation is shown as

dx(t)

dt
= −f (x(t), I(t), t, θ)x(t) + f (x(t), I(t), t, θ) I(t), (9)

where f is a NN with parameter θ. Since the time constant must be a positive number, the function f
must be greater than 0.

The magnitude of the Lipschitz constant can be controlled by constraining the size of |dx(t)dt |, and this
constraint must be state-dependent; otherwise, it may impair performance in regions where certain
systems require a faster response.
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In this paper, we replace I(t) on the far right side of equation 9 with a learnable function
g(x(t), I(t), t, θ), resulting in the following equation:

dx(t)

dt
= −f (x(t), I(t), t, θ)x(t) + f (x(t), I(t), t, θ) g(x(t), I(t), t, θ). (10)

Based on equation 10, we can draw the following theorem:
Theorem 1. Let xi denote the hidden state of a neuron i within the smooth ODE, identified by
equation 10, and let neuron i receive some incoming connections. Then, the hidden state of any
neuron i, on a finite interval Int ∈ [0, T ], is bounded as follows:

min(0, g(x(t), I(t), t, θ)min
i ) ≤ xi(t) ≤ max(0, g(x(t), I(t), t, θ)max

i ). (11)

Proof. See Appendix A.1.

Theorem 1 suggests that g (x(t), I(t), t, θ), which we designed, guarantees that the hidden state
of a neuron remains bounded by equation 11 for a finite time. Additionally, g (x(t), I(t), t, θ) is
state-dependent, allowing for the adaptive adjustment of the hidden state boundaries of neurons based
on the current state. We find that the g (x(t), I(t), t, θ) can estimate the speed of change of the action
in the neighborhood of the current state. The results in Appendix C can also validate our idea.

Using a bionic modeling method similar to that in Lechner et al. (2020), we can obtain the specific
formulation of our smooth ODE neuron, which is presented as follows:

dxi

dt
=

∑
j

[
− wij

Cmi

σi (xj)xi +
wij

Cmi

σi (xj) · tanh(h (xj , θ))

]
+ xleaki , (12)

where wij ∈ (0.001, 1.0) denotes the synaptic weight from neuron i to neuron j, and Cmi
∈ (0.4, 0.6)

signifies the membrane capacitance. The term xleaki refers to the resting potential of a neuron. The
sigmoid function σi (xj) =

1

1+e−γij(xj−µij)
is introduced, where γij and µij are trainable parameters

with initial values ranging from 3 to 8 and 0.3 to 0.8, respectively. Furthermore, f(x(t), I(t), t, θ)
is expressed as wij

Cmi
σi (xj), and I(t) is equal to xj . g (x(t), I(t), t, θ) is equal to tanh(h(xj , θ)),

representing a NN.

Based on equation 10, equation 11 and equation 12 , we can also obtain the following theorem:
Theorem 2. Let xi denote the hidden state of a neuron i within the smooth ODE, identified by
equation 10. Then, the absolute value of the derivative of the hidden state concerning time for any
neuron i has an upper bound controlled by M(x(t), I(t), t, θ)i, as follows

|dxi(t)

dt
| ≤M(x(t), I(t), t, θ)i · C, (13)

where max(|g(x(t), I(t), t, θ)min
i |, |g(x(t), I(t), t, θ)max

i |) = M(x(t), I(t), t, θ)i, C is a bounded
positive constant.

Proof. See Appendix A.2.

Theorem 2 shows that the hidden state of a smooth ODE neuron has an upper bound on the absolute
value of the temporal derivative controlled by M(x(t), I(t), t, θ)i. Therefore, we can suppress the
value of |dxi(t)

dt | by suppressing the value of M(x(t), I(t), t, θ)i.

The nonlinear characteristics of semantics present challenges in deriving an analytical solution
for equation 12. As a result, we opt for a numerical ODE solver. To strike a balance between
computational efficiency, solution accuracy, and stability, we select the fixed time-step semi-implicit
Euler discretization method Ethier & Bourgault (2008) to solve this equation. We can unroll a given
dynamical system of the form dx(t)

dt = l(x(t), x(t+∆t)) by
x (t+∆t) = x(t) + ∆t · l (x(t), x (t+∆t)) . (14)

Applying the fixed time-step semi-implicit Euler discretization method to equation 12, we can obtain

xi (t+∆t) =
xi(t)

Cmi

∆t + Cmixleaki
Cmi

∆t + Cmi +
∑

jϵIin
wijσi (xj(t))

+

∑
jϵIin

wijσi (xj(t)) · tanh(h (xj(t), θ))
Cmi

∆t + Cmi
+

∑
jϵIin

wijσi (xj(t))
,

(15)
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where Iin represents the set of neurons that have connections to neuron i. During the training phase of
solving ODE, we initialize the hidden states uniformly to zero. During the sampling phase of solving
ODE, the hidden state is initially set to zero in the first sampling step, followed by using the hidden
state value from the preceding step for subsequent initialization. In this study, the numerical ODE
solver has an iteration step size of 6 and a discrete interval time of 1.

3.2 THE SMODE NETWORK ARCHITECTURE

To improve the smoothness of control outputs, we further introduce the SmODE network, employing
the smooth ODE as its neuron. It is applicable as a policy network across a wide range of RL
frameworks. The architecture of the SmODE is shown in Fig. 1, which is structured with an input
module, a smooth ODE module, and an output module. The input module is a MLP network, and
the output module is a linear transformation layer, with spectral normalization applied. The smooth
ODE module consists of three layers, and the number of smooth ODE neurons in each layer can be
selected according to the task complexity.
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(a) Neuron model
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...
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(b) The SmODE network architecture

Figure 1: Designing SmODE network with smooth ODE neuron. (a) The neural state, xi(t), of a
smooth ODE neuron i integrates inputs from neurons j1, j2, j3 and its previous state. The system
dynamics, g (x(t), I(t), t, θ), allow for adaptive state boundary adjustments during the solving
process by the numerical ODE solver, akin to a feedback control mechanism. (b) The SmODE
network consists of an input module, a smooth ODE module, and an output module. The input
module is a MLP network, while the output module features a linear transformation layer with
spectral normalization applied. The smooth ODE module contains three layers, with the number of
neurons in each layer tailored to the task’s complexity. T denotes the number of iterations performed
by the numerical ODE solver.
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3.3 SMODE-BASED RL

To facilitate smoother control, the SmODE network is utilized for parameterizing the actor in RL,
represented by πθ, where θ denotes the respective network parameters. MLP is still utilized for
parameterizing critic in RL, represented by Qϕ.

The magnitude of the f(x(t), I(t), t, θ) value indicates the extent of filtering; a smaller value cor-
responds to a higher degree of filtering, thereby more effectively suppressing high-frequency noise
interference. Therefore, we add the coefficient f(x(t), I(t), t, θ) associated with the filtering as
a regularization term. The function tanh(h(x(t), I(t), t, θ)) regulates the range of values for the
hidden state of the neuron; a smaller absolute value of h(x(t), I(t), t, θ) results in more pronounced
inhibition of the magnitude change of hidden state across neighboring time steps. Therefore, the
coefficient h2(x(t), I(t), t, θ) is associated with the hidden state boundary value as a regularization
term. Both regular terms are added to the original RL training loss. The modified actor loss is

minL′
π(θ) = Lπ(θ) + λ1Es∼R

[
N∑
i=0

f(·)

]
+ λ2Es∼R

[
N∑
i=0

h2(·)

]
, (16)

where λ1 and λ2 are the regularization factors,R is the replay buffer, the first regularization term is
named the time constant term, the second regularization term is named state boundary term, and N is
the number of smooth ODE neurons of the SmODE network. The pseudocode of SmODE-based RL
is illustrated in Algorithm 1.

Algorithm 1 Training method of SmODE-based RL.

Input: θ, ϕ, λ1, λ2, βq , βπ

for each iteration do
Collect a batch of samples (s, a, r, s′) with policy πθ

Store the samples in replay bufferR
for each update step do

Sample data fromR
Update actor using θ ← θ − βπ∇θL′

π(θ)
Update critic using ϕ← ϕ− βq∇ϕLq(ϕ)

end for
end for

4 EXPERIMENTS

4.1 EXPERIMENTAL ENVIRONMENT

In this study, ten types of experimental environments are adopted to validate the efficacy of the
SmODE network: a vehicle trajectory tracking task, a linear quadratic regulator problem, and eight
robotic control tasks in Mujoco Todorov et al. (2012). All experiments were conducted on eight
AMD Ryzen Threadripper 3960X 24-core processors with 128G of RAM each. The time required
for Mujoco tasks with an average training step length of 1 million is 14h.

Vehicle trajectory tracking is a significant problem in autonomous driving. We simulated the motion
of the vehicle using the vehicle dynamics model proposed by Ge et al. (2021). Furthermore, we
chose an LQR problem with two states and one action as an ablation experiment task. Detailed
introductions to the two experimental environments are provided in the Appendix B.

Mujoco is a benchmark RL environment that integrates several robot control tasks. The specific
simulation tasks, depicted in Fig. 4, include Humanoid, Pusher, Hopper, Reacher, Walker2d, Ant,
InvertedDoublePendulum and CarRacing.

We will use the following two types of RL algorithms. Infinite-time approximate dynamic program-
ming (INFADP)Li (2023) is a typical model-based RL algorithm. Distributional soft actor-critic
(DSAC)Duan et al. (2021) is a typical model-free RL algorithm. All experiments were conducted in
general optimal control problem solver (GOPS)Wang et al. (2023), and the results are averaged over
five random seeds.
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Figure 2: Results in vehicle trajectory tracking environment. In this experiment, MPC operates
without adding noise, and its control outcomes will serve as a benchmark for the optimal policy.
On the first line is the result of the sine curve, and on the second line is the result of the double
lane-change curve.

4.2 TEST RESULTS ON VEHICLE TRACKING PROBLEM

Table 1: Performance analysis of tracking a double lane-change curve using the INFADP algorithm.
Results are expressed as mean ± standard deviation of five independent environmental seeds.

Policy network
Gaussian noise standard deviation

0.05 0.10 0.15 0.20
ε(π) TAR ε(π) TAR ε(π) TAR ε(π) TAR

SmODE 0.061±0.011 -0.778±0.022 0.110±0.013 -0.836±0.026 0.137±0.018 -0.876±0.032 0.176±0.022 -0.926±0.028
MLP 0.312±0.022 -1.111±0.038 0.645±0.038 -1.725±0.049 0.842±0.047 -2.266±0.050 0.964±0.059 -3.087±0.047
LTC 0.193±0.015 -0.920±0.027 0.392±0.020 -1.281±0.031 0.589±0.021 -1.848±0.046 0.778±0.034 -2.334±0.036

LipsNet 0.069±0.013 -0.893±0.018 0.125±0.019 -0.934±0.020 0.169±0.019 -0.987±0.021 0.221±0.027 -1.112±0.033
MPC 0.238±0.008 -0.818±0.013 0.439±0.010 -1.248±0.017 0.554±0.015 -1.509±0.028 0.706±0.022 -2.252±0.026

We illustrate our approach by tracking the double lane-change curve, employing five distinct methods:
INFADP with MLP, INFADP with SmODE, INFADP with LipsNet, INFADP with LTC and MPC
Holkar & Waghmare (2010). Table 1 displays the performance metrics for these methods, noting that
Gaussian noise is the noise type used. In this context, TAR denotes the total average return, and ε(π)
represents the action fluctuation ratio.

In four distinct noise environments with varying levels, our algorithm consistently outperformed
others. As shown in the table, SmODE, acting as a policy network, significantly reduces the action
fluctuation ratio and enhances the TAR compared to MLP. Notably, with a Gaussian noise variance
of 0.2, our network lowers the action fluctuation ratio by about 81.7%, demonstrating superior
smoothness. The results for the first and third algorithms indicate that our neural network architecture,
combined with modified actor loss, greatly mitigates the action fluctuation rate. Moreover, in noisy
environments, our approach exceeds the recent LipsNet enhancement in performance and proves
more effective than the classical MPC controller.

This resilience is largely due to the low-pass filtering effect and SmODE’s ability to suppress its
Lipschitz constant. Given the common presence of noise in real-world settings, SmODE’s robustness
in noisy environments is of significant practical value.

Furthermore, with a Gaussian noise variance of 0.05, our analysis of experimental results using MLP
and SmODE as policy networks for tracking sine and double lane-change curves shows notable
differences. We used the MPC algorithm as a baseline for noise-free comparison. As illustrated in
Fig. 2, SmODE not only exhibits a lower action fluctuation ratio than MLP but also smaller variations
in lateral velocity, enhancing vehicle comfort and safety.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

4.3 TEST RESULTS ON MUJOCO BENCHMARK

In this experiment, we focused on eight robotic control tasks within the Mujoco environment. We
employed DSAC Duan et al. (2021) as the fundamental RL algorithm, configuring the policy networks
as MLP, LipsNet, LTC, and SmODE. The assessment was performed under two levels of Gaussian
noise to mimic various real-world conditions. Since the state values of different Mujoco tasks vary
greatly, we set two levels of Gaussian noise for the eight tasks, as shown in Table 2.

Table 2: Variance of different levels of Gaussian noise for different Mujoco tasks.

Noise level InvertedDoublePendulum-v3 Reacher-v2 Humanoid-v3 Pusher-v2 Hopper-v3 Walker2d-v3 Ant-v3 CarRacing-v1

level 1 0.005 0.050 0.020 0.050 0.050 0.050 0.050 0.150
level 2 0.015 0.100 0.050 0.100 0.100 0.100 0.070 0.250

For the whole task, noise is added to all states. The results, which are the averages of five seeds over
1 million training steps, are shown in Table 3.

Under different levels of Gaussian noise, SmODE, functioning as a policy network, achieved the
lowest average action fluctuations compared to LTC, LipsNet, and MLP. Additionally, SmODE
exhibited the best performance in most Mujoco tasks. Given that the pursuit of action smoothness
and high performance can be somewhat contradictory, it is understandable that the best performance
was not achieved in all experimental settings. Moreover, we also experimented with TD3 Fujimoto
et al. (2018) in the Walker2d-v3 and Ant-v3 environments and obtained similar results, as shown in
Appendix D.

Table 3: Average control performance of SmODE, LTC, LipsNet, and MLP for different Gaussian
noise levels, where level 1 is on the left column and level 2 is on the right column. The average action
fluctuation rate is indicated in parentheses. Results are expressed as mean ± standard deviation of
five independent environmental seeds.

Network structure InvertedDoublePendulum-v3 Reacher-v2

SmODE 9357±2 (0.15) 9340±2 (0.44) -5.67±1 (0.22) -9.16±1 (0.32)
LTC 9355±2 (0.25) 9336±3 (0.64) -6.09±2 (0.31) -10.29±3 (0.42)

LipsNet 9357±2 (0.20) 9338±2 (0.50) -5.94±1 (0.26) -9.84±2 (0.39)
MLP 9357±2 (0.27) 9335±4 (0.68) -5.73±3 (0.30) -10.49±3 (0.44)

Network structure Humanoid-v3 Pusher-v2 Hopper-v3

SmODE 10819±81 (0.45) 10746±101 (0.50) -40±1 (0.90) -51±1 (1.39) 3265±232 (0.70) 2532±302 (1.01)
LTC 10626±128 (0.60) 10578±245 (0.66) -44±2 (1.51) -86±8 (2.30) 2724±287 (0.88) 1398±345 (1.25)

LipsNet 10872±89 (0.57) 10715±104 (0.62) -43±2 (1.23) -55±3 (2.03) 2905±301 (0.84) 1787±291 (1.21)
MLP 10892±342 (0.62) 10567±512 (0.69) -49±3 (2.01) -71±3 (2.60) 1282±322 (0.93) 1108±231 (1.30)

Network structure Walker2d-v3 Ant-v3 CarRacing-v1

SmODE 6039±112 (0.73) 5037±114 (1.03) 3564±184 (1.68) 1677±41 (1.93) 916±27 (0.83) 873±14 (0.96)
LTC 5861±482 (1.10) 2352±604 (1.71) 2872±341 (2.04) 1084±298 (2.16) 906±21 (0.87) 694±116 (1.03)

LipsNet 6032±238 (1.05) 4981±423 (1.45) 3721±212 (1.93) 1532±109 (2.10) 896±31 (0.85) 821±56 (1.00)
MLP 5663±508 (1.21) 1597±815 (1.80) 1086±1246 (2.16) 197±120 (2.30) 870±38 (0.88) 751±86 (1.05)

4.4 ABLATION STUDY

To demonstrate how the time constant and state boundary regularization terms contribute to the final
smoothing action, we conducted ablation experiments. We still use the model-based RL method,
INFADP Li (2023), to train in this environment. All ablation experiments are performed on the linear
quadratic regulation problem for two-dimensional states and one-dimensional action.

The following are the specific designs of three ablation experiments: 1) SmODE w/o time constant
term: ablation time constant regular term. This ablation experiment aimed to validate the impact
of incorporating the time constant of the system as a regular term in actor loss on the smoothing of
action output. 2) SmODE w/o state boundary term: ablation regular term for the boundary
of neuron states. This ablation experiment involved removing the regular term from the actor loss,
a term that adaptively controls neuron state boundaries by predicting the rate of change in actions
near the current state. 3) Baseline: ablation the both regular terms. This ablation experiment
simultaneously removes the two regular terms added to the actor loss and replaces the MLP with a
neural ODE network only.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

0.2 0.3 0.4 0.5 0.6
Noise σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
tio

n 
flu

ct
ua

tio
n 

ra
tio

SmODE
SmODE w/o time constant term 
SmODE w/o state boundary term 
Baseline

(a) Action fluctuation ratio

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Noise σ

−250

−200

−150

−100

−50

0

To
ta

l a
ve

ra
ge

 re
tu

rn

SmODE
SmODE w/o time constant term 

 term SmODE w/o state boundary
Baseline

(b) Total average return

Figure 3: Results in the LQR environment. The X-axis is the noise variance.

In Fig. 3, we present results from three ablation studies in the LQR environment using the INFADP
algorithm. We introduced various levels of uniform noise into the observed state. The results show
that compared to the baseline, both regularization terms effectively reduce the action fluctuation ratio
and increase the total average reward, with the state boundary regularization term having a particularly
notable impact. Notably, with a noise variance of 0.6, SmODE decreases the action fluctuation rate
by 12% and boosts the total average return by 79%. As noise levels increase, SmODE shows a slower
rise in action fluctuation ratio and a more gradual decrease in total average return compared to the
baseline neural ODE network, highlighting its superior noise resistance and smoothing capabilities.

In addition, we conducted ablation experiments on whether the output module used spectral normal-
ization (SN) techniques in the Walker2d and Humanoid tasks, with the experimental results shown in
Table 4.

Table 4: Control performance of different network structures under different Gaussian noisy variance.
The average action fluctuation rate is indicated in parentheses.

Network structure Walker2d-v3 Humanoid-v3

SmODE 6039±112 (0.73) 5037±114 (1.03) 10819±81 (0.45) 10746±101 (0.50)
SmODE-wo-SN 6013±202 (0.80) 5165±164 (1.12) 10821±63 (0.48) 10739±122 (0.54)

The experimental results indicate that using SN techniques can further reduce action fluctuation, with
minimal impact on overall performance. It is worth noting that the reduction in action fluctuation due
to the use of SN techniques is relatively small compared to the overall decrease.

5 CONCLUSION

In this study, we introduce the SmODE network to tackle non-smooth action outputs in deep
reinforcement learning. The network features a smooth ODE as a key component of its neurons,
enabling adaptive state boundary adjustments and low-pass filtering. This design grants the neurons
disturbance rejection and smoothness capabilities. As a policy network, SmODE enhances control
output smoothness and increases average rewards in various RL algorithms over MLP and LipsNet.
We hope our contributions advance real-world RL applications.

6 LIMITATION

Solving the Neural ODE using numerical methods requires N iterations. In our case, we balanced
solution accuracy and computational efficiency by adopting N = 6, a value commonly used in
previous related work. As a result, the training time for SmODE increases by a factor of 2 to 3
compared to MLP, which is an issue that needs to be addressed. In future work, we plan to explore
the latest techniques for training neural ODE networks to accelerate the backpropagation process.
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A THEORETICAL RESULTS

A.1 PROOF OF THEOREM 1

Theorem 1 Let xi denote the hidden state of a neuron i within the smooth ODE, identified by
equation 10, and let neuron i receive some incoming connections. Then, the hidden state of any
neuron i, on a finite interval Int ∈ [0, T ], is bounded as follows:

min(0, g(x(t), I(t), t, θ)min
i ) ≤ xi(t) ≤ max(0, g(x(t), I(t), t, θ)max

i ). (17)

Proof. Let us insert M = max(0, g(·)max
i ) as the neural state of neuron i, xi(t) into equation 10:

dxi

dt
= − f(xj (t) , t, θ)M + f(xj (t) , t, θ) · g(xj (t) , t, θ)i︸ ︷︷ ︸

≤0

. (18)

The right-hand side of equation 18 is negative, considering the constraints on M , the positivity of
weights, and the fact that f(xj) is positive. Consequently, the left-hand side must also be negative.
Employing an approximation on the derivative term yields the following relationship:

dxi

dt
≤ 0,

dxi

dt
≈ xi(t+∆t)− xi(t)

∆t
≤ 0. (19)

By substituting xi(t) with M , we get:

x(t+∆t)−M

∆t
≤ 0→ x(t+∆t) ≤M, (20)

which means xi(t) ≤ max(0, g(·)max
i ). We can also obtain similar results min(0, g(·)min

i ) ≤ xi(t).

A.2 PROOF OF THEOREM 2

Theorem 2 Let xi denote the hidden state of a neuron i within the smooth ODE, identified by
equation 10. Then, the absolute value of the derivative of the hidden state concerning time for any
neuron i has an upper bound controlled by M(x(t), I(t), t, θ)i, as follows

|dxi(t)

dt
| ≤M(x(t), I(t), t, θ)i · C (21)

where max(|g(x(t), I(t), t, θ)min
i |, |g(x(t), I(t), t, θ)max

i |) = M(x(t), I(t), t, θ)i, C is a bounded
positive constant.

Proof.

dx(t)

dt
= −f(x(t), I(t), t, θ)x(t) + f (x(t), I(t), t, θ) g (x(t), I(t), t, θ)

⇒ |dx(t)
dt
| = | − f(x(t), I(t), t, θ)x(t) + f (x(t), I(t), t, θ) g (x(t), I(t), t, θ) |

≤ |f(x(t), I(t), t, θ)x(t)|+ |f (x(t), I(t), t, θ) g (x(t), I(t), t, θ) |
≤ |f(x(t), I(t), t, θ)| · |x(t)|+ |f (x(t), I(t), t, θ) g (x(t), I(t), t, θ) |
≤ f(x(t), I(t), t, θ) ·M(x(t), I(t), t, θ) + f(x(t), I(t), t, θ) ·M(x(t), I(t), t, θ) According to equation 17
= M(x(t), I(t), t, θ) · 2f(x(t), I(t), t, θ)
≤M(x(t), I(t), t, θ) · C

where f(x(t), I(t), t, θ) = wij

Cmi
sigmoid(·), wij ∈ (0.001, 1.0), Cmi

∈ (0.4, 0.6), C is s a bounded
positive constant.

The output module is a simple layer of linear mappings a = wx + b, with spectral normalization
applied, so there |da(t)dt | ∝ |

dx(t)
dt | holds.
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⇒ |da(t)
dt
| ≤M(x(t), I(t), t, θ) · C ′

where C ′ is a bounded positive constant.

B EXPERIMENTAL ENVIRONMENT INTRODUCTION

B.1 VEHICLE TRAJECTORY TRACKING ENVIRONMENT

Table 5 provides detailed descriptions of the states and actions in the vehicle trajectory tracking task.

Table 5: List of states and actions

Varible Description Uint

State

x longitudinal position m
y lateral position m
φ heading angle rad
u longitudinal velocity m/s
v lateral velocity m/s
ω yaw rate at center of gravity (C.G.) rad/s

Action a longitudinal acceleration m/s2

δ front wheel angle rad

In the vehicle trajectory tracking experiment, we selected sine and double lane-change curves for
tracking.

The reward is designed as

r = −0.04 (x− xref)
2 − 0.04 (y − yref)

2

−0.02 (φ− φref)
2 − 0.02 (u− uref)

2

−0.01ω2 − 0.01δ2 − 0.01a2,

(22)

where xref, yref, φref, uref represent reference states.

The vehicular parameters are listed in Table 6, where C.G. means the center of gravity.

Table 6: Vehicular parameters

Parameter Description Value
m mass of the vehicle 1412 kg
lf distance between C.G. and front axle 1.06 m
lr distance between C.G. and rear axle 1.85 m
kf front axle equivalent sideslip stiffness -128916 N/rad
kr rear axle equivalent sideslip stiffness -85944 N/rad
Iz yaw inertia of vehicle body 1536.7 kg ·m2

f control frequency 10 Hz

B.2 LINEAR QUADRATIC REGULATION PROBLEM

The state-space equation is
Ẋ = AX +BU, (23)

where

A =

[
0 1
0 0

]
, B =

[
0
1

]
. (24)
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The reward is designed as
rt = −Xt

TQXt−U t
TRUt, (25)

where
Q = diag(2, 1), R = 1, (26)

diag means a diagonal matrix.

B.3 MUJOCO ENVIRONMENTS

Mujoco serves as a benchmark RL environment comprising various robot control tasks. The specific
simulation tasks, shown in Fig. 4, include Humanoid, Pusher, Hopper, Reacher, Walker2d, Ant,
Inverted Double Pendulum, and Car Racing.

Figure 4: Simulation tasks. (a) Humanoid-v3:(s × a) ∈ R376 × R17. (b) Pusher-v2: (s × a) ∈
R23 ×R7. (c) Hopper-v3 : (s× a) ∈ R11 ×R3. (d) Reacher-v2: (s× a) ∈ R11 ×R2. (e) Walker2d-
v3: (s × a) ∈ R17 × R6. (f) Ant-v3: (s × a) ∈ R111 × R8. (g) InvertedDoublePendulum-v3:
(s× a) ∈ R11 × R1. (h) CarRacing-v1: (s× a) ∈ R96×96×3 × R2 (image-input).

C LANDSCAPE OF AVERAGE |h(xj, θ)|

In the LQR problem used for the ablation experiments, we plot the average values of |h(xj , θ)| in
SmODE, as shown in Fig. 5. Notably, |h(xj , θ)| exhibits larger values around the states (−1,−1) and
(1, 1), as these states indicate a departure from the steady state (0, 0). Consequently, the Lipschitz
constant may be larger, necessitating an increase in the range of values for the hidden state of the
neuron.

D TD3 WITH SMODE

In order to demonstrate the smoothing ability of SmODE in other RL algorithms, we experimented
with TD3 as an example in Walker2d-v3 and Ant-v3 environments, as shown in Table 7.

E TRAINING DETAILS

In Mujoco tasks, hyperparameters unrelated to SmODE were consistent with those in the DSAC
paper. The parameters that needed adjustment were only λ1 and λ2, as well as the number of neurons
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Figure 5: Landscape of average |h(xj , θ)|.

Table 7: Control performance of different network structures under Gaussian noisy variance of 0.05
(left column) and Gaussian noisy variance of 0.1 (right column) conditions. The average action
fluctuation rate is indicated in parentheses.

Network structure Walker2d-v3 Ant-v3

SmODE 3962±361 (0.87) 3504±773 (1.11) 4158±524 (1.01) 3857±754 (1.67)
LipsNet 3578±392 (0.95) 3226±623 (1.32) 4002±531 (1.24) 3398±482 (1.88)

MLP 3226±360 (1.08) 2063±520 (1.60) 3852±227 (1.72) 862±242 (2.19)

in the three-layer network of the smooth ODE module. The variables λ1 and λ2 were adjusted using
a controlled variable method to find the relatively optimal results. The configuration of the neuron
numbers in the smooth ODE follows the rule that the number of neurons in the second and third
layers equals the dimensionality of the environment actions, and the number of neurons in the first
layer is greater than that of the latter two layers.

E.1 TRAINING DETAILS ON VEHICLE TRAJECTORY TRACKING ENVIRONMENT

We employ the infinite-time approximate dynamic programming (INFADP) Li (2023), a model-
based RL algorithm, for training in the vehicle trajectory tracking environment. We use the same
hyperparameters for sine and double-line scenarios. The hyperparameters of INFADP are listed in
Table 8.

E.2 TRAINING DETAILS ON LQR

The classical optimal control problem is characterized as a linear quadratic regulation (LQR) problem
with two-dimensional states and one-dimensional action. We use the INFADP algorithm to train this
environment. The hyperparameters of INFADP are listed in Table 9.

E.3 TRAINING DETAILS ON MUJOCO TASKS

Mujoco Todorov et al. (2012) is a simulation engine designed primarily for research in RL and
robotics. It provides a versatile and physics-based platform for developing and testing various RL
algorithms. Core features of Mujoco include a highly efficient physics engine, realistic modeling
of dynamic systems, and support for complex articulated robots. Currently, it is one of the most
recognized benchmark environments for RL and continuous control.
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Table 8: Algorithm hyperparameter

Parameter Setting
Replay buffer capacity 1000000
Buffer warm-up size 1000
Batch size 64
Discount γ 0.99
Target network soft-update rate τ 0.2
Initial random interaction steps 0
Interaction steps per iteration 8
Network update times per iteration 1
Prediction step 10
Action bound [-0.4, 0.4]
Exploration noise std. deviation 0.2
Hidden layers in input module [64, 64]
Numbers of adaptive ODE neurons in each layer [4, 2, 2]
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate 1 · 10−3

Critic learning rate 1 · 10−3

Weight λ1 2 · 10−2

Weight λ2 2 · 10−3

Table 9: Algorithm hyperparameter

Parameter Setting
Replay buffer capacity 1000000
Buffer warm-up size 1000
Batch size 64
Discount γ 0.99
Target network soft-update rate τ 0.2
Initial random interaction steps 0
Interaction steps per iteration 8
Network update times per iteration 1
Prediction step 1
Action bound [-5, 5]
Exploration noise std. deviation 0.2
Hidden layers in input module [64, 64]
Numbers of adaptive ODE neurons in each layer [2, 1, 1]
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate 3 · 10−5

Critic learning rate 8 · 10−5

Weight λ1 2 · 10−2

Weight λ2 2 · 10−3

We use distributional soft actor-critic (DSAC)Duan et al. (2021), a model-free RL algorithm to train
these eight robot control tasks. The hyperparameters of DSAC are listed in Table 10. The weights
λ1, λ2 and numbers of smooth ODE neurons of each layer are listed in Table 11.
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Table 10: Algorithm hyperparameter

Parameter Setting
Replay buffer capacity 1000000
Buffer warm-up size 10000
Batch size 256
Discount γ 0.99
Initial alpha α 0.27
Target network soft-update rate τ 0.005
Initial random interaction steps 0
Interaction steps per iteration 8
Network update times per iteration 1
Prediction step 1
Action bound [-1, 1]
Convolution kernel sizes (CarRacing) [4, 3, 3, 3, 3, 3]
Convolution channels (CarRacing) [8, 16, 32, 64, 128, 256]
Convolution strides (CarRacing) [2, 2, 2, 2, 1, 1]
Convolution activation (CarRacing) ReLU
Hidden layers in input module [256, 256, 256]
Hidden layers in critic network [256, 256, 256]
Activations in critic network GeLU
Policy act distribution TanhGauss
Policy min log std -20
Policy max log std 0.5
Policy delay update 2
Optimizer Adam
Actor learning rate 1 · 10−4

Critic learning rate 1 · 10−4

Alpha learning rate 3 · 10−4

Target entropy - dim (A)

Table 11: Weight λ1, λ2 and numbers of smooth ODE neurons of each layer on Mujoco

Env weight λ1 weight λ2 Numbers of smooth ODE neurons

Humanoid-v3 1 · 10−2 1 · 10−2 [20 17 17]
Pusher-v2 1 · 10−3 1 · 10−2 [10 7 7]
Hopper-v3 1 · 10−3 1 · 10−2 [6 3 3]
Reacher-v2 1 · 10−2 1 · 10−2 [4 2 2]
Walker2d-v3 1 · 10−2 1 · 10−2 [10 6 6]
Ant-v3 1 · 10−5 1 · 10−3 [10 8 8]
InvertedDoublePendulum-v3 1 · 10−2 1 · 10−2 [2 1 1]
CarRacing-v1 1 · 10−3 1 · 10−3 [4 2 2]
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