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Abstract

The emergence of audio language models is001
empowered by neural audio codecs, which es-002
tablish critical mappings between continuous003
waveforms and discrete tokens compatible with004
language model paradigms. The evolutionary005
trends from multi-layer residual vector quan-006
tizer to single-layer quantizer are beneficial007
for language-autoregressive decoding. How-008
ever, the capability to handle multi-domain009
audio signals through a single codebook re-010
mains constrained by inter-domain distribu-011
tion discrepancies. In this work, we introduce012
UniCodec, a unified audio codec with a sin-013
gle codebook to support multi-domain audio014
data, including speech, music, and sound. To015
achieve this, we propose a partitioned domain-016
adaptive codebook method based on domain017
Mixture-of-Experts strategy to capture the dis-018
tinct characteristics of each audio domain. Fur-019
thermore, to enrich the semantic density of the020
codec without auxiliary modules, we propose021
a self-supervised mask prediction modeling022
approach. Comprehensive objective and sub-023
jective evaluations demonstrate that UniCodec024
achieves excellent audio reconstruction perfor-025
mance across the three audio domains, outper-026
forming existing unified neural codecs with a027
single codebook, and even surpasses state-of-028
the-art domain-specific codecs on both acoustic029
and semantic representation capabilities1.030

1 Introduction031

Many recent developments of speech language032

models (SLMs) (Bai et al., 2023; Défossez et al.,033

2024; Peng et al., 2024; Ji et al., 2024a) integrate034

the speech modality with text-based large language035

models (LLMs) and have led to significant ad-036

vancements in speech understanding and genera-037

tion tasks. This paradigm relies on discrete acoustic038

codec models, which convert high-rate speech sig-039

1We will make our code and model checkpoints publicly
available to ensure reproducibility.

nals into a finite set of discrete speech tokens, bridg- 040

ing the gap between continuous speech signals 041

and discrete-token-based language models, thus 042

enabling speech applications powered by LLMs. 043

Most existing neural audio codecs 044

(NACs) (Zeghidour et al., 2022; Kumar et al., 2023; 045

Ji et al., 2024b; Défossez et al., 2023; Défossez 046

et al., 2024) employ a multi-layer Residual Vector 047

Quantizer (RVQ), where each quantizer operates 048

on the residual of the previous quantizer. This RVQ 049

structure generates multiple parallel hierarchical 050

token streams for downstream language models 051

to decode, hence it increases the complexity 052

and the generation latency of SLMs (Xie and 053

Wu, 2024a,b; Défossez et al., 2024). To address 054

this problem, several recent works, including 055

WavTokenizer (Ji et al., 2024c), Single-Codec (Li 056

et al., 2024), and BigCodec (Xin et al., 2024), 057

focus on developing single-layer quantizer to 058

streamline the process. Integrating a single-layer 059

quantizer with LLMs facilitates rapid extraction of 060

speech features on input audio while significantly 061

reducing the burden of autoregressive modeling. 062

These works demonstrate that using a single VQ 063

to discretize speech could achieve competitive 064

performance in both audio reconstruction and 065

generation tasks. Therefore, our work follows this 066

trend and focuses on developing high-performing 067

single-layer quantizer codec. 068

An ideal codec should be able to perform well 069

across various audio domains, such as speech, mu- 070

sic, and sound, with distinct domain characteristics. 071

Prior RVQ-based neural audio codecs using multi- 072

layer RVQ and hence multi-codebooks, such as 073

DAC (Kumar et al., 2023) and Encodec (Défossez 074

et al., 2023), exhibit strong reconstruction capabili- 075

ties for speech, music, and sound. However, previ- 076

ous studies such as Wavtokenizer (Ji et al., 2024c) 077

show that using a unified single-codebook codec for 078

speech, music, and sound still poses a great chal- 079

lenge: The unified codec suffers from notable per- 080
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Table 1: Comparison of recent codec models based on single codebook, compatibility with speech, music, and
sound domains, and whether they use separate models for different domains or a unified model.

Model Single Codebook Speech Music&Sound Separate/Unified model

DAC (Kumar et al., 2023) Unified
Encodec (Défossez et al., 2023) Unified

Mimi (Défossez et al., 2024) Unified
SemantiCodec (Liu et al., 2024) Unified

SpeechTokenizer (Zhang et al., 2023) -
BigCodec (Xin et al., 2024) -
TAAE (Parker et al., 2024) -

Wavtokenizer (Ji et al., 2024c) Separate&Unified
UniCodec Unified

formance degradation compared to domain-specific081

codec models, since the substantial distribution dis-082

crepancies between these domains make it difficult083

to effectively capture their distinct characteristics084

with a single codebook. To tackle this challenge, in085

this work, we develop a unified audio codec with086

a single codebook, designed to support multiple087

audio domains—including speech, music, and088

sound—while achieving both low bitrate and089

high acoustic reconstruction quality.090

In addition to powerful acoustic reconstruction091

capabilities, strong semantic representation capa-092

bilities (that is, encapsulating rich semantic infor-093

mation) of NACs are crucial for effective integra-094

tion of NACs with LLMs, since strong semantic095

capabilities can ease understanding of audio con-096

tent and facilitate generation of semantically rea-097

sonable audio. There are two main challenges in098

enriching the semantic representations of NACs.099

(1) There is an inherent trade-off between seman-100

tic richness and reconstruction performance, since101

semantic features provide a higher-level, more ab-102

stract understanding, while reconstruction features103

emphasize fine-grained details of audio. (2) The104

majority of existing works enrich semantic capa-105

bilities through distillation from additional pre-106

trained speech semantic encoders (Zhang et al.,107

2023; Défossez et al., 2024), separate semantic108

codebooks (Liu et al., 2024), or auxiliary seman-109

tic modules (Ye et al., 2024). However, methods110

using an additional pretrained semantic encoder111

are constrained by reliance on a pretrained speech112

encoder, are less elegant and not fully adaptable,113

and difficult to support unified modeling of speech,114

music, and sound. Moreover, an auxiliary seman-115

tic module introduces additional computation cost116

and degrades the efficiency of feature extraction.117

Since both reconstruction quality and efficiency118

are critical for NACs, we explore a more elegant119

approach by directly learning semantic informa- 120

tion through the codec itself, without additional 121

modules, while preserving high reconstruction 122

ability. 123

Our contributions can be summarized as follows: 124

• We introduce UniCodec, a unified audio codec 125

with a single quantizer, designed to support vari- 126

ous audio types, including speech, music, and 127

sound, with a single codebook. To achieve 128

this, we propose a partitioned domain-adaptive 129

codebook method based on domain Mixture-of- 130

Experts (MoE) strategy to effectively capture the 131

distinct characteristics of each audio domain. 132

• We propose a self-supervised, masked modeling 133

approach to enrich semantic information without 134

extra modules. 135

• Comprehensive objective and subjective evalua- 136

tions show that UniCodec achieves better recon- 137

struction and semantic performance compared to 138

existing unified codecs with a single codebook, 139

and even outperforms domain-specific codecs. 140

2 Related Work 141

Neural Audio Codecs Neural Audio Codecs 142

(NACs) aim to compress audio signals into highly 143

compressed discrete tokens while preserving high 144

reconstruction quality. The predominant paradigm 145

of NACs utilizes the Vector Quantized Variational 146

Autoencoder (VQ-VAE) (van den Oord et al., 2017; 147

Gârbacea et al., 2019) architecture, where an en- 148

coder transforms the audio signal into a latent 149

representation, a quantizer discretizes this rep- 150

resentation, and a decoder reconstructs the sig- 151

nal. SoundStream (Zeghidour et al., 2022) en- 152

hances this approach by incorporating Residual 153

Vector Quantization (RVQ), and improves both 154

modeling and reconstruction capabilities for NACs. 155

Encodec (Défossez et al., 2023) further refines 156
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SoundStream by introducing multi-scale discrimi-157

nators and a loss-balancing strategy to optimize158

reconstruction performance. Numerous works159

such as DAC (also named RVQGAN) (Kumar160

et al., 2023) and Mimi (Défossez et al., 2024) con-161

tinue enhancing RVQ-based NACs. While multi-162

codebook residual modeling boosts reconstruction163

quality, it complicates the autoregressive process164

in SLMs and suffers from unacceptable latency.165

In contrast, single-layer quantizer codecs, such as166

Single-Codec (Li et al., 2024), WavTokenizer (Ji167

et al., 2024c), BigCodec (Xin et al., 2024), and168

TAAE (Parker et al., 2024), show promising po-169

tentials due to their ability to seamlessly integrate170

into SLMs with low latency and reduced compu-171

tational overhead. However, there is still much172

room to improve the performance of single-layer173

low-bitrate codecs; hence, this work focuses on174

enhancing single-layer low-bitrate codecs.175

Unified Audio Signal Modeling A unified NAC176

capable of processing various audio types, such177

as speech, music, and sound, will be greatly ben-178

eficial for constructing universal audio language179

models (ALMs) that are generalizable to various180

audio types. RVQ-based audio codec models,181

such as SoundStream (Zeghidour et al., 2022), En-182

codec (Défossez et al., 2023), and DAC (Kumar183

et al., 2023), are trained on a combination of speech,184

music, and sound datasets. While these codecs185

achieve high reconstruction quality, their perfor-186

mance significantly degrades in low-bitrate scenar-187

ios, particularly when restricted to the first code-188

book. Although existing single-layer codecs (Ji189

et al., 2024c) perform well in one or two audio190

domains, they struggle to simultaneously maintain191

superior performance on speech, music, and sound192

domains while operating at a low bitrate.193

Semantic Audio Representation Learning Dis-194

crete tokens compressed by acoustic NACs lack195

high-level semantic information, which is essential196

for effective SLMs. To address this issue, mod-197

els such as SpeechTokenizer (Zhang et al., 2023)198

and Mimi (Défossez et al., 2024) leverage self-199

supervised-learning (SSL) based speech represen-200

tation models to distill semantic information into201

the first-layer codebook. XCodec (Ye et al., 2024)202

concatenates acoustic tokens with semantic tokens203

produced by SSL models before the RVQ stage204

and introduces a semantic reconstruction loss. Fun-205

Codec (Du et al., 2024) offers various methods to206

integrate SSL-based semantic tokens with RVQ-207

based acoustic tokens. However, these approaches 208

rely on SSL encoders, which complicate the train- 209

ing process and constrain the semantic capabilities 210

of NACs. SemantiCodec (Liu et al., 2024) com- 211

bines quantized semantic tokens with acoustic to- 212

kens and introduces a diffusion process to enhance 213

reconstruction quality, but the diffusion process 214

introduces additionally training cost. In contrast, 215

UniCodec requires neither additional SSL encoders 216

nor complex diffusion process, hence simplifying 217

the training process while encapsulating rich se- 218

mantic information. 219

3 Methodology 220

UniCodec is built upon the highly competitive 221

single-layer encoder-VQ-decoder codec, Wavto- 222

kenizer (Ji et al., 2024c). The left part of Figure 1 223

provides an overview of the architecture of Uni- 224

Codec, which comprises three modules: an encoder 225

that processes the input audio to generate a latent 226

feature representation, a quantizer that discretizes 227

the feature into tokens through a single codebook, 228

and a decoder that reconstructs the audio signal 229

from the compressed, discrete tokens. We first 230

make the following enhancements over Wavtok- 231

enizer (Section 3.1). We enhance the encoder by 232

incorporating transformer layers, which can better 233

capture and represent complex patterns. We also 234

enhance the codebook utilization rate to maximize 235

the use of codebook and improve efficiency. More 236

importantly, to build a unified tokenizer capable of 237

supporting multi-domain audio reconstruction, we 238

propose two novel strategies: a partitioned domain- 239

adaptive codebook (Section 3.2), and a domain 240

mixture-of-experts (MoE) encoder structure (Sec- 241

tion 3.3), which is detailed in the upper-right part of 242

Figure 1. UniCodec is trained end-to-end through 243

two stages. In the first acoustic training stage, the 244

model is trained by optimizing a reconstruction 245

loss applied over both time and frequency domains, 246

along with a perceptual loss using discriminators 247

operating at different resolutions, the same as Wav- 248

tokenizer. In the following semantic training stage 249

(Section 3.4), which is depicted in the lower-right 250

part of Figure 1), a contrastive loss is added into 251

the training objective. 252

3.1 Enhanced Encoder and Quantizer 253

The encoder of Wavtokenizer (Ji et al., 2024c) 254

consists of convolutional blocks followed by a 255

two-layer LSTM and a final 1D convolution layer, 256
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Figure 1: Left: Overview of the proposed UniCodec.
Upper-right: the domain MoE encoder structure. Lower-
right: the semantic training stage.

which limits its capacity for effective feature ex-257

traction. To enhance the ability to encode audio258

into compact representations while ensuring high-259

quality audio reconstruction, inspired by Mimi260

Codec in Moshi (Défossez et al., 2024), we replace261

the LSTM sequence modeling in the encoder with262

a contextual Transformer architecture following263

the convolutional blocks. Consistent with Mimi,264

the Transformer consists of 8 layers, 8 attention265

heads, RoPE position encodings, GELU activa-266

tions (Hendrycks and Gimpel, 2016), with a hidden267

size of 512 and an MLP dimension of 2048.268

Scaling the training data to cover multiple audio269

domains necessitates scaling the codebook concur-270

rently, which introduces the challenge of optimiz-271

ing codebook utilization during the vector quanti-272

zation process. To improve codebook utilization273

and improve efficiency, we adopt the SimVQ al-274

gorithm (Zhu et al., 2024), which effectively and275

efficiently mitigates the issue of representation col-276

lapse in vector-quantized model by using a simple277

linear layer.278

3.2 Domain-adaptive Codebook279

To achieve seamless integration of data from three280

distinct domains—speech, music, and sound—into281

a unified audio tokenizer, we propose a novel par-282

titioned domain-adaptive codebook. In this frame-283

work, the codebook is divided into three specialized284

regions: the first region, spanning indices 0 to 4095,285

is dedicated to the speech domain; the second, from286

4096 to 8191, is for the music domain; and the re- 287

maining indices from 8191 to 16383 are allocated 288

for the sound domain. This design is inspired by the 289

hypothesis in Semanticodec (Liu et al., 2024) that 290

general sound tends to encompass a broader range 291

of sounds than speech and music, hence we allocate 292

a larger region for sound. During the training pro- 293

cess, the model only updates the codebook entries 294

corresponding to the domain of the input sample, 295

ensuring that domain-specific features are accu- 296

rately captured and learned. This partitioned code- 297

book approach facilitates the construction of a uni- 298

fied audio tokenizer that can effectively handle the 299

unique characteristics of each domain, providing a 300

flexible solution for multi-domain audio represen- 301

tation. The ablation experimental results in Table 6 302

of Section 5.3 validate this strategy achieves perfor- 303

mance improvement when scaling up the amount 304

of training data covering different audio types and 305

also codebook size. 306

3.3 Domain MoE 307

For training the codec on data from multiple audio 308

domains, we employ a domain Mixture-of-Experts 309

(MoE) strategy for the Feed-Forward Networks 310

(FFNs) in our Transformer encoder, inspired by 311

the DeepSeekMoE architecture (Dai et al., 2024). 312

Different from traditional MoE architectures, such 313

as GShard (Lepikhin et al., 2020), DeepSeekMoE 314

utilizes finer-grained experts, designates some as 315

shared experts and the rest as routed experts This ar- 316

chitectural design is well-suited to capture domain- 317

specific features while maintaining high perfor- 318

mance and computational efficiency. For the FFN 319

input ut of the t-th token, the computation of the 320

FFN hidden output ht can be formulated as follow: 321

ht = ut +

Ns∑
i=1

FFN s
i (ut) +

Nr∑
i=1

gi,tFFN r
i (ut)

(1) 322323

gi,t =
g′i,t∑Nr
j=1 g

′
j,t

(2) 324

325

g′i,t =

{
si,t, si,t ∈ Topk(sj,t|1 ≤ j ≤ Nr,Kr)

0, otherwise

(3) 326327

si,t = Sigmoid(uTt ei) (4) 328

where Ns and Nr denote the numbers of shared 329

experts and routed experts, respectively. FFN s
i (·) 330

and FFN r
i (·) demote the i-th shared expert and 331

the i-th routed expert, respectively. g(i, t) is the 332
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gating value for the i-th expert. Kr is the number333

of activated routed experts. si, t is the token-to-334

expert affinity. ei is the centroid vector of the i-th335

routed expert, and Topk(·,K) denotes the set com-336

prising K highest scores among the affinity scores337

calculated for the t-th token and all routed experts.338

Considering the trade-off between computational339

cost and performance on all three audio domains,340

we set Ns = 1, Nr = 3, and Kr = 1.341

3.4 Semantic Training Stage342

To simultaneously enhance semantic representation343

capabilities while preserving high reconstruction344

ability, we introduce a domain-agnostic masked345

modeling approach for UniCodec, inspired by346

Wav2Vec 2.0 (Baevski et al., 2020). Notably, our347

approach does not add any extra modules. Specifi-348

cally, we mask a proportion of the features output349

from the convolution layers in the encoder before350

passing them into the contextual Transformer lay-351

ers. Following the masking strategy of Wav2Vec352

2.0 (Baevski et al., 2020), we randomly sample a353

proportion p of all time steps to serve as starting354

indices and then mask the subsequent M consecu-355

tive time steps from each sampled index, allowing356

overlapping spans.357

After the contextual Transformer layers and the358

quantizer, the quantized output qt, centered over359

the masked time step t, requires the model to iden-360

tify the unmasked convolutional latent representa-361

tion ct from a set of K + 1 convolutional latent362

representations ĉ ∈ Ct, which includes ct and K363

distractors (Gutmann and Hyvärinen, 2010; Oord364

et al., 2018). These distractors are uniformly sam-365

pled from other masked time steps within the same366

utterance. The contrastive loss is computed as:367

Lm = −log
exp(sim(qt, ct)/K)∑
ĉ∈Ct

exp(sim(qt, ĉ)/K)
(5)368

where we compute the cosine similarity369

sim(a, b) = aT b/||a||||b|| between quan-370

tized tokens and unmasked convolutional latent371

representations (He et al., 2020; Chen et al., 2020).372

Our preliminary experiments show that train-373

ing from scratch with reconstruction, masked374

modeling, and contrastive loss is challenging, as375

the single-quantizer codec struggles to simultane-376

ously perform reconstruction and mask prediction.377

Therefore, we first train the codec model with378

reconstruction-related loss following Wavtokenizer379

in the initial acoustic training stage, omitting the380

masking strategy. Then we introduce this semantic 381

training stage with a more difficult mask predic- 382

tion goal, allowing the codec to encapsulate high- 383

level semantic information after acquiring initial 384

reconstruction ability. 385

4 Experimental Setup 386

Datasets. We train UniCodec on approximately 387

80,000 hours of data spanning speech, music, and 388

audio domains. For the speech domain, we use 389

Librilight (Kahn et al., 2020), LibriTTS (Zen et al., 390

2019), VCTK (Veaux et al., 2016), and Common- 391

Voice (Ardila et al., 2019). For the music domain, 392

we use Jamendo (Bogdanov et al., 2019) and Mu- 393

sicDB (Rafii et al., 2017) datasets. For the audio 394

domain, we use AudioSet (Gemmeke et al., 2017). 395

We evaluate the speech reconstruction performance 396

on LibriTTS test-clean. We evaluate the audio and 397

music reconstruction performance on the AudioSet 398

eval and MusicDB test sets, respectively. 399

Training details. Throughout the entire training 400

process, all input speech, music, and audio sam- 401

ples are resampled to 24 kHz. The batch size is 402

10 × 32 on 32 NVIDIA A800 80G GPUs. We 403

uniformly truncate excessively long segments in 404

the training data to a fixed duration of 10 seconds 405

and feed them into the model. We use the AdamW 406

optimizer (Kingma and Ba, 2015; Loshchilov and 407

Hutter, 2019) with an initial learning rate of 2e-4 408

and betas set to (0.9, 0.999). The learning rate is 409

decayed based on a cosine scheduler (Loshchilov 410

and Hutter, 2017). 411

During training, we provide a domain ID for 412

each sample to allow the model to use partitioned 413

domain-adaptive codebook to capture the distinct 414

characteristics of each domain. However, for fair 415

comparisons during evaluation, we do not provide 416

domain IDs; instead, we rely on the codebook to 417

autonomously learn the distinct paradigms of each 418

domain and rely on the quantizer to select the near- 419

est token from the entire codebook. As explained 420

in Section 3, we design initial acoustic training 421

and semantic training stages for UniCodec to bal- 422

ance acoustic and semantic capabilities. We follow 423

the Wav2vec 2.0 (Baevski et al., 2020) mask strat- 424

egy and configuration. The mask ratio p and mask 425

length M is set to 0.1 and 5. 426

Training with large-scale and diverse dataset in 427

both acoustic and semantic stages ensure gener- 428

alization ability of UniCodec. However, our pre- 429

liminary experiments indicate that large-scale data 430
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Table 2: Objective reconstruction results of UniCodec and baselines on speech, music and audio domains on
LibriTTS test-clean, MusicDB test set, and Audioset eval set, in terms of Mel Distance and STFT Distance. TPS
denotes token per second. We bold the best results in all the models, and bold and underline the best results in
single-codebook codec models.

Model Unified TPS↓ LibriTTS test-clean MusicDB test AudioSet eval

Mel Dist↓ STFT Dist↓ Mel Dist↓ STFT Dist↓ Mel Dist↓ STFT Dist↓
DAC 600 0.3697 1.5525 0.3578 1.9621 0.4581 2.1378

Encodec 600 0.5367 1.8271 0.5565 2.1678 0.7601 2.6273
Mimi 100 0.6709 1.9859 0.6714 2.2526 0.8406 2.6639
TAAE 50 0.7508 2.2426 1.4067 4.1340 1.9335 5.2897
DAC 75 0.7217 2.1662 1.8894 6.2476 1.7063 5.2923

BigCodec 80 0.4427 1.7385 1.3803 4.2366 1.8632 5.6171
Wavtokenizer (speech) 75 0.5001 1.7879 0.6586 3.0335 0.5990 2.5479

Wavtokenizer (music/audio) 75 0.5451 1.8649 0.4516 2.2450 0.4536 2.1871
Wavtokenizer (unified) 75 0.5308 1.8614 0.5435 2.5451 0.5193 2.3727

UniCodec (Ours) 75 0.3442 1.5147 0.3959 2.1822 0.3820 2.1065

training performs worse compared to training on431

only LibriTTS dataset. Upon analysis, we find that432

diverse and noisy data significantly hinders codec433

reconstruction learning. To further improve the re-434

construction ability, we select high-quality data for435

a further fine-tuning stage. More details about the436

fine-tuning stage are in Appendix C.437

Evaluation Metrics. We adopt a comprehensive438

set of evaluation metrics, as follows.439

Tokens Per Frame (TPF): The number of parallel440

tokens per timestep of encoded audio, affecting441

ease of modeling token sequences in generative442

models.443

Tokens Per Second (TPS): The number of to-444

kens per second. It determines the context length445

required by a generative model, especially when446

residual tokens are used in flattened form.447

Downsample Rate (DR): The token compression448

rate. It is calculated by dividing the input audio449

sample rate by TPS, indicating the difficulty of450

compressing audio waveforms into tokens.451

Mel Distance (Reconstruction): L1 distance be-452

tween the mel-scaled magnitude spectrograms of453

the ground truth and the generated sample.454

STFT Distance (Reconstruction): L1 distance be-455

tween time-frequency representations of the ground456

truth and the prediction, computed using multi-457

scale Short-Time Fourier Transform (STFT).458

More details about the metrics for speech recon-459

struction evaluation can be found in Appendix E.460

Baselines. We select both state-of-the-art (SOTA)461

multi-layer quantizer codec models and single-462

layer quantizer codec models as the baselines. For463

multi-layer codecs, we compare against DAC (Ku-464

mar et al., 2023), Encodec (Défossez et al.,465

2023), SpeechTokenizer (Zhang et al., 2023), and466

Mimi (Défossez et al., 2024). For single-layer467

codecs, we compare with the official checkpoints 468

provided by Wavtokenizer (speech) 2, Wavtok- 469

enizer (music and audio) 3, BigCodec (Xin et al., 470

2024) 4, and TAAE (Parker et al., 2024) 5. 471

5 Results and Discussions 472

5.1 Reconstruction Evaluation 473

We compare the reconstruction performance of 474

UniCodec against a broad selection of SOTA and 475

competitive codec models as baselines. Table 2 476

presents the results of UniCodec and baselines 477

on speech (LibriTTS test-clean), music (MusicDB 478

test), and audio (AudioSet eval) domains, in terms 479

of Mel Distance and STFT Distance. As shown in 480

Table 2, UniCodec demonstrates excellent recon- 481

struction performance on all three domains, out- 482

performing the unified single-codebook baseline 483

Wavtokenizer (unified) and also speech-specific 484

single-codec baselines such as BigCodec, TAAE, 485

and Wavtokenizer (speech). In the music and 486

audio domains, UniCodec also outperforms the 487

music/audio-specific baseline Wavtokenizer (mu- 488

sic/audio) on both MusicDB test set and AudioSet 489

eval set. Even when compared to multi-layer 490

RVQ-based unified baselines such as Encodec and 491

Mimi, the single-layer unified UniCodec shows su- 492

perior performance across all three domains, except 493

for slightly lower performance compared to DAC 494

(which has a much larger tokens-per-second rate) 495

in the music domain. The Real-Time Factors (RTF) 496

and comparisons of the number of parameters can 497

be found in Appendix B. 498

2wavtokenizer_medium_speech_320_24k_v2.ckpt
3wavtokenizer_medium_music_audio_320_24k_v2.ckpt
4huggingface.co/Alethia/BigCodec/resolve/main/bigcodec.pt
5huggingface.co/stabilityai/stable-codec-speech-16k
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Table 3: Objective reconstruction results on the Speech domain from UniCodec and baselines on LibriTTS
test-clean, in terms of naturalness, distortion, and intelligibility. DR denotes the Downsample Rate (the input audio
sample rate division by Tokens Per Second (TPS)). Unified denotes the codec model can support all three domains
of speech, music, and sound. The results of models marked by † are cited from the Wavtokenizer paper (Ji et al.,
2024c) and others are reproduced by us based on the checkpoints released by the corresponding work.

Model Unified DR (↑) TPF (↓) TPS (↓) PESQ (↑) STOI (↑) F1 (↑) UTMOS (↑)

Ground Truth† - - - - - - - 4.0562
DAC 40 8 600 3.5197 0.9709 0.9546 3.6905

Encodec† 40 8 600 2.7202 0.9391 0.9527 3.0399
SpeechTokenizer† 40 8 600 2.6121 0.9165 0.9495 3.8794

Mimi 240 8 100 2.2695 0.9118 0.912 3.5731
TAAE 320 2 50 1.8955 0.8816 0.9260 4.1389

DAC 320 1 75 1.1763 0.7739 0.7560 1.3531
BigCodec 200 1 80 2.6872 0.9293 0.9480 4.0367

Wavtokenizer (speech)† 320 1 75 2.3730 0.9139 0.9382 4.0486
Wavtokenizer (unified) 320 1 75 1.8379 0.8718 0.9175 3.6115

UniCodec (Ours) 320 1 75 3.0266 0.9493 0.9486 3.9873

Table 4: Subjective MUSHRA test reconstruction results from codec models on speech, music and audio
domains, on LibriTTS test-clean, MusicDB test set and AudioSet eval set. We report mean and standard deviation.

Model Unified LibriTTS test-clean (↑) MusicDB test (↑) AudioSet eval (↑)

Ground Truth - 93.52 ± 1.99 96.18 ± 1.47 95.28 ± 2.18
Wavtokenizer (speech) 85.44 ± 2.29 - -

Wavtokenizer (music & audio) - 75.24 ± 2.38 80.19 ± 2.43
Wavtokenizer (unified) 80.40 ± 2.54 56.10 ± 3.74 62.21 ± 3.42

UniCodec (Ours) 90.74 ± 2.06 77.77 ± 2.45 82.43 ± 2.56

Table 3 further compares the speech domain re-499

construction performance of different codec mod-500

els on LibriTTS test-clean, using PESQ, STOI,501

F1 and UTMOS, assessing the codecs in terms of502

naturalness, distortion, and intelligibility. The uni-503

fied UniCodec significantly outperforms WavTok-504

enizer (unified) across all metrics. Even compared505

to WavTokenizer (speech) and BigCodec, which506

are SOTA speech-specific models with single-layer507

quantizers, UniCodec achieves better PESQ and508

STOI, demonstrating superior reconstruction qual-509

ity. Furthermore, despite having a much higher510

downsampling rate (DR), UniCodec remains com-511

petitive with multi-layer quantizer models such512

as Encodec, Mimi, and SpeechTokenizer, which513

have higher tokens per second (TPS). Appendix A514

also reports the reconstruction performance on Lib-515

riTTS test-other.516

The reconstruction results of the MUSHRA sub-517

jective test are shown in Table 4. UniCodec outper-518

forms WavTokenizer (unified) markedly in recon-519

struction quality across speech, music, and audio520

domains. Even when compared to domain-specific521

codecs, UniCodec performs slightly better than522

WavTokenizer (speech) in the speech domain, and523

WavTokenizer (music/audio) in the music and au-524

dio domains. These results further demonstrate 525

that in all three domains, UniCodec achieves su- 526

perior subjective reconstruction performance 527

while maintaining a high compression rate. 528

5.2 Semantic Evaluation 529

We evaluate the semantic richness of different 530

codec models on several speech, music, and audio 531

domain datasets of the ARCH benchmark (La Qua- 532

tra et al., 2024). The speech domain includes 533

the RAVDESS (Livingstone and Russo, 2018) and 534

Audio-MNIST (Becker et al., 2024) datasets, the 535

music domain includes the MTT (Law et al., 2009) 536

and MS-DB (Rafii et al., 2017) datasets, and the au- 537

dio domain includes the ESC50 (Piczak, 2015) and 538

VIVAE (Holz et al., 2022) datasets. We extract em- 539

beddings corresponding to the discrete codebooks 540

of each acoustic codec model as its respective repre- 541

sentations and evaluate the classification accuracy 542

of the codec models on the ARCH datasets using 543

these representations. The experimental results, as 544

shown in Table 5, demonstrate that our UniCodec 545

outperforms WavTokenizer, DAC (configured with 546

a single quantizer) and Encodec (configured with 547

two-layer quantizers), in terms of classification 548

accuracy. Furthermore, performance comparison 549
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Table 5: Semantic representation evaluation results on the ARCH benchmark, in terms of classification accuracy.
The results of models marked by † are cited from the Wavtokenizer paper (Ji et al., 2024c).

Model TPS (↓) Speech Music Audio

RAVDESS (↑) AM (↑) MTT (↑) MS-DB (↑) ESC50 (↑) VIVAE (↑)

Encodec† 150 27.43 36.49 19.00 32.45 16.99 26.30
DAC† 100 25.00 62.87 25.02 51.37 20.65 29.91
Wavtokenizer (speech)† 75 32.55 69.57 - - - -
Wavtokenizer (music&audio)† 75 - - 28.35 57.64 25.50 35.63
UniCodec 75 40.28 70.94 29.55 59.29 26.00 34.17

w/o semantic stage 75 36.81 69.84 28.09 54.05 20.80 30.21

Table 6: Ablation study of UniCodec by evaluating the effects of domain ID during evaluation, the domain MoE
module, domain-adaptive codebook, and the semantic training stage and the fine-tuning stage.

Model LibriTTS test-clean MusicDB test AudioSet eval

Mel Dist ↓ STFT Dist ↓ Mel Dist ↓ STFT Dist ↓ Mel Dist ↓ STFT Dist ↓

UniCodec 0.3442 1.5147 0.3959 2.1822 0.3820 2.1065
w. domain id 0.3474 1.5151 0.3912 2.1818 0.3824 2.1061
w/o finetune stage 0.4476 1.7005 0.4490 2.2505 0.4366 2.1659
w/o semantic&finetune stage 0.4481 1.6978 0.4534 2.2690 0.4380 2.1723

w/o MoE 0.4883 1.8024 0.4592 2.3153 0.4548 2.2633
w/o partitioned codebook 0.4873 1.7742 0.5064 2.3031 0.5135 2.2382

against the counterpart that excludes the seman-550

tic stage training (w/o semantic stage) verifies the551

effectiveness of the proposed semantic training us-552

ing mask prediction and contrastive loss. In future553

work, we plan to explore UniCodec-based ALM on554

downstream audio tasks such as audio continuation555

and generation.556

5.3 Ablation study557

We conduct ablation study by evaluating the ef-558

fect of proposed methods and modules on the Lib-559

riTTS test-clean, MusicDB test, and AudioSet eval560

sets. As shown in Table 6, providing the domain561

ID for the partitioned domain-adaptive codebook562

during evaluation performs comparably to the de-563

fault setting without providing domain ID. The564

only exception is the music domain, where perfor-565

mance improves slightly due to the inherent mixed566

nature of songs, which contain both speech and567

music elements. These results demonstrate that568

the partitioned domain-adaptive codebook can au-569

tonomously capture distinct domain-specific fea-570

tures. The third row shows that without the fine-571

tuning stage, a significant performance degrada-572

tion is observed when trained on large but noisy573

data. This highlights the critical role of high-quality574

data in codec training. The fourth row reports re-575

sults without both semantic training and fine-tuning576

stages. Comparison between the third and fourth577

rows shows that our proposed semantic stage en-578

hances semantic information while preserving re- 579

construction ability. Furthermore, removing the 580

MoE module from UniCodec without the semantic 581

and fine-tuning stages (i.e., only the initial acoustic 582

training stage) results in an additional performance 583

degradation. Removing the partitioned domain- 584

adaptive codebook (i.e. naive single codebook) 585

leads to even greater degradation than removing the 586

MoE module. These results confirm the effective- 587

ness of the proposed domain MoE and partitioned 588

domain-adaptive codebook strategy in achieving a 589

unified codec with superior reconstruction ability. 590

6 Conclusions 591

In this work, we introduce UniCodec, a low-bitrate 592

unified audio tokenizer designed to support multi- 593

domain audio data, including speech, music, and 594

sound, using a single quantizer. To achieve this 595

goal of unified modeling, we propose the parti- 596

tioned domain-adaptive codebook and the domain 597

MoE strategy to capture the distinct characteristics 598

of each domain. To enrich the semantic information 599

without introducing additional modules, we pro- 600

pose a self-supervised mask prediction modeling 601

algorithm during codec training. Comprehensive 602

objective and subjective evaluations demonstrate 603

that, as a unified audio codec with a single code- 604

book, UniCodec achieves excellent performance in 605

both acoustic and semantic capabilities. 606
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7 Limitations607

Our experiments reveal that UniCodec training will608

be disrupted by noisy or low-quality inputs. Model-609

ing speech in complex environments, such as noisy610

settings or with overlapped speech, remains a chal-611

lenge. We anticipate that future work will address612

these issues, improving model robustness for such613

scenarios.614

Although our experiments demonstrate that the615

proposed semantic training stage with mask predic-616

tion and contrastive loss effectively captures seman-617

tic information, it remains challenging for a unified618

single-codebook codec to balance both acoustic619

and semantic density across diverse domain data.620

We believe that it is a promising research direction621

to focus on enhancing semantic capabilities while622

preserving reconstruction performance, without in-623

troducing additional modules.624

We have evaluated the model in streaming use625

cases but have observed some performance degra-626

dation. Future work should aim to improve stream-627

ing capabilities while maintaining high reconstruc-628

tion quality.629

Due to space limit and computational constraints,630

we have focused on demonstrating UniCodec’s re-631

construction capabilities and have not yet explored632

training UniCodec with LLM to function as an Au-633

dio Language Model (ALM). In future work, we634

plan to investigate the performance of UniCodec-635

based ALM on downstream audio tasks.636
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A Speech Reconstruction Evaluation 863

We further evaluate UniCodec on the LibriTTS test- 864

other set to assess its reconstruction ability on noisy 865

data. The results in Table 7 show that the recon- 866

structed speech from our model achieves a higher 867

UTMOS score than the ground truth on the Lib- 868

riTTS test-other noisy dataset. This indicates that 869

UniCodec reconstructs speech with greater natural- 870

ness and quality, even in the presence of noise. As 871

a unified codec with a single codebook, UniCodec 872

outperforms Wavtokenizer (unified) across all met- 873

rics. Even when compared with other state-of-the- 874

art speech-specific codecs with a single codebook, 875

UniCodec maintains competitive performance. 876

B Real-Time Factor 877

To evaluate the real-time performance of different 878

audio codec models, we compute the Real-Time 879

Factor (RTF) for audio durations of 5, 10, 30, and 880

60 seconds. The evaluation is conducted on a test 881

set of 1,000 audio clips to ensure a robust and fair 882

comparison. All experiments are performed on an 883

NVIDIA A100 GPU. RTF measures the processing 884

speed relative to real-time feature extraction, a crit- 885

ical metric for NACs to minimize latency. Lower 886

RTF values indicate faster processing. As shown in 887

Table 8, UniCodec has more parameters than Wav- 888

tokenizer due to the incorporation of transformer 889

layers and the MoE structure. This results in a 890

higher RTF for UniCodec with 5-second inputs 891

compared to Wavtokenizer. However, for 10, 30, 892

and 60-second inputs, UniCodec exhibits better 893

RTF performance, and benefits from the superior 894

parallel processing capabilities of its transformer 895

layers, compared to the LSTM module in Wav- 896

tokenizer. Semanticodec has a much larger RTF, 897

making it unsuitable for real-time applications. For 898

DAC, we do not report results for 30s and 60s due 899

to out-of-memory issues. 900

C Fine-tuning Stage 901

In the finetune stage, we select high-quality speech 902

data with a high UTMOS, including LibriTTS train- 903

clean, VCTK, and LJSpeech (Ito, 2017). Addi- 904

tionally, the learning rate and mel loss coefficient 905

are set to 5e-5 and 450, respectively. These train- 906

ing strategies in the finetune stage significantly en- 907

hance the model’s ability to better learn reconstruc- 908

tion ability. 909
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Table 7: Objective reconstruction results on the Speech domain from UniCodec and baselines on LibriTTS
test-other, in terms of naturalness, distortion, and intelligibility. DR denotes the Downsample Rate (the input audio
sample rate division by Tokens Per Second (TPS)). Unified denotes the codec model can support all three domains
of speech, music, and sound. The results of models marked by † are cited from the Wavtokenizer paper (Ji et al.,
2024c) and others are reproduced by us based on the checkpoints released by the corresponding work.

Model Unified DR (↑) TPF (↓) TPS (↓) PESQ (↑) STOI (↑) F1 (↑) UTMOS (↑)

Ground Truth† - - - - - - - 3.4831
DAC† 48.9 9 900 3.7595 0.9576 0.9696 3.3566

Encodec† 40 8 600 2.6818 0.9241 0.9338 2.6568
SpeechTokenizer† 40 8 600 2.3269 0.8811 0.9205 3.2851

Mimi 240 8 100 2.0952 0.8816 0.8875 3.0608
TAAE 320 2 50 1.7539 0.8380 0.8994 3.7136

DAC† 440 1 100 1.2454 0.7505 0.7775 1.4986
BigCodec 200 1 80 2.3817 0.9094 0.9237 3.5453

Wavtokenizer (speech)† 320 1 75 2.2614 0.8907 0.9172 3.4312
Wavtokenizer (unified) 320 1 75 1.6649 0.8312 0.8874 3.0820

UniCodec 320 1 75 2.2749 0.9095 0.9109 3.5800

Table 8: Real-Time Factors (RTFs) for audio codec models on test audio clips of 5s, 10s, 30s and 60s duration using
an A100 GPU.

Model Parameter (M) RTF (5s)↓ RTF (10s)↓ RTF (30s)↓ RTF (60s)↓

DAC 76 0.01021 0.00771 - -
SemantiCodec 507 1.10905 0.54455 0.69320 0.61164
Wavtokenizer 77 0.00377 0.00321 0.00286 0.00280

UniCodec 274 0.00467 0.00287 0.00196 0.00187

Table 9: Codebook utilization rate of the whole code-
book and three domain-partitioned codebook in the con-
dition of with and without domain id provided.

Whole Speech Music Audio

w/o domain id 99.63% 98.54% 100% 99.95%
w. domain id 99.62% 98.54% 100% 99.96%

D Codebook Utilization910

We further evaluate the codebook utilization rate911

for both the entire codebook and the partitioned912

codebook across each domain. The results are eval-913

uated on the LibriTTS test-clean, MusicDB test,914

and AudioSet eval sets. As shown in Table 9, the915

utilization rates for each domain-partitioned code-916

book are nearly fully exploited, demonstrating that917

our UniCodec’s domain-adaptive codebook is both918

well-trained and effectively utilized.919

E Speech Reconstruction Metrics920

PESQ (Rix et al., 2001) (Distortion): A speech921

quality assessment metric that compares recon-922

structed speech with reference speech, with scores923

ranging from 1 to 5, and correlates with human924

judgment. 925

STOI (Intelligibility): A metric measuring speech 926

intelligibility by comparing short-time spectral en- 927

velopes between reconstructed and ground truth 928

speech, with scores ranging from 0 to 1. 929

F1 Score (Voiced/Unvoiced Classification): It 930

balances precision and recall for voiced/unvoiced 931

classification. 932

UTMOS (Saeki et al., 2022) (Naturalness): An 933

automatic speech MOS (Mean Opinion Score) 934

predictor evaluates the naturalness of generated 935

speech, reflecting overall auditory quality. 936
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