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Abstract

ML is essential for modern data-driven technology; however, its perfor-
mance depends on choosing the optimal modelling approach, which can be
prohibitive in low-resource settings. Efficient hyperparameter optimization
(HPO) methods exist, but in practice, we often also need to decide between
different model alternatives, e.g. deep learning or tree-based methods, giv-
ing rise to the combined algorithm and hyperparameter optimization prob-
lem (CASH). Automated Machine Learning (AutoML) systems address this
problem typically by using HPO to search the joint hierarchical space of
models and their hyperparameters. To increase efficiency, we study an al-
ternative approach by conducting HPO for each model independently and
trying to allocate more budget to the most promising HPO run. We use
Multi-armed Bandits (MABs) as an efficient framework to balance explo-
ration and exploitation in this setting and identify promising directions
for future research. Concretely, we study how to leverage Extreme Ban-
dits and propose two quantile-based algorithms to efficiently explore the
extreme values for this practical setting. We empirically study the per-
formance of state-of-the-art MAB methods on two AutoML benchmarks
showing that even basic MAB methods with our adjusted regret term yield
resource-efficient alternatives to searching the whole space jointly.

1 Introduction

The performance of machine learning (ML) solutions is highly sensitive to the choice of
algorithms and their hyperparameter configurations. Finding a well-performing solution
can be a daunting task for non-experts or under rigid resource constraints. AutoML aims
to lower this barrier and to facilitate the application of ML. Hyperparameter optimization
(HPO) methods focus on finding well-performing hyperparameter settings given a resource
constraint, such as an iteration count or a time limit. Bayesian optimization (BO) (Jones
et al., 1998; Snoek et al., 2012; Garnett, 2022) is a popular method for HPO and has
been successfully demonstrated in practical settings (Falkner et al., 2018; Chen et al., 2018;
Cowen-Rivers et al., 2022). BO is an iterative approach that fits a surrogate model and
uses an acquisition function to find a promising configuration to evaluate next. However,
in practice, it is often also unclear which ML model class would perform best on a given
dataset. For example, on tabular data, an ubiquitous data modality in industry, it is heavily
debated whether ensembles of gradient-boosted decision trees (Chen & Guestrin, 2016) or
deep learning methods perform best (Gorishniy et al., 2021; Grinsztajn et al., 2022; McEl-
fresh et al., 2023). Thus, we also need to choose the ML algorithm and run HPO to find
its best-performing hyperparameters, giving rise to the combined algorithm selection and
hyperparameter optimization problem (CASH) (Thornton et al., 2013). As a naive solution,
we can run HPO independently for each algorithm and then compare the found solutions.
Alternatively, AutoML systems typically address CASH by using a single instantiation of
HPO to search a hierarchical space of models and hyperparameters (Thornton et al., 2013;
Feurer et al., 2015). We illustrate this trade-off between searching the whole space and
subspaces in Figure 1 (left), where we compare HPO for each model individually and on the
whole space. Both approaches do not scale well with an increasing number of model classes
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Figure 1: (Left) Accuracy over time for running HPO on each model class individually and
HPO on the whole space (black line). (Right) The empirical performance distribution of
two model classes on 200 sampled hyperparameter configurations.

and tight resource constraints. Ideally, we want a method that trades off exploring differ-
ent model classes and exploiting HPO for promising model classes. Multi-Armed Bandits
(MAB) have been developed for this setting but have received only little attention (Swearin-
gen et al., 2017; Li et al., 2020; Hu et al., 2021). MABs are a promising direction to address
the CASH problem, achieving high anytime performance for low-resource settings; thus, we
revisit MABs for AutoML. Concretely, our contributions are as follows:

• By using a decomposed version of the CASH problem, we apply state-of-the-art
methods of extreme bandits. To increase sample efficiency, we propose two MAB
algorithms that are designed to find the arm with the highest 𝜏 -quantile.

• We empirically study performance on two AutoML benchmark tasks, and compare
our MAB algorithms with popular MAB algorithms, prior MAB algorithms devel-
oped for AutoML, and HPO on the joint space of models and hyperparameters.

• We find that on the studied datasets, MAB algorithms are competitive compared
to HPO on the joint space and that our MAB algorithms with a carefully designed
regret term can yield superior performance (especially in the beginning).

2 Background on Aligning Multi-Armed Bandits for AutoML

A Multi-armed bandit (MAB) is a class of sequential optimization problems. The problem
portrays a decision-maker that selects an action from a given set. After selection, they receive
a reward generated by the unknown reward process of that arm. Under such uncertainty,
at each round, the player may lose some reward due to selecting a sub-optimal arm. This
loss is referred to as regret.
The definition of regret determines the strategy and the target of the optimization. MABs
based on exploration-exploitation and pure exploration strategies are aligned with our set-
ting. Most classical MAB problems aim to maximize the average rewards over time. How-
ever, in AutoML, we want to maximize the observed reward, which can be seen as selecting
the arm with the heaviest tail. Figure 1 (right) illustrates this by showing the empirical
performance distributions over the hyperparameter space of two ML models. Although
CatBoost (blue) has a higher mean accuracy (and would be preferred by classical MAB
methods), tuning the NN model (red) will eventually yield a higher performance (as seen
by the higher value for the 95th percentile).

3 Problem Definition

Here, we study the CASH problem for supervised learning tasks, defined as follows (Thorn-
ton et al., 2013). Given a dataset 𝔻 = {𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑} of a supervised learning task, let
𝒜 = {𝐴(1), ..., 𝐴(𝐾)} be the set of 𝐾 candidate ML algorithms, where each algorithm 𝐴(𝑖)

has its own hyperparameter search space ΛΛΛ(𝑖). The goal is to search the joint algorithm and
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hyperparameter configuration space to find the optimal algorithm 𝐴∗ and its optimal hyper-
parameter configuration 𝜆𝜆𝜆∗ that minimizes loss metric ℒ, e.g., validation error. Formally,

𝐴∗
𝜆𝜆𝜆∗ ∈ arg min

𝜆𝜆𝜆∈ΛΛΛ(𝑘),𝐴(𝑘)∈𝒜
ℒ(𝐴(𝑘)

𝜆𝜆𝜆 , 𝔻), (1)

For our approach, we decompose the problem into a bilevel optimization problem: at the
lower level, we aim to find the best configuration 𝐴(𝑘)

𝜆𝜆𝜆∗ ∈ ΛΛΛ(𝑘) for each model 𝐴(𝑘), and at
the upper level, we aim to find the optimal ML model 𝐴∗

𝜆𝜆𝜆∗ ∈ 𝒜. Formally,

𝐴∗
𝜆𝜆𝜆∗ ∈ arg min

𝐴(𝑘)∈𝒜
ℒ(𝐴(𝑘)

𝜆𝜆𝜆∗ , 𝔻) s.t. 𝐴(𝑘)
𝜆𝜆𝜆∗ ∈ arg min

𝜆𝜆𝜆∈Λ(𝑘)Λ(𝑘)Λ(𝑘)
ℒ(𝐴(𝑘)

𝜆𝜆𝜆 , 𝔻) (2)

This decomposition has the following advantages: (1) Reduced complexity (by 𝐾 small
search spaces instead of one large) and (2) enabling efficient resource usage (by dynamically
assigning resources to promising HPO runs). With this problem setup, we can get the best of
both worlds: An online decision-making algorithm on the upper level to promote promising
models and an HPO method on the lower level to find the best configuration efficiently.

4 Related Works

MABs have been studied before in the context of AutoML. Most notably, Hyperband (Li
et al., 2018) uses successive halving (Jamieson & Talwalkar, 2016) to terminate evaluations,
and (Ru et al., 2020) used MAB algorithms to optimize mixed hyperparameter spaces.
Both methods are complementary to our setting as they would run on the lower level.
ATM (Swearingen et al., 2017) is a scalable AutoML system that uses MAB algorithms for
hyperpartition selection, where each hyperpartition is a set of hyperparameters for tuning.
Li et al. (2020) also decomposed CASH and proposed the Rising Bandits algorithm for the
top level and SMAC (Hutter et al., 2011; Lindauer et al., 2022) as a Bayesian optimizer for
the lower level. However, their algorithm is designed for increasing concave reward functions,
which is a strong assumption. To weaken the assumption, they proposed “loose” concavity
to describe the smooth growth rate of the reward sequences with a hyper-hyperparameter
𝐶. Their method can be sub-optimal for a small budget since a high value for 𝐶 increases
the initial exploration phase, and a small value for 𝐶 would be unstable in many cases.
Similarly, the work by Hu et al. (2021) used random search or derivative-free optimiza-
tion (Liu et al., 2017) at the lower level and proposed the Extreme-Region Upper Confidence
Bounds (ER-UCB) algorithm for the upper level, which maximizes the extreme-region of
feedback distribution. They compare two variants of the ER-UCB algorithm on 6 UCI clas-
sification datasets: ER-UCB-S for stationary feedback distribution with random search and
ER-UCB-N for non-stationary distribution with a derivative-free optimizer. The proposed
methods are sensitive to hyper-hyperparameters and assume that the rewards are Gaussian.

5 Methodology

Now, we turn to describing the MAB method that we use in the upper level of our problem
setup, i.e. the first part of Equation 2. Given an overall budget of 𝑇 iterations, at time step
𝑡 ≤ 𝑇 , we define 𝜆𝜆𝜆𝑡 to be the configuration proposed by the optimizer in the lower level and
𝑟𝑖,𝑡 to be the feedback to arm 𝑖 obtained by evaluating 𝜆𝜆𝜆𝑡. To be consistent with the Bandit
literature, we maximize the negative loss:

𝑟𝑖,𝑡 = max
𝜆𝜆𝜆𝑡∈Λ(𝑘)Λ(𝑘)Λ(𝑘)

−ℒ(𝐴(𝑘)
𝜆𝜆𝜆𝑡

, 𝔻). (3)

The goal is then to find the best-performing algorithm 𝐴∗ and configuration 𝜆𝜆𝜆∗ in time
𝑡 ≤ 𝑇 . We define regret 𝑅(𝑇 ) with 𝐼𝑡 being the selected arm at time 𝑡 by:

𝑅(𝑇 ) = max
𝑘≤𝐾

E[max 𝑟𝑘,𝑡]
𝑡≤𝑇

−E[max 𝑟𝐼𝑡,𝑡]
𝑡≤𝑇

. (4)

Equation 4 shows the definition of the regret for extreme Bandits (Baudry et al., 2022).
Prior work found that state-of-the-art extreme bandits are not sample efficient enough in
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practice for our problem formulation (Hu et al., 2021) due to the high variance and different
types of extreme value distributions (Kotz & Nadarajah, 2000). Therefore, we reformulate
the regret term to use quantiles instead of extreme values to provide a more robust un-
derstanding of data distributions with fewer samples. Furthermore, to operate under tight
resource constraints, as typical in AutoML settings, we require strong anytime performance;
therefore, we use cumulative regret 𝑅𝑐(𝑇 ) as below,

𝑅𝑐(𝑇 ) =
𝑇

∑
𝒯=1

max
𝑘≤𝐾

E[𝑄(𝑟𝑘,𝑡, 𝜏)]
𝑡≤𝒯

−E[𝑄(𝑟𝐼𝑡,𝑡, 𝜏)]
𝑡≤𝒯

(5)

with 𝑄(𝑥, 𝜏) ∶= inf{𝑥 ∶ P(𝑋 ≤ 𝑥) ≥ 𝜏} computing the 𝜏 -quantile.
The distribution of sample quantiles, asymptotically, is a normal distribution as stated
in Theorem 1 in Appendix A.1(Walker, 1968). However, it is not possible to theoretically
compute the variance of this distribution in our setting since we do not have any assumptions
on the probability density function 𝑓 describing the reward distribution. We estimate the
upper confidence bound of the quantile sequence; we call this algorithm Quantile UCB (blue
highlighted text in Algorithm 1). In addition to calculating the empirical 𝜏 -quantile we also
estimate the variance using conjugate analysis with normal data and pass it to Bayes UCB
(Kaufmann et al., 2012) for Gaussian rewards with unknown variance, yielding Quantile
Bayes UCB (red highlighted text in Algorithm 1).
We have two algorithms: QuantileUCB, a robust method for finding the best-performing
configuration, and Quantile Bayes UCB, as a slightly more complex method with stronger ex-
pected anytime performance while being more sensitive to its prior hyperparameters (𝛼0, 𝛽0).

Algorithm 1 Quantile UCB Quantile Bayes UCB

Require: 𝜏 (quantile parameter) 𝛼 (exploration parameter) 𝛼0, 𝛽0 (prior parameters)
1: 𝑡 ← 1
2: Pulls all arms once (observe rewards for default hyperparameter configurations)
3: for all arms 𝑖 ∈ 𝐾 do
4: Calculate the empirical 𝜏-quantile ̂𝑞𝑖 and its variance 𝜎( ̂𝑞𝑖) for observed reward sequence (𝑟𝑖,1, ..., 𝑟𝑖,𝑛).

5: Update 𝛼 = 𝛼0 + 𝑛
2 and 𝛽 = 𝛽0 + 𝑛

2 𝜎( ̂𝑞𝑖) and calculate posterior mean ̂𝜎𝑖 = 𝛽
𝛼−1

6: Update policy 𝑈𝑖 = ̂𝑞𝑖 + √ 𝛼 log(𝑡)
𝑛 𝑈𝑖 = 𝑄(𝒩( ̂𝑞𝑖, ̂𝜎𝑖), 𝜏 = 1 − 1

𝑡 )
7: end for
8: Select arm 𝐼𝑡 = arg max𝑖≤𝐾 𝑈𝑖, observe reward 𝑟𝐼𝑡,𝑡, normalize rewards, and 𝑡 ← 𝑡 + 1

6 Numerical Experiments

Next, we empirically compare our methods. We use the AutoML Toolkit (AMLTK)1 frame-
work for implementing pipelines and tasks, and SMAC (Lindauer et al., 2022) as a Bayesian
optimizer at the lower level. For the upper level, we select several bandit algorithms as base-
line methods, namely the classic UCB (UCB), extreme bandits (QoMax, QoSDA) (Baudry
et al., 2022), Rising Bandits (Li et al., 2020) and ER-UCB-S (Hu et al., 2021). Additionally,
we compare our two-level approach to using only SMAC or random search. We compute
results on two AutoML tasks with 30 datasets each, TabRepo (Salinas & Erickson, 2023)
a tabular benchmark 2 containing results for 200 randomly drawn configurations for 7 ML
models and YAHPO Gym (Pfisterer et al., 2022), a surrogate benchmark with 6 ML models.
We use a budget of 200 iterations and conduct 128 repetitions for each method and each
AutoML task. We choose the hyperparameters for our MAB methods on a left-out set of
datasets and provide details and results in Appendix A.2 and A.3.
We report averaged normalized loss for different time steps in Table 1 and average ranking
in Figure 2 (and averaged normalized loss over time in Figure 3 in Appendix A.4). The
result in Table 1 shows that tackling the decomposed CASH problem with any mentioned

1github.com/automl/amltk
2We restrict the HPO algorithms to only choose from the fixed set of runs in the table
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MAB algorithm yields superior performance in the beginning (𝑇 = 50), being a powerful
approach when we have a limited budget. Also, Quantile UCB and Quantile Bayes UCB
outperform extreme bandits (QoMax, Max-Median) and classical MAB algorithms (UCB,
Exp3), showing that using quantiles trades off sample efficiency and finding the arm with
the highest possible rewards, overcoming the drawbacks of extreme bandits and classical
MAB algorithms. The average rank shows a similar pattern: MAB methods yield better
performance in the beginning, and in the long run, SMAC performs competitively on one
of the two tasks. Comparing Quantile UCB and Quantile Bayesian UCB, we find that the
Bayesian variant performs slightly superior but is also sensitive to its hyperparameters (see
Appendix A.3), which we plan to investigate further in the future. Overall, we found that
MAB methods are a competitive approach yielding strong initial performance.

Table 1: Average normalized error at steps (𝑇 = 50, 100, 200), lower is better.
TabRepo YAHPO Gym

Approach Normalized error Normalized error
T=50 T=100 T=200 T=50 T=100 T=200

Quantile Bayes UCB 0.35 0.175 0.07 0.298 0.228 0.181
Quantile UCB 0.369 0.194 0.07 0.307 0.227 0.17
ER-UCB-S (Hu et al., 2021) 0.372 0.214 0.1 0.299 0.228 0.179
Rising Bandit (Li et al., 2020) 0.456 0.218 0.083 0.389 0.256 0.186

UCB 0.393 0.221 0.095 0.31 0.228 0.171
QoMax-SDA (Baudry et al., 2022) 0.441 0.225 0.089 0.364 0.245 0.185
Max-Median (Bhatt et al., 2022) 0.436 0.379 0.367 0.344 0.308 0.279
Exp3 0.458 0.275 0.13 0.378 0.279 0.206

SMAC (Lindauer et al., 2022) 0.479 0.151 0.056 0.422 0.233 0.2
Random Search 0.504 0.384 0.275 0.426 0.357 0.297
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1Figure 2: Average rank of each algorithm across 30 datasets, lower is better.

7 Conclusions and Future Work

In this paper, we studied MAB methods to trade off exploring different ML models and
optimizing their hyperparameters. This is a core task in AutoML, aiming to democratize
the usage of ML for non-experts and in low-resource settings. We explored Extreme Bandits
and adjusted the regret term from extreme values to quantiles. We compared the resulting
methods, Quantile UCB and Quantile Bayesian UCB, on two default AutoML tasks against
state-of-the-art extreme bandits, prior approaches, and running HPO on the joint hierar-
chical space showing superior performance. We plan to conduct evaluations on a broader
range of AutoML tasks , and in the future, extend this flexible framework with (a) multi-
fidelity HPO (Falkner et al., 2018), (b) meta-learning across datasets and ML models, and
(c) dynamically adding and eliminating arms (Jamieson & Talwalkar, 2016).
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A Appendix

A.1 Theorem: Asymptotic normality of sample Quantiles

Theorem 1. (Asymptotic normality of sample quantiles (Walker, 1968)) Let (𝑥1, ..𝑥𝑛) be
IID draws from a CDF 𝐹 with continuous density 𝑓. If 𝑓(𝑞𝜏) > 0, we then have

𝒩(𝑞𝜏 , 𝜏(1 − 𝜏)
𝑓(𝑞𝜏)2 ) (6)

A.2 Experimental Setup

Here, we provide details on our experimental setups. We always use SMAC (Lindauer et al.,
2022) as a Bayesian optimizer at the lower level, and for the upper level, we select several
bandit algorithms as baseline methods, such as the classic UCB (UCB), extreme bandits
(QoMax, QoSDA) (Baudry et al., 2022), Rising Bandits (Li et al., 2020) and ER-UCB-S (Hu
et al., 2021). Additionally, we compare our two-level approach to only SMAC or random
search. We run experiments for 200 iterations over 128 repetitions for each AutoML task.
For a fair comparison, we always evaluate the default configuration for each model first and
then allow SMAC to run an initial design of 50 − #𝑎𝑟𝑚𝑠 configurations in the upper level
and 50

#𝑎𝑟𝑚𝑠−1 in the lower level.

As AutoML tasks, we considered default benchmark sets. First, we use data on 30 OpenML
datasets from TabRepo (Salinas & Erickson, 2023) with 200 random configurations pre-
evaluated for 7 baseline models. We set up SMAC to only work on a fixed set of config-
urations following prior work (Pineda Arango et al., 2021). Second, we use a subset of
the YAHPO Gym (Pfisterer et al., 2018) containing surrogate HPO benchmark tasks for
30 OpenML tasks and 6 baseline models. We set the hyperparameters for our method to
𝛼 = 0.25 for QuantileUCB and 𝛼0 = 1.0, 𝛽0 = 0.2 for Quantile Bayes UCB based on 18
additional datasets of YAHPOGym (see AppendixA.3 for more details) and use 𝜏 = 0.95 as
a quantile parameter for all algorithms. For the other MAB methods, we used the default
setting.

A.3 Hyperparameter Settings

Table 2 shows the performance of SMAC (at 𝑇 ≥ 100) decreases when the number of initial
designs is reduced to 0 configurations, and Table 3 shows results for different hyperparameter
settings for our methods.

TabRepo YAHPO Gym
Approach Normalized error Normalized error

T=50 T=100 T=200 T=50 T=100 T=200

SMAC 0.479 0.151 0.056 0.422 0.233 0.2
SMAC(no initial design) 0.361 0.187 0.074 0.362 0.301 0.243

Table 2: Average normalized error at steps (𝑇 = 50, 100, 200) for SMAC (with 50 − #𝑎𝑟𝑚𝑠
initial configurations) and SMAC (no initial design), lower is better.
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18 Tasks of YAHPO Gym
Approach Parameters Normalized Error RankingT=50 T=100 T=200

Quantile Bayes UCB 𝛼0 = 1.0, 𝛽0 = 0.0 0.381 0.333 0.31 2.031
Quantile Bayes UCB 𝛼0 = 1.0, 𝛽0 = 0.01 0.367 0.327 0.307 2.031
Quantile Bayes UCB 𝛼0 = 1.0, 𝛽0 = 0.1 0.306 0.247 0.216 1.729
Quantile Bayes UCB 𝛼0 = 1.0, 𝛽0 = 0.2 0.304 0.241 0.196 1.639
Quantile Bayes UCB 𝛼0 = 1.0, 𝛽0 = 0.5 0.334 0.244 0.177 1.67
Quantile Bayes UCB 𝛼0 = 1.0, 𝛽0 = 1.0 0.356 0.257 0.192 1.785

Quantile Bayes UCB 𝛼0 = 2.0, 𝛽0 = 0.0 0.381 0.333 0.31 2.031
Quantile Bayes UCB 𝛼0 = 2.0, 𝛽0 = 0.01 0.382 0.336 0.315 2.052
Quantile Bayes UCB 𝛼0 = 2.0, 𝛽0 = 0.1 0.35 0.31 0.274 1.913
Quantile Bayes UCB 𝛼0 = 2.0, 𝛽0 = 0.2 0.342 0.269 0.226 1.788
Quantile Bayes UCB 𝛼0 = 2.0, 𝛽0 = 0.5 0.311 0.251 0.196 1.698
Quantile Bayes UCB 𝛼0 = 2.0, 𝛽0 = 1.0 0.338 0.255 0.183 1.722

Quantile UCB 𝛼 = 0.1 0.303 0.245 0.207 1.712
Quantile UCB 𝛼 = 0.25 0.316 0.249 0.192 1.667
Quantile UCB 𝛼 = 0.5 0.331 0.254 0.187 1.719

SMAC (Lindauer et al., 2022) 0.423 0.234 0.184
Random Search 0.428 0.355 0.299

Table 3: Results of Quantile Bayes UCB with different hyperparameter setting on 18
datasets of YAHPOGym. The ranking shows the average rank of the algorithm compared
to SMAC and Random Search (lower is better). We boldface the optimal parameters used
for the main experiments according to the ranking metric.

A.4 Further Experimental Results
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Figure 3: Average normalized error of each algorithm on the datasets, lower is better.
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