
tagE: Enabling an Embodied Agent to Understand Human Instructions

Chayan Sarkar and Avik Mitra and Pradip Pramanick and Tapas Nayak
TCS Research, India

{sarkar.chayan, mitra.avik1, pradip.pramanick, nayak.tapas}@tcs.com

Abstract

Natural language serves as the primary mode of
communication when an intelligent agent with
a physical presence engages with human beings.
While a plethora of research focuses on natural
language understanding (NLU), encompassing
endeavors such as sentiment analysis, intent
prediction, question answering, and summariza-
tion, the scope of NLU directed at situations
necessitating tangible actions by an embodied
agent remains limited. The inherent ambigu-
ity and incompleteness inherent in natural lan-
guage present challenges for intelligent agents
striving to decipher human intention. To tackle
this predicament head-on, we introduce a novel
system known as task and argument grounding
for Embodied agents (tagE). At its core, our
system employs an inventive neural network
model designed to extract a series of tasks
from complex task instructions expressed in
natural language. Our proposed model adopts
an encoder-decoder framework enriched with
nested decoding to effectively extract tasks and
their corresponding arguments from these intri-
cate instructions. These extracted tasks are then
mapped (or grounded) to the robot’s established
collection of skills, while the arguments find
grounding in objects present within the environ-
ment. To facilitate the training and evaluation
of our system, we have curated a dataset fea-
turing complex instructions. The results of our
experiments underscore the prowess of our ap-
proach, as it outperforms robust baseline mod-
els.

1 Introduction

Robots in our daily surroundings are often engage
with human beings for various purposes. As nat-
ural language interaction capability increases the
acceptability and usability of a robot, many stud-
ies have focused on natural language interaction
with a robot (Williams et al., 2015). This can
be particularly useful if we can provide task in-
struction in natural language (Pramanick et al.,

2020). However, large vocabulary and variation
of word/phrases/sentences of any natural language
(e.g., English) makes it very difficult for a robot to
understand human intention and perform the task
(Pramanick et al., 2019b).

Recent advances in natural language processing
(NLP), in particular, the rise of large-scale neural
language models have simplified NLP tasks with
high accuracy (Devlin et al., 2019; Brown et al.,
2020). However, in order for a robot to perform
a task, the task intention has to be mapped to a
known set of skills of the robot (task grounding)
so that some action can be taken in the physical
world. Additionally, the objects associated with
a task (task arguments) should be mapped to the
objects within the environment (argument ground-
ing). Most robots use an object detector, which
uses a fixed vocabulary. A human may not be
aware of that vocabulary or may not remember it.
As a result, a different word/phrase can be used to
refer the same object. Therefore, argument ground-
ing becomes equally important in order to perform
physical action in the environment.

Existing works on intent prediction map the in-
tended task to the robot’s capability (Brawer et al.,
2018). However, they can neither extract the argu-
ments associated with a task nor handle complex
instructions with multiple tasks. Works on relation
extraction generally find the relevant triplets in a
natural language text, where the triplets have the
form of head, relation, and tail < h, r, t > (Nayak
and Ng, 2019). One can use such a method to
find a task-argument triplet (Figure 1a). But, mul-
tiple arguments may be associated with the same
tasks. Extracting such triplets where the head/tail
is common in many such triplets is not straight-
forward (Figure 1b, 1c). Moreover, the existing
methods neither ground the task nor ground the
arguments. For example, in Figure 1b, the word
‘keep’ signifies the ‘PLACING’ task according to
the robot’s capability, and the word ‘fridge’ needs

go to the table and pick the cup

goal theme

‘go’, goal, ‘table’
sub-task 2

sub-task 1

‘pick’, theme, ‘cup’

a black cup is on the dining table pick it and keep it inside the fridge

theme

‘pick’,PICKING, theme, ‘black cup’, CUP
‘pick’, PICKING, source, ‘dining table’, TABLE

sub-task 2

sub-task 1

‘keep’, PLACING, theme, ‘black cup’, CUP
‘keep’, PLACING, goal,‘fridge’, REFRIGERATOR

goal

theme

source

‘pick up’, PICKING, theme, ‘mug’, CUP
‘pick up’, PICKING, source, ‘wooden table’, TABLE

sub-task 2

sub-task 1

‘pick up’, PICKING, theme, ‘brown bowl’, BOWL
‘pick up’, PICKING, source, ‘wooden table’, TABLE

source

theme
pick up the mug and the brown bowl from the wooden table

source

theme

(a) SoTA baseline - two simple
sub-tasks with

single arguments each
(b) tagE - two sub-tasks with multiple arguments and a common

argument, which is extracted using an inherent coreference resolver
(c) tagE - two sub-tasks with the common task phrase
and a common argument

Figure 1: Some natural language task instruction – (a) example where existing triplet extractor can be employed
for task and argument pair extraction, (b) example of why it is necessary to ground task and argument along
with co-reference resolution (pentuple extraction), (c) example of why generative approach for task and argument
extraction is required.

to be mapped to ‘REFRIGERATOR’ according
to the object detector’s vocabulary. Similarly, the
same task phrase ‘pick up’ as well as the same ar-
gument phrase ‘wooden table’ are shared by two
tasks as shown in Figure 1c. This can only be
possible if an NLU system can generate as many
triplets as possible from the given natural language
instruction without any limitation.

We have developed a novel deep neural net-
work architecture, called tagE (task and argument
grounding for Embodied agents) that extract the set
of tasks and their relevant arguments from a natural
language complex instruction. The contributions
of this article are following.

• We proposed a novel encoder-decoder archi-
tecture for natural language understanding
that employs layered decoding. Unlike ex-
isting triplet extractors, tagE finds pentuple
< h, hg, r, t, tg >, where hg and tg repre-
sent the grounded values of the task (h) and
argument (t), respectively.

• tagE employs a shallow auto-regressive de-
coder, which enables it to extracts as many
grounded task-argument pairs as possible, re-
solve co-reference, and handle the shared task
and/or argument phrase.

• We have curated a new dataset that enables
grounded task-argument extraction. The
model can ground the argument based on ob-
ject detector vocabulary. The task-argument
relation data and argument grounding data
are detached in a way that the object detec-
tor as well as the class of objects can be ex-
panded/modified easily1.

1Any resource related to this work will be made available
at https://github.com/csarkar/tagE.

2 Related Work

There are three different areas that are relevant to
this work – sequence-to-sequence learning, struc-
tured information extraction, and natural language
understanding of instructions for robots.

Sequence-to-sequence learning: Encoder-
decoder models are popular for the sequence-
to-sequence (S2S) learning. There are different
types of S2S tasks for which encoder-decoder ar-
chitecture is used, e.g., neural machine transla-
tion (Sutskever et al., 2014; Bahdanau et al., 2015;
Luong et al., 2015), joint entity and relation extrac-
tion (Zeng et al., 2018; Nayak and Ng, 2020), cross-
lingual open information extraction (Zhang et al.,
2017), joint extraction of aspect-opinion-sentiment
triplets (Mukherjee et al., 2021), etc.

Structured Information Extraction: Struc-
tured information extraction from unstructured text
is an important task in natural language processing.
Entity-Relation extraction (Miwa and Bansal, 2016;
Shen and Huang, 2016; Vashishth et al., 2018;
Nayak and Ng, 2019), aspect-sentiment triplets ex-
traction (Xu et al., 2020; Jian et al., 2021; Mukher-
jee et al., 2021), causality extraction (Li et al.,
2021), event extraction (Liu et al., 2018; Sha et al.,
2018), attribute-value extraction (Roy et al., 2021,
2022) are such important tasks. ‘BIO’ tag-based se-
quence labeling models are popular to extract struc-
ture information from text. In recent times, pointer
networks are explored for such tasks (Vinyals et al.,
2015). Seo et al. (2017); Kundu and Ng (2018)
used pointer networks for the machine-reading
comprehension task to identify the answer span
in the passage. Nayak and Ng (2020) used a simi-
lar network to identify the entities in sentences for
joint entity and relation extraction tasks. Similarly,
Becquin (2020) used such networks for identifying

https://github.com/csarkar/tagE

casual spans in the text. (Mukherjee et al., 2021)
used pointer networks for joint extraction of aspect-
opinion-sentiment triplets from online reviews.

Natural Language Understanding for Robots:
Natural language understanding for robots mostly
involves executing human-provided directives
given in natural language. Significant progress has
been made by - i) restricting the action space of
the robot to navigation, i.e., posing it as a Vision
and Language Navigation (VLN) problem, and ii)
providing detailed step-by-step instructions that
either reduce or remove the burden of planning
from high-level task goals (Anderson et al., 2018;
Blukis et al., 2019; Shah et al., 2022). A few works
have attempted to include manipulation in VLN,
but still allowing step-by-step instructions and lim-
ited to a single or a constrained set of manipulation
actions (Misra et al., 2018; Kim et al., 2020; Pa-
shevich et al., 2021). We focus on a more general
problem that assumes the arbitrary action capabil-
ities of a robot that includes both navigation and
manipulation. Thus the problem can be defined
as generating an action sequence (plan) for a high-
level natural language instruction that contains one
or more tasks. Several approaches have been pro-
posed to solve this. Predominant methods exploit
the embodied nature of a robotic agent to infer
and refine the plan by primarily using multi-modal
input that includes visual feedback and action pri-
ors (Paxton et al., 2019; Shridhar et al., 2020; Singh
et al., 2021; Zhang and Chai, 2021; Ahn et al.,
2022). Thus natural language understanding in
these systems is simplified by obtaining a latent
representation of the language input to bias the in-
ference using attention modeling. Embodied agents
that can answer natural language queries have also
been developed by following a similar approach of
planning by biasing the agent’s exploration using
latent linguistic representations (Das et al., 2018).

Several works proposed models that perform vi-
sual grounding of referring expressions in an em-
bodied agent’s ego-view, following a similar ap-
proach for encoding language input (Qi et al., 2020;
Rufus et al., 2021; Roh et al., 2022; Pramanick
et al., 2022). A major limitation of this approach
of end-to-end learning with multi-modal input is
that the models are often heavily biased towards a
specific dataset, simulator, and agent with specific
capabilities. Thus, they often exhibit poor general-
ization to unseen environments and fails to gener-
ate plan for unseen composition of tasks (Shridhar

et al., 2020; Min et al., 2021). Though these models
are particularly effective for following detailed in-
structions with explicitly mentioned tasks in known
environments, they often generate incorrect plan
for high-level instructions with implicit sub-goals
that require long-horizon task planning (Min et al.,
2021). Corona et al. (2021) proposed segment-
ing the instruction into a sequence of task types
and training separate seq2seq models for different
task types. Subsequently, several works have pro-
posed modular methods that decouple multi-modal
seq2seq learning into separate language understand-
ing, perception and controller components. For
example, Nguyen et al. (2021) proposed a model
with separate decoders for predicting task predi-
cates of navigation and manipulation parts of the
instruction. Similarly, other works (Jansen, 2020;
Huang et al., 2022) explored plan generation us-
ing large pre-trained language models. Liu et al.
(2022) trained two separate models for action and
object prediction, and Ri et al. (2022) studied plan
generation solely from language input by training
a CTC-based model. However, all of these mod-
els directly predict low-level action sequence or
grounded goal predicates; thus still learns agent
and environment specific representations.

Existing approaches of structured prediction
from instructions follow a sequence labeling ap-
proach which has two major limitations - i) it can’t
classify tokens multiple times and/or with separate
class label, and ii) it can’t handle co-reference in
complex instructions. In contrast, we propose a
novel generative model that has significant advan-
tages over sequence labeling.

3 Proposed Framework

In this section, we formally define the task before
describing the neural network architecture. Given a
natural language instruction X = {x1, x2, ..., xn}
with n tokens, the goal is to extract a set of tasks,
T = [tj |tj = (tsj , t

e
j , t

l
j)]

|T |
j=1, where tj is the j’th

task, |T | is the number of tasks, tsj and tej represents
the positions of the start and end tokens of the task
description span, and tlj represents the type of the
task (grounded task). Additionally, we extract the
set of arguments for each task. Specifically, for task
tj , we extract Aj = [ajk|ajk = (asjk, a

e
jk, a

l
jk)]

|Aj |
k=1

where ajk is the k’th argument, |Aj | is the number
of arguments for the task, asjk and aejk represents
the positions of the start and end tokens of the
argument description span, and aljk represents the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

the black cup is on the dining table pick it and keep it inside the fridge

O B_cup I_cup O O O B_table I_table O O O O O O O B_refrigerator

index

token

annotation

BIO tag

3 3 Being_located, 1 2 Theme, 6 7 Source ;
8 8 Picking, 1 2 Theme, 6 7 Source ;
11 11 Placing, 1 2 Theme, 15 15 Goal, 15 15 Container object

Figure 2: Example of instruction annotation - the annotation for grounded task types and the corresponding argument
types are shown in row 3, and the BIO tags for argument (object) grounding is shown in row 4.

Attention

LSTM
ej

hj-1
T

Bi-LSTM

FNN FNN
FNN

hj
T

vjuj

bj = uj || tj

tj = Ev (argmax(vj))

s1 sn e1 en

x1 x2 xn

Task instruction

BERT
(transformer layers)

h1
E hn

E

pjk

cjk = pjk || ajk
hk-1

R

B
ER

T
To

ke
ni

ze
r

(X)

FNN

g

hi
E

h2
E

En
co

de
r

Attention

LSTM
ejk

Bi-LSTM

FNN FNN FNN

hk
R

qjk

ajk = Eq (argmax(qjk))

s1 sn e1 en

+

hj
T

hE

grounded objects
(arguments)

o = Eg (argmax(g))

D
ecoder

+ +

outer grounded task decoder inner argument type decoder

Figure 3: Encoder-decoder architecture of our tagE model.

type of the argument. The number of arguments for
the tasks can be different. We added the example of
such positional sequence in Figure 2. Additionally,
we do the grounding of the arguments, i.e., map the
span of an argument to an object if it is a physical
object.

In Figure 3, we give an overview of our proposed
model. We use an encoder-decoder model inspired
from Nayak and Ng (2020); Mukherjee et al. (2021)
for this task. The encoder is used to encode the
given natural language instruction and decoder is
used to generate the task and argument sequence.
However, Nayak and Ng (2020) proposed a linear
decoding process for joint entity and relation ex-
traction task and Mukherjee et al. (2021) proposed
an aspect-sentiment triplets extraction task. But
such linear decoding scheme is not suitable for this
task. We need to extract a list of tasks and for each
task, we need to extract a list of arguments. Thus,
we propose a novel nested decoding approach for
task and argument extraction. The outer decoder is
responsible to generate the task sequence and inner
decoder is responsible to generate the argument se-
quence for each task. For argument grounding, we
use a ‘BIO’ sequence labeling based approach. We
jointly train our model for these three objectives of

task extraction, argument extraction, and argument
grounding together.

3.1 Instruction Encoder
We use pre-trained BERT tokenizer and BERT
model (Devlin et al., 2019) to obtain the contex-
tual encoder representation of the input tokens,
hE
i ∈ Rdh , where Rdh is the vector of real numbers

of dimension dh.

3.2 Object Grounding
The arguments that refers to a physical object
in the environment needs to be grounded, i.e.,
mapped to the object detector’s vocabulary that
the agent is using. We use ‘BIO’ sequence la-
beling approach for object grounding. The en-
coder vectors hE

i are passed to a feed-forward
layer with softmax activation for classifying a span
to grounded objects. From this sequence label-
ing, we obtain the list of object spans in the in-
struction along with the grounded object class.
Each argument span extracted by the inner argu-
ment decoder is assigned to the class type from
this list. In our ‘BIO’ tagging scheme total num-
ber of tags, K = 2 × #grounded_objects + 1.
#grounded_objects is the number of objects in
the vocabulary of the object detector of the the

robot. For each token in the instruction, we get K
dimensional softmax output vector. We use this
vectors in our argument extraction network to im-
prove the extraction process. Please note that for
object (argument) grounding, sequence labeling is
sufficient as even if an argument is shared in mul-
tiple tasks, it is detected as the same object by the
object detector.

3.3 Task Sequence Generation

We use an LSTM-based auto-regressive decoder
for generating the task sequence. At every time
step j of the task decoding, decoder LSTM re-
ceives an overall representation of encoder context
ej ∈ Rdh and representation of the previously gen-
erated tasks (

∑|B|−1
j=0 bj) as input. The encoder

context representation ej is obtained using an at-
tention mechanism on encoder hidden states hE

i

as used in Bahdanau et al. (2015) for neural ma-
chine translation. At the first decoding step, b0

is taken as a zero vector, and the subsequent task
vectors bj’s are obtained after each decoding step
(described in Section 3.5). Task decoder LSTM
outputs the task hidden vector hT

j ∈ Rdh . This hid-
den representation is concatenated with the hidden
representations hE

i of the encoder and passed to a
span detection module to mark the start and end
token of the task description. This span detection
module is described later in detail. After one task
is extracted, the inner decoder (argument decoder)
receives the task hidden vector hT

j and starts gener-
ating the argument sequence for this task. Once all
the arguments of this task are generated, this outer
task decoder moves on to generate the next task.

3.4 Argument Sequence Generation

Like task decoding, we use a similar LSTM-based
auto-regressive decoder for extracting the argu-
ments. For the extracted task tj, at every time
step k of the argument decoding process, the argu-
ment decoder LSTM receives the task representa-
tion vector hT

j , encoder context ejk vectors, and
all the previously generated arguments for this task
(
∑|Cj |−1

k=0 cjk).

3.5 Span Identification

We identify the task and argument description
spans in the instruction using their start and end
tokens. We use two different span detection mod-
ules (shown in blue color in Figure 3) for task and
argument span identification. But the design of

Algorithm 1 Proposed nested decoding algorithm
TD = init_task_decoder
AD = init_argument_decoder
for j in range(max_task_cnt) do

TD decodes a task tj
for k in range(max_arg_cnt) do

AD decodes an argument ajk for task tj
end for

end for

these two modules is similar in nature. They have
a BiLSTM layer with two feed-forward layers with
softmax activation. We concatenate the task hid-
den vector hT

j or argument hidden vector hA
k with

the encoder vectors hE
i and pass it to the BiLSTM

layer. The output of the BiLSTM layer is passed
to a feed-forward layer to convert each hidden rep-
resentation to a scalar score. We get a scalar score
corresponding to each token in the instruction. We
apply softmax activation across these scalar scores
to normalize them. The corresponding token with
the highest normalized score is marked as the start
token of a span. Similarly, another feed-forward
layer with softmax activation is used to mark the
end token of the span. We obtain the vector rep-
resentations of these spans (uj or pjk) using the
normalized scores and BiLSTM outputs as done in
Nayak and Ng (2020).

Next, uj and hT
j are concatenated and passed

to a feed-forward layer with softmax to classify
the task type (vj). We use vj and a task type em-
bedding (Ev) layer to get the task type vector tj .
Further, the vector representation of the task bj is
obtained by concatenating uj and tj . Similarly,
we classify the argument type (ajk) and obtain the
vector representation of the argument cjk as shown
in Figure 3.

3.6 Training and Inference
We train our proposed model in mini-batches of
size B for multiple epochs and update the model
parameters using the negative log-likelihood loss
and gradient descent-based optimizer AdamW
(Loshchilov and Hutter, 2019). Following is the
loss function for the task extraction decoder.

Lt = − 1

|B|

|B|∑
j=1

[ln(sj) + ln(ej) + ln(cj)]

where s and e are the softmax outputs of the corre-
sponding gold-label start and end positional index

of the task span and c is softmax output of the
gold-label task type.

Similarly, the following is the loss function for
the argument extraction decoder.

La = − 1∑|B|
j=1 |Cj |

|B|∑
j=1

|Cj |∑
k=1

[ln(sjk) + ln(ejk)

+ ln(rjk)]

where s and e are the softmax outputs of the corre-
sponding gold-label start and end positional index
of the argument span and r is softmax output of the
gold-label argument type.

Following is the loss for the argument grounding.

Lg = − 1

n

n∑
i=1

ln(gi)

where g is softmax output of the gold-label tag
for the i-th token in the instruction. The final loss
for a mini-batch of size M of the tagE model is
calculated as follows.

L =
1

M

M∑
m=1

[Lt + La + Lg]

During training, we include the end of sequence
‘EOS’ task and ‘EOS’ argument at the end of their
sequences and let the model learn to stop extrac-
tion of tasks/arguments. At the inference time, we
run both decoders for a maximum number of steps
but ignore any tasks/arguments extracted after the
‘EOS’. During inference, we follow a greedy ap-
proach to select the start and end tokens of the task
or argument spans. We select the start and end
where the product of the two probabilities is maxi-
mum, and the end token does not appear before the
start token. We include the parameter settings used
to train our tagE model in Table 1.

Batch size 16
Optimizer AdamW
Learning rate 0.0001
#Epochs 100
Early stop count 20

Table 1: Parameter settings used to train the tagE model.

4 Experiments

In this section, we describe the dataset, parameter
settings, and evaluation metrics that are used to
train and evaluate our model.

4.1 Dataset

We annotate a new dataset for our experiments. We
build the dataset by extending the natural language
instruction sentences from two robotic commands
datasets (Shridhar et al., 2020; Vanzo et al., 2020).
The current set of task types is included in Table 8.
The task types are also adapted from robotic task
datasets. The first two tasks are not real task types,
but often appear in robotic task instruction and need
to be processed for understanding the other tasks.
Though our dataset is adapted from the existing
ones, the annotation is significantly different to suit
the purpose. This consists of the following features
– (i) the token span of the set of sub-tasks in the
instruction along with their grounded types, (ii) the
set of arguments associated with each task along
with the token span and the argument type, (iii)
provision of sharing an argument by multiple tasks,
(iv) provision of classifying a token multiple times,
(v) resolution of co-reference of objects, and (vi)
argument grounding considering the object classes
of the underlying object detector.

Figure 2 depicts our annotation schema with an
example. As any task type or argument type can
be represented by multiple tokens in the input, we
annotate each type with a start and end token. For
example, the ‘Source’ of the cup is denoted by two
tokens ‘dining table’, which is marked by the start
and end token index 6 and 7, respectively. There are
three sub-tasks in the example – ‘Being_locatede’,
‘Picking’, and placing. Each sub-task and its cor-
responding arguments form a substructure, which
is separated by a vertical line as shown in the ex-
ample. Within each substructure, the first element
always denotes the sub-task, which is followed by
the arguments and separated by semicolons. Addi-
tionally, each element has three components - start
token index, end token index, and type of this token
span (task/argument type).

Since there is a separate substructure for each
sub-task, a particular token span indicating a partic-
ular argument can be shared by multiple sub-tasks.
For Figure 2, the ‘theme’ argument is shared by
all three sub-tasks, and the ‘Source’ argument is
shared by two sub-tasks. Additionally, this annota-
tion scheme supports a shared argument to be clas-
sified differently for different sub-tasks. Similarly,
a token or token span can be classified multiple
times as different classes, e.g., token 15 is classi-
fied as ‘Goal’ and ‘Containing object’ is sub-task
‘Placing’. The idea behind multiple classifications

is to provide additional information to the task plan-
ner.

We have done a separate annotation for argu-
ment grounding from an object detector’s point of
view. If the object classes are changed (in partic-
ular the vocabulary set), this annotation has to be
changed accordingly. But a separate annotation en-
sures that the annotation for the task and argument
type remains fixed even if the argument ground-
ing annotation is changed. Since an object detec-
tor would always recognize an object by the same
name, irrespective of it being treated as a different
argument type for tasks, one-time prediction is suf-
ficient. Thus, we annotate for argument grounding
as a sequence labeling job using the BIO tagging
scheme. The BIO tag for the tokens is shown in
Figure 2.

Train Dev Test
#Instruction 1,180 182 580
#single task instruction 755 145 417
#multi task instruction 425 37 163

Table 2: Statistics of the instructions in our dataset.

Task type Train Dev Test
being_located 64 9 16
being_in_category 49 8 16
bringing 160 8 17
changing_oper._state 45 9 12
checking_state 22 9 14
cutting 14 7 12
following 52 12 13
giving 34 8 13
inspecting 10 3 10
motion 465 42 227
opening 60 13 17
picking 259 28 128
placing 226 28 105
pushing 12 7 14
rotation 380 34 228
searching 42 14 24
#total 1,894 239 866

Table 3: Statistics of the different task types in our
dataset.

Once prepared, the data was first proportionately
divided to fit the training, development, and testing
sets with 1,180, 182, and 580 inputs, respectively
(See Table 2). We include the statistics about dif-
ferent task types in Table 3. Though the dataset is
not balanced in terms of the number of task types,
while splitting, we ensured that the distribution of
the task types is similar in each of the splits. Also,
there is a balance between instructions with single-
task and multiple-tasks (Table 2). Additionally, we
carefully selected the test set such that there is less

than 60% overall in the input as compared to the
train and development set.

4.2 Evaluation Metric

We define the performance of our system using a
strict F1 score, which is the harmonic mean of the
precision and recall of our classifier as the met-
ric definition. To that effect, we consider a miss-
ing subtask or attribute label to be negative which
means that in the case of no detection or in the
case of the wrong classification, the metric takes
the prediction as ‘wrong’. Conversely, only on a
correct label match, it takes the metric as correct.
Every hit and every miss is recorded in a confusion
matrix where it is populated for all types of tasks
and all attributes with ‘None’ being the record for
the misses of a given task or attribute. Thereafter
the confusion matrices are used to calculate the
precision and the recall for the particular task or at-
tribute classes. Additionally, a combined F1 score
is also generated as an overall metric for the base-
line comparisons that take into account both the
task and attribute combinations together.

5 Results

To evaluate our model, we have defined a num-
ber of baseline systems. Pramanick et al. (2019a)
proposed the first baseline where they have used a
CRF-based model for task and argument extraction
(Feature CRF in Table 4. Essentially, the model
works as a sequence labeling job. Apart from lower
accuracy in task and argument prediction, such
a model (sequence labeling) cannot – (i) classify
the shared task/argument, (ii) reclassify token(s),
and (iii) resolve coreference. The next baseline
that we used is a pre-trained BERT model and a
fully connected layer as a classification head on top.
The performance of Feature CRF and BERT base-
line is very similar. Then, we combine these two
approaches, i.e., instead of using a pre-trained to-
ken embedding (like Feature CRF), we used BERT
as the encoder layer and the CRF as the classifi-
cation layer. Though this BERT CRF performs
better as compared to the Feature CRF or BERT
model, it again emits the behavior of sequence
labeling. Also, we have used two sequence-to-
sequence models as baseline by finetuning them,
namely BART (Lewis et al., 2019) and T5 (Raffel
et al., 2020).

As mentioned earlier, tagE follows a generative
approach to tackle the limitations of the existing

Model
Inference
time

Without arg grounding With arg grounding
Prec. Rec. F1 Prec. Rec. F1

Feature-CRF 28.9 ms 0.60 0.58 0.59 0.48 0.47 0.47
BERT 91.2 ms 0.65 0.60 0.62 0.52 0.48 0.50
BERT-CRF 102.1 ms 0.68 0.61 0.64 0.53 0.50 0.51
BART (with beam width 1) 341.8 ms 0.68 0.68 0.68 0.59 0.60 0.60
BART (with beam width 10) 754.79 ms 0.68 0.70 0.69 0.60 0.62 0.61
T5 (with beam width 1) 626.72 ms 0.73 0.74 0.73 0.66 0.67 0.66
T5 (with beam width 10) 2029.17 ms 0.74 0.74 0.74 0.67 0.67 0.67

tagE 108.2 ms 0.85 0.80 0.82 0.72 0.67 0.69

Table 4: Performance of tagE with respect to various baseline methods.

BERT
Encoder

Number of
parameters

Training
time/epoch

Inference
time

F1 without arg
grounding

F1 with arg
grounding

mini 17.5 M 7.9 s 77.1 ms 0.74 0.62
small 44.8 M 8.5 s 79.7 ms 0.76 0.64
medium 57.5 M 9.6 s 90.1 ms 0.78 0.66
base 139.2 M 13.3 s 108.2 ms 0.82 0.69
large 382.4 M 23.0 s 135.6 ms 0.80 0.68

Table 5: tagE is trained with different-sized BERT encoders, resulting in different parameters and F1 scores.

Task type Prec. Rec. F1
being_located 1.00 0.94 0.97
being_in_category 1.00 1.00 1.00
bringing 0.94 0.67 0.78
changing_operational_state 1.00 1.00 1.00
checking_state 1.00 0.93 0.97
cutting 0.92 1.00 0.96
following 0.85 1.00 0.92
giving 1.00 1.00 1.00
inspecting 0.20 1.00 0.33
motion 0.94 0.93 0.93
opening 0.94 1.00 0.97
picking 0.92 0.96 0.94
placing 0.99 0.97 0.98
pushing 0.50 1.00 0.67
rotation 0.99 0.95 0.97
searching 0.92 0.92 0.92

Table 6: Task-wise performance of tagE.

methods. The performance gain is evident from
Table 4. We have calculated a combined F1 score
considering all the sub-tasks and the corresponding
arguments in an input. As the argument grounding
is separately annotated, this training can be done
separately. We have done two sets of training – one
with the argument grounding training as a sepa-
rate job, and another with a joint job of argument
grounding and task & argument type prediction.
The experiment shows that joint training performs

Argument type Prec. Rec. F1
agent 0.85 0.80 0.82
area 0.54 0.34 0.42
category 0.17 0.20 0.18
container_portal 0.76 0.81 0.79
containing_object 0.70 0.76 0.73
cotheme 0.77 0.91 0.83
degree 0.52 0.89 0.65
desired_state 0.43 0.46 0.44
device 0.77 0.83 0.80
goal 0.85 0.85 0.85
cogoal 0.74 0.81 0.78
manner 0.89 0.89 0.89
operational_state 0.67 0.67 0.67
recipient 1.00 1.00 1.00
source 0.71 0.74 0.72
cosource 0.76 0.81 0.79
theme 0.88 0.87 0.87

Table 7: Argument-wise performance of tagE.

much better than separate training.
As ablation, we have experimented with differ-

ent types of BERT encoders. Though all types
of BERT models use a number of stacked trans-
former layers to get a vector representation of nat-
ural language input, the variation stems from the
number of transformer layers and dimension of
the output vectors. We have experimented with
5 different variations – (i) mini with 4 layers and

256-dimensional vector, (ii) small with 4 layers and
512-dimensional vector, (iii) medium with 8 layers
and 512-dimensional vector, (iv) base uncased with
12 layers and 786-dimensional vector, and (v) large
uncased with 24 layers and 1024-dimensional vec-
tor. The pre-trained models for the variations of
BERT is provided by Turc et al. (2019). A small
number of layers and vector dimensions leads to
less number of parameters, a smaller model size,
and a smaller training & inference time. However,
this impacts the accuracy of the system as evident
in Table 5. With a larger encoder network, the per-
formance of tagE keeps increasing with some satu-
ration point. The large BERT model, even though
it has a much larger network, is unable to outper-
form the BERT base model. Thus, we fixated on
tagE with the BERT base model as the encoder. We
provide further accuracy statistics of each tasks and
arguments for the test split of the dataset for tagE.
The details are summarized in Table 6 and 7.

6 Conclusions

Instructing a robot in natural language certainly im-
proves the usability and acceptability of the robot.
However, understanding the instructions given in
unstructured text can be challenging for a robot.
A robot needs to perform multiple jobs to com-
pletely understand a natural language instruction
such as extracting the (sub)tasks, extracting their
associated arguments, and grounding of the argu-
ments. Previously, researchers have tried to solve
these jobs independently, thus misses the interac-
tion among them in the given instruction. To over-
comes this limitation, we propose a neural network
model tagE, which can solve these three tasks to-
gether in an end-to-end fashion. We also annotate a
suitable dataset for experiments and our proposed
approach outperforms some strong baselines on
this dataset. In future, we would integrate a plan-
ner module that would generate an executable plan
from the output of tagE.

7 Limitations

In our experiments, we observe that while the
model is mostly accurate on the test dataset, it
fails on certain long natural language inputs. In
particular, the sub-tasks and their arguments are
not often not predicted for very long input with
more than 5 sub-tasks. However, such a long in-
put with as many sub-tasks is not very common
in typical human-robot interactive scenarios. Also,

tagE is trained to extract the sub-tasks in the same
sequence as they appear in the instructions. In
certain situations, the robot may need to perform
the sub-tasks in a different order. For example, in
the instruction - "bring a can of beer, if you can
find a chilled one", even though the Bringing sub-
task appears earlier than the Check-state sub-task,
the robot has to perform them in the reverse order.
However, these problems are typically solved by
task planning.

8 Ethics Statements

There is no ethical concerns about this work.

References
Hyemin Ahn, Obin Kwon, Kyungdo Kim, Jaeyeon

Jeong, Howoong Jun, Hongjung Lee, Dongheui Lee,
and Songhwai Oh. 2022. Visually grounding lan-
guage instruction for history-dependent manipulation.
In 2022 International Conference on Robotics and
Automation (ICRA).

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton Van Den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE conference on
computer vision and pattern recognition.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Guillaume Becquin. 2020. Gbe at fincausal 2020, task
2: Span-based causality extraction for financial doc-
uments. In Proceedings of the 1st Joint Workshop
on Financial Narrative Processing and MultiLing
Financial Summarisation.

Valts Blukis, Yannick Terme, Eyvind Niklasson, Ross A
Knepper, and Yoav Artzi. 2019. Learning to
map natural language instructions to physical quad-
copter control using simulated flight. arXiv preprint
arXiv:1910.09664.

Jake Brawer, Olivier Mangin, Alessandro Roncone,
Sarah Widder, and Brian Scassellati. 2018. Situ-
ated human–robot collaboration: predicting intent
from grounded natural language. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems.

Rodolfo Corona, Daniel Fried, Coline Devin, Dan Klein,
and Trevor Darrell. 2021. Modular networks for com-
positional instruction following. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi
Parikh, and Dhruv Batra. 2018. Neural modular con-
trol for embodied question answering. In Conference
on Robot Learning.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. arXiv preprint arXiv:2201.07207.

Peter Jansen. 2020. Visually-grounded planning with-
out vision: Language models infer detailed plans
from high-level instructions. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020.

Samson Yu Bai Jian, Tapas Nayak, Navonil Majumder,
and Soujanya Poria. 2021. Aspect sentiment triplet
extraction using reinforcement learning. In CIKM.

Hyounghun Kim, Abhaysinh Zala, Graham Burri, Hao
Tan, and Mohit Bansal. 2020. Arramon: A joint
navigation-assembly instruction interpretation task in
dynamic environments. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020.

Souvik Kundu and Hwee Tou Ng. 2018. A question-
focused multi-factor attention network for question
answering. In AAAI.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Zhaoning Li, Qi Li, Xiaotian Zou, and Jiangtao Ren.
2021. Causality extraction based on self-attentive
bilstm-crf with transferred embeddings. Neurocom-
puting.

Haoyu Liu, Yang Liu, Hongkai He, and Hangfang Yang.
2022. Lebp–language expectation & binding pol-
icy: A two-stream framework for embodied vision-
and-language interaction task learning agents. arXiv
preprint arXiv:2203.04637.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly multiple events extraction via attention-based
graph information aggregation. In EMNLP.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In EMNLP.

So Yeon Min, Devendra Singh Chaplot, Pradeep Kumar
Ravikumar, Yonatan Bisk, and Ruslan Salakhutdinov.
2021. Film: Following instructions in language with
modular methods. In International Conference on
Learning Representations.

Dipendra Kumar Misra, Andrew Bennett, Valts Blukis,
Eyvind Niklasson, Max Shatkhin, and Yoav Artzi.
2018. Mapping instructions to actions in 3d environ-
ments with visual goal prediction. In EMNLP.

Makoto Miwa and Mohit Bansal. 2016. End-to-end
relation extraction using LSTMs on sequences and
tree structures. In ACL.

Rajdeep Mukherjee, Tapas Nayak, Yash Butala,
Sourangshu Bhattacharya, and Pawan Goyal. 2021.
Paste: A tagging-free decoding framework using
pointer networks for aspect sentiment triplet extrac-
tion. In EMNLP.

Tapas Nayak and Hwee Tou Ng. 2019. Effective at-
tention modeling for neural relation extraction. In
CoNLL.

Tapas Nayak and Hwee Tou Ng. 2020. Effective mod-
eling of encoder-decoder architecture for joint entity
and relation extraction. In AAAI.

Van-Quang Nguyen, Masanori Suganuma, and Takayuki
Okatani. 2021. Look wide and interpret twice:
Improving performance on interactive instruction-
following tasks. In IJCAI.

Alexander Pashevich, Cordelia Schmid, and Chen Sun.
2021. Episodic transformer for vision-and-language
navigation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision.

Chris Paxton, Yonatan Bisk, Jesse Thomason, Arunk-
umar Byravan, and Dieter Foxl. 2019. Prospection:
Interpretable plans from language by predicting the
future. In 2019 International Conference on Robotics
and Automation (ICRA).

Pradip Pramanick, Hrishav Bakul Barua, and Chayan
Sarkar. 2020. Decomplex: Task planning from com-
plex natural instructions by a collocating robot. In
2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS).

Pradip Pramanick, Chayan Sarkar, P Balamuralidhar,
Ajay Kattepur, Indrajit Bhattacharya, and Arpan Pal.
2019a. Enabling human-like task identification from
natural conversation. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS).

Pradip Pramanick, Chayan Sarkar, Snehasis Banerjee,
and Brojeshwar Bhowmick. 2022. Talk-to-resolve:
Combining scene understanding and spatial dialogue
to resolve granular task ambiguity for a collocated
robot. Robotics and Autonomous Systems.

Pradip Pramanick, Chayan Sarkar, and Indrajit Bhat-
tacharya. 2019b. Your instruction may be crisp, but
not clear to me! In 2019 28th IEEE International
Conference on Robot and Human Interactive Com-
munication (RO-MAN).

Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang,
William Yang Wang, Chunhua Shen, and Anton
van den Hengel. 2020. Reverie: Remote embodied
visual referring expression in real indoor environ-
ments. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research.

Ryokan Ri, Yufang Hou, Radu Marinescu, and Akihiro
Kishimoto. 2022. Finding sub-task structure with
natural language instruction. In ACL Workshop on
Learning with Natural Language Supervision.

Junha Roh, Karthik Desingh, Ali Farhadi, and Dieter
Fox. 2022. Languagerefer: Spatial-language model
for 3d visual grounding. In Conference on Robot
Learning.

Kalyani Roy, Pawan Goyal, and Manish Pandey. 2021.
Attribute value generation from product title using
language models. In Proceedings of The 4th Work-
shop on e-Commerce and NLP.

Kalyani Roy, Tapas Nayak, and Pawan Goyal. 2022.
Exploring generative models for joint attribute value
extraction from product titles. arXiv preprint
arXiv:2208.07130.

Nivedita Rufus, Kanishk Jain, Unni Krishnan R Nair, Vi-
neet Gandhi, and K Madhava Krishna. 2021. Ground-
ing linguistic commands to navigable regions. In
2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS).

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In ICLR.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and arguments
by dependency-bridge rnn and tensor-based argument
interaction. In AAAI.

Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey
Levine. 2022. Lm-nav: Robotic navigation with large
pre-trained models of language, vision, and action.
arXiv preprint arXiv:2207.04429.

Yatian Shen and Xuanjing Huang. 2016. Attention-
based convolutional neural network for semantic re-
lation extraction. In COLING.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke

Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for every-
day tasks. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition.

Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi
Kim, Roozbeh Mottaghi, and Jonghyun Choi. 2021.
Factorizing perception and policy for interactive in-
struction following. In Proceedings of the IEEE/CVF
International Conference on Computer Vision.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NeurIPS.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962v2.

Andrea Vanzo, Danilo Croce, Emanuele Bastianelli,
Roberto Basili, and Daniele Nardi. 2020. Grounded
language interpretation of robotic commands
through structured learning. Artificial Intelligence,
278:103181.

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga,
Chiranjib Bhattacharyya, and Partha Talukdar. 2018.
Reside: Improving distantly-supervised neural rela-
tion extraction using side information. In EMNLP.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Advances in neural infor-
mation processing systems, 28.

Tom Williams, Gordon Briggs, Bradley Oosterveld,
and Matthias Scheutz. 2015. Going beyond literal
command-based instructions: Extending robotic nat-
ural language interaction capabilities. In Proceedings
of the AAAI Conference on Artificial Intelligence.

Lu Xu, Hao Li, Wei Lu, and Lidong Bing. 2020.
Position-aware tagging for aspect sentiment triplet
extraction. In EMNLP.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu,
and Jun Zhao. 2018. Extracting relational facts by an
end-to-end neural model with copy mechanism. In
ACL.

Sheng Zhang, Kevin Duh, and Benjamin Van Durme.
2017. MT/IE: Cross-lingual open information extrac-
tion with neural sequence-to-sequence models. In
EACL.

Yichi Zhang and Joyce Chai. 2021. Hierarchical task
learning from language instructions with unified
transformers and self-monitoring. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021.

9 Appendix

We include the example of different task types, ar-
gument types, and instructions in Table 8. Each

Task type Argument types Example instruction
1. being_located (is) source (table) the cup is on the table

2. being_in_category (is) theme (living room),
category (with green curtains)

this is a living room with green
curtains

3. bringing (bring) recipient (me), theme (cup),
source(table) bring me a cup from the table

4. changing_operational_state (turn) operational_state (on),
device (television) turn on the television

5. checking_state (check) theme (stereo), desired_state (on) please check if the stereo is on
6. cutting (cut) theme (apple), source (dining table) cut the apple on the dining table
7. following (follow) cotheme (person), goal (kitchen) follow the person to the kitchen

8. giving (pass) theme (plate), agent (robot),
recipient (me) robot can you pass me a plate

9. inspecting (look) manner (down), source (floor) look down on the floor
10. motion (go) goal (window) go near the window
11. opening (open) container_portal (cabinet) open the cabinet

12. picking (take) theme (bottle), source (bedside table) take the bottle from the
bedside table

13. placing (put) theme (bottle), goal (trash) put the bottle on the trash

14. pushing (push) theme (box), agent (you),
source (table)

can you push the box on
the table

15. rotation (turn) manner (your left), agent (robot) robot turn to your left
16. searching (find) recipient (me), theme (red shirt) find me the red shirt

Table 8: Task and argument types in our dataset with example instruction – the first two tasks are not real tasks. The
phrase that represents the task and argument in each instruction are shown inside the bracket.

task and argument corresponds to one/multiple
words in the instruction. The corresponding words
for the task and arguments are also marked (within
the parenthesis).

