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Abstract

Understanding the convergence landscape of multi-agent learning is a fundamental problem
of great practical relevance in many applications of artificial intelligence and machine learn-
ing. While it is known that learning dynamics converge to Nash equilibrium in potential
games, the behavior of dynamics in many important classes of games that do not admit a
potential is poorly understood. To measure how “close” a game is to being potential, we
consider a distance function, that we call “potentialness”, and which relies on a strategic
decomposition of games introduced by Candogan et al. (2011). We introduce a numerical
framework enabling the computation of this metric, which we use to calculate the degree of
“potentialness” in generic matrix games, as well as (non-generic) games that are important
in economic applications, namely auctions and contests. Understanding learning in the lat-
ter games has become increasingly important due to the wide-spread automation of bidding
and pricing with no-regret learning algorithms. We empirically show that potentialness
decreases and concentrates with an increasing number of agents or actions; in addition, po-
tentialness turns out to be a good predictor for the existence of pure Nash equilibria and the
convergence of no-regret learning algorithms in matrix games. In particular, we observe that
potentialness is very low for complete-information models of the all-pay auction where not
pure Nash equilibrium exists, and much higher for Tullock contests, first-, and second-price
auctions, explaining the success of learning in the latter. In the incomplete-information
version of the all-pay auction, a pure Bayes-Nash equilibrium exists and it can be learned
with gradient-based algorithms. Potentialness nicely characterizes these differences to the
complete-information version.

1 Introduction

Multi-agent systems and multi-agent learning have drawn considerable attention, owing to their massive
deployment in machine learning enabled applications and their increasing economic impact, with agents
automatically ordering goods, setting prices, or bidding in auctions (Yang & Wang, 2020). In contrast to
other applications of machine learning, the input in multi-agent learning is non-stationary and depends on
the strategic behavior and learning of other agents, which leads to challenging computation and learning
problems that go well beyond the “business as usual” framework of empirical risk minimization.

The literature on learning in games has a long history and asks what type of equilibrium behavior (if any)
may arise in the long run of a process of learning and adaptation, in which agents are trying to (myopically)
maximize their payoff while adapting to the actions of other agents through repeated interactions (Fudenberg
& Levine, 1998; Hart & Mas-Colell, 2003). To that end, many learning algorithms have been developed
ranging from iterative best-response to first-order online optimization algorithms in which agents follow
their utility gradient in each step (Mertikopoulos & Zhou, 2019; Bichler et al., 2023).

It is known that the dynamics of learning agents do not always converge to a Nash equilibrium (Daskalakis
et al., 2010; Flokas et al., 2020): they may cycle, diverge, or be chaotic, even in zero-sum games, where
computing Nash equilibria is tractable (Mertikopoulos et al., 2018; Palaiopanos et al., 2017). In fact, (Hart
& Mas-Colell, 2003) showed that in general uncoupled dynamics do not converge to Nash equilibrium in all
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games. With this negative result at hand, there lacks a comprehensive characterization of games that are
“learnable”; however our understanding is much better for certain classes of games.

On the one hand, no-regret algorithms and dynamics do not converge in games with only mixed Nash
equilibria (Flokas et al., 2020; Giannou et al., 2021a). On the other hand, if the underlying game is an exact
potential game, then no-regret and other learning algorithms converge to an ε-NE with minimal exploration
(Heliou et al., 2017; Mertikopoulos et al., 2024). Importantly, even though many classes of games of interest
are not exact potential games (Candogan et al., 2013a;b), experimental evidence shows that even if games are
not exact potential games, learning dynamics often converge to Nash equilibrium. Beyond exact potential
games there is no good understanding of the behavior of learning dynamics.

Partially motivated by this, Candogan et al. (2011) introduced a game decomposition that allows one to
characterize how “close” a game is to being potential by resolving it into a potential and a harmonic com-
ponent (plus a “non-strategic” part which does not affect the game’s equilibrium structure and unilateral
payoff differences). In contrast to potential games, the exponential weight / replicator dynamic – perhaps
the most widely studied no-regret dynamics – does not converge in any harmonic game, and instead exhibit
a quasi-periodic behavior known as Poincaré recurrence (Legacci et al., 2024). Based on this dynamical di-
chotomy between potential and harmonic games, we consider a measure of potentialness and analyze generic
normal-form games, as well as several classes of games steming in economic applications. We show that
potentialness provides a useful indicator for both the existence of pure Nash equilibria and the convergence
of no-regret algorithms. While the latter was already part of the motivation of Candogan et al. (2013a)
the former is a novel connection emerging from our empirical exploration. In particular, we find that the
average potentialness in random games decreases and concentrates on a value with increasing numbers of
agents or actions: Games with a potentialness below 0.4 rarely exhibit convergence, while games with val-
ues larger than 0.6 mostly do. We also categorize specific games, such as Jordan’s matching pennies game
(Jordan, 1993), where learning dynamics are known not to converge (or, more precisely, to converge to a
non-terminating cycle of best responses).

Economically motivated games such as auctions and contests have more structure in the payoffs. The analysis
of these games is relevant today because pricing and bidding are increasingly being automated via learning
agents. Learning agents are used to bid in display ad auctions, but they are also used by automated agents
that set prices on online platforms such as Amazon (Chen et al., 2016). Whether we can expect the dynamics
of such multi-agent interactions to converge to an equilibrium or exhibit inefficient price cycles or even chaos,
is an economically important question.

We find that the potentialness is very low for all-pay auctions and much higher for Tullock contests, first- and
second-price auctions. Indeed, our experiments show that learning algorithms do not converge for all-pay
auctions, but they do so for the other economic games. The low potentialness of the all-pay auction also
connects to the fact that it does not possess a pure Nash equilibrium. Overall, potentialness provides a
single indicator for convergence to a Nash equilibrium that is independent of the initializations in individual
experiments. This is in stark contrast to a brute-forth approach, where initial conditions need to be explored.

2 Related Literature

In this paper, we focus throughout on repeated normal-form games, where players move simultaneously
and receive the payoffs as specified by the combination of actions played. The theory of learning in games
examines what kind of equilibrium arises as a consequence of a process of learning and adaptation, in which
agents are trying to maximize their payoff while learning about the actions of other agents in repeated games
(Fudenberg & Levine, 1998). For example, fictitious play is a natural method by which agents iteratively
search for a pure NE and play a best response to the empirical frequency of play of other players (Brown,
1951). Several algorithms have been proposed based on best or better response dynamics for finite and
simultaneous-move games, ultimately leading to a vast corpus of literature (Abreu & Rubinstein, 1988; Hart
& Mas-Colell, 2000; Fudenberg & Levine, 1998; Hart & Mas-Colell, 2003; Young, 2004), while more recent
contributions draw on first-order online optimization methods such as online gradient descent or online
mirror descent to study the question of convergence (Mertikopoulos & Zhou, 2019; Bichler et al., 2023).
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Learning dynamics do not always converge to equilibrium (Daskalakis et al., 2010; Flokas et al., 2020).
Learning algorithms can cycle, diverge, or be chaotic; even in zero-sum games, where the NE is tractable
(Mertikopoulos et al., 2018; Palaiopanos et al., 2017). Sanders et al. (2018) argues that chaos is typical
behavior for more general matrix games. Recent results have shown that learning dynamics do not converge
in games with mixed Nash equilibria (Giannou et al., 2021a;b). On the positive side, Mertikopoulos & Zhou
(2019) showed conditions for which no-external-regret learning algorithms result in a NE in finite games if
they converge. However, in general, the dynamics of matrix games can be arbitrarily complex and hard to
characterize (Andrade et al., 2021).

While there is no comprehensive characterization of games that are “learnable” and one cannot expect
that uncoupled dynamics lead to NE in all games (Hart & Mas-Colell, 2003), there are some important
results regarding the broad class of no-regret learning algorithms. One can distinguish between internal
(or conditional) regret and a weaker version, called ‘external (or unconditional) regret’. External regret
compares the performance of an algorithm to the best single action in retrospect; while internal regret allows
one to modify the online action sequence by changing every occurrence of a given action by an alternative
action. For learning rules that satisfy the stronger no-internal regret condition, the empirical frequency of
play converges to the game’s set of correlated equilibria (Foster & Vohra, 1997; Hart & Mas-Colell, 2000).
The set of correlated equilibria (CE) is a non-empty, convex polytope that contains the convex hull of the
game’s Nash equilibria. The coordination in CE can be implicit via the history of play (Foster & Vohra,
1997). On the other hand, algorithms that are no-external-regret learners converge by definition to the set
of coarse correlated equilibria (CCE) in finite games (Foster & Vohra, 1997; Hart & Mas-Colell, 2000). This
set, in turn, contains the set of CE such that we get NE ⊂ CE ⊂ CCE. In contrast to correlated equilibria,
in a coarse correlated equilibrium, every player could be playing a strictly dominated strategy for all time
(Viossat & Zapechelnyuk, 2013), which makes CCE a fairly weak, non-rationalizable solution concept.

An important class of games in which a variety of learning algorithms converge to an NE is potential games.
In exact potential games, a pure NE exists, and the change in the utility of any player when moving
from one strategy profile to another is exactly equal to the change in a potential function. Any sequence of
improvements by players converges to a pure NE (Heliou et al., 2017; Christodoulou et al., 2012; Anagnostides
et al., 2022). Congestion games are equivalent to the class of exact potential games (Monderer & Shapley,
1996). However, many games are not exact potential games, yet no-regret algorithms converge.

In their seminal work Candogan et al. (2011), leveraging the so-called combinatorial Hodge theorem (Jiang
et al., 2011; Friedman, 1996; Munkres, 1984; Dodziuk, 1976), decompose a finite normal form game into three
components with distinctive strategical properties. This decomposition can then be used to approximate a
given game with a potential game, which can be used to characterize the limiting behavior of dynamics in the
original game (Candogan et al., 2013a;b). In particular, Candogan et al. (2013a) examine the convergence
of best-response and logit-best-response dynamics – in the sense of Blum & Kalai (1999) – and they show
that, if only one player updates per turn, the dynamics remain convergent in slight perturbations of potential
games.1

An important caveat is that the class of dynamics considered by Candogan et al. (2013a) can lead to positive
regret and, moreover, in contrast to the setting under study, players cannot move simultaneously, but only
one after another. Our focus in this paper is more general, as we seek to understand the behavior of no-regret
dynamics over the entire spectrum of potentialness, and to understand where the convergence of regularized
no-regret learning breaks down. In so doing, we also provide a first positive answer to the open question
stated by Candogan et al. (2013a), who asked whether the replicator dynamic or follow-the-regularized-leader
(a staple of no-regret learning) remain convergent in small, near-potential perturbations of potential games.

3 Preliminaries

In this section, we provide some basic definitions. We begin by defining the concept of a normal-form game,
a Nash equilibrium, and a potential game.

1Importantly, the dynamics considered by Candogan et al. (2013a) are not the simultaneous best-reply dynamics of Gilboa
& Matsui (1991) or the logit dynamics of Fudenberg & Levine (1999); Hofbauer & Sandholm (2009), but rather turn-by-turn
updates where each player observes the play of their opponents and plays a (logit) best-response.
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A normal-form game is a representation in game theory that defines the strategies available to each player,
their corresponding payoffs, and the resulting outcomes in a simultaneous and strategic interaction.
Definition 1 (Normal-form games). A finite normal-form game with N players can be described as a tuple
G = (N ,A, u).

• N is a finite set of N players indexed by i.

• A = A1 × · · · × AN , where Ai is a finite set of actions available to player i. A vector a =
(a1, . . . , aN ) ∈ A is referred to as an action profile. Let A =

∑
i Ai with Ai = |Ai|.

• u = (u1, . . . , uN ), where ui : A 7→ R is a payoff or utility function for player i ∈ N .

One type of strategy available to a player i in a normal-form game is to select a single action ai and play
it. Such a strategy is called a pure strategy. But a player is also able to randomize over the set of available
actions according to some probability distribution. Such a strategy is called a mixed strategy.
Definition 2 (Mixed strategy). In a normal-form game G = (N ,A, u) the set of mixed strategies for player
i is Si = ∆(Ai), where ∆(Ai) is the set of all probability distributions (aka lotteries) over Ai.

A Nash equilibrium is a situation in a strategic interaction where each player’s strategy is optimal given
the strategies chosen by all other players, and no player has an incentive to unilaterally deviate from their
chosen strategy.
Definition 3 (Nash equilibrium). In a normal-form game G = (N ,A, u), a strategy profile s∗ =
(s∗

1, s∗
2, . . . , s∗

N ) ∈ S1 × . . . × SN is a Nash equilibrium if, for every player i ∈ N , the following condition
holds:

ui(s∗
i , s∗

−i) ≥ ui(si, s∗
−i), ∀si ∈ Si, (1)

where s∗
−i = (s∗

1, s∗
2, . . . , s∗

i−1, s∗
i+1, . . . , s∗

N ).

A potential game is a type of game in which the strategic interaction can be characterized by a potential
function, and the individual players’ incentives align with the minimization or maximization of this function,
facilitating the analysis of equilibrium and strategic dynamics.
Definition 4 (Potential game). A game G = (N ,A, u) is a potential game if there exists a potential function
ϕ : A → R such that for every player i ∈ N and every pair of action profiles a, a′ ∈ A that differ only in the
action of player i, i.e., ai ̸= a′

i and a−i = a′
−i, the following condition holds:

ui(a)− ui(a′) = ϕ(a)− ϕ(a′). (2)

4 Potentialness of a game

In this section we present an overview of a combinatorial decomposition technique for finite games in normal
form introduced by Candogan et al. (2011), and we use it to define the potentialness of a game, a measure
of closeness to being a potential game. This measure is closely related to the maximum pairwise difference
introduced by Candogan et al. (2013a), and can be used as a predictor for the existence of strict pure
Nash-equilibria (SPNE) in a game, and of the limiting behavior of learning dynamics thereof.

Deviation map Given a finite game in normal form G = (N ,A, u), pairs of strategy profiles (a, a′) that
differ only in the strategy of one player are called unilateral deviations, and their space is denoted by E .
Representing a game in terms of utility differences between unilateral deviations rather than in terms of
utilities themselves captures the strategic structure of a game in an effective way, in the sense that games
with different utilities but identical utility differences between unilateral deviations share the same set of
Nash equilibria Candogan et al. (2011).

To achieve this representation of a game G = (N ,A, u) consider its response graph Γ(N ,A), that is the graph
with a node for each of the A pure strategy profile inA, and an edge for each of the E := |E| = A

2
∑

i∈N (Ai−1)
unilateral deviations in E (Biggar & Shames, 2023).
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This graph is an instance of a simplicial complex K, that is, loosely speaking, a collection of oriented k-
dimensional faces (points, segments, triangles, tetrahedrons, ...) with k ∈ {0, 1, . . . } (Jonsson, 2007). Given
a simplicial complex K one can build a family of vector spaces {Ck}k=0,1,..., called chain groups, where
each chain group Ck is the space spanned by the k-dimensional faces of the complex K, i.e., the space of
assignments of a real number to each k-dimensional face of the complex (Munkres, 1984).

In this work, we restrict our attention to the chain groups C0 and C1 on the response graph Γ(N ,A) of a
game. C0 ∼= RA is the space of assignments of a real number to each vertex a ∈ A, and C1 ∼= RE is the
space of assignments of a real number to each edge (a, a′) ∈ E ; an element in C1 is called flow on the graph.

Note that the potential function ϕ of a potential game is the assignment of a number to each pure strategy
profile a ∈ A, and as such, it is an element of C0. In a similar way, observe that a utility function u is the
assignment of a number ui(a) ∈ R to each pure strategy profile a ∈ A for each player i ∈ N , and as such it
can be considered as an element of N copies of C0, that is u ∈ U := C0 × · · · × C0.

The key observation is that the differences between unilateral deviations of a game G = (N ,A, u) can be
represented as a special flow Du in C1 on Γ(N ,A), called deviation flow of the game, by means of the
deviation map:
Definition 5 (Deviation map). The deviation map of the game G = (N ,A, u) is the linear map

D :U → C1

u 7−→ Du
(3)

such that, for all u ∈ U and all (a, a′) ∈ E

(Du)(a,a′) = ui(a′)− ui(a) (4)

for i ∈ N such that ai ̸= a′
i.

In words, the deviation flow Du ∈ C1 assigns to each edge (a, a′) ∈ E of the response graph, i.e., to every
unilateral deviation of the game, the utility difference of the deviating player i ∈ N . We call Im D ∈ C1 the
space of feasible flows on the response graph of a game.

Potential flows Representing a game u via its deviation flow Du preserves all the strategic information
of the game and allows for a concise characterization of potential games.
Definition 6 (Gradient map). The gradient map2 is the linear map

d0 : C0 → C1

ϕ 7−→ d0ϕ
(5)

such that
(d0ϕ)(a,a′) = ϕ(a′)− ϕ(a) (6)

for all ϕ ∈ C0 and all (a, a′) ∈ E.

It is now immediate to show that
Proposition 1. A game G = (N ,A, u) is potential with potential function ϕ if and only if Du = d0ϕ for
some ϕ ∈ C0.

Proof. Let G = (N ,A, u) be a potential game with potential function ϕ. Then

Du(a,a′) = ui(a′)− ui(a) = ϕ(a′)− ϕ(a) = (d0ϕ)(a,a′)

for all (a, a′) ∈ E , where i ∈ N is the actor of the deviation (a, a′). Thus, Du = d0ϕ. Conversely, let
G = (N ,A, u) be a game with Du = d0ϕ for some ϕ ∈ C0. Then

ui(a′)− ui(a) = Du(a,a′) = (d0ϕ)(a,a′) = ϕ(a′)− ϕ(a)

for all i ∈ N and all (a, a′) ∈ E acted by i. Thus, the game is potential with potential function ϕ.
2The gradient map is an instance of so-called co-boundary maps; see Munkres (1984) for details.
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The proposition means that the space of potential games is the linear subspace D−1 Im d0 ⊂ U ; in light of
this we call Im d0 ⊂ C1 the space of potential flows.

Harmonic flows Endowing C0 and C1 with an Euclidean-like inner product ⟨·, ·⟩k one can define the
divergence map ∂1 := d†

0 : C1 → C0 as the adjoint operator of the gradient map, namely ⟨X, d0ϕ⟩1 =
⟨∂1X, ϕ⟩0 for all X ∈ C1 and all ϕ ∈ C0. The flows in the subspace ker ∂1 ∈ C1 are called harmonic flows3,
and the games whose flow is harmonic, i.e., the games in D−1 ker ∂1 ⊂ U , are called harmonic games.

Hodge decomposition of feasible flows Leveraging the combinatorial Hodge decomposition theorem4

it can be shown that potential flows and harmonic flows completely characterize feasible flows:
Theorem (Candogan et al. (2011) — Combinatorial Hodge decomposition of feasible flows). The space of
feasible flows is the orthogonal direct sum of the subspaces of potential flows and harmonic flows:

Im D = Im d0 ⊕ ker ∂1 (7)

Equivalently, every feasible Du flow can be decomposed in a unique way as Du = Dup + Duh, where the
potential flow Dup ∈ Im d0 is the orthogonal projection of Du onto Im d0, and the harmonic flow Duh ∈ ker ∂1
is the orthogonal projection of Du onto ker ∂1. Note that in the space of feasible flows there is no non-strategic
component as the latter has vanishing flow Du.

This decomposition in the space Im D ⊂ C1 of feasible flows is sufficient to introduce the measure of
potentialness used in this work; in the supplementary material we discuss how to obtain a corresponding
decomposition in the space U of payoffs, allowing to decompose in a unique way a game u ∈ U as u =
uP + uH + uK, where uP is a normalized potential game, uH a normalized harmonic game, and uK a non-
strategic game; c.f. Figure 1 for an example. Endowing U with an inner product structure Candogan et al.
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Figure 1: Decomposition of the Shapley game.

(2011) show that uP is (up to the non-strategic game uK) the potential game closest to u. This allows
Candogan et al. (2013a;b) to characterize the limiting behavior of dynamics in the game u in terms of the
properties of the potential game uP and of the distance between u and uP , a concept that is made precise
in the next paragraph.

Potentialness The potential component of the deviation flow Du of a game can be used to build a measure
of how close to being a potential game the game is. To compute it Candogan et al. (2011) introduce the
orthogonal projection onto the subspace of potential flows; by the properties of the Moore-Penrose pseudo-
inverse d̃0 : C1 → C0 of the gradient map (Golan, 1992) such projection is e := d0d̃0 : C1 → C1, so
that

Dup = eDu ∈ Im d0 ⊂ C1 (8)
3The term harmonic refers in combinatorial Hodge theory Dodziuk (1976) to flows in the kernel of the Laplacian operator

ker ∆1 = ker ∂1 ∩ ker d1, where d1 is defined analogously to d0. As Candogan et al. (2011) show, each feasible flow belongs to
ker d1, making these two definitions of harmonic flows consistent.

4See Jiang et al. (2011) for a concise presentation and proof.
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Candogan et al. (2013a;b) use the deviation map to define the maximum pairwise difference between two
games as δ(u, u′) = ||Du − Du′||.5 In particular, since the potential component uP of a game u is (up
to a non-strategic game) the potential game closest to the original game, they use the maximum pairwise
difference δ(u, uP) = ||Du−Dup|| = ||Duh|| between a game u and its potential component uP as a measure
of closeness to being a potential game for the game u. In this spirit we give the following definition:
Definition 7 (Potentialness). The potentialness of a game G = (N ,A, u) is the real number

P (u) := ||Dup||
||Dup||+ ||Duh||

(9)

Proposition 2. The potentialness of a game fulfills

1. P (u) ∈ [0, 1]

2. P (u) = 1 ⇐⇒ δ(u, uP) = 0 ⇐⇒ u is a potential game

3. P (u) = 0 ⇐⇒ u is a harmonic game

Proof. Consider the game G = (N ,A, u) and its potentialness

P (u) := ||Dup||
||Dup||+ ||Duh||

1. It is obvious that P (u) ∈ [0, 1];

2. Since δ(u, uP) = ||Duh|| it is also obvious that P (u) = 1 ⇐⇒ δ(u, uP) = 0. Let this be the case,
then Du = Dup + Duh = Dup ∈ Im d0, so Du = d0ϕ for some ϕ ∈ C0, i.e. the game is potential by
Proposition 1.
Conversely, let G = (N ,A, u) be a potential game. Then Dup = Du, since Dup is the orthogonal
projection of Du onto Im d0, and such projection leaves Du invariant since Du = d0ϕ itself belongs
to Im d0. Hence, ||Duh|| = 0 (this can also be seen immediately by the unicity of the decomposition
Du = Dup + Duh.)

3. It is obvious that P (u) = 0 ⇐⇒ ||Dup|| = 0; if this is the case then Du = Duh, so the game is
harmonic by definition.
Conversely, if the game is harmonic then Du = Duh by an argument analogous to the one in point
2., which implies that ||Dup|| = 0.

In light of these properties, the potentialness of a game can be used as a concise measure of how close to
being a potential game a given game is. In the next section, we investigate the existence of strict pure Nash-
equilibria (SPNE) and the limit behavior of learning dynamics in games in function of their potentialness.

Scalability To compute the potentialness of a game represented by u ∈ U , one must perform two com-
putationally expensive operations: the calculation of the deviation flow Du and a projection to get the
potential flow Dup. As these operations involve linear operators, the calculations essentially boil down to
matrix-vector multiplications. The projection Dup = eDu, being the most expensive operation, involves the
matrix e of dimensions dim C1 × dim C1. Therefore, in a game where all N agents have the same number
of actions, i.e., Ai = m for all i ∈ N , the time complexity of the matrix-vector multiplication is of the
order O(N2m2N+2). The runtime required to compute the potentialness in our experiments (on a standard
notebook) is visualized in the subsequent plot (see Figure 2). In this figure, we show the average runtime
(over 100 runs) for the computation of the potentialness, assuming that the necessary matrices of the linear
operators are already given.

5Different choices of norm are possible; in this work we use the 2-norm, whereas Candogan et al. (2013a) use the infinity
norm.
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Figure 2: Runtime for computation of potentialness.

While this leads to a very fast computation of our metric, computing the necessary matrices can be more
time-consuming and memory-intensive. Recall that computing the projection e : C1 → C1 requires a matrix
multiplication of the gradient map d0 with its pseudo-inverse d̃0, which also has to be computed first. Since
these operators do not depend on the game u ∈ U itself, but only on the number of actions and agents, the
matrices need to be computed only once for each number of agents and actions and can be stored and later
used for other games of the same size. But even storing the matrix can become an issue as the number of
entries grows exponentially in the number N of agents, i.e., O(N2m2N+2). For instance, in a game with 5
actions for each agent, the number of entries of the projection matrix is of the order 104 for N = 2 agents,
105 for N = 3 agents, and 107 for N = 4 agents. For the larger settings considered in this example, i.e., 3
agents with 12 actions each or 4 agents with 7 actions each, the computation of all necessary matrices takes
2-3 minutes.

5 Numerical Experiments

We conduct our numerical experiments on randomly generated and economically motivated games. Our
analysis focuses mainly on two aspects, namely, the existence of strict pure Nash-equilibria (SPNE) and the
convergence of learning dynamics with respect to the potentialness of the games.6

To analyze the learning dynamics, we focus on online mirror descent (OMD) (Nemirovskij & Yudin, 1983)
with an entropic regularization term, which leads to the update steps described in Algorithm 1. OMD is a
natural candidate for no-regret algorithms with good regret properties, which falls in the class of follow-the-
regularized-leader (FTRL) algorithms (Shalev-Shwartz, 2012).

Algorithm 1: Online Mirror Descent
Input : initial mixed strategies si,0
for t = 1 to T do

for agent i = 1 to N do
observe gradient vi,t;
set si,t ← Psi,t−1(ηtvi,t);

end
end

6The code will be published on Github after the review process.
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The regularization term induces a prox-mapping Px : Rd → Rd in Algorithm 1, which is given by

Px(y) =
(xj exp(yj))d

j=1∑d
j=1 xj exp(yj)

, (10)

where d ∈ N is the dimension of the strategy space of the respective player, i.e., d = Ai. It is known
that convergence properties vary with the step-size. We therefore use a step-size sequence ηt of the form
ηt = η0 · t−β for some β ∈ (0, 1], and we say that the algorithm converges to an (approximate) NE, if
the relative utility loss, defined by ℓi(st) = 1 − ui(st)/ui(bri, s−i,t), is less than some predefined tolerance
ε = 10−8 for all agents i ∈ I within a fixed number of iterations T = 2 000 for some step-size in the sequence.
Note that bri denotes the best response of agent i given the opponents’ strategy profile s−i,t.

Before focusing on randomly generated games, let us briefly review some standard games regarding their
potentialness. For the first three games in Table 1, we used payoff matrices as defined in Nisan (2007).

Table 1: Potentialness of some matrix games.
Game Actions P (u)
Matching Pennies 2x2 0.00
Battle of the Sexes 2x2 0.94
Prisoners’ Dilemma 2x2 1.00
Shapley Game 3x3 0.36
Jordan Game (α, β) 2x2 [0.00, 0.50]

Pure equilibria only exist in battle of the sexes and the prisoners’ dilemma, where we observe the convergence
of OMD. All other games are known to have only mixed equilibria, which is why (last iterate) convergence
of OMD cannot be observed. Interestingly, the potentialness of the Jordan game (Jordan, 1993, Def 2.1)
with parameters of the payoff matrices sampled uniformly at random can vary between [0, 1/2].

Random Games Given a number of agents N and actions Ai for each agent i, we create a random
game by sampling each entry of the payoff matrices independently from a uniform distribution, i.e., ui(a) ∼
U([0, 1]), ∀a ∈ A and ∀i ∈ N . First, we analyze the potentialness of random games by varying the number
of agents and the number of actions. To that end, we sample 106 games for each setting and visualize the
distribution (Figure 3).

We make the following observations:
Observation 1. Increasing the size of the games (agents or actions) reduces the variance and the mean of
the observed levels of potentialness.

To analyze the connection between the potentialness and the behavior of learning dynamics, a natural
next step is to look at the existence of strict pure Nash equilibria (SPNE). There are two reasons why the
existence of SPNE is interesting. First, we know from Vlatakis-Gkaragkounis et al. (2020) that only SPNE
can be asymptotically stable under FTRL algorithms (such as Algorithm 1). And second, the result on
the existence of pure Nash equilibria in potential games (Monderer & Shapley, 1996) indicates a connection
between potentialness and the existence. Note that we focus on SPNE, since weak pure Nash equilibria
occur with probability zero in these randomly generated games.

Rinott & Scarsini (2000) observed that the probability that a pure Nash equilibrium exists in randomly
drawn games goes to 1− 1/e as the number of players gets large or as the number of actions per player gets
large. So both limits converge to the same number. As expected, with increasing numbers of agents and
actions, we can see in Figure 4, that the probability of the existence of SPNE converges to 1− 1/e.

To analyze the connection between the existence of SPNE and the potentialness of a game of fixed size,
we consider the same sampled games from the previous analysis. For each setting, we group games with a
similar potentialness, i.e., in the same subinterval Ik := ( k−1

20 , k
20 ] for k = 1, . . . , 20, and compute the fraction

9
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Figure 3: Distribution of potentialness for random games.

We visualize the empirical distribution of the potentialness for randomly generated games with different numbers of agents and
different numbers of actions per agent.
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Figure 4: Probability of Existence of SPNE.

We visualize the empirical probability that an SPNE exists on the y-axis and observed potentialness on the x-axis for different
sizes of randomly generated games. The lines indicate which levels of potentialness are observed, i.e., the support of the densities
visualized in Figure 3. The average potentialness in each settings is represented by the dot on the lines.

of games with at least one SPNE for each group. The results are visualized in Figure 5 and lead to our next
observation:
Observation 2. Within a setting (fixed number of actions and agents), the higher the potentialness, the
more likely the game has at least one SPNE.

Since the existence of SPNE only gives us local convergence of our algorithm (Mertikopoulos & Zhou, 2019),
we want to understand if a higher potentialness of a game not only increases the probability of having an
SPNE, but also has an influence on the basin of attraction for these equilibria.

Analogous to the previous analyses, for fixed number of agents and actions, we group the games into sub-
groups of similar potentialness, i.e., potentialness is in Ik, and consider 100 games from each of these groups
(group is ignored if it contains less than 100 games). We then apply OMD with the step-size ηt = η0 · t−β
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Figure 5: Relationship between potentialness and existence of SPNE.

We visualize the empirical probability of the existence of an SPNE (y-axis) in relation to the potentialness (x-axis) of a game.
The analysis includes random games with different numbers of agents and different numbers of actions per agent.

with η0 = 23 and β = 1
20 . We visualize the fraction of games (with SPNE) in each group, where OMD

converged with at least one step-size sequence (Figure 6) from a fixed starting point (uniform strategy, i.e.,
si,0 = 1

Ai
1 for all agents i).
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Figure 6: Convergence of OMD in random games with SPNE.

We visualize the empirical probability of convergence of OMD (cf. Algorithm 1) in relation to the potentialness. The analysis
includes random games with at least one SPNE for different numbers of agents and different numbers of actions per agent.

Observation 3. If a game has a SPNE, the higher the potentialness, the more likely we are to end up in
equilibrium using OMD.

We did the same experiments with several different initial strategies (sampled uniformly from probability
simplex) for each game and observed a similar outcome (see supplementary material). The results are also
robust w.r.t. different, smaller step-sizes, but yield the best results (higher convergence rates) for larger
ones.
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Economic Games As compared to random matrix games, many games analyzed in the economic sciences
have more structure in the payoffs. Arguably, one of the most important classes of economic games are
auctions and contests, which are widely used to describe strategic interaction in markets (Krishna, 2009).
In these games, the utility functions of agents have a specific form and the allocation rule is monotonic in
the bids. Well-known auctions and contests include:

• First-Price Sealed-Bid (FPSB) Auction

ui(a, vi) = xi(a) · (vi − ai) (11)

• Second-Price Sealed-Bid (SPSB) Auction

ui(a, vi) = xi(a) · (vi −max
j ̸=i

aj) (12)

• All-Pay Auction
ui(a, vi) = xi(a) · vi − ai (13)

• War of Attrition (WoA)

ui(a, vi) = xi(a) · (vi −max
j ̸=i

aj)− (1− xi(a)) · ai (14)

• Tullock Contest

ui(a, vi) =
{

v · ai

Σjaj
− ai if Σjaj > 0

v
n else

(15)

Note that a ∈ A denotes the action profile, v the value, and xi(a) : A → [0, 1] the allocation function with
random tie-breaking rule which is defined by

xi(a) =
{

1
nmax

if ai = maxj ̸=i aj

0 if ai < maxj ̸=i aj

(16)

where nmax denotes the number of bids that attain the maximum. While the games are generally defined on
continuous action spaces, the decomposition only works on finite games. Note that in practice also auctions
are discrete as bids can only be submitted up to a certain number of trailing digits. Therefore, we discretize
the action space A to Ai equidistant points for all i ∈ I, e.g., Ai = {0.0, . . . , 0.95}.

First, we compute the potentialness of the game for different discretizations of the action space and different
symmetry assumptions on the agents, i.e., different valuations. Especially for higher discretizations we
observe that the potentialness of the games does not change much, even though the number of pure NE
might change (e.g., the symmetric FPSB has one SPNE for Ai = 21 actions, but one WPNE and one SPNE
for Ai = 20).
Observation 4. The potentialness of the discretized games is a property of the underlying (continuous)
game, and not of the specific discretization.

Looking closer at the decomposition of the first- and second-price auctions, we observe that their harmonic
part coincides; if we vary the payment rule by considering convex combinations of the first- and second-price
rule, only the potential and non-strategic parts of the decomposition change. This observation supports the
intuition that the allocation rule determines the strategic difficulty posed by the game. In contrast, contests
have a smoothed version of this allocation and show a higher level of potentialness.

As potentialness describes the relative weight of the potential compared to the harmonic component in
a game, We can now increase or decrease the weight of the potential part by building a game uα :=
αuP + (1 − α)uH. In Figure 8, we can see the convergence behavior of online mirror descent in games
constructed by convex combinations of the harmonic and potential parts.
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Figure 7: Potentialness of economic games.

We consider economic games with two agents, different discretizations, i.e., number of actions Ai, and different valuations. The
solid lines show the potentialness in the symmetric setting, where both agents have values v1 = v2 = 1, while the dashed line
shows the asymmetric settings with v1 = 3

4 , v2 = 1.
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Figure 8: Convergence of OMD in economic games.

Each square shows a convex combination of the potential and harmonic part of the respective economic game with a level of
potentialness that can be seen on the x-axis. The color of the square shows the empirical frequency of convergence to some
equilibrium using OMD (η = 28, β = 1

20 ) for 102 random initial strategies. The stars indicate the potentialness of the original
economic game.

We observe that for each game, there is a threshold for potentialness at which the game starts to converge.
This threshold coincides with the existence of SPNE. If the potentialness exceeds a certain value, an SPNE
exists, and the learning algorithm converges. Below that value, as we can see for the all-pay auction, no
pure equilibrium exists and online mirror descent does not converge.

Interestingly, while the all-pay auction in the complete-information setting only has a mixed equilibrium, its
incomplete-information counterpart can admit pure Bayes-Nash equilibria (BNE). There is also literature
that suggests that these BNE are learnable in discrete games using first-order methods such as online mirror
descent (Bichler et al., 2023). To better understand these differences, we want to extend our analysis to the
more complex Bayesian framework and compare these frameworks through the lens of potentialness.

Bayesian Economic Games Bayesian (or incomplete-information) games are the standard approach in
auction theory to model the economic games we considered (Krishna, 2009). Compared to normal-form
games, Bayesian games B = (N ,V,A, F, u) are characterized by an additional type space V and a known
prior distribution F over this type space. Each player i ∈ N observes a private type, which is drawn from Vi
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according to the prior distribution F . In our examples, the private type is the valuation vi. After observing
their values, the agents play an action, i.e., submit a bid a ∈ Ai, and receive their utility ui(ai, a−i, vi),
which depends on their type. A pure strategy in such a Bayesian game is a function βi : Vi → Ai that
maps players’ types to actions. Given a strategy profile, one can compute the expected (ex-ante) utility
ũi = Ev∼F [ui(βi(vi), β−i(v−i), vi)]. A Bayes-Nash equilibrium (BNE) is a strategy profile β, where no player
can increase the expected utility ũ by deviating.

Similar to the complete-information economic games, we only consider finite action spaces and also assume
finite type spaces. This allows us to reformulate the Bayesian game as a finite normal-form game and to
analyze the potentialness. The constructed normal-form game consists of actions that correspond to all
possible strategies. If an agent has Vi types and Ai actions in the Bayesian game, we have AVi

i possible
strategies. To reduce the size of the constructed normal-form game, we restrict ourselves to non-decreasing
strategies, as is usually done in auction theory. This gives us

(
Vi+Ai−1

Ai−1
)

strategies, which allows us to
analyze Bayesian games with two players and up to four actions and types (corresponds to 35 non-decreasing
strategies). The payoffs of the normal-form game correspond to the expected utility in the Bayesian game.
The pure NE in this normal-form game corresponds to BNE in the Bayesian game.

Using this procedure, we constructed the normal-form games from Bayesian economic games with four
actions, up to four types, and uniform prior distribution. In Figure 9, we can see that the Bayesian version
of each game has a higher potentialness than the complete-information setting (number of types = 1).
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Figure 9: Potentialness of Bayesian economic games.

We consider the Bayesian version of economic games with two agents, Ai = 4 actions, Ai = {0.0, 0.3, 0.6, 0.9} and different
number of types. The types are given by Vi = { i

Vi
: i = 1, . . . Vi} where Vi is the number of types. The types are independent

and uniformly distributed.

In particular, for the all-pay auction, the increase in potentialness is substantial and for two or four types, it
even has a pure NE, i.e., a pure strategy BNE. This is interesting because learning algorithms do converge
to equilibrium in these Bayesian games, but not in the complete-information version of the all-pay auction
that only exhibits mixed Nash equilibria.
Observation 5. Mirror ascent does not converge to the mixed Nash equilibrium in the all-pay auction, but
it does converge to pure Bayes-Nash equilibrium in the Bayesian version of the game. Potentialness only
increases, but never decreases with additional types in the Bayesian game versions.

6 Conclusions

Understanding when learning algorithms converge to a Nash equilibrium has long been analyzed in game
theory. While it is well-known that exact potential games allow for convergence, we show that learning may
also converge in games that are not exact potential games. Characterizing which games converge and which
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do not, is an open problem in the literature on learning in games. Game decompositions allow us to measure
how “potential” a specific normal-form game is. For random matrix games, we find that with a larger number
of actions or players the potentialness decreases and concentrates. Importantly, potentialness proves to be
a good predictor for the existence of a strict Nash equilibrium and for convergence of online mirror descent.
For example, we found that random games with a potentialness greater than 0.8 have a very high probability
of having an SPNE to which OMD converges to. Economically motivated games provide more structure in
the payoffs, and potentialness is also a very good predictor for convergence in these games. In contrast to
individual simulation runs where convergence depends on the initialization of the algorithm, potentialness
serves as a predictor for average convergence. So, rather than running many simulations from any possible
initial conditions to study convergence, potentialness provides a useful predictor for convergence, addressing
a long-standing question in the literature on learning in games. It will be crucial to further solidify this
finding by considering other no-regret learning dynamics and larger classes of games.
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A Appendix

A.1 Decomposition in the space of payoffs

The reason two work in the space C1 of flows rather than in the space U of payoffs to achieve a decomposition
of games is twofold: first, the combinatorial Hodge theorem holds true on the space C1 of flows (and in general
on every chain group Ck of a simplicial complex), while there is no such a theorem for the space U of payoffs;
second, two games u ̸= u′ such that Du = Du′, albeit having different payoffs, display the same strategical
properties and are effectively the “same” game7, so looking at the deviation flow rather than at the payoff
one gets rid of a redundancy that is intrinsic in the formulation of a game.

Non-strategic games To make this last point more precise Candogan et al. (2011) introduce the notion
of non-strategic games.
Definition 8. A finite game in normal form G = (N ,A, u) is called non-strategic if it has zero deviation
flow:

Du = 0 (17)

The space of non-strategic games is denote by

K := ker D (18)

In a non-strategic game, all players are indifferent among all of their choices:
Proposition 3 (Candogan et al. 2011). The game G = (N ,A, u) is non-strategic if and only if

ui(a′
i, a−i) = ui(a′′

i , a−i) (19)

for all i ∈ N , all a−i ∈ A−i, and all a′
i, a′′

i ∈ Ai.

Since D : U → C1 is a linear map between vector spaces, the space of non-strategic games is a linear subspace
K ⊂ U . It follows by the definition of non-strategic games that two games have the same deviation flow if and
only if their difference is a non-strategic game, and in this case we say that the two games are strategically
equivalent.

Normalized games Being strategically equivalent is an equivalence relation on the space U of payoffs;
one can select a representative element in each equivalence class [u] by choosing a complement of K in U and
projecting u ∈ U onto such complement along K. A natural choice is that of using the orthogonal complement
K⊥ of the space of non-strategic games with respect to the Euclidean inner-product in U ; we refer to such
procedure as normalization, and following Candogan et al. (2011) we give the following definition:
Definition 9. A finite game in normal form G = (N ,A, u) is called normalized if

u ∈ K⊥ (20)

Normalized games enjoy the “no-leftover” property: the sum of any player’s payoffs over their choices is zero
for any fixed choice by the other players.
Proposition 4 (Candogan et al. 2011). The game G = (N ,A, u) is normalized if and only if∑

a′
i
∈Ai

u(a′
i, a−i) = 0 (21)

for all i ∈ N and all a−i ∈ A−i.
7Quoting Candogan et al. (2013b), if [two games have the same deviation flow], then the equilibrium sets of these games

are identical. However, payoffs at equilibria may differ, and hence they may be different in terms of their efficiency (such as
Pareto efficiency) properties (see Candogan et al. (2011)).
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Decomposition in the space of payoffs After normalizing the space U of payoffs8 one can translate
the decomposition of feasible flows (Theorem in the main text) from Im D ⊂ C1 to U by means of the
Moore-Penrose pseudo-inverse D̃ : C1 → U of the deviation map.

Recall from Section 4 that the space of potential games is D−1 Im d0 ⊂ U , and that the space of harmonic
games is D−1 ker ∂1 ⊂ U . Their intersections with the space K⊥ ⊂ U of normalized games give the spaces of
normalized potential games and of normalized harmonic games:
Definition 10. The space of normalized potential games is the linear subspace

P := (potential games) ∩ K⊥ ⊂ U (22)

The space of normalized harmonic games is the linear subspace

H := (harmonic games) ∩ K⊥ ⊂ U (23)

Theorem (Candogan et al. (2011) — Combinatorial Hodge decomposition of finite normal form games).
The space U is the direct sum of the subspaces of normalized potential games, normalized harmonic games,
and non-strategic games:

U = P ⊕H⊕K (24)

Equivalently, given a finite normal form game G = (N ,A, u) the payoff function u can be uniquely decomposed
as the sum u = uP + uH + uK of a normalized potential game uP , a normalized harmonic game uH, and a
non-strategic game uK.

Decomposition components Recall that the deviation map is a linear map D : U → C1 from the
space of payoffs to the space of flows. By the properties of the Moore-Penrose pseudo-inverse D̃ : C1 → U
of the deviation map (Golan, 1992), the operator Π := D̃D : U → U is the orthogonal projection onto
K⊥ = (ker D)⊥. Recall furthermore that e : C1 → C1 is the orthogonal projection onto the subspace of
potential flows.

These operator can be used to obtained explicit expressions for the components of the decomposition in the
space of payoffs:
Proposition 5 (Candogan et al. (2011)). Given the finite normal form game G = (N ,A, u) the components
uP , uH and uK of the combinatorial Hodge decomposition of finite normal form games are given by

• uK = u−Πu ∈ K

• uP = D̃eDu ∈ P

• uH = u− uK − uP ∈ H

A.2 Additional Numerical Experiments

Similar to the experiment visualized in Figure 5, we considered games with a similar potentialness and
applied OMD with (η0 = 28, β = 1

2 ). But this time, we randomly sampled 25 initial strategies for each game.
The first plot in Figure 10 shows the estimated convergence probability over different games with a similar
potentialness and different initial points. On the second plot, we consider the same setting (only restricted
to 2 actions), and compare the convergence probability on the level of the different games. To this end, we
visualize the mean± std (colored area) of the convergence probability (for different initialization points) over
similar games.

We observe that even though games have a similar potentialness, the probability of convergence, i.e., the
basin of attraction of the SPNE, can differ a lot from game to game. On the other hand, we can still observe
a clear connection between the potentialness and convergence in expectation.

8That is, after quotienting away the kernel of the deviation map.
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Figure 10: Convergence of OMD in random games with SPNE and with different levels of potentialness and
different initialization points.
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