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Abstract

Recent advancements in 3D perception have led to a proliferation of network archi-
tectures, particularly those involving multi-modal fusion algorithms. While these
fusion algorithms improve accuracy, their complexity often impedes real-time per-
formance. This paper introduces VeXKD, an effective and Versatile framework
that integrates Cross-Modal Fusion with Knowledge Distillation. VeXKD applies
knowledge distillation exclusively to the Bird’s Eye View (BEV) feature maps,
enabling the transfer of cross-modal insights to single-modal students without
additional inference time overhead. It avoids volatile components that can vary
across various 3D perception tasks and student modalities, thus improving ver-
satility. The framework adopts a modality-general cross-modal fusion module
to bridge the modality gap between the multi-modal teachers and single-modal
students. Furthermore, leveraging byproducts generated during fusion, our BEV
query guided mask generation network identifies crucial spatial locations across
different BEV feature maps from different tasks and semantic levels in a data-
driven manner, significantly enhancing the effectiveness of knowledge distilla-
tion. Extensive experiments on the nuScenes dataset demonstrate notable im-
provements, with up to 6.9%/4.2% increase in mAP and NDS for 3D detection
tasks and up to 4.3% rise in mIoU for BEV map segmentation tasks, narrowing
the performance gap with multi-modal models.

1 Introduction

3D perception, encompassing 3D object detection [31, 1] and BEV map segmentation [63, 22, 72],
is crucial for understanding 3D scenes and controlling autonomous vehicles [48, 6, 38]. Achiev-
ing high accuracy and real-time performance simultaneously presents the desirable yet challenging
pursuit in this field [12]. Many studies [2, 40, 28] focus on multi-modal fusion, particularly the
fusion of LiDAR and multi-view cameras, to enhance perception accuracy. These methods necessi-
tate handling additional input data, inevitably employ more complex networks, and extend inference
time. Conversely, some studies [69, 52, 66, 65, 60] continue to focus on single-modal algorithms to
maintain system simplicity and enhance accuracy with better training strategies and data pipelines.

Cross-modal Knowledge Distillation (KD) [14, 36, 59] has emerged as a promising strategy for
transferring insights across modalities, using multi-modal models as teachers and single-modal mod-
els as students. Cross-modal KD can thus improve the accuracy of student models without incurring
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additional inference time. However, cross-modal KD faces significant challenges, including capacity
discrepancies between the student and teacher models, and information gaps stemming from the dif-
ferent input modalities. Xue et al. [50] propose and tentatively validate that teacher models focusing
on modality-specific information can exacerbate the modality gap between student, reducing the ef-
fectiveness of cross-modal KD. In contrast, teacher models that base decisions on modality-general
information can minimize disparities with single-modal students, facilitating a more effective cross-
modal KD process.

Figure 1: (Left) Visualization of BEVFusion feature
maps before and after fusion, indicating minimal infor-
mation gain. (Right) Significant performance degrada-
tion in the LiDAR-missing scenario, highlighting the
over-reliance on LiDAR features.

However, the current research paradigm, which
separates cross-modal fusion from KD, lim-
its potential synergies. On one hand, multi-
modal fusion research [24, 62, 28] has become
performance-oriented. Despite achieving im-
pressive results on benchmarks like nuScenes
[4], BEVFusion [28] stands out as the state-
of-the-art fusion method. However, the visu-
alization of fusion and LiDAR feature maps
in BEVFusion [28], and the significant per-
formance drops under conditions like LiDAR
failure as depicted in Fig. 1, reveal an over-
reliance on LiDAR-specific information rather
than on the general information of multi-modal
features. This makes these high performance
fusion methods less suitable as teachers in cross-modal KD. On the other hand, research on cross-
modal KD in 3D perception [68, 7] seldom considers the selection of teachers, often directly using a
LiDAR or fusion model with higher accuracy, such as BEVFusion [28], as the teacher [68], which
potentially limits the effectiveness of cross-modal KD.

The versatility of KD algorithms is another facet often overlooked in previous research, yet it sig-
nificantly impacts the vitality and breadth of KD applicability, especially in a rapidly evolving field
like 3D perception. If a KD algorithm cannot be directly applied to new student algorithms, its re-
implementation may require numerous difficult-to-generalize empirical engineering decisions and
result in an unpredictable performance drop. The versatility of a KD algorithm primarily hinges
on two aspects. Firstly, it depends on whether the KD algorithm is tied to the processing steps or
feature space of a specific modality. For instance, MonoDistill [9] projects LiDAR points onto a per-
spective view and uses the same model architecture as the camera, serving as depth supervision for
camera branches but is not applicable to LiDAR students. In contrast, using the BEV space, which is
representation-friendly to different modalities, alleviates this limitation. Secondly, and most impor-
tantly, the versatility of a KD algorithm depends on its compatibility with specific network architec-
tures, especially task-specific heads, which exhibit the greatest design variations across different 3D
perception algorithms and downstream tasks. These can range from dense heads [55, 33, 37, 34, 30]
and transformer-based heads [2, 45, 58, 27] to segmentation heads [72, 46, 49, 67]. This diversity
limits the versatility of KD methods that rely on response distillation across different perception
tasks and various detection algorithms. Consequently, previous 3D perception KD methods often
require identical heads and similar model architectures for both student and teacher models, and are
generally limited to a single downstream task, primarily 3D object detection.

The current reliance on response distillation primarily stems from the underutilization of the rich
information available in the teacher’s feature maps. Previous efforts have focused on the ground
truth locations, using Gaussian masks [68, 7] or sampling a few points within these areas [68].
These methods tend to overlook the valuable background information, which has proven useful in
2D perception [13, 61]. Moreover, by confining feature distillation solely to ground truth locations,
these methods not only fail to account for variations in spatial perceptual fields across different levels
of BEV feature maps but also struggle to generalize to tasks requiring dense supervision, such as
map segmentation. This reduce the versatility of their KD methods.

To address the aforementioned challenges, we propose an effective and versatile framework that
integrates Cross-Modality Fusion and Knowledge Distillation within the BEV feature space. This
framework effectively narrows the modality gap between the teacher and different single-modal stu-
dent models by training a modality-general fusion teacher. Moreover, we leverage the learned BEV
query, the byproduct of the fusion process, to guide a mask generation network in creating unique
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spatial masks for different feature levels and tasks in a data-driven manner. These learned masks
significantly enhance the effectiveness of feature distillation by enabling the selective filtration and
transfer of valuable information from the teacher’s feature maps. Furthermore, our KD framework is
independent of specific processing steps or network architectures, making it versatile to be applied
across any downstream 3D perception task and adaptable to various student modalities, as well as
future advancements in this field.

In summary, our contributions are summarized as follows:

• We present an early effort to integrate cross-modal fusion and KD in 3D perception, enhancing the
efficacy of cross-modal KD with the modality-general fusion teacher and the fusion byproduct.

• We pioneer data-driven spatial masks learning for feature distillation on BEV feature maps, se-
lectively transferring only beneficial feature information by applying distinct masks tailored to
different BEV feature maps.

• Our KD approach is designed to be task- and modality-agnostic, making it highly versatile for any
BEV-based 3D perception task and adaptable to various student modalities.

2 Related Work

2.1 LiDAR-camera Fusion

LiDAR and camera are the two most common sensors used in 3D perception. Recent advancements
in both camera-based [32, 16, 23, 25, 53] and LiDAR-based [69, 51, 19, 55] methods have achieved
notable results, providing a solid foundation for LiDAR-camera fusion. Since the BEV space offers
a feature space that is friendly to both modalities and can easily be applied to various downstream
tasks, fusion research based on BEV space has also become a trend [26, 24, 42, 28]. In BEV-based
perception methods, both single-modal and fusion models [32, 25, 19, 28] initially transform inputs
from LiDAR or cameras into the BEV space using modality-specific encoders. Then only the fusion
models being integrated through a fusion module, but finally a BEV encoder and task-specific heads
are applied to all models for perception tasks. Although the abundance of research related to BEV
poses challenges in selecting appropriate student and teacher architectures for KD, the common
paradigm in BEV-based work offers the potential for a unified KD framework.

2.2 Knowledge Distillation

Knowledge distillation (KD) facilitates the efficient transfer of implicit knowledge from the teacher
to the student without increasing the student’s inference time [3, 14]. Besides aligning the teacher’s
soft outputs with the student’s, some works indicate that mimicking the feature map can also boost
performance [41, 21, 43, 56]. Direct distillation over the entire feature maps can potentially degrade
performance due to the noisy teacher feature maps. Based on this observation, some approaches
have resorted to attentive distillation, concentrating KD on the less noisy foreground features and
using ground truth as a mask to guide the process [35, 57]. On the other hand, recent studies
[13, 61] emphasize the value of background information and suggest decoupled KD processes for
both foreground and background features. DistillBEV [47] advances this concept by decomposing
the regions of feature maps and enhance attention to false positive regions. Recently, inspired by
pretext tasks in large language models, generative distillation has been proposed [54]. However,
random masks utilized in generative distillation can destabilize the performance, especially in 3D
object detection with pronounced foreground-background imbalance. Our approach still aligns more
closely with attentive distillation to selectively transfer knowledge from teacher’s feature map.

Another key research focus is the efficacy of KD, as explored by Cho et al. [8]. Studies indicate that
a high-accuracy teacher model does not necessarily improve KD results. Similarly, in cross-modal
KD scenarios, Xue et al. [50] investigate factors influencing KD’s effectiveness. They reveal that
if a teacher makes decisions based on modality-general features, KD performance can be improved
even when the teacher’s accuracy is not superior. Recently, Huang et al. [17] develop a “vision-
centric" multi-modal teacher, reducing reliance on LiDAR to align more closely with camera-based
students. Our work aims to develop a modality-general fusion model without modifying the pipeline
of the teacher network.
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Due to spatial inaccuracies in RGB images, numerous studies have used KD to improve the ac-
curacy of camera models. BEV-LGKD [20] uses LiDAR to enhance the camera-based students’
depth estimation but it is limited to LSS-based [32] projection methods, excluding certain camera
students like BEVFormer [25]. BEVDistill [7] introduces a sparse instance distillation method
coupled with transformer-based detection heads, which is unsuitable for common dense detection
heads [55]. Compared to camera student models, cross-modal KD applied to LiDAR students is
relatively less explored. Zheng et al. [64] employ the PointPainting [39] model as a teacher, pro-
viding supervision only for voxel-based LiDAR students during the voxelization process. Unidistill
[68] supports various student-teacher modality combinations, but its response distillation is limited
to dense detection heads, and feature distillation depends on 3D detection ground truths, restricting
its use in tasks like BEV map segmentation. To date, no universal KD paradigm covers diverse 3D
perception tasks and student modalities.

3 Methodology

3.1 Overall architecture of Cross-Modal Fusion and Knowledge Distillation Framework

Figure 2: Overall architecture of VeXKD: Building upon the common BEV fusion pipeline, we tailor a
Modality-General Fusion Module and design a masked feature distillation method with learned masks assisted
by the byproduct of the fusion module, applied across both low-level and high-level BEV features. Our feature
distillation framework circumvents variations in different model architectures, making it modality- and task-
agnostic.

Figure 3: Illustration of BEV query guided mask generation and masked feature distillation. (a) Overview
of the transformer-based block for mask generation, which adopts the byproducts from the fusion module as the
BEV query. (b) In the deformable cross attention operation, the BEV query interacts with the teacher feature
maps to identify crucial spatial locations. (c) In the masked feature distillation stage, learned spatial masks are
applied to both teacher and student feature maps before calculating the distillation loss.

The overall architecture of the proposed framework is depicted in Fig. 2. The modality-general
fusion module operates on the low-level BEV feature F low

modal, capturing high spatial granularity
and rich semantic information from different modalities. Enhanced by the byproducts of the fusion
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module, masked feature distillation is applied to both low and high-level BEV features to selectively
mimic the semantic information from the feature maps of the fusion teacher.

3.2 Modality-General Fusion Module (MGFM)

Figure 4: The architecture of the Modality-General Fusion Module:
(a) Overview of the transformer-based block. (b) Deformable cross-
modal attention operation: the BEV query symmetrically interacts with
features sampled from both LiDAR and camera. (c) Deformable query
self-attention operation: the BEV query interacts with itself to integrate
correlational relationships.

The architecture of the fusion
module is shown in Fig. 4.
Inspired by BEVFormer [25],
we employ deformable attention
[71] as the central mechanism of
our fusion module. As detailed
in Eq. 1, q, p, x represent the
query, reference point, and input
features, respectively. The num-
ber of attention heads and the
number of key points sampled
per head are denoted by Nhead

and Nkey . W ′
i , and Wi are

learnable parameters. Aij and
∆pij ∈ R2 represent the pre-
dicted weight and the offset rel-
ative to the reference point p for
these sampled key points, both
are learned from q. Deformable
attention enables learnable sam-
pling offsets, which provide a
larger and more adaptable recep-
tive field while maintaining com-
putational efficiency. It is ideal
for correcting varying degrees of spatial misalignments caused by ill-posed view projections and
fickle sensor extrinsic matrices. Our fusion module adheres to the traditional transformer block
structure, incorporating deformable cross-modal attention and query self-attention operations to it-
eratively fuse multi-modal BEV features.

During the deformable cross-modal attention operation, a set of learnable dense BEV queries
Q ∈ R(H×W )×C is initialized. These queries interact with low-level feature maps from each modal-
ity F low

modal, for modal ∈ {lidar, camera}. The sampling offset generation process is modified by
concatenating F low

modal with the query Q to produce modality-specific sampling offsets ∆p and atten-
tion weights W . The resulting feature map is updated by summing the outputs, as denoted in Eq.
2.

This symmetrical and equitable fusion approach forces the preservation of the information from each
modality. It promotes the extraction of modality-general information from the fusion features, rather
than disproportionately relying on a specific modality, thereby narrowing the information gap be-
tween the fusion teacher and individual modalities. In the deformable query self-attention operation,
modality-specific feature inputs are substituted with the query Q itself, as indicated in Eq. 3. This
self-attention operation not only expands the receptive field but also capture the inter-correlations
among BEV features, making the fusion features geometrically more accurate and semantically
richer. After stacking 6 transformer blocks similar to BEVFormer[25], the MGFM module yields
the fusion result F low

fusion.

DeformAttn(q, p, x) =

Nhead∑
i=1

Wi

Nkey∑
j=1

Aij · W ′
ix(p+∆pij) (1)

Q′
modal = [Q; F low

modal]; Q =
∑

modal

DeformAttn (Q′
modal, p, F

low
modal) (2)

Q = DeformAttn (Q, p,Q) (3)
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3.3 BEV Query Guided Mask Generation

Due to the inherent differences among various downstream tasks and feature levels, the specific areas
within the teacher feature map that require the student’s focus can vary. For example, in detection
tasks, information near ground truth positions is crucial for the high-level BEV features. However,
since high-level features selectively aggregate a broader range of low-level features, important low-
level features may be more widely distributed, not just at ground truth positions. Based on these
insights, we opt to learn ad hoc masks in a data-driven manner. Nevertheless, efficiently learning
these masks rapidly necessitates a set of initial parameters that are easy to generalize. Once trained
within the fusion module, the learned BEV query Q can effectively extract valuable information
from the BEV feature maps, facilitating quick adaptation to ad hoc spatial masks. To maximize
the effectiveness of Q, we employ the deformable cross-attention operation in the mask generation
network, similar to the setup in the fusion module as depicted in Fig. 3(a). Here, Q and the teacher
BEV feature map F fusion

level , where level ∈ {low, high}, serve as the q and x for DeformAttn, re-
spectively, allowing for continuous updates to Qlevel. Finally, the channel dimension is reduced to
1 using a 1 × 1 convolution, and the values interval for the learned spatial mask Mlevel is adjusted
to range (0,1) through a sigmoid activation function.

In designing the mask generation loss, inspired by [18], the original teacher feature map F level
fusion is

substituted with the masked version F̂ level
fusion, obtained by applying Hadamard product operation ⊙

between the teacher feature and the learned spatial mask, as shown in Eq. 4. This masked feature
serves as input to derive the final masked teacher loss for downstream tasks Ltask

masked. Minimizing
this loss ensures the preservation of valuable features in the teacher feature map through the learned
mask.

However, using only Ltask
masked as the mask learning loss can result in an all-ones mask. We also

incorporate the feature distillation loss LmasKD into the objective to stabilize the mask generation
process. This inclusion allows the student feature map to participate, helping avoid optimization
pitfalls that arise from hard-to-mimic locations due to modality gaps. The final mask generation loss
Lmask_gen is depicted in Eq. 5, where µ is a factor to balance the scale of the two losses.

F̂ level
fusion = M level ⊙ F level

fusion, level ∈ {low, high} (4)

Lmask_gen = Ltask
masked + µLmasKD (5)

3.4 Masked Feature Distillation

After applying the learned mask to both the student and teacher feature maps as depicted in Eq. 6
and Fig. 3(c), various loss functions can be applied to quantify the discrepancies between them.
Finally, Attention Transfer [56] is adopted to compute the KD loss between the student and teacher.
This method effectively mitigates the adverse impacts of channel-wise heterogeneity that arise from
different architectures. By applying L2-norm in Attention Transfer as shown in Eq. 7, greater em-
phasis is placed on spatial locations with higher activations or more discriminative features, thereby
enhancing the robustness and effectiveness of feature distillation.

We apply mask generation and attention transfer across both low- and high-level BEV features. The
mask generation process, which also incorporates LmasKD, runs concurrently with the KD process.
It can be halted after a certain number of epochs using a controllable hook. The overall loss for
the student model Lstudent

overall (see Eq. 8) combines the downstream task loss Lstudent
task with KD loss

LmasKD, using λ to balance the magnitude of these losses.

Qlevel(F) = vec
(
Fsum

(
M level ⊙ F

))
(6)

Llevel
masKD =

∥∥∥∥∥ Qlevel(F level
student)

∥Qlevel(F level
student)∥2

−
Qlevel(F level

fusion)

∥Qlevel(F level
fusion)∥2

∥∥∥∥∥
2

(7)

LmasKD =
∑

level∈{low,high}

Llevel
masKD, Lstudent

overall = Lstudent
task + λLmasKD (8)
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4 Experiments

4.1 Experimental Setup

The versatility of the KD framework is verified by adopting both camera and LiDAR student modali-
ties, and by evaluating on two 3D perception tasks: 3D object detection and BEV map segmentation.
Notably, our framework can be easily extended to support additional student modalities such as radar
and event-based cameras, and to support other downstream tasks, including 3D object tracking and
motion prediction.

Dataset & Evaluation Metrics The training and evaluation are conducted using the nuScenes
dataset[4], a large-scale dataset under the CC BY-NC-SA 4.0 license comprising 1,000 driving se-
quences (700/150/150 for train/val/test). This dataset provides diverse annotations and sensor data,
featuring six monocular camera images along with a 32-beam LiDAR system, making it ideal for
assessing our method across various tasks and modalities. We employ evaluation metrics that are
widely adopted by state-of-the-art methods. For 3D object detection, we adopt the mean Average
Precision (mAP) along with the nuScenes detection score (NDS), the official evaluation metrics
of the nuScenes dataset [4]. For BEV map segmentation, following BEVFusion [28] we use the
class-averaged mean Intersection-over-Union (mIoU) across six background classes (drivable space,
pedestrian crossing, walkway, stop line, car-parking area, and lane divider) as the evaluation metrics.

Models & Evaluation Configuration We use MMDetection3D [10] and MMRazor [11] under
the Apache License 2.0 to implement the fusion module and the knowledge distillation framework.
We replace BEVFusion’s [28] fusion module with our Modality-general Fusion Module to serve as
the teacher, keeping all other settings identical to BEVFusion. To verify the versatility of our frame-
work, we conduct KD on various representative student models, including the CenterPoint[55] Li-
DAR student model, BEVDet[16] with a ResNet-50 image backbone, and BEVFormer-S[25] (with-
out temporal fusion) as the camera student models. Additionally, we conduct cross-modal KD ex-
periments on BEVDet4D-Depth[15] student model, which adopts the long-term temporal fusion
operation. We maintain the same model architectures and data pipeline as original student models.
For the segmentation task, we simply replace the detection head with the BEVFusion [28] segmen-
tation head for binary segmentation across all classes. The teacher model utilizes a complex DETR
detection head [2], contrasting with the student models’ simpler dense detection heads. This helps
us assess the KD method’s robustness against heterogeneity in model architecture, besides input
modality. Detailed experiment settings can be referred to appendix. B.

4.2 Comparison with the State-of-the-Arts

Table 1 presents the comparative results. We choose representative and influential single-modal
algorithms as our baseline student models, including CenterPoint [55] for LiDAR, BEVDet-R50
[16], and BEVFormer-S [25] for cameras. In 3D object detection, our framework achieves signifi-
cant improvements over these baseline models. Our simple LiDAR student performs comparably to
those of single-modal state-of-the-art methods, such as TransFusion-L [2] and BEVFusion-L [28],
which employ a more complex DETR detection head, thereby narrowing the performance gap with
more sophisticated multi-modal fusion methods. Additionally, our simple BEVDet-R50 student out-
performs FCOS3D [44] and BEVFusion-C [28], which use heavier image backbones. Our method
also exceeds the performance of state-of-the-art cross-modal KD methods, including UniDistill [68]
and BEVDistill [7], both of which involve elaborate response KD. This underscores the effective-
ness of our feature distillation approach, supported by a superior teacher model and learned spatial
masks. For BEV map segmentation, our method also shows significant improvements compared to
the baselines, validating the task-independence of our integrated fusion and cross-modal KD frame-
work. Additionally, based on the performance comparison with VCD [17] in the 3D object detection
task, we observe that while our NDS is slightly lower than that of VCD, this may be due to VCDs
use of fine-grained trajectory-based distillation, which provides greater advantages in predicting ob-
ject motion and velocity. Nevertheless, our method achieves comparable results to VCD in terms of
mAP, demonstrating that the multi-sweep LiDAR information in the teacher model used by VeXKD
significantly enhances the student’s localization capabilities.
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Table 1: Performance of VeXKD on nuScenes for 3D object detection and BEV map segmentation tasks.
“L" and “C" denote the LiDAR and the Camera modality, respectively. “L+C" denotes multi-modal fusion
model. “L+C → C", “L → C", and “L+C → L" represent the knowledge distillation from the teacher model
to the respective single-modal student.“+" indicates the addition of cross-modal KD methods to the above
student models. The FPS results are evaluated on GTX 4090 GPU with batch size of one. “*" denotes our
re-implementation results. No test-time augmentation is applied during testing.

nuScenes test nuScenes val

mAP NDS mAP NDS mIoU

TransFusion[2] L+C 972 1.8 68.9 71.6 67.5 71.3 –
BEVFusion[28] L+C 507 2.3 70.2 72.9 68.5 71.4 62.9

TransFusion-L[2] L 340 5.8 65.5 70.2 65.1 70.1 –
BEVFusion-L[28] L 322 5.4 – – 64.7 69.3 48.6

CenterPoint[55] L 308 11.3 60.3 67.3 57.4 65.6 48.6
+S2M2-SSD [64] L+C → L 308 11.3 63.6 69.6 – – –
+Unidistill [68] L+C → L 308 11.3 63.9 70.1 59.7 67.5 –
+VeXKD(Ours) L+C → L 308 11.3 65.1 70.5 64.2 69.6 52.1

FCOS3d[44] C 2008 1.7 34.3 41.5 29.5 37.2 –
BEVDet-Tiny[16] C 370 6.3 – – 33.3 41.0 56.8∗

BEVDet-R50[16] C 184 14.0 28.9 38.4 28.6 37.2 56.4∗

+Unidistill[68] L+C → C 184 14.0 29.6 39.3 – – –
+VeXKD(Ours) L+C → C 184 14.0 35.8 42.6 34.7 40.6 60.7
BEVFormer-S[25] C 1152 2.6 40.9 46.2 37.5 44.8 61.8∗

+Unidistill[68] L+C → C 1152 2.6 – – 37.7∗ 45.5∗ –
+BEVDistill[7] L → C 1152 2.6 – – 38.6 45.7 –
+VeXKD(Ours) L+C → C 1152 2.6 42.5 48.3 41.2 47.7 64.2
BEVDet4D-Depth[15] C 220 12.3 – – 39.4 51.5 61.6∗

+VCD[17] L+C 220 12.3 – – 42.6 54.0 –
+VeXKD(Ours) L+C 220 12.3 – – 42.8 53.5 63.5

Method Modality GFLOPs FPS

Furthermore, the comparison of giga floating-point operations (GFLOPs) and inference time clearly
illustrates the performance and real-time trade-off introduced by cross-modal KD methods, particu-
larly with our VeXKD on the student model.

4.3 Ablation Studies

In this section, we validate the effectiveness of each module. Given the diversity of modalities
and tasks applicable to our method, some ablation studies are conducted on specific modality-task
combinations due to computational constraints.

Effectiveness of Each Proposed Module In this paper, we introduce three modules: the Modality-
General Fusion Module (MGFM) and Masked Feature Distillation modules for both Low- and High-
level BEV features (L-MFD and H-MFD). Configurations without MGFM use the original BEVFu-
sion as teachers. We conduct experiments on CenterPoint detection and BEVDet-R50 segmentation
students to evaluate the impact of these modules on different student modalities and tasks. Results
in Table 2 indicate each module positively contributes to the effectiveness of the KD, with MGFM
showing the most substantial impact. This confirms the previously overlooked critical role of the
teacher model in cross-modal KD settings.

Effectiveness of BEV Query Guided Mask Generation Network To validate the effectiveness
of the learned spatial mask, comparisons are made with state-of-the-art masking methods on the
CenterPoint student model: complete feature mimic (all 1’s mask) [5], key point sampling [68],
Gaussian masks centered on ground truth [7], and masks derived from teacher’s normalized acti-
vation map statistics [57]. In map segmentation, key point sampling and Gaussian masks, which
rely on ground truth, are inapplicable. Table 3 shows minimal improvements from complete fea-
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Table 2: Ablation study of three proposed algorithm components on nuScenes val. MGFM denotes the
Modality-General Fusion Module, L-MFD denotes Low-level Masked Feature Distillation, and H-MFD de-
notes High-level Masked Feature Distillation. Performance metrics include mAP/NDS for detection and mIoU
for the segmentation task.

Component Student Modality & Task
Setting MGFM L-MFD H-MFD LiDAR Detection Camera Segmentation

1 57.4/65.6 56.4
2 ✓ 59.2/66.8 (+1.8/1.2) 57.6 (+1.2)
3 ✓ 58.0/66.1 (+0.6/0.5) 57.9 (+1.5)
4 ✓ ✓ 59.8/66.9 (+2.4/1.3) 58.3 (+1.9)
5 ✓ ✓ 62.8/68.9 (+5.4/3.4) 59.2 (+2.8)
6 ✓ ✓ 61.9/68.5 (+4.5/2.9) 59.6 (+3.2)
7 ✓ ✓ ✓ 64.2/69.6 (+6.8/4.0) 60.7 (+4.3)

ture mimic, underscoring the necessity for feature filtering through masking. Gaussian masks and
key point sampling focus on limited foreground points for all levels of features, result in underuti-
lized feature distillation. Using normalized activation statistics as masks, assuming that regions with
higher teacher activation contain critical information, shows a correlation but not equivalence. Mean-
while, the varying performance across tasks underscores the necessity of learning specialized masks
for a versatile KD framework. Additionally, comparisons between Mask Generation with Randomly
Initialized Queries (MGTIQ) and Mask Generation with Learned Queries (MGLQ) demonstrate the
benefits of using fusion byproducts in mask learning.

Table 3: Ablation study of different mask selection methods in feature distillation on nuScenes val.
Student Modality & Task

Method LiDAR Detection LiDAR Segementation

No feature distillation 57.4/65.6 48.6
Feature distillation on entire feature maps[5] 58.7/66.4 50.5
Feature distillation on foreground key points[68] 60.3/67.0 –
Feature distillation masked by Gaussian[7] 60.8/67.3 –
Feature distillation on activation value[57] 61.4/67.7 50.9

Mask Generation with Randomly Initialized Query 63.7/69.1 51.6
Mask Generation with Learned Query from fusion 64.2/69.6 52.1

Effectiveness of Attention Transfer We use attention transfer (ATTN) [56] to compute the fea-
ture distillation loss, as it helps alleviate the channel dimension heterogeneity from differing archi-
tectures. Table 4 presents a comparison of results using attention transfer versus traditional loss
L1, L2, and Smooth L1 on CenterPoint student model, each implemented with a simple convolu-
tional adaptive layer. Although employing MGFM and learned masks renders the choice of specific
distillation loss less critical, attention transfer consistently outperforms other losses across tasks.

Table 4: Ablation study of different loss functions
in feature distillation on nuScenes val. The choice
of specific distillation loss is less critical while atten-
tion transfer performs better.

Student Modality & Task

Method LiDAR Det. LiDAR Seg.

No KD 57.4/65.6 48.6
L1 62.8/69.0 51.3
L2 63.7/69.2 51.6
Smooth-L1 63.5/69.3 51.7
ATTN[56] 64.2/69.6 52.1

Figure 5: Ablation study of the blocks number in
the mask generation network on nuScenes val.
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Influence of Mask Generation Network Architecture Our mask
generation network consists of stacked transformer blocks. We examine
how the number of blocks affects mask learning convergence † speed
and KD results on CenterPoint student model. Figure 5 shows that
increasing the block count beyond two does not significantly enhance
KD performance. However, employing three or more blocks accelerates
convergence. To balance learning speed and performance, we opt for a
block count of three.

4.4 Qualitative Results
Figure 6 shows spatial masks for different levels and tasks created by
our BEV Query Guided Mask Generation module. In detection tasks,
the mask emphasizes a wider area around foreground objects, especially
in low-level BEV features; in segmentation tasks, it also highlights back-
ground features. Figure 7 displays BEV features before and after our fu-
sion module, demonstrating that our fusion module effectively enhances
crucial areas with camera contextual information. Figure 8 compares
the BEV feature maps before and after KD, illustrating how our method
improves camera features with more deterministic depth projection ac-
curacy and accentuates important LiDAR features by correlating point
distribution with image textural information.

(a) Object detection

(b) BEV segmentation

Figure 6: Visualization of
learned spatial mask. Our
mask generation network
can produce spatial masks
for features at different lev-
els, tailored for various 3D
perception tasks.

(a) LiDAR (b) MGFM

Figure 7: Feature maps before
and after MGFM, showing en-
hancements in crucial areas with
camera textural feature.

(a) Cam. before (b) Cam. KD (c) lidar before (d) lidar KD

Figure 8: Comparison of feature maps – without vs. with distillation.
KD improves camera feature, offering more deterministic view projection
accuracy and accentuating important LiDAR features.

5 Conclusion
We propose VeXKD, a simple and versatile framework that integrates cross-modal fusion and knowl-
edge distillation, suitable for various student modalities and 3D perception tasks. Our approach
constructs a superior fusion model as the teacher and enhances the effectiveness of cross-modal
knowledge distillation. Using a BEV query guided mask generation network, we develop an adapt-
able feature distillation pipeline that produces spatial masks for features across different tasks and
student models, demonstrating its potential for integration with future 3D perception methods. The
effectiveness of our framework is confirmed through experiments on the nuScenes dataset, aiming to
spur further research into versatile KD frameworks that move beyond model-specific and intricately
engineered setups to more universally adaptable approaches.

Limitations While our framework is adaptable and has been tested across various modalities and
tasks, many scenarios remain untested due to time and computational constraints, such as radar
modality or the motion prediction task. The modality-general information utilized in our fusion
model has only been shown through experimental outcomes and visualizations. Currently, no stud-
ies can theoretically quantify this information. Future research could aim to extend knowledge
distillation to more 3D perception tasks and explore the theoretical aspects that influence its effi-
cacy. We utilize the implicit multi-sweep LiDAR information from the teacher model for temporal
knowledge transfer to the student model. The comparison with VCD demonstrates the potential of
integrating explicit temporal knowledge distillation operations. Developing versatile cross-modal
KD frameworks based on explicit temporal knowledge transfer could be a promising future direc-
tion.
†Mask convergence is defined as the condition where the difference in loss for the teacher’s downstream task
between the post-mask and original feature maps is less than 0.1.
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Appendix
A Preliminary

In the realm of 3D perception conducted in BEV space, whether through single-modal or multi-
modal fusion, the paradigm as depicted in Figure A.1 is commonly adopted. Within this paradigm,
multi-view camera-based algorithms utilize an image backbone to extract semantic information from
multi-view image inputs Imulti_view

img . This information is then projected onto BEV space from the
image space through forward projection [32, 16] or backward projection [25, 53], resulting in
low-level image BEV features F low

img as in Eq. A.1:

F low
img = Projection (ImgBackbone (Imulti_view

img )) (A.1)

In the context of LiDAR-based algorithms, benefiting from the inherent geometric accuracy of Li-
DAR point clouds, the LiDAR input Ilidar can be easily pooled into the BEV (Bird’s Eye View)
space, regardless of whether voxel-based or pillar-based encoders are used. This process yields
low-level LiDAR BEV features, denoted as F low

lidar as in Eq. A.2:

F low
lidar = LiDAREncoder (Ilidar) (A.2)

Meanwhile, the multi-modality fusion pipeline incorporates both F low
lidar and F low

img as inputs. These
are subsequently processed through a fusion module to produce fused low-level features F low

fusion.
Specifically, BEVFusion [28] achieves this by concatenating F low

img and F low
lidar, followed by process-

ing through several layers of simple convolution to obtain F low
fusion as in Eq. A.3:

F low
fusion = FusionModule (F low

img, F
low
lidar) (A.3)

Regardless of whether it is LiDAR-only, camera-only or even fusion model, the low level BEV
features are not suitable for direct 3D perception tasks due to the spatial inaccuracy and low se-
mantic level. Therefore, they are transformed into high-level BEV features Fhigh

modal,modal ∈
{lidar, img, fusion} through BEV encoders as in Eq. A.4:

Fhigh
modal = BEVEncoder (F low

modal) , modal ∈ {camera, lidar, fusion} (A.4)

Subsequently, these high-level BEV features are processed through various task-specific heads to ob-
tain the final results for 3D perception tasks, such as 3D map segmentation or object detection. Such
a common paradigm provide the foundation of building a versatile knowledge distillation framework
that can be applied to various student modalities and 3D perception tasks.

Figure A.1: Common paradigm for BEV-based 3D perception tasks: Despite variations in model
architectures, both low-level and high-level BEV features are common to all BEV-based algorithms.
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B Detailed Training Settings

All experiments are conducted with a batch size of 32, training from scratch on 8 of NVIDIA A800
GPU. By default, each student is trained for 20 epochs using the AdamW optimizer [29] with a
weight decay of 10−2. Throughout the training process of KD, the teacher model remains frozen.
The detection range was set to [-54.0, 54.0] for the X and Y axes, and the voxelization resulted in
a resolution of (0.075m, 0.075m, 0.2m). Both low-level and high-level feature maps are sized at
180 × 180 in height and width. The hyper-parameters applied to the loss terms µ and λ are simply
set to 1.0 and 2.0 to balance the scale of losses in our experiment.

BEVDet-50 Knowledge Distillation Experiment Following the original BEVDet [16] experi-
ments, a learning rate of 2 × 10−4 is used, with the ResNet-50 image backbone’s learning rate
reduced by a factor of 0.1 to stabilize training. The input image is cropped to 704× 256, and identi-
cal image augmentations are applied to both the student and the teacher to prevent misalignment. For
3D object detection, the CenterPoint detection head is used, and for segmentation, the segmentation
head from BEVFusion is employed for comparative experiments before and after KD.

CenterPoint Knowledge Distillation Experiment For the 3D object detection task, a rotate type
of Non-Maximum Suppress (NMS) algorithm is used for processing results. For the segmentation
task, the CenterPoint head is directly replaced with the segmentation head from BEVFusion for
experimental comparison. Following the original settings, CBGS [70] and a one-cycle learning rate
policy are employed with an initial learning rate of 1× 10−4.

BEVFormer-S Knowledge Distillation Experiment To mitigate the impact of temporal self-
attention in BEVFormer, BEVFormer-S is chosen as the student by adjusting the temporal self-
attention into a vanilla self-attention without using historical BEV features. To maintain consistency
with the teacher, the resolution of BEVs grid is adjusted from the original 0.512m to 0.6m, thereby
reducing the BEV queries size to 180×180 instead of 200×200. Training for BEVFormer-S is con-
ducted over 24 epochs, using the same Cosine Annealing learning rate and momentum scheduling
as the original. A learning rate of 2× 10−4 is used, with the ResNet-101 image backbone’s learning
rate reduced by a factor of 0.1 to stabilize training.

BEVDet4D-Longterm Knowledge distillation Experiment This experiment follows the exper-
iment configuration of BEVDet-R50-4DLongterm-Depth-CBGS. The input image size is set to
256Œ704, and the temporal fusion utilizes feature maps from the past 8 frames. ResNet-50 is
employed as the image backbone, and CenterHead is used for 3D object detection. Additionally, the
depth estimation for the image is supervised using the depth loss proposed in BEVDepth.

C More Qualitative Results

Visualizaiton of BEV features before and after Knowledge Distillation As illustrated in Fig.
C.1, significant differences are evident in the feature maps of both camera and LiDAR students
before and after knowledge distillation (KD). For camera students, KD can serve as a form of
depth supervision during the projection process from the perspective view to the BEV (Bird’s Eye
View). Consequently, compared to the original feature map of BEVDet-R50, which is chaotically
distributed across each depth bin, the KD-enhanced feature map contains more accurate and deter-
ministic depth information, benefiting the precision of 3D perception localization. For the LiDAR
student, KD helps establish a connection between the point cloud distribution and the camera’s tex-
tural information. This enhances the visibility of key foreground features, partially compensating
for the sparsity of point clouds at greater distances.

Visualization of detection result before and after Knowledge Distillation As previously men-
tioned, cross-modal KD can act as a regularization mechanism in the projection process for camera-
based systems. The detection visualization results, shown in Fig. C.2, demonstrate that KD en-
hances confidence in depth estimates for camera students, helping to prevent the occurrence of false
positives. For LiDAR students, KD facilitates the establishment of a correlation between point
distribution and the camera’s textural information. This enhancement aids in preventing the misclas-
sification of objects into different categories and reduces false positives. Additionally, KD improves
the recognition and accurate classification of objects with fewer points at greater distances.
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(a) Visualization of camera BEV feature before knowledge distillation

(b) Visualization of camera BEV feature after knowledge distillation

(c) Visualization of LiDAR BEV feature before knowledge distillation

(d) Visualization of LiDAR BEV feature after knowledge distillation

Figure C.1: BEV feature map comparison between KD and no-KD ones

Visualization of segmentation result before and after Knowledge Distillation In the task of
BEV map segmentation, a primary challenge for the camera modality is the unclear boundary de-
lineation and boundary spreading caused by inaccuracies in the view projection process. As shown
in Fig. C.3, KD can significantly enhance the accuracy of depth estimation in this projection, facil-
itating a more precise reconstruction of the original BEV scene. Conversely, LiDAR models often
underperform due to their inherent sparsity and reduced focus on background areas, which typi-
cally have fewer reflective points. The framework introduced in this study incorporates a learned
spatial mask that increases focus on these background locations, thereby preventing hallucinations
near regions with sparse LiDAR points and improving the accuracy of background segmentation.
Additionally, the established correlation between camera textural information and point cloud dis-
tribution promotes more accurate pixel-wise classification, further enhancing model performance in
densely populated nearby areas.

D Broader Impacts

Effective and real-time 3D perception is crucial for the safety of autonomous vehicles. By integrat-
ing cross-modal fusion and knowledge distillation, VeXKD transfers the multi-modal knowledge
to improve the accuracy of single-modal student without additional inference time overhead, thus
achieving better efficiency and accuracy trade-off. With its versatility, VeXKD can be applied to
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(a) Camera detection result before knowledge distillation

(b) Camera detection result after knowledge distillation

(c) LiDAR detection result before knowledge distillation

(d) LiDAR detection result after knowledge distillation

Figure C.2: Detection result before and after knowledge distillation for camera and LiDAR students.
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(a) Ground truth segmentation label for camera segmentation

(b) Camera segmentation result before knowledge distillation

(c) Camera segmentation result after knowledge distillation

(d) Ground truth segmentation label for LiDAR segmentation

(e) LiDAR segmentation result before knowledge distillation

(f) LiDAR segmentation result with knowledge distillation

Figure C.3: Segmentation result before or after knowledge distillation
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various student models and downstream 3D perception tasks. It can help pave the way for safe and
robust autonomous driving by integrating with the ever-evolving single-modal algorithms.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of our paper is the design and implementation of an
effective and versatile framework that integrates cross-modal fusion and knowledge dis-
tillation. In the methodology section, described in section. 3, we illustrate the overall
architecture in subsection. 3.1, the fusion module in subsection. 3.2, and the masked
feature distillation in subsection. 3.4 and subsection. 3.3, detailing how they contribute
to an effective and versatile framework. Finally, through experiments on different student
modalities and tasks, as discussed in subsection. 4.2, we have demonstrated the versatility
and effectiveness of our proposed framework. We also conduct extensive ablation studies
in subsection. 4.3 to show the effectiveness of each proposed module.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the con-

tributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have created a separate "Limitations" section to point out the limitations
of our work, which can be referred to section. 5.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
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role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: As an experimental science, this paper proposes a framework, implements it ,
and demonstrates both quantitative and qualitative results. Additionally, we mention in the
Limitations section 5 that there has been no research on theoretically analyzing the mech-
anisms of cross-modal knowledge distillation nor on the theoretical proof of the impact of
different teachers on experimental outcomes.

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have described the detailed architecture and the operation used for our
methods in section. 3, elaborating our description with natural languages, figures and equa-
tions. Additionally, we provide the source code along with the documentation in the sup-
plemental materials to further improve the reproducibility.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide source code and configuration files for training and evaluating
our methods, along with the instructions on data access and preparation in supplemental
materials.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new pro-
posed method and baselines. If only a subset of experiments are reproducible, they should
state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a detailed description of the training and testing details in subsec-
tion. 4.1 and appendix. B.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
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Answer: [No]
Justification: Acquiring statistical significance for our experiments requires running them
multiple times. Since our models are trained from scratch, this process is both time-
consuming and resource-intensive. We have observed that this aspect is often omitted in
most of the existing research in this field. Therefore, we follow the convention and omit
the analysis of experiment statistical significance.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or fig-
ures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provide the GPU resources we used to run the experiments in ap-
pendix. B.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics. The experiments in our paper
do not involve human subjects or participants. And the paper aims to improve the safety of
autonomous vehicles as mentioned in appendix. D.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special considera-
tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We aims to improve the safety of autonomous vehicles. And the societal
impact is illustrated in appendix. D.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models
that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification:We have cited all assets, including datasets and open-source platforms used
for code implementation, and mentioned their licenses in subsection. 4.1.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: We provide the code in supplementary materials and provide documentation
with it.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, limi-
tations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data collec-
tor.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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