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Abstract

We develop a structural perspective on redundancy in learned representations, treating
redundancy as a quantitative property of dependence organization rather than merely as
inefficiency. We define redundancy as an f -divergence between a joint distribution and
the product of its marginals, yielding a unified functional that recovers classical quantities
such as mutual information and χ2-type dependence as special cases. We establish basic
bounds and regularity properties of this functional, and we give a model-based endpoint
argument showing that, under competing efficiency and robustness pressures, the attainable
downstream risk profile can admit an interior optimum at a nonzero redundancy level (i.e.,
neither minimizing nor maximizing redundancy is optimal under the model assumptions).
Empirically, we conduct controlled sweeps with masked autoencoders (MAE), organizing
outcomes by a realized redundancy coordinate computed on frozen probe features, and
we report linear-probe accuracy together with proxy-consistency checks across multiple re-
dundancy diagnostics, including a spectral effective-rank statistic derived from covariance
geometry. Together, our results—within our controlled MAE-based study—support redun-
dancy as a measurable coordinate for analyzing representation organization in finite learning
systems.

1 Introduction

Redundancy—statistical dependence among coordinates of a representation—is a recurrent theme in infor-
mation theory and sensory coding, where it has been framed either as inefficiency to be removed or as cou-
pling that can support reliability and robustness Shannon (1948); Barlow (2001); Narayanan et al. (2005);
Tononi et al. (1994). In modern representation learning, related questions resurface in a concrete form:
self-supervised and pretraining pipelines aim to produce features that are invariant to perturbations while
remaining informative for downstream tasks Chen et al. (2020); He et al. (2020); Grill et al. (2020); Chen
& He (2021); Caron et al. (2020); He et al. (2022). Because invariance objectives can admit trivial constant
solutions, many practical methods explicitly encourage feature diversity by penalizing correlations, covari-
ance, or deviations from whitening Zbontar et al. (2021); Bardes et al. (2022); Ermolov et al. (2021). These
heuristics are often motivated as “redundancy reduction,” yet the empirical picture is nuanced: representa-
tions can avoid outright collapse while still exhibiting substantial low-dimensional structure or heavy-tailed
spectra, and downstream performance can vary non-monotonically with the degree of whitening-like behavior
He & Ozay (2022); Agrawal et al. (2022); Garrido et al. (2023). This leads to a recurring practical tension:
pushing aggressively toward coordinate-wise independence can alter representation geometry in ways that
do not reliably track downstream risk, while leaving strong dependence unchecked can also be undesirable
under other objectives He & Ozay (2022); Zbontar et al. (2021); Bardes et al. (2022). Accordingly, our
paper takes a conservative stance: rather than asserting a universal “redundancy is good” or “redundancy
is bad” principle, we treat redundancy as one structural axis along which representation organization and
performance can be compared in controlled settings.

Three gaps motivating this work. Despite extensive activity around decorrelation and dependence
shaping, we find three recurring sources of ambiguity in how redundancy is discussed and measured:
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• Concept conflation. “Redundancy” is used to refer interchangeably to mutual information and its
multivariate extensions, correlation/covariance structure, effective dimension (e.g., spectrum-based rank
surrogates), or even neuron-level repetition—quantities that agree in special regimes but diverge in general
Watanabe (1960); Doimo et al. (2022); Nanda et al. (2023); Garrido et al. (2023); Agrawal et al. (2022).

• Knob vs. realized redundancy. Regularization weights (a “knob” such as λred in a training objective)
do not, in general, provide a reliable coordinate for the realized dependence of the learned representation;
even within whitening-inspired SSL, the realized spectrum can change in ways that are not captured by
the knob alone He & Ozay (2022); Agrawal et al. (2022); Garrido et al. (2023).

• Endpoints dominate the discourse. Many narratives implicitly focus on extremes (fully collapsed vs.
fully decorrelated/whitened), while leaving under-developed the viewpoint of redundancy as a measurable
coordinate along which one can study an attainable performance profile and ask whether intermediate
levels can be preferable in stylized regimes He & Ozay (2022); Tsipras et al. (2019); Zhang et al. (2019).

Our object: a coordinate, separated from diagnostics. We define redundancy as an f -divergence
from independence, Rf (U) = Df (PU ∥ΠU ) (Definition 3.1), a construction that places classical dependence
measures under one umbrella and makes explicit the reference notion of independence Ali & Silvey (1966);
Csiszár (1967); Watanabe (1960). Unless stated otherwise, our theory-facing coordinate is the KL special case
R = RKL(U) = DKL(PU ∥ΠU ) = TC(U) (total correlation / multi-information) Watanabe (1960). Crucially,
we separate the coordinate used in statements and proofs from the practical diagnostics used in experiments:
we report a spectral proxy Rspec (Definition 3.8) derived from covariance geometry as a diagnostic, and we
treat agreement across diagnostics as a falsifiable validity check rather than an assumption Roy & Vetterli
(2007); Garrido et al. (2023); Agrawal et al. (2022).

Model-based theory preview. On the theory side, we study the attainable downstream risk profile E(R)
indexed by the redundancy coordinate R, and we provide stylized endpoint mechanisms giving sufficient
conditions under which E(R) can admit an interior optimum at nonzero redundancy. The point is not
universality, but rather to make explicit how competing pressures (e.g., efficiency- and robustness-flavored
endpoints) can, in a modeled setting, be consistent with “both extremes are suboptimal.”

Experimental philosophy: protocol-first, coordinate-ordered. Empirically, we treat redundancy
control as a measurement problem: sweeps are organized by a realized redundancy coordinate computed on
frozen probe features, not merely by a regularizer knob. We report downstream risk (linear probe) alongside
reconstruction objectives (for the generative setting) and interpret discrepancies between these signals as
part of the story rather than a failure of bookkeeping He et al. (2022); Garrido et al. (2023). To reduce
spurious conclusions from a single proxy, we implement validity checks that test proxy-consistency across
diagnostics, controllability under the sweep, and coverage of a meaningful range of realized redundancy;
conclusions are explicitly conditional on these checks passing.

Contributions. We make the following contributions:

• Redundancy as a structural coordinate. We position redundancy as a quantitative descriptor of
representation organization and use it to organize and interpret objective-dependent behavior within a
self-supervised pipeline (generative pretraining with discriminative evaluation), as illustrated in our MAE
experiments.

• Conditional sufficient conditions for an interior optimum. Within stylized modeled regimes, we
give endpoint mechanisms that provide sufficient conditions that imply the endpoint inequalities required
by our interior-optimum result, motivating an efficiency–robustness balance away from both extremes.

• A controlled protocol in the generative regime. We specify a masked autoencoder (MAE) protocol
(Section 4) to evaluate downstream linear-probe performance alongside redundancy diagnostics across
regularization sweeps with bootstrap-based uncertainty estimates.

Roadmap. Section 2 situates our coordinate/diagnostics separation relative to existing notions of redun-
dancy. Section 3 develops the redundancy functional, basic properties, and the modeled mechanisms used to
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motivate interior optima in attainable profiles. Section 4 presents the protocol-first empirical sweep design,
diagnostics, and evaluation gates. Section 5 discusses limitations and interpretation; proofs and technical
lemmas are deferred to the appendices.

1.1 Scope & Usage

Scope & Usage (canonical). Throughout, redundancy means statistical dependence among repre-
sentation coordinates, defined as an f -divergence from independence: Rf (U) = Df (PU ∥ΠU ) (Defi-
nition 3.1). Unless stated otherwise, the redundancy coordinate in theorems is the KL special case
R := RKL(U) = DKL(PU ∥ΠU ) = TC(U), applied to the representation actually used downstream (e.g.,
U = Z̃ in Section 3.4). Operationally, we always take Z̃ to be the output of a fixed coordinate-wise product
channel K applied to the learned representation Z = ϕθ(X); this avoids differential-entropy pathologies
and makes the KL/TC coordinate operational in settings where unregularized TC(Z) can be undefined
or +∞ (e.g., deterministic/continuous representations). When needed, we explicitly restrict attention to
representations with RKL(Z̃) < ∞ (Definition 3.11). In this sense, our theory-facing coordinate is intended
for finite, noisy, structured representations: finiteness is ensured by working with Z̃ under a fixed product
channel K (e.g., quantization or independent corruption), “noisy” emphasizes that K can model finite-
precision or independent perturbations, and “structured” refers to nontrivial residual dependence among
coordinates captured by RKL(Z̃) = TC(Z̃).

Spectral diagnostic. We also report Rspec(Z) (Definition 3.8) as a covariance-geometry diagnostic com-
puted from centered, per-coordinate standardized features. It is used only as a diagnostic and does not
enter the proof chain for theorems stated for Rf .

Entropy convention for capacity-side arguments. See Convention 1.1. Closed-form Gaussian iden-
tities for DKL(PU ∥ΠU ) and Dfχ2 (PU ∥ΠU ) are stated in the standard continuous setting and are used only
when explicitly assuming joint Gaussianity.

Experiments. This version specifies experimental protocols and summarizes results for the E1 sweep
(Section 4).

Convention 1.1 (Entropy and quantization). All entropies H(·) are Shannon entropies of discrete variables,
or of fixed-resolution quantized variables Q∆(·) at a fixed resolution ∆ > 0. This avoids differential-entropy
pathologies and matches finite-precision representations. Here Q∆ : R → ∆Z denotes a measurable quan-
tization map (e.g., rounding to the nearest multiple of ∆, with ties broken upward); we identify it with
the induced deterministic Markov kernel x 7→ δQ∆(x). For vector-valued inputs z ∈ Rn, we apply Q∆
coordinate-wise: (Q∆(z))i = Q∆(zi), yielding a product kernel

⊗n
i=1 Q∆.

2 Related Works

I. Redundancy as measurement (coordinates, estimators, diagnostics). Dependence among rep-
resentation coordinates has been quantified in many ways: via mutual information and its multivariate
extensions (e.g., total correlation / multi-information), via kernel- or distance-based independence measures,
and via sample-based estimators of dependence Watanabe (1960); Gretton et al. (2005); Belghazi et al.
(2018). In representation learning, total-correlation-style penalties are explicitly used to encourage facto-
rial latents in disentanglement settings Kim & Mnih (2018); Chen et al. (2018). Recent work also treats
redundancy as an empirical property of trained networks, including analyses of redundant features in wide
models and “diffused” redundancy in pretrained representations Doimo et al. (2022); Nanda et al. (2023);
Zollikofer et al. (2024), and information-theoretic decompositions of predictive information Wollstadt et al.
(2023). Our framing differs in two ways: we (i) fix a single dependence-based coordinate (an f -divergence
from independence) for theory statements, and (ii) explicitly separate that coordinate from the diagnostics
used to approximate or proxy it in practice.

II. Redundancy reduction and decorrelation objectives in SSL (knobs). Many success-
ful self-supervised learning methods learn invariances while preventing collapse through architectural
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or algorithmic choices (e.g., negatives, momentum targets, stop-gradient, clustering), as in Sim-
CLR/MoCo/BYOL/SimSiam/SwAV Chen et al. (2020); He et al. (2020); Grill et al. (2020); Chen & He
(2021); Caron et al. (2020). A complementary line of methods introduces explicit correlation/covariance
shaping, ranging from cross-correlation matching (Barlow Twins) to variance–invariance–covariance regu-
larization (VICReg) and whitening-based objectives (W-MSE) Zbontar et al. (2021); Bardes et al. (2022);
Ermolov et al. (2021). Analyses of these objectives highlight that “collapse” and “whitening” are not binary
states: spectra can interpolate between extremes, and eigenspectrum decay can be predictive of downstream
behavior in certain regimes He & Ozay (2022); Agrawal et al. (2022). Our contribution is not a new SSL
objective; rather, we treat redundancy as a measurable coordinate and emphasize that the regularizer weight
(the knob) need not be a faithful proxy for the realized dependence level, motivating realized-coordinate
ordering and validity checks.

III. Information Bottleneck and compression viewpoints (boundary-setting). The Information
Bottleneck (IB) formalizes a trade-off between predictive information about a target and compression of the
input Tishby et al. (2000); Alemi et al. (2017). A large literature applies or debates IB-inspired narratives in
deep learning, including analyses based on the information plane and critiques of when compression claims
do or do not appear in practice Shwartz-Ziv & Tishby (2017); Saxe et al. (2019). We use these works mainly
to clarify a boundary: our redundancy coordinate measures dependence among representation coordinates
(a divergence from independence), which is generally distinct from input compression I(X; Z) or sufficiency
I(Z; Y ). Accordingly, statements about intermediate optima in E(R) should be read as conditional claims
about a dependence coordinate, not as claims about an “optimal compression” point.

IV. Geometry and spectrum diagnostics (effective dimension and covariance structure).
Spectrum-based summaries of representations—including effective rank and related eigenspectrum-based
criteria—are widely used as diagnostics of representation geometry and degeneracy. Effective rank provides
a continuous notion of dimensionality based on spectral entropy Roy & Vetterli (2007), and recent SSL-
focused work uses rank/eigenspectrum summaries as task-agnostic predictors of downstream performance or
as tools for model selection Garrido et al. (2023); Agrawal et al. (2022); He & Ozay (2022). Our spectral
diagnostic Rspec is in this spirit: it is a covariance-geometry proxy used for measurement and ordering, while
our theorems are stated for the divergence-based redundancy coordinate. This is why our experimental
protocol stresses proxy-consistency and coverage, rather than treating any single spectrum statistic as the
coordinate itself.

V. Neural Collapse (related geometry, different object). Neural Collapse describes terminal-phase
geometric regularities of supervised classifiers, including within-class variability collapse and simplex-ETF
structure of class means and last-layer classifiers Papyan et al. (2020). Follow-up work studies Neural
Collapse under MSE loss and its optimization landscape in simplified settings Han et al. (2022); Zhou
et al. (2022). While both Neural Collapse and our diagnostics touch geometry, they operate at different
levels: Neural Collapse is class-conditional and classifier-linked, whereas our redundancy coordinate is an
unconditional dependence measure over coordinates of the downstream representation. We therefore position
Neural Collapse as complementary context, not as an effect we claim to induce.

VI. Theory links: robustness–capacity/efficiency trade-offs (careful positioning). Several theory
lines articulate tensions between robustness and accuracy or between different kinds of features, showing
that robustness constraints can favor different representations even in stylized settings Tsipras et al. (2019);
Ilyas et al. (2019); Zhang et al. (2019). At a different granularity, redundancy has also been connected to
generalization behavior in wide networks and to how information is distributed across features Doimo et al.
(2022); Nanda et al. (2023). Our theoretical lens is narrower: we provide sufficient endpoint mechanisms for
an interior optimum in an attainable-risk profile indexed by a dependence coordinate, and we present this
as one way to formalize how competing pressures can make neither extreme (fully independent vs. highly
dependent) optimal under modeling assumptions.
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3 A Redundancy Framework

Notation. Let U = (U1, . . . , Un) be a random vector taking values in U = X1 × · · · × Xn. We use n
to denote the representation dimension throughout (e.g., Z ∈ Rn in later sections). When working in the
Euclidean setting Z ∈ Rn, we identify Rn ≃

∏n
i=1 R as a product measurable space and may take Xi = R

with µi Lebesgue measure. For each coordinate, let µi be a σ-finite measure on Xi and set µ :=
⊗n

i=1 µi.
When PU ≪ µ, write its density as p = dPU

dµ , and for each i, when PUi ≪ µi, write its density as pi = dPUi

dµi
.

Define the product-of-marginals measure

ΠU :=
n⊗

i=1
PUi ,

dΠU

dµ
(u) =

n∏
i=1

pi(ui) (µ-a.e.).

For a positive semidefinite matrix M , denote by λ(M) its eigenvalues, by tr(M) its trace, and by ∥ · ∥F

the Frobenius norm. (Measure-theoretic details and mild regularity conditions used later are collected in
Appendix C, Section C.1.)

Eigenvalue convention. Throughout, λ(M) denotes the multiset of eigenvalues of M (counting multi-
plicity); statements like λ(M) ⊂ (a, b) mean every eigenvalue lies in (a, b).

Redundancy as divergence from independence

Definition 3.1 (f -divergence redundancy functional). Let U = (U1, . . . , Un) be an U =
∏n

i=1 Xi-valued
random vector with joint law PU and marginals {PUi}n

i=1, and let

ΠU :=
n⊗

i=1
PUi

denote the product-of-marginals (i.e., the law under independence).

Let f : [0, ∞) → R∪ {+∞} be convex with f(1) = 0, with the convention f(0) := limt↓0 f(t) (possibly +∞).
We define the redundancy of U as the f -divergence from independence,

Rf (U) := Df (PU ∥ΠU ) :=


∫

U
f

(
dPU

dΠU

)
dΠU , if PU ≪ ΠU ,

+∞, otherwise.
(1)

When PU ≪ ΠU , this can be written equivalently as Rf (U) = EΠU

[
f

(
dPU

dΠU

)]
. In this case L := dPU

dΠU
≥ 0

ΠU -a.e. and EΠU
[L] = 1.

If PU and ΠU admit densities p and π w.r.t. a common σ-finite dominating measure µ =
⊗

i µi (i.e., PU ≪ µ
and ΠU ≪ µ, which holds when each PUi

≪ µi), then the Radon-Nikodym derivative satisfies
dPU

dΠU
(u) = p(u)

π(u) = p(u)∏n
i=1 pi(ui)

(ΠU -a.e.),

where pi = dPUi

dµi
is the marginal density and π(u) =

∏n
i=1 pi(ui) is the density of ΠU w.r.t. µ. Assuming

additionally PU ≪ ΠU (otherwise Rf (U) = +∞ by equation 1), we have

Rf (U) =
∫

U
f

(
p(u)∏n

i=1 pi(ui)

) n∏
i=1

pi(ui) dµ(u).

We refer to Rf as the redundancy functional and to f as its kernel. See Appendix C, Section C.1 for further
measure-theoretic details.
Remark 3.2 (Specializations and the role of the kernel f). Role of the kernel. The convex kernel f
determines how departures from independence are weighted through the likelihood ratio L(u) := dPU

dΠU
(u).

We use two special cases: f(t) = t log t (total correlation / multi-information) and f(t) = 1
2 (t − 1)2 for t ≥ 0

(Pearson χ2), the latter being useful for local quadratic approximations (Proposition 3.7). For the Pearson
kernel fχ2(t) = 1

2 (t − 1)2, one has Dfχ2 (P∥Q) = 1
2 χ2(P∥Q) whenever χ2(P∥Q) < ∞.
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Table 1: Notation summary.

Symbol Meaning

U = (U1, . . . , Un) Abstract random vector in the redundancy definition; ΠU =
⊗

i PUi is the product of
marginals

f Convex f -divergence kernel with f(1) = 0 (Definition 3.1)
L Likelihood ratio L = dPU

dΠU
(when PU ≪ ΠU )

Rf (U) f -divergence redundancy: Df (PU ∥ΠU ) (Definition 3.1)
R Default redundancy coordinate (KL / total correlation); see Scope & Usage (Sec-

tion 1.1).
X Input random variable (data).
S Downstream task variable/target.
θ Representation parameters in Z = ϕθ(X).
g ∈ G Downstream predictor (e.g., linear probe) in a class G.
ℓtask Task loss used to define risk in E(R).
ε0 Tolerance used in the feasible set Θε0(R).
∆ Quantization resolution used when invoking Convention 1.1.
σ2 Noise variance in corruption models (e.g., Proposition 3.14).
log Natural logarithm (nats) unless specified; log2 denotes base-2 logarithm (bits)
B0 Marginal entropy budget:

∑
i H(Z̃i) ≤ B0 in the capacity-side mechanism (Conven-

tion 1.1)
Rmax Upper endpoint of the target redundancy range R ∈ [0, Rmax] used to index E(R)

(chosen within a feasible interval; see Assumption 3.12).
K Fixed coordinate-wise product Markov channel K =

⊗n
i=1 Ki used to define the

downstream representation Z̃ (Section 3.4).
Z̃ Downstream representation Z̃ := K(ϕθ(X)) used in the attainable profile definition

(Definition 3.11).
Θε0(R) Parameter feasible set at redundancy level R (Definition 3.11); Γε0(R) is the corre-

sponding admissible pair set (Definition 3.11).
E(R) Attainable risk profile at redundancy level R (Definition 3.11)
E0 Zero-information baseline risk (Eq. (7))
TC(U) Total correlation (multi-information); in Section 3.4 the coordinate is applied to U =

Z̃.
RKL(U) KL redundancy: RKL(U) = DKL(PU ∥ΠU ) = TC(U)
ΣZ , C Covariance of centered Z, and its correlation matrix C = D−1/2ΣZD−1/2 with D =

Diag(diag(ΣZ))
A Deviation from identity: A := C − I (near-independence expansions)
Rχ2(Z) Pearson χ2 redundancy: Rχ2(Z) = Dfχ2 (PZ∥ΠZ) with fχ2(t) = 1

2 (t − 1)2

∥C − I∥2
F Frobenius quadratic diagnostic for near-independence dependence geometry

Rspec(Z) Spectral diagnostic: 1 − reff(Z)/n

λred Weight on redundancy regularizer in the training objective

3.1 Basic Properties of Redundancy

Proposition 3.3 (Nonnegativity and characterization of independence). Let f : [0, ∞) → R ∪ {+∞} be
convex with f(1) = 0, with the convention f(0) := limt↓0 f(t) (possibly +∞). Then Rf (U) = Df (PU ∥ΠU ) ≥
0. Moreover, if f is strictly convex on some interval containing 1 (in particular, strict convexity in a
neighborhood of 1 is sufficient), then

Rf (U) = 0 ⇐⇒ PU = ΠU ,

i.e., the coordinates U1, . . . , Un are mutually independent.

6



Under review as submission to TMLR

Proof. See Appendix C.

Proposition 3.4 (Data processing inequality (DPI)). Let Ki be Markov kernels from Xi to measurable spaces
(Yi, Bi) (with their Borel or given σ-algebras), and let K :=

⊗n
i=1 Ki be the product kernel on U →

∏n
i=1 Yi.

Let Y denote the random vector obtained by passing U through K, i.e., PY = PU K. Then ΠY = ΠU K (since
K =

⊗n
i=1 Ki acts independently on coordinates) and

Rf (Y ) = Df (PY ∥ΠY ) ≤ Df (PU ∥ΠU ) = Rf (U).

In particular, if Rf (U) = +∞ the inequality holds trivially in the extended reals; the nontrivial case is when
Rf (U) < ∞.

Proof. See Appendix C.

Proposition 3.5 (Elementary upper bound under bounded likelihood ratio). Assume PU ≪ ΠU and let
L = dPU

dΠU
. If m ≤ L ≤ M ΠU -a.e. for some 0 ≤ m ≤ 1 ≤ M , then Rf (U) = EΠU

[f(L)] ≤ supt∈[m,M ] f(t)
(finite if f is finite on [m, M ]). In particular, for f(t) = t log t, since EΠU

[L] = 1 implies m ≤ 1 ≤ M , we
have RKL(U) ≤ M log M . Moreover, since L ≤ M implies L log L ≤ L log M and EΠU

[L] = 1, we also have
the tighter bound RKL(U) = EΠU

[L log L] ≤ log M . Remark. This bounded-likelihood-ratio condition is a
strong sanity assumption and is not expected to literally hold for high-dimensional learned representations;
it is used only to illustrate basic boundedness behavior.

Proof. See Appendix C.

3.2 Gaussian and Quadratic Approximations

Proposition 3.6 (Gaussian total correlation). Let U ∼ N (0, Σ) with Σ ≻ 0 and let C = corr(U) be its
correlation matrix (so C ≻ 0, i.e., symmetric positive definite). (In particular, this identity depends on the
correlation matrix C, not the raw covariance Σ.) Then the redundancy under the Kullback–Leibler kernel
equals the Gaussian total correlation:

RKL(U) = DKL(PU ∥ΠU ) = − 1
2 log det C.

Proof. See Appendix C.

Proposition 3.7 (Local quadratic approximation under weak dependence). Let U ∼ N (0, Σ) be centered
Gaussian with correlation matrix C = corr(U), and write A := C − I. Assume ∥A∥2 < 1 (equivalently,
λ(C) ⊂ (0, 2), since C is symmetric). This condition ensures the series expansion converges; it is used here
only to motivate the local quadratic form and is not empirically verified for learned representations (which
need not satisfy weak dependence).

(i) KL (total-correlation) redundancy.

RKL(U) = − 1
2 log det C.

Moreover, as ∥C − I∥F → 0,
RKL(U) = 1

4 ∥C − I∥2
F + O(∥C − I∥3

F ). (2)

In particular, since C is a correlation matrix, diag(A) = 0 and ∥C − I∥2
F = ∥A∥2

F =
∑

i̸=j C2
ij.

(ii) Quadratic (χ2) redundancy. For the quadratic kernel fχ2(t) = 1
2 (t − 1)2, note that χ2 (hence Rχ2)

can be infinite outside this local weak-dependence regime; here the assumption ∥A∥2 < 1 is used to ensure
finiteness and justify the expansion.

Rχ2(U) = Dfχ2 (PU ∥ΠU ) = 1
4 ∥C − I∥2

F + O(∥C − I∥3
F ), (3)

as ∥C − I∥F → 0.
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Consequently, in the jointly Gaussian weak-dependence regime, RKL and Rχ2 agree to second order:

RKL(U) = Rχ2(U) + O(∥C − I∥3
F ),

where the implicit constants in O(·) depend on n and a local bound on ∥C − I∥2.

Proof. See Appendix C.

3.3 Spectral redundancy as a geometric diagnostic

Definition 3.8 (Spectral redundancy). Let Z ∈ Rn be a random vector with covariance matrix ΣZ =
Cov(Z) ⪰ 0 (computed on centered features), and define the diagonal variance matrix D := Diag(diag(ΣZ)).
Assume Var(Zi) > 0 for all coordinates so that D is invertible. (If some Var(Zi) = 0, we drop the zero-
variance coordinates and redefine n accordingly; after this reduction, ΣZ ≻ 0.) Define the correlation matrix
C by

C := D−1/2ΣZD−1/2.

Let λ1, . . . , λn ≥ 0 be the eigenvalues of C (so
∑n

j=1 λj = tr(C) = n). Define the normalized spectrum

λ̃i = λi∑n
j=1 λj

,

n∑
i=1

λ̃i = 1,

and the associated spectral entropy and effective rank

Hλ(Z) = −
n∑

i=1
λ̃i log λ̃i, reff(Z) = exp

(
Hλ(Z)

)
.

We use the convention 0 · log 0 := 0. We define the spectral redundancy diagnostic as the normalized deficit
in effective rank,

Rspec(Z) = 1 − reff(Z)
n

, Rspec(Z) ∈
[

0, 1 − 1
n

]
.

Standardization. In our protocols we compute C from centered, per-coordinate standardized features.

Relationship to covariance geometry. In jointly Gaussian weak-dependence regimes, both RKL and
Rχ2 admit second-order covariance-geometry expansions in ∥C − I∥2

F (Proposition 3.7), which motivates
reporting spectrum concentration diagnostics such as Rspec.
Proposition 3.9 (Bounds and extremal cases). The diagnostic Rspec(Z) satisfies

Rspec(Z) = 0 ⇐⇒ λ̃1 = · · · = λ̃n = 1
n ,

i.e., the normalized spectrum is uniform (equivalently, reff(Z) = n). Moreover,

Rspec(Z) = 1 − 1
n ⇐⇒ λ̃1 = 1, λ̃i>1 = 0,

i.e., the spectrum is fully concentrated on one eigenvalue (equivalently, rank(ΣZ) = 1), in which case
reff(Z) = 1.

Proof. Since λ̃ lies in the probability simplex, the Shannon entropy Hλ(Z) = −
∑

i λ̃i log λ̃i satisfies 0 ≤
Hλ(Z) ≤ log n, with equality Hλ(Z) = log n if and only if the spectrum is uniform and Hλ(Z) = 0 if and
only if it is concentrated on one coordinate. Exponentiating yields reff(Z) = exp(Hλ(Z)) ∈ [1, n] with the
same equality cases. Substituting into Rspec(Z) = 1−reff(Z)/n gives the stated bounds and extremizers.
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3.4 Redundancy balance and the existence of an interior optimum

Let Z = ϕθ(X) be a learned representation (where ϕθ denotes the encoder, distinct from the divergence
kernel f) and let S denote the downstream task variable. To avoid ambiguity about which representation is
used downstream, and to make the KL/TC redundancy coordinate operational in settings where TC(Z) may
be undefined or +∞ (e.g., deterministic/continuous Z), we allow a fixed coordinate-wise product Markov
channel (cf. Proposition 3.4) to be applied before prediction. Assume each coordinate Zi takes values in a
measurable space Xi and each Ki is a Markov kernel from Xi to a measurable space Yi, so K =

⊗n
i=1 Ki is

a well-defined product kernel. Define the downstream representation

Z̃ := K(Z) = K(ϕθ(X)).

(This K is a fixed instance of the generic product kernel in Proposition 3.4.) In this section the redundancy
coordinate is computed on the downstream representation:

R := RKL(Z̃) = DKL(P
Z̃

∥Π
Z̃

) = TC(Z̃)

(Definition 3.1). Other quantities such as Rχ2 or Rspec are used only as computational diagnostics in
experiments. Throughout this subsection, write R(·) := RKL(·) for the redundancy coordinate.
Remark 3.10 (Coordinate clarification (TC vs. diagnostics)). All formal statements in this subsection are
in the KL/TC coordinate R = TC(Z̃). Our training protocol regularizes the diagnostic Rspec; an interior
optimum in Rspec does not, by itself, imply an interior optimum in R without additional proxy-consistency
conditions.

Fix an operational tolerance ε0 > 0 and choose a redundancy range endpoint Rmax > 0 within a redundancy
interval for which the constraint sets are feasible (within tolerance); the interval [0, Rmax] is treated as the
target range of redundancy levels under consideration.

Notation convention. For brevity, when θ induces a distribution P
Z̃

on the downstream representation
Z̃ = K(ϕθ(X)), we write R(K(ϕθ(X))) to mean RKL(P

Z̃
), the redundancy of the distribution (not of a

particular realization). This is a deterministic function of θ (via the induced distribution).
Definition 3.11 (Attainable risk profile). Feasible set (fixed tolerance). For R ∈ [0, Rmax] (the target
redundancy level), define

Θε0(R) :=
{

θ :
∣∣R(K(ϕθ(X))) − R

∣∣ ≤ ε0

}
,

and set

Γε0(R) :=
{

(θ, g) : θ ∈ Θε0(R), g ∈ G, R(K(ϕθ(X))) < ∞, E
[∣∣ℓtask(S, g(K(ϕθ(X))))

∣∣] < ∞
}

.

Assume ℓtask is measurable and that for admissible (θ, g), the composition (S, X) 7→ ℓtask(S, g(K(ϕθ(X))))
is measurable so the expectation is well-defined.

Attainable risk. Define the attainable risk at redundancy level R by

E(R) := inf
(θ,g)∈Γε0 (R)

E[ℓtask(S, g(K(ϕθ(X))))] , R ∈ [0, Rmax],

with the convention that E(R) = +∞ if Γε0(R) is empty, where G denotes the downstream predictor class
(e.g., linear probes in our experiments).

Practice-facing interpretation (achievable profile). Definition 3.11 is an idealized value function. In
practice, one typically obtains a family of trained solutions indexed by a penalty or constraint (e.g., λ in a
Lagrangian), and thus observes a set of achievable pairs (R, risk) under a fixed training pipeline. The profile
E(R) should be read as the lower envelope of such achievable pairs at tolerance ε0, not as a literal claim that
deep-net optimization ranges over compact parameter sets. Note (endpoint R = 0 under tolerance).
Since ε0 > 0 is fixed, the feasible set Γε0(0) consists of representations with |R(K(ϕθ(X)))| ≤ ε0; thus E(0)
is well-defined as an optimization problem even if exact redundancy 0 is not attainable (and equals +∞ if
Γε0(0) = ∅ by convention).

9
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Assumption 3.12 (Well-posedness and attainment of E). (a) Well-posedness. For each R ∈ [0, Rmax],
Γε0(R) ̸= ∅ and E(R) < ∞. (b) Attainment of minimum over R. The profile E : [0, Rmax] → R
(as a function of the redundancy coordinate R) attains at least one global minimum on [0, Rmax], i.e.,
there exists R∗ ∈ [0, Rmax] such that E(R∗) = infR∈[0,Rmax] E(R). (c) Lower semicontinuity. The profile
E : [0, Rmax] → R is lower semicontinuous. Standard sufficient conditions (compactness/continuity, including
continuity of θ 7→ R(K(ϕθ(X))) and a dominated envelope for the task loss) are given in Appendix A. This is
a modeling/well-posedness layer ensuring E is a proper attained profile; it is not meant as a literal description
of deep-net parameter spaces.
Remark 3.13 (Operational view). Optimizing the training loss plus λ R can be interpreted as a Lagrangian
relaxation that selects a point on the downstream profile E(R).

Theory vs. practice. Operationally, one may implement the redundancy coordinate using a fixed toler-
ance ε0 (as above) or via a Lagrangian penalty; the mathematical statements treat R as an order parameter
at the resolution of interest and do not require an infε↓0 limit inside the definition.

Operational checklist (practice-facing proxies). In a discrete sweep with a fixed pipeline, one may
approximate the objects in Definition 3.11 by:

• Lower envelope: treat E(R) as the empirical lower envelope of achieved (R̂, r̂isk) pairs binned along a
realized redundancy axis.

• Feasibility sets: treat Γε0(R) as the subset of runs whose realized redundancy lies within a tolerance
band around R (or within a fixed-width bin).

• Attainment proxy: treat “attainment” as “there exists a stable best regime” after filtering out diver-
gent/unstable runs (e.g., via loss-slope, finite-metric checks, and seed-based uncertainty).

Proposition 3.14 (Strict improvability of the low-redundancy endpoint under component-wise independent
corruption). Fix squared-error loss ℓ(s, ŝ) = ∥s − ŝ∥2

2 and consider the following linear-Gaussian model. Let
S ∈ Rd be centered Gaussian with diagonal covariance Cov(S) = diag(ν1, . . . , νd) and ν1 > 0. Assume
n ≥ d + 1 (so that the representation has at least one coordinate beyond those encoding S, which is needed
to accommodate a redundant copy in the construction below). Let the representation be

Z = WS, W ∈ Rn×d,

followed by component-wise independent corruption

Z̃ = Z + ξ, ξ ∼ N (0, σ2In), σ2 > 0,

and restrict the decoder to be linear: Ŝ = BZ̃. This proposition corresponds to the special case where the
downstream channel K is additive independent Gaussian corruption (a coordinate-wise product kernel).

Per-coordinate gain constraint. Assume each row w⊤
i of W satisfies ∥wi∥2 ≤ 1.

Redundancy coordinate (KL / total correlation). We take the redundancy coordinate to be the
Kullback–Leibler special case of Definition 3.1:

R := RKL(Z̃) = DKL(P
Z̃

∥ Π
Z̃

) = TC(Z̃).

Define the (toy-model) optimal risk at redundancy level R by

Etoy(R) := inf
(W,B): RKL(Z̃)=R

E
[
∥S − BZ̃∥2

2
]
,

where the infimum is taken over (W, B) satisfying the gain constraint. This toy profile uses an exact redun-
dancy constraint and is used only to witness strict improvability near R = 0 as an endpoint mechanism.

10
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Then for any fixed σ2 > 0, exact independence in this KL redundancy coordinate is strictly improvable: there
exists a family {Z̃α}α>0 with RKL(Z̃α) ↓ 0 as α ↓ 0 such that, for every α > 0,

inf
B

E
[
∥S − BZ̃α∥2

2
]

< inf
B

E
[
∥S − BZ̃0∥2

2
]
,

where RKL(Z̃0) = 0. Consequently, whenever the constraint set is nonempty in a neighborhood of 0, R = 0
cannot be a local minimizer of Etoy(R) in this model.

Proof. Assume n ≥ d + 1 and define, for α ∈ (0, 1],

Z0 = (S1, . . . , Sd, 0, . . . , 0) ∈ Rn, Zα = (S1, . . . , Sd, αS1, 0, . . . , 0) ∈ Rn.

Both are realizable under the gain constraint by taking rows of W equal to e⊤
1 , . . . , e⊤

d , αe⊤
1 , 0, . . . , 0.

Since Cov(S) is diagonal and S is Gaussian, the coordinates of Z0 are independent. Therefore the corrupted
vector Z̃0 = Z0 + ξ has independent coordinates as well, hence RKL(Z̃0) = 0. Indeed, the pairs (Z0,i, ξi) are
independent across i since S has independent coordinates and ξ is independent with independent components.

For Z̃α = Zα + ξ, the only dependence is between the two coordinates

Y1 = S1 + ξ1, Y2 = αS1 + ξd+1,

which are jointly Gaussian with correlation

ρ(α) = Cov(Y1, Y2)√
Var(Y1)Var(Y2)

= αν1√
(ν1 + σ2)(α2ν1 + σ2)

.

By Proposition 3.6, the total correlation of this bivariate Gaussian equals

RKL(Z̃α) = TC(Z̃α) = TC(Y1, Y2) = − 1
2 log

(
1 − ρ(α)2)

−−→
α↓0

0,

since ρ(α) → 0 as α ↓ 0.

Under joint Gaussianity and squared loss, the optimal linear decoder coincides with the MMSE (LMMSE)
estimator. The only affected coordinate is S1, for which the decoder effectively observes (Y1, Y2) defined
above with independent noise variance σ2. The resulting posterior variance (standard LMMSE result) is

Var(S1 | Y1, Y2) =
(

ν−1
1 + 1+α2

σ2

)−1
,

which is strictly smaller than the baseline
(
ν−1

1 + 1
σ2

)−1 for every α > 0. All other coordinates of S are
unchanged, hence the overall optimal risk is strictly smaller for Zα than for Z0 while RKL(Z̃α) ↓ 0. A
complete derivation is given in Appendix B.

Remark 3.15 (Bridge to tolerance-based framework). Proposition 3.14 uses an exact redundancy constraint
in the toy profile Etoy. To connect this to the tolerance-based Definition 3.11: if Etoy is continuous and
strictly improvable at R = 0 (i.e., Etoy(R′) < Etoy(0) for some R′ > 0), then for sufficiently small ε0 > 0, the
tolerance-based profile can satisfy E(R) < E(0) for R near R′. This relies on the regularity layer ensuring
lower semicontinuity of the profile R 7→ E(R) (Appendix A / Assumption 3.12).

Continuity verification for the linear-Gaussian model. In the setting of Proposition 3.14, continuity of Etoy(R)
in R follows from standard properties of the LMMSE estimator: both the optimal risk (posterior variance)
and the redundancy coordinate RKL(Z̃) = − 1

2 log det C are continuous functions of the correlation matrix
C, which in turn depends continuously on the encoding matrix W under the linear-Gaussian model. Hence
the bridge applies to Proposition 3.14.
Remark 3.16 (Corruption vs. profile). Proposition 3.14 concerns a corruption model Z̃ = Z + ξ with inde-
pendent noise. It fits the profile definition above by taking the fixed channel K to be additive independent
Gaussian corruption and by taking G to be the class of linear decoders.

11
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Proposition 3.14 provides a concrete stylized mechanism in which the low-redundancy endpoint is strictly
improvable in a KL/TC coordinate computed on the downstream representation Z̃.

The capacity-side Lemma 3.23 (Section 3.7) provides one concrete sufficient mechanism for the high-
redundancy endpoint condition in Lemma 3.17 under the quantized-entropy convention of Convention 1.1.

Under Assumption 3.12, if the endpoint conditions in Lemma 3.17 hold (which can be witnessed in specific
stylized settings via mechanisms such as Proposition 3.14 and Lemma 3.23), then at least one global minimizer
lies in the interior. The following lemma records this structural implication.
Lemma 3.17 (Interior minimizer under endpoint strictness). Assume Assumption 3.12.

Assume:

1. (Low-redundancy endpoint strictness). There exists δL ∈ (ε0, Rmax] (requiring ε0 < Rmax)
such that

inf
R∈(ε0,δL]

E(R) < E(0). (4)

2. (High-redundancy endpoint is non-optimal). Let E0 be the zero-information baseline risk
defined in equation 7, and assume the task is nontrivial in the sense that

inf
R∈[0,Rmax)

E(R) < E0 and E(Rmax) ≥ E0. (5)

Then E attains at least one global minimum at an interior point R∗ ∈ (0, Rmax).

Clarification. Here E(0) refers to the tolerance-feasible near-zero redundancy set Γε0(0) in Definition 3.11.
Thus condition (1) compares the “near-zero” regime |R| ≤ ε0 against the “slightly positive” regime R ∈
(ε0, δL]; the condition is meaningful because it asserts that moving beyond the tolerance band around zero
strictly improves risk.
Remark 3.18 (Interpretation). Lemma 3.17 asserts existence of at least one interior minimizer; it does not
address uniqueness.

Proof. By Assumption 3.12, E attains a global minimum at some R̂ ∈ [0, Rmax].

If R̂ = 0, then E(0) ≤ E(R) for all R, which contradicts equation 4. Hence R̂ ̸= 0.

If R̂ = Rmax, then E(Rmax) ≤ E(R) for all R. But equation 5 implies E(Rmax) ≥ E0 while infR∈[0,Rmax) E(R) <

E0, a contradiction. Hence R̂ ̸= Rmax.

Therefore R̂ ∈ (0, Rmax); set R∗ := R̂.

Remark 3.19 (Local strictness). If E is twice differentiable at an interior minimizer R∗ and E ′′(R∗) > 0, then
R∗ is a strict local minimizer by the usual second-order sufficient condition.

3.5 Connections to classical measures and practical proxies

Total correlation (multi-information). For the Kullback–Leibler kernel f(t) = t log t, Definition 3.1
yields

RKL(U) = DKL(PU ∥ΠU ),

i.e., the standard total correlation (multi-information). When the (entropic) quantities are well-defined and
finite (e.g., discrete U),

RKL(U) =
n∑

i=1
H(Ui) − H(U).

Moreover, RKL(U) = 0 if and only if U1, . . . , Un are mutually independent (Proposition 3.3).

12
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Quadratic (covariance/correlation) proxy. For the Pearson kernel f(t) = 1
2 (t − 1)2, the redundancy

becomes the Pearson χ2-divergence Rχ2(U) = Dfχ2 (PU ∥ΠU ). In a weak-dependence regime where a second-
order expansion around independence is meaningful, one obtains a local quadratic approximation. In par-
ticular, for the Gaussian instantiation in Proposition 3.7,

Rχ2(U) = 1
4 ∥C − I∥2

F + o
(
∥C − I∥2

F

)
,

where C = corr(U) after standardizing to unit variances. We use such quadratic forms as differentiable
geometry-inspired surrogates; outside local regimes they should not be interpreted as exact divergences.
Locality reminder. Unlike TC, the χ2 divergence (hence Rχ2) can be infinite outside weak-dependence
regimes; we use it only as a local proxy when it is finite and numerically stable.

Spectral diagnostic. We also report Rspec(Z) (Definition 3.8) as a computational diagnostic of spectrum
concentration.
Remark 3.20 (What Rspec does (and does not) capture). Rspec is sensitive to effective rank (spectrum
concentration) of the correlation matrix, whereas ∥C−I∥2

F =
∑

i̸=j C2
ij measures total off-diagonal correlation

energy. They are not equivalent and can disagree (e.g., many small correlations can yield large ∥C − I∥2
F

with near-uniform spectrum, while a low-rank correlation structure can yield large Rspec without uniformly
large pairwise correlations).

3.6 Practical lemmas for boundedness during training

Lemma 3.21 (Spectral boundedness under norm control). Assume in addition that all marginal variances
are positive so that the correlation matrix in Definition 3.8 is well-defined. Let Z = WX ∈ Rn with
∥W∥2 ≤ M and E∥X∥2

2 ≤ σ2. Then the covariance ΣZ satisfies

tr(ΣZ) ≤ M2σ2.

Consequently, the normalized eigenvalue spectrum is well defined and reff(Z) ∈ [1, n], hence

0 ≤ Rspec(Z) ≤ 1 − 1
n .

Proof. Since ΣZ = WΣXW ⊤ and ΣX ⪰ 0,

tr(ΣZ) = tr(W ⊤W ΣX) ≤ ∥W ⊤W∥2 tr(ΣX) = ∥W∥2
2 E∥X − EX∥2

2 ≤ ∥W∥2
2 E∥X∥2

2 ≤ M2σ2.

The bounds on Rspec then follow from reff(Z) = exp(Hλ(Z)) ∈ [1, n].

Lemma 3.22 (Local KL–Frobenius lower bound (non-asymptotic)). Let U ∼ N (0, Σ) be a centered Gaussian
random vector with correlation matrix C = corr(U), and write C = I + A with A = C − I. Assume
∥A∥2 ≤ ρ for some fixed ρ ∈ (0, 1). Then there exists ε > 0 (depending only on n and ρ) such that whenever
∥C − I∥F ≤ ε,

RKL(U) = − 1
2 log det C ≥ 1

8 ∥C − I∥2
F .

An explicit sufficient condition is ε ≤ min{1, 3(1 − ρ)/(4
√

n)}. This identity is Gaussian-specific; for non-
Gaussian distributions, total correlation (and KL-to-product-marginals) is not determined solely by the cor-
relation matrix.

Proof. With ∥A∥2 ≤ ρ < 1, the expansion log(I + A) =
∑

k≥1
(−1)k+1

k Ak implies

− log det(I + A) = −tr log(I + A) =
∑
k≥1

(−1)k

k
tr(Ak).

Since C is a correlation matrix, tr(A) = 0, and tr(A2) = ∥A∥2
F . The remainder

∑
k≥3

(−1)k

k tr(Ak) is O(∥A∥3
F )

as ∥A∥F → 0 under the standing assumption ∥A∥2 ≤ ρ < 1. Indeed, for k ≥ 3 we may bound

|tr(Ak)| ≤ ∥Ak∥∗ ≤
√

n ∥Ak∥F ≤
√

n ∥A∥k−2
2 ∥A∥2

F ,

13
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where ∥ · ∥∗ denotes the nuclear (trace) norm and we used |tr(B)| ≤ ∥B∥∗, ∥B∥∗ ≤
√

n∥B∥F , and ∥Ak∥F =
∥Ak−2A2∥F ≤ ∥A∥k−2

2 ∥A2∥F ≤ ∥A∥k−2
2 ∥A∥2

F . Therefore,∣∣∣ ∑
k≥3

(−1)k

k
tr(Ak)

∣∣∣ ≤
∑
k≥3

1
k

|tr(Ak)| ≤
√

n ∥A∥2
F

∑
k≥3

1
k

∥A∥k−2
2 ≤

√
n

3(1 − ρ) ∥A∥2
F ∥A∥2.

In particular, since ∥A∥2 ≤ ∥A∥F and ∥A∥2 ≤ ρ, the remainder is bounded by c ∥A∥3
F for a constant c

depending only on n and ρ. Choose ε > 0 so that whenever ∥A∥F ≤ ε, we have c ∥A∥F ≤ 1
4 . Then for

∥C − I∥F = ∥A∥F ≤ ε we obtain − log det C ≥ 1
4 ∥A∥2

F and hence RKL(U) = − 1
2 log det C ≥ 1

8 ∥A∥2
F =

1
8 ∥C − I∥2

F .

3.7 Information-theoretic two-sided endpoint mechanisms

We give a model-based information-theoretic argument isolating two checkable endpoint mechanisms sug-
gesting that extreme redundancy levels can be suboptimal in stylized settings within the framework of
Definition 3.11. We present two mechanisms corresponding to common coordinate-wise product channels K:
(i) when K implements per-coordinate quantization at fixed resolution ∆ > 0 (so Z̃ is discrete/quantized)
under a marginal-entropy budget, large redundancy can force the joint entropy H(Z̃) (and thus the informa-
tion budget available to the task) to shrink; and (ii) when K is (or includes) component-wise independent
corruption, exact independence (R = 0) can be strictly improvable by adding an arbitrarily weak redundant
copy (Appendix B). These are separate stylized scenarios; they do not, by themselves, assert that a single
fixed K simultaneously verifies both endpoint conditions of Lemma 3.17.

This capacity-side mechanism is stated in the fixed-resolution quantized (Shannon-entropy) setting of Con-
vention 1.1, and is independent of the Gaussian approximation results in Section 3.2.
Lemma 3.23 (Capacity-side information constraint). Let Z̃ = (Z̃1, . . . , Z̃n) be the downstream represen-
tation. Assume Z̃ is discrete or quantized at fixed resolution ∆ > 0 (Convention 1.1), e.g., Ki = Q∆ for
each coordinate, and

∑n
i=1 H(Z̃i) ≤ B0. If the redundancy coordinate is the total correlation R = RKL(Z̃) =

TC(Z̃), then

I(Z̃; S) ≤ H(Z̃) =
n∑

i=1
H(Z̃i) − TC(Z̃) ≤ B0 − R. (6)

In particular, R ≤ B0 for all representations satisfying the entropy budget above. Under this entropy-budgeted
model class one typically takes Rmax ≤ B0.

Proof. Under Convention 1.1, the entropies are Shannon entropies (discrete or quantized) and are finite under
the budget

∑
i H(Z̃i) ≤ B0 < ∞. For discrete random variables, the identity H(Z̃) =

∑
i H(Z̃i) − TC(Z̃)

holds by the definition of total correlation. (This identity does NOT hold for differential entropy, which
is why we use Convention 1.1 to ensure all entropies are Shannon entropies.) The entropy budget gives
H(Z̃) ≤ B0 − R, and I(Z̃; S) ≤ H(Z̃) yields equation 6.

Corollary 3.24 (High-redundancy endpoint is zero-information). Under Convention 1.1 and the assump-
tions of Lemma 3.23, if a representation with R = B0 is feasible (i.e., exists), then it satisfies H(Z̃) = 0 and
is therefore almost surely constant; hence I(Z̃; S) = 0. In particular, if Rmax = B0 and such a representation
exists, then R = Rmax implies I(Z̃; S) = 0.

Zero-information baseline. Define

E0 := inf
Ŝ: I(Ŝ;S)=0

E
[
ℓtask(S, Ŝ)

]
, (7)

where the infimum is taken over all random variables Ŝ (on the same probability space as S) such that
I(Ŝ; S) = 0. This is the best achievable risk among predictors carrying no information about S (e.g., the
optimal constant predictor under squared loss). If Rmax = B0 and the constraint R = Rmax is feasible, then
by Corollary 3.24,

E(Rmax) ≥ E0. (8)
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Nontriviality (empirically checkable). If

inf
R∈[0,Rmax)

E(R) < E0, (9)

then the endpoint R = Rmax is strictly suboptimal as a global minimizer. Condition equation 9 is directly
checkable: it requires that some representation performs strictly better than the best zero-information
predictor.

Low-redundancy endpoint. Proposition 3.14 provides a complementary mechanism: under component-
wise independent corruption, R = 0 is strictly improvable by injecting an arbitrarily weak redundant copy,
yielding lower task risk while R = RKL(Z̃) ↓ 0 (Appendix B).

3.8 Interior redundancy regime induced by competing bounds

Remark 3.25 (Competing endpoint constraints motivate an interior regime). Let E : [0, Rmax] → R be
lower semicontinuous and attained. In stylized corruption/capacity models, one can often establish opposing
endpoint mechanisms: near R = 0, introducing a small amount of cross-coordinate coupling can improve
robustness to component-wise corruption; near large R, large total correlation under a marginal-entropy
budget forces H(Z̃) and thus I(Z̃; S) to collapse. We record this as an interpretive heuristic—not as a global
shape assumption on E(R)—which motivates examining near-optimal representations in an interior range
away from both extremes.

Interpretation. The takeaway is practical: it is informative to evaluate performance across a range of R
rather than only at an endpoint.

4 Experiments

Goal. We conduct controlled sweeps that relate downstream linear-probe performance to a realized redun-
dancy coordinate and proxy diagnostics, with seed-based uncertainty.

Setup. We use masked autoencoders (MAE) He et al. (2022); after pretraining, the encoder is frozen and
evaluated with a linear probe. Let Z denote the frozen encoder representation used as input to the linear
probe: specifically, we use global average pooling over patch tokens (excluding the CLS token) from the final
encoder layer, yielding a 768-dimensional feature vector per image.

Architecture and data. We use a ViT-Base/16 backbone (patch size 16 × 16, embedding dimension 768,
12 layers, 12 heads) with a standard MAE decoder (embedding dimension 512, 8 layers). All experiments
use CIFAR-10 for pretraining and in-domain evaluation, with the standard train/test split (50,000 training
images, 10,000 test images); CIFAR-100 is used for transfer evaluation with its standard split. Pretraining
runs for 50 epochs; linear probes are trained for 50 epochs.

Pretraining hyperparameters. We use the AdamW optimizer with learning rate 10−4, weight decay
0.05, and a cosine learning rate schedule with 3 warmup epochs (minimum learning rate 10−5). The per-
GPU batch size is 128; gradient clipping is applied with max norm 1.0; mixed-precision training (AMP) is
enabled. Data augmentation consists of resizing to 224 × 224, random horizontal flipping, and per-channel
normalization to [−1, 1] (mean and std both 0.5). These hyperparameters are held fixed across all E1 runs.
We pretrain with a redundancy-regularized objective

Ltotal = Lrecon + λred Rspec(·). (10)

Reconstruction loss implementation. In our MAE implementation, Lrecon is the mean-squared recon-
struction error averaged over masked patches only (75% masking), with per-patch pixel averaging in the
patchified space; input pixels are scaled to [−1, 1]. This yields end-of-training MAE validation losses on the
order of 10−2 in our runs.
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Training-time vs. analysis-time redundancy measurement. During pretraining, the redundancy
term is estimated on mini-batch patch-token features by flattening tokens within the batch (each patch
token treated as a sample in the covariance estimate). For analysis and all reported redundancy coordinates,
we compute the realized Rspec post-hoc on the frozen probe features Z (one sample per image), matching the
probe input. Unless stated otherwise, all figures and all tests that condition on redundancy use this realized
coordinate on Z.

Diagnostic coordinate vs. theory coordinate. We regularize a tractable diagnostic (Rspec) and do not
claim it equals TC. The theoretical statements in Section 3.4 concern the KL/TC redundancy coordinate
R = TC(Z̃) on the downstream representation Z̃ = K(ϕθ(X)). Accordingly, we analyze outcomes as a
function of a realized redundancy coordinate (measured diagnostics such as Rspec and local proxies such as
∥C − I∥2

F and Rχ2 , and an estimate of TC when feasible), rather than by λred directly (no monotonicity in
λred 7→ R is assumed). We report reconstruction/validation loss, linear-probe performance, and redundancy
diagnostics, including proxy-consistency checks.

Downstream risk vs. reconstruction loss. The theoretical profile E(R) concerns attainable downstream
task risk as a function of a redundancy coordinate (Section 3.4), not MAE reconstruction or validation
loss. Accordingly, our empirical conclusions are stated in terms of frozen-encoder linear-probe accuracy;
reconstruction/validation loss is reported only as a training-stability diagnostic and to avoid misleading “all
runs have nearly identical validation loss” interpretations.

Validation-loss variability (not “nearly identical”). Across the N = 33 E1 runs (where N denotes
the number of runs), the end-of-training MAE validation loss varies meaningfully with λred and seed: the
overall range is min = 0.02385 to max = 0.03490 (about 46% relative spread computed as max/min − 1;
equivalently, the range is ≈ 38% of the midpoint), and even within a fixed λred group the seed-to-seed spread
ranges from about 4% to 11% (computed as max/min − 1 across the three seeds). Thus, probe-accuracy
differences should not be attributed to trivially “identical” reconstruction behavior.

Proxy-consistency (falsifiable diagnostic check). Because the theory is stated for R = TC(Z̃) on
Z̃ = K(ϕθ(X)) (Section 3.4), while practice relies on tractable diagnostics/proxies (Rspec, ∥C − I∥2

F , Rχ2),
we treat strong proxy agreement as a necessary guardrail: if proxy-consistency is weak, the intended theory-
to-measurement link fails for that setting and redundancy-sweep conclusions should be interpreted only in
diagnostic terms. Proxy consistency is necessary (not sufficient) for the intended theory-to-measurement
link.

A computable bridge to total correlation in a computable regime. To partially bridge the diag-
nostic coordinate to the KL/TC coordinate, we report a sanity check in a regime where TC is operationally
computable from second-order statistics. Let C denote the correlation matrix of the standardized frozen
probe features Z; for a mean-zero Gaussian with correlation C,

TCGauss(Z) = − 1
2 log det(C).

We compute TCGauss post-hoc on frozen Z for all E1 runs using a stable signed log-determinant (slogdet)
with a small diagonal ridge (ϵ = 10−6) for numerical stability. On the E1 runs, this Gaussian-TC proxy
serves as a sanity check toward the KL/TC coordinate and is treated only as a diagnostic bridge. We treat
this only as a sanity bridge (not an equivalence claim), since the Gaussian identity need not hold outside
covariance-dominated regimes.

As an additional (optional) falsifiable check outside Gaussian assumptions, one can estimate a coarse TC on a
small “sanity set” by: fixing a low-dimensional projection (e.g., m ∈ {4, 6, 8} coordinates of the pooled probe
features or a fixed random projection), discretizing each coordinate with a fixed binning rule (e.g., B = 16
equal-mass bins), and computing a plug-in estimate T̂C =

∑
i Ĥ(Ui) − Ĥ(U) on a fixed sample budget. We

treat such checks as guardrails against complete proxy–TC misalignment rather than as replacements for
the theory coordinate.
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4.1 Experimental Design

We run a controlled sweep of redundancy regularization strengths λred using MAE pretraining with the
objective in equation 10, and evaluate the resulting representations with frozen-encoder linear probes. Our
design uses 11 values of λred and 3 random seeds (N = 33 runs total), holding the backbone and training
budget fixed. In this sweep we use 50 pretraining epochs and seeds {42, 43, 44}, holding all remaining
hyperparameters fixed. Concretely, the grid is λred ∈ {−0.01, 0, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5}.
We do not advocate negative λred as a meaningful “regularization” setting; we include a single small negative
value only as a diagnostic stress-test that encourages higher realized redundancy under the same pipeline.

For each run, we record downstream linear-probe accuracy on CIFAR-10 (in-domain) and CIFAR-100 (trans-
fer) together with redundancy diagnostics computed on the frozen probe features Z. The goal is not to infer
a universal functional form, but to test whether performance can be higher in an interior redundancy regime
than at both endpoints, consistent with the endpoint-strictness logic used in Lemma 3.17. Throughout E1,
the λred grid and all evaluation procedures are fixed a priori; in particular, the probe training protocol is held
constant across runs (no per-λ tuning), so differences are attributable to the learned representation rather
than probe-side hyperparameter choices. Concretely, the linear head is trained with a fixed protocol (SGD
with momentum 0.9, learning rate 0.1, cosine schedule, 50 epochs, no weight decay), and probe features are
z-score standardized using training-split statistics.

Why analyze performance versus a realized redundancy coordinate. The sweep parameter λred is
an optimization control knob, but it is not assumed to map monotonically to a single redundancy level across
runs. Accordingly, we analyze outcomes as a function of the realized redundancy coordinate Rspec computed
on frozen Z at the end of training, operationalized here as the logged statistic red_spec_proxy. Figure 2b
illustrates that the same λred can yield different realized values across seeds, and that different λred settings
can overlap in the realized coordinate. This motivates using realized redundancy as the organizing axis rather
than treating λred as the final explanatory variable. To strengthen interpretability of this coordinate, we
also compare red_spec_proxy against a covariance-based proxy red_cov_proxy; Figure 3b reports strong
rank agreement (Spearman ρ = 0.874, N = 33), supporting the use of red_spec_proxy to order runs in
subsequent analyses.

Endpoint–interior inequality test (curve-shape free). To align with the endpoint strictness logic in
Lemma 3.17 while remaining robust to non-monotone or non-smooth behavior, we use an endpoint–interior
inequality. Let ∆EI denote

∆EI :=
(

best interior window mean accuracy
)

−
(

best endpoint mean accuracy
)

,

where the endpoint mean is defined as the better of the low-R endpoint regime and the high-R endpoint
regime, and each regime mean is computed over an equal-sized subset of runs at the corresponding extreme
of the realized redundancy axis. The interior term is computed over an equal-sized contiguous window within
the remaining (non-endpoint) runs, and we take the best interior window mean.

Concretely, we sort runs by realized redundancy and define the low/high endpoint regimes as the bottom/top
(k) runs, with (k) fixed a priori (in our sweep, k = 7, roughly 20% of runs); we then scan all contiguous
interior windows of width (k) within the remaining runs and take the best interior-window mean. (The choice
N = 33, k = 7 admits at least one interior window under this rule.) The bootstrap procedure recomputes this
same scanning rule, so uncertainty reflects the window-selection step. This test does not assume a smooth
unimodal curve and does not require fitting a specific parametric model; it is an inequality-style check for
whether an interior regime can outperform both endpoints. We estimate uncertainty via a nonparametric
bootstrap at the run level: we resample runs with replacement (20,000 bootstrap replicates), recompute ∆EI,
and report a 95% bootstrap interval and P (∆EI > 0).

4.2 Experimental Results

We summarize results using realized redundancy coordinates and an endpoint–interior inequality as primary
evidence, without imposing a curve-fitting model. Figure 2b emphasizes that λred is best viewed as a control
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parameter (with seed-dependent realized outcomes), while Figure 2a reorganizes the same runs by realized
redundancy and shows the resulting performance regimes more directly.

Training stability and diagnostic transients (why we rely on realized coordinates). Figure 1
summarizes representative E1 training trajectories. Panels (A–B) show that MAE training and validation
losses decrease smoothly with epoch, but also exhibit meaningful separation across λred, reinforcing that
reconstruction/validation loss is a training-stability diagnostic rather than the theory-facing risk object.
Panels (C–D) visualize training-time redundancy diagnostics logged on mini-batch patch-token features
(tokens flattened within batch). While the spectral diagnostic in (C) behaves smoothly, the covariance
proxy in (D) displays a systematic “rise-then-fall” pattern early in training across all shown λred values.
This behavior is explained by scale sensitivity: the proxy in (D) is computed from a raw covariance matrix
(not correlation), hence its magnitude depends on feature variance. Indeed, the overlaid tr(Σ) (dotted; right
axis) increases sharply in the same early-epoch window, indicating a transient variance/scale transition as
the encoder representations move from near-random to structured features; after this transition, redundancy
control reduces off-diagonal structure and the proxy declines. Because such transients are intrinsic to training-
time mini-batch estimation and can reflect feature-scale dynamics rather than the end-state redundancy
ordering, all reported redundancy coordinates and all endpoint–interior analyses in E1 use the analysis-time
realized diagnostics computed post-hoc on frozen probe features Z (one sample per image), matching the
probe input and avoiding scale artifacts.

Qualitative regimes (organized by realized redundancy). Across both probe tasks, low realized
redundancy is associated with lower accuracy relative to intermediate values (Figure 2a). At higher realized
redundancy, behavior is task-dependent: CIFAR-100 transfer accuracy is more sensitive and can be lower
than the intermediate regime, whereas CIFAR-10 in-domain accuracy tends to saturate over a broad range.
These observations motivate an inequality-based test of whether an interior regime can outperform both
endpoints without assuming any particular global shape.

Primary statistical evidence via endpoint–interior inequality. Figure 3a reports the bootstrap
distribution of ∆EI for each task. For CIFAR-100 (transfer), the estimated improvement of the best interior
regime over the better endpoint is ∆EI = +0.0357 with 95% CI [+0.0252, +0.0409] and P (∆EI > 0) > 0.999
(all 20,000 bootstrap replicates yielded ∆EI > 0; this is empirical frequency, not a formal probability bound).
For CIFAR-10 (in-domain), the corresponding effect is smaller but still positive: ∆EI = +0.0101 with 95%
CI [+0.0031, +0.0147] and P (∆EI > 0) = 0.993. The larger effect size for CIFAR-100 is consistent with
sensitivity to task complexity and distribution shift in how redundancy impacts linear readout performance,
though the magnitude may vary across settings.

Operational estimate of an interior optimizer location (secondary). To address requests for an
explicit estimate of an “equilibrium” point, we additionally fit a quadratic model in the realized coordinate
red_spec_proxy (pooled over all runs) and report the implied maximizer R̂fit = −b/(2a) when the fitted
curvature satisfies a < 0. This estimate is reported as a descriptive summary in the realized diagnostic
coordinate (not as a proof of shape, and not as a claim about the KL/TC coordinate without further
proxy assumptions). For CIFAR-10 (in-domain), the fitted maximizer is R̂fit ≈ 0.60 with bootstrap 95% CI
[0.56, 0.64]; for CIFAR-100 (transfer), R̂fit ≈ 0.51 with bootstrap 95% CI [0.47, 0.54].

Robustness to excluding the negative-λred diagnostic point. Because negative λred inverts the in-
tended penalty and is not advocated as a meaningful regularization setting, we also recompute the endpoint–
interior inequality after excluding the three λred = −0.01 runs. With fixed k = 7, the transfer task remains
strongly positive (∆EI ≈ 0.033 with P (∆EI > 0) ≈ 0.999), while the in-domain effect becomes weaker (CI
can include 0 under the same k), suggesting that the clearest interior-regime evidence in E1 is driven by
the transfer probe. Importantly, the quadratic-fit location estimates are essentially unchanged by excluding
negative λred (CIFAR-10 R̂fit ≈ 0.60, CIFAR-100 R̂fit ≈ 0.51), indicating that the point-estimate locations
are not an artifact of the negative-λred diagnostic point.
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Proxy consistency and interpretability of the realized coordinate. Figure 3b shows that the
realized redundancy ordering is broadly consistent across the spectral (red_spec_proxy) and covari-
ance (red_cov_proxy) diagnostics (Spearman ρ = 0.874, N = 33), strengthening the validity of using
red_spec_proxy as the organizing coordinate for Figures 2a–3a.

E2 (VICReg): an attempted non-reconstruction SSL check and a validity-gate failure. To
probe whether the interior-regime advantage in E1 is MAE-specific, we conducted an additional sweep using
VICReg (a non-reconstruction SSL objective) while keeping the same analysis protocol: (i) define the realized
redundancy coordinate on the frozen encoder features used for probing, (ii) reparameterize outcomes by the
realized coordinate rather than by the intervention parameter, and (iii) apply the endpoint–interior inequality
test only when the realized coordinate exhibits sufficient regime coverage.

VICReg sweep hyperparameters. The VICReg sweep uses the same ViT-Base/16 encoder backbone
as E1. We train using AdamW (learning rate 10−4, weight decay 0.05, cosine schedule with 3 warmup
epochs), per-GPU batch size 256, and 50 epochs. The VICReg projector is a 3-layer MLP with hidden
dimension 2048 and output dimension 2048, following the standard VICReg architecture. VICReg loss
coefficients are α = 25 (invariance), β = 25 (variance), and γ = 1 (covariance), as in the original VICReg pa-
per. Data augmentation follows the standard VICReg protocol: RandomResizedCrop(224, scale=(0.2, 1.0)),
RandomHorizontalFlip, ColorJitter (brightness/contrast/saturation/hue = 0.4/0.4/0.2/0.1, probability 0.8),
RandomGrayscale (probability 0.2), and GaussianBlur (kernel size 9, sigma ∈ [0.1, 2.0]). The sweep grid
varies λred ∈ {0, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2} (two seeds per setting; N = 16 runs total).

In the VICReg sweep, the intervention parameter λred is strongly rank-associated with the measured spectral
diagnostic Rspec (Spearman ρ ≈ −0.93), and the spectral and covariance-based diagnostics remain mutually
consistent (Spearman ρ ≈ 0.94 between Rspec and a covariance proxy). However, the realized redundancy
coordinate shows insufficient regime coverage: across the sweep grid, Rspec varies only over an approximately
1.7% relative range (max/min−1). We treat regime coverage as a validity gate for regime-based claims: if the
realized coordinate does not traverse meaningfully distinct low/intermediate/high regimes, then endpoint–
interior comparisons are underpowered and can be dominated by noise in both the coordinate and probe
accuracy. Accordingly, the VICReg sweep does not satisfy our validity gate for applying the endpoint–interior
inequality test, and we do not interpret the resulting probe-accuracy trends as evidence for or against an
interior optimum in this coordinate.

This outcome is nonetheless informative for the broader experimental thesis: the slow/structural coordinate
that mediates downstream generalization can be objective-dependent. That is, redundancy (as operationalized
by Rspec and related proxies) behaves as a controllable and regime-spanning coordinate in the MAE setting
(E1), whereas under VICReg the same coordinate appears effectively constrained by the base SSL objective
over the tested intervention range, preventing a regime-spanning test. This motivates a general experimental
workflow: for a given foundation objective and chosen coordinate, establish (a) intervention–coordinate
controllability, (b) regime coverage of the realized coordinate, and (c) proxy-consistency across diagnostics,
before drawing endpoint–interior conclusions.

Scope/Limitations. These results are shown for MAE under a fixed backbone and training budget; ex-
tending to other self-supervised paradigms, network sizes (undercomplete vs. overcomplete regimes), or longer
training is future work. Accordingly, we do not claim invariance of the preferred realized redundancy regime
across model scales. We also do not interpret negative λred as a meaningful regularization knob: beyond a
single diagnostic point, we do not pursue negative-λred sweeps because they invert the intended penalty and
can introduce optimization/instability confounds. All E1 runs also fix generic regularizers/hyperparameters
(optimizer, augmentation, and weight decay) so within-sweep comparisons are not confounded by changing
those controls. A natural additional control would be to repeat a tiny subset of settings under a small weight-
decay sweep while keeping all else fixed: e.g., run λred ∈ {0, 0.05} with weight decay ∈ {0.0, 0.05, 0.1} over
the same 3 seeds (18 runs total). This tests whether the redundancy–probe relationship can be reproduced
by generic regularization alone.
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Figure 1: E1 training dynamics and diagnostic transients (illustrative λred values). Curves sum-
marize MAE pretraining dynamics across seeds (mean ± std over seeds {42, 43, 44}) for representative reg-
ularization strengths λred ∈ {−0.01, 0.01, 0.1, 0.5}. (A) Training loss and (B) validation loss decrease
over epochs, with visible but nontrivial separation across λred, consistent with the fact that reconstruction
loss is not identical across runs and should not be treated as a proxy for downstream risk. (C) Spectral re-
dundancy diagnostic (red_spec_proxy) and (D) covariance-based proxy (red_cov_proxy) are shown
as training-time logged diagnostics computed on mini-batch patch-token features (flattened within batch).
Importantly, panel (D) uses a raw covariance (not correlation) off-diagonal energy proxy and is therefore
scale-sensitive. To diagnose this effect, we overlay the feature-scale statistic tr(Σ) (dotted curves; right
axis), where Σ is the same mini-batch covariance matrix used by the proxy computation. The characteristic
“rise-then-fall” in the covariance proxy early in training aligns with a transient increase in tr(Σ), reflecting a
variance/scale transition as representations move from near-random to structured features; the subsequent
decline reflects reduced off-diagonal structure under redundancy control. Unless explicitly stated otherwise,
our reported redundancy coordinates and all endpoint–interior tests use analysis-time realized diagnostics
computed post-hoc on frozen probe features Z (one sample per image), matching the probe input and avoid-
ing training-time scale transients.

5 Discussion

Summary. We define redundancy as dependence among representation coordinates via an f -divergence
from independence (Definition 3.1), and in the KL special case use the total-correlation coordinate R =
TC(Z̃) on the downstream representation Z̃ = K(ϕθ(X)) (Section 3.4). Under a well-posedness/attainment
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Figure 2: Experimental overview for the N = 33 sweep runs. (a) Scatter over seeds with a nonparametric
trend line for CIFAR-10 (in-domain) and CIFAR-100 (transfer) as a function of the realized redundancy
coordinate red_spec_proxy. (b) The same runs grouped by the control parameter λred (boxplots with
per-seed points), illustrating that λred is a control knob and that realized redundancy can overlap across
settings.
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Figure 3: Statistical evidence and proxy validation. (a) Bootstrap distribution of ∆EI = (best interior
window mean accuracy)−(best endpoint mean accuracy), where the endpoint mean is the better of the
low-R and high-R endpoint regimes. (b) Proxy consistency between red_spec_proxy and red_cov_proxy,
supporting the realized redundancy ordering used in the analysis.

layer (Assumption 3.12) and endpoint-strictness inequalities (Lemma 3.17), the attainable downstream-
risk profile E(R) admits at least one interior optimizer. Our main empirical finding is the corresponding
regime-level result: in a controlled MAE sweep (E1) with fixed probe protocol, organizing runs by a realized
redundancy diagnostic reveals an interior regime that outperforms both low-R and high-R endpoint regimes
under an endpoint–interior inequality test (Figure 3a). We emphasize that this evidence does not rely
on fitting a smooth unimodal curve, but on an inequality-style comparison aimed to reduce sensitivity
to non-monotone behavior and seed noise. To support the intended measurement link, we report strong
rank agreement between independent diagnostics (red_spec_proxy vs. red_cov_proxy; Figure 3b) and
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include a sanity bridge toward the KL/TC coordinate in a computable regime via TCGauss = − 1
2 log det(C)

(Section 4.1).

Scope and what is (and is not) claimed. The theory concerns the KL/TC coordinate R = TC(Z̃),
whereas the training-time intervention and analysis use tractable diagnostics such as Rspec(Z) and local
proxies. Accordingly, our empirical claim is coordinate-conditional: when the realized diagnostic is (i)
controllable by the intervention, (ii) exhibits sufficient regime coverage, and (iii) is proxy-consistent with
independent diagnostics, then an interior regime in that realized coordinate can be empirically identified
as preferable for downstream linear probing. We do not claim that any particular diagnostic equals TC in
general; proxy-consistency and sanity bridges are treated as guardrails rather than equivalences. Similarly,
the endpoint mechanisms in Lemma 3.17 are offered as witnesses that endpoint strictness can arise from
concrete structural reasons (e.g., corruption vs. capacity), not as a literal model of deep-net training.

Limitations. First, E1 is a controlled study in a single SSL paradigm (MAE) under a fixed backbone,
budget, and pipeline; changing model scale (undercomplete vs. overcomplete), objective family, data regime,
or training interventions can shift both the realized redundancy range and the preferred regime. Second,
disentangling redundancy-specific effects from generic regularization remains important: although generic
hyperparameters (including weight decay) are fixed within E1, a minimal additional control is to repeat a
small subset of settings under a weight-decay sweep to test whether the redundancy–probe relationship can
be reproduced by generic regularization alone. Third, the intervention variable λred is a control knob rather
than a coordinate; since λred 7→ R need not be monotone across seeds, we organize analyses by realized
coordinates rather than asserting a direct causal mapping from λred to redundancy. Finally, negative λred is
used only as a diagnostic stress-test and is not advocated as a meaningful regularization knob.

Non-universality across objectives: an informative failure mode. An attempted non-
reconstruction SSL check with VICReg (E2) illustrates a concrete failure mode for regime-based tests: even
when λred is rank-associated with the measured diagnostic and diagnostics remain mutually consistent,
the realized coordinate can exhibit insufficient regime coverage, preventing a meaningful endpoint–interior
comparison. This suggests that the practically relevant slow/structural coordinate mediating downstream
generalization can be objective-dependent: a coordinate that is controllable and regime-spanning under one
foundation objective (here, MAE) may be effectively constrained or saturated under another objective family
over the same intervention range. This motivates a general experimental workflow: for a chosen coordinate
and objective family, establish (a) intervention–coordinate controllability, (b) regime coverage in the realized
coordinate, and (c) proxy-consistency across diagnostics before drawing endpoint–interior conclusions.

Outlook: redundancy as a slow variable and beyond. A promising direction is to treat redundancy
(or, more generally, a structural diagnostic) as a slow variable: along training, many fast degrees of free-
dom (optimization noise, feature rotations, probe dynamics) may relax quickly relative to a slowly drifting
structural coordinate. If such separation holds empirically, it suggests moving from static sweeps to feedback
control: schedules or controllers that target a desired coordinate band by monitoring a realized diagnostic
online, rather than selecting a fixed λred. At the scale of foundation models, the key question becomes not
whether a single curve is “U-shaped,” but which coordinate is slow and controllable for a given objective
family, how preferred regimes shift with scale/data/task distribution, and when diagnostics can be upgraded
into reliable estimators of the KL/TC coordinate for theory-facing tests. Developing such estimators (or
certifiable bridges in restricted regimes) and connecting coordinate control to predictable downstream gen-
eralization are natural next steps.
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A Regularity of the attainable risk profile

We provide sufficient conditions under which the attainable risk profile E(R) in Definition 3.11 is well-defined,
lower semicontinuous, and attains a minimum on a compact interval. These conditions are purely sufficient;
for KL/TC coordinates in expressive model classes, additional regularity may be needed for the continuity
assumptions to hold. They serve as an abstract well-posedness layer justifying Assumption 3.12; we do not
claim that practical training dynamics satisfy these regularity conditions.
Lemma A.1 (Sufficient conditions for attainment and lower semicontinuity of E). Let Θ and G be compact
parameter spaces. Let R : Θ → R be continuous, where R(θ) := R(K(ϕθ(X))) is the redundancy coordinate
induced by ϕθ under the fixed channel K in Definition 3.11.

Assume the task risk
J(θ, g) := E[ℓtask(S, g(K(ϕθ(X))))]

is finite and continuous on Θ × G (e.g., by dominated convergence under a common integrable envelope for
ℓtask). In particular, under these assumptions R(θ) ∈ R and J(θ, g) < ∞ for all (θ, g) ∈ Θ × G, so every
such pair is admissible in the sense of Definition 3.11.

Fix Rmax > 0 and ε0 > 0. For R ∈ [0, Rmax], define the feasible set

Γε0(R) := {(θ, g) ∈ Θ × G : |R(θ) − R| ≤ ε0}.
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Assume Γε0(R) is nonempty for all R ∈ [0, Rmax]. Define the value function

E(R) := inf
(θ,g)∈Γε0 (R)

J(θ, g).

Then E is lower semicontinuous on [0, Rmax] and attains a global minimum on [0, Rmax].

Proof. Since Θ × G is compact and (θ, g) 7→ |R(θ) − R| is continuous, the correspondence R 7→ Γε0(R)
has nonempty compact values and a closed graph (hence is upper hemicontinuous). Since J is con-
tinuous, Berge’s maximum theorem (applied to the minimization problem) implies the value function
R 7→ inf(θ,g)∈Γε0 (R) J(θ, g) is lower semicontinuous on [0, Rmax] and the infimum is attained for each R.
Since [0, Rmax] is compact, E attains a global minimum.

B A low-redundancy constructive example

This appendix provides a complete derivation for Proposition 3.14. The key point is local: in a simple linear-
Gaussian model with component-wise independent corruption, exact independence in the KL redundancy
coordinate (RKL(Z̃) = DKL(P

Z̃
∥Π

Z̃
) = 0) is strictly improvable by adding an arbitrarily weak redundant

copy, which reduces the attainable squared error under optimal linear decoding while RKL(Z̃) ↓ 0.

B.1 Proof of Proposition 3.14

Assume n ≥ d + 1 and define, for α ∈ (0, 1],

Z0 = (S1, . . . , Sd, 0, . . . , 0) ∈ Rn, Zα = (S1, . . . , Sd, αS1, 0, . . . , 0) ∈ Rn.

Both are realizable under the gain constraint by taking rows of W equal to e⊤
1 , . . . , e⊤

d , αe⊤
1 , 0, . . . , 0.

Since Cov(S) is diagonal and S is Gaussian, the coordinates of Z0 are independent. Therefore Z̃0 = Z0 + ξ

has independent coordinates as well, hence RKL(Z̃0) = 0.

For Z̃α = Zα + ξ, the only dependence is between

Y1 = S1 + ξ1, Y2 = αS1 + ξd+1,

and all remaining coordinates are independent of (Y1, Y2) and mutually independent; hence TC(Z̃α) =
TC(Y1, Y2), where (Y1, Y2) are jointly Gaussian with correlation

ρ(α) = αν1√
(ν1 + σ2)(α2ν1 + σ2)

.

The total correlation of this bivariate Gaussian equals

RKL(Z̃α) = TC(Z̃α) = TC(Y1, Y2) = − 1
2 log

(
1 − ρ(α)2)

−−→
α↓0

0.

Under joint Gaussianity and squared loss, the optimal linear decoder coincides with the LMMSE estimator.
The only affected coordinate is S1, for which the decoder effectively observes two noisy measurements

Y1 = S1 + ξ1, Y2 = αS1 + ξd+1,

with independent noise variance σ2. The corresponding posterior variance is

Var(S1 | Y1, Y2) =
(

ν−1
1 + 1+α2

σ2

)−1
,

which is strictly smaller than the baseline
(
ν−1

1 + 1
σ2

)−1 for every α > 0. All other coordinates of S are
unchanged, hence the overall optimal risk is strictly smaller for Zα than for Z0 while RKL(Z̃α) ↓ 0. This
proves Proposition 3.14.
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C Additional proofs and technical lemmas

C.1 Preliminaries and Conventions

Notation link to the main text. In this appendix, U denotes a generic random vector for the redundancy
functional Rf (U) = Df (PU ∥ΠU ); in the main text, U typically corresponds to a learned representation such
as Z or its corrupted version Z̃.

We use the f -divergence notation as in Definition 3.1. We use standard facts about f -divergences, including
nonnegativity and data processing (Csiszár–Morimoto; DPI).

Throughout, ΠU =
⊗n

i=1 PUi
denotes the product of the marginals of PU . We write p for the joint density

of PU and pi for that of PUi
. For any symmetric matrix A, we denote by ∥A∥F its Frobenius norm and

by log det(A) the (scalar) natural logarithm of det(A) for A ∈ Sym++ (equivalently, log det(A) = tr(log A)
where log A is the principal matrix logarithm).

C.2 Proof of Proposition 3.3 (Nonnegativity and Identity of Indiscernibles)

Proof. By Definition 3.1, if PU ≪ ΠU and L = dPU

dΠU
, then

Rf (U) = Df (PU ∥ΠU ) =
∫

U
f(L(u)) dΠU (u) = EΠU

[f(L)].

Since f is convex and f(1) = 0, Jensen’s inequality gives

Rf (U) = EΠU
[f(L)] ≥ f(EΠU

[L]) = f(1) = 0,

using EΠU
[L] =

∫
dPU

dΠU
dΠU = 1. If PU ̸≪ ΠU , then by Definition 3.1 we have Rf (U) = +∞, so nonnegativity

also holds.

If, in addition, f is strictly convex on some interval containing 1 and Rf (U) = 0 with PU ≪ ΠU , then
equality holds in Jensen’s inequality, which forces L = 1 ΠU -a.e. Hence PU = ΠU . Conversely, if PU = ΠU ,
then L ≡ 1 and Rf (U) = 0.

C.3 Proof of Proposition 3.4 (Data Processing Inequality)

Proof. Let K =
⊗n

i=1 Ki denote the product Markov kernel mapping probability measures on U to those
on Y , where each Ki acts on coordinate Ui. Then PY = PU K and, since K factorizes coordinate-wise,
ΠY = ΠU K. By the data processing inequality for f -divergences,

Rf (Y ) = Df (PY ∥ΠY ) = Df (PU K ∥ ΠU K) ≤ Df (PU ∥ΠU ) = Rf (U),

which establishes the claim.

C.4 Proof of Proposition 3.5 (Bounds)

Proof. (1) Lower bound. This follows directly from Proposition 3.3.

(2) Upper bound under bounded likelihood ratio. Assume PU ≪ ΠU and let L = dPU

dΠU
. If m ≤ L ≤ M

ΠU -a.e., then f(L) ≤ supt∈[m,M ] f(t) ΠU -a.e., hence

Rf (U) = EΠU
[f(L)] ≤ sup

t∈[m,M ]
f(t) < ∞.

(3) KL kernel. For f(t) = t log t, the map t 7→ t log t is continuous (indeed convex) on [m, M ], so it attains
its maximum on this compact interval at an endpoint. Therefore

RKL(U) = EΠU
[L log L] ≤ max{m log m, M log M}.
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Moreover, since L ≤ M implies L log L ≤ L log M (with the convention 0 log 0 := 0) and EΠU
[L] = 1,

we also have the bound RKL(U) = EΠU
[L log L] ≤ log M . Sanity check. Since EΠU

[L] = 1, the bound
L ≤ M ΠU -a.e. implies necessarily M ≥ 1 (otherwise EΠU

[L] ≤ M < 1), and similarly m ≤ 1 when m ≤ L
ΠU -a.e.

C.5 Proof of Proposition 3.6 (Gaussian Total Correlation)

Proof. Let U ∼ N (0, Σ) with correlation matrix

C = diag(Σ)−1/2 Σ diag(Σ)−1/2.

Since Σ ≻ 0, all diagonal entries Σii > 0, so the diagonal matrix diag(Σ) (with diagonal entries from
Σ) is invertible and diag(Σ)−1/2 is well-defined. Then PU = N (0, Σ) and ΠU =

⊗
i N (0, Σii). The KL

divergence between these two Gaussian measures is given by the standard Gaussian KL formula. Note that
ΠU =

⊗
i N (0, Σii) is the multivariate Gaussian N (0, D) where D = diag(Σ11, . . . , Σnn) is the diagonal

matrix of marginal variances. Applying the standard formula DKL(N (0, Σ1)∥N (0, Σ2)) = 1
2 (tr(Σ−1

2 Σ1) −
n − log det Σ1 + log det Σ2) with Σ1 = Σ and Σ2 = D, and using tr(D−1Σ) =

∑
i Σii/Σii = n, we obtain

DKL(N (0, Σ) ∥ N (0, D)) = 1
2

(
n − n − log det Σ +

∑
i

log Σii

)
= 1

2

( ∑
i

log Σii − log det Σ
)

.

Using the factorization Σ = diag(Σ)1/2Cdiag(Σ)1/2, we obtain

log det Σ =
∑

i

log Σii + log det C,

and therefore
DKL(PU ∥ΠU ) = − 1

2 log det C,

which proves Proposition 3.6.

C.6 Proof of Proposition 3.7 (Quadratic Approximation and Covariance Form)

Proof. This subsection provides exact formulas and controlled expansions for the jointly Gaussian case.

Setup and standardization. Let U ∼ N (0, Σ) and let C = corr(U) be its correlation matrix. After
coordinate-wise standardization to unit marginal variances (i.e., replacing U by diag(Σ)−1/2U), the joint law
becomes P = N (0, C) and the product-of-marginals law becomes Q = N (0, I). Since both KL divergence
and Pearson χ2 divergence are invariant under invertible linear changes of variables (a standard invariance
property of f -divergences under bijections), it suffices to work with (P, Q) = (N (0, C), N (0, I)).

(ii) Quadratic (χ2) redundancy: closed form. Let p and q denote the densities of P and Q w.r.t.
Lebesgue measure on Rn. The likelihood ratio is

p(x)
q(x) = |C|−1/2 exp

(
− 1

2 x⊤(C−1 − I)x
)

.

By definition,

χ2(P∥Q) =
∫ (p

q
− 1

)2
dQ =

∫
p(x)2

q(x) dx − 1,

where we used
∫

p
q dQ =

∫
p dx = 1. Compute the Gaussian integral:∫

p(x)2

q(x) dx = |C|−1 (2π)−n/2
∫

exp
(

− x⊤(C−1 − I)x − 1
2 x⊤x

)
dx

= |C|−1 (2π)−n/2
∫

exp
(

− 1
2 x⊤(2C−1 − I)x

)
dx.
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This integral is finite iff 2C−1 − I ≻ 0, equivalently 2I − C ≻ 0. In particular, a sufficient condition is
∥C − I∥2 < 1 (equivalently ∥A∥2 < 1 with C = I + A), which implies 2I − C = I − A ≻ 0. In that case,

(2π)−n/2
∫

exp
(

− 1
2 x⊤(2C−1 − I)x

)
dx = |2C−1 − I|−1/2,

and hence ∫
p(x)2

q(x) dx = |C|−1 |2C−1 − I|−1/2 = |C|−1/2 |2I − C|−1/2.

Therefore, under 2I − C ≻ 0 (so χ2(P∥Q) is finite),

χ2(P∥Q) = |C|−1/2 |2I − C|−1/2 − 1. (11)

For the Pearson kernel fχ2(t) = 1
2 (t − 1)2, we have Dfχ2 (P∥Q) = 1

2 χ2(P∥Q), so

Rχ2(U) = Dfχ2 (PU ∥ΠU ) = 1
2 χ2(P∥Q) = 1

2

(
|C|−1/2 |2I − C|−1/2 − 1

)
.

Controlled second-order expansion. Write C = I + A with ∥A∥2 < 1, so I ± A ≻ 0 and in particular
2I − C = I − A ≻ 0. Using equation 11 and |2I − C| = |I − A|,

|C|−1/2|2I − C|−1/2 = |I + A|−1/2|I − A|−1/2 = exp
(

1
2
[

− log det(I+A) − log det(I−A)
])

.

Because C is a correlation matrix, diag(C) = 1 and hence diag(A) = 0; in particular tr(A) = 0 and
tr(A2) = ∥A∥2

F .

For ∥A∥2 < 1, the matrix-log series converges and

− log det(I ± A) = −tr log(I ± A) =
∑
k≥1

(∓1)k

k
tr(Ak) = ∓ tr(A) + 1

2 tr(A2) + R±,

where the remainder satisfies the bound

|R±| ≤
∑
k≥3

1
k

|tr(Ak)| ≤
∑
k≥3

1
k

∥A∥k−2
2 tr(A2) ≤ ∥A∥2

F ∥A∥2

3(1 − ∥A∥2) = O(∥A∥3
F ),

using ∥A∥2 ≤ ∥A∥F and tr(A2) = ∥A∥2
F . With tr(A) = 0, we therefore have

− log det(I ± A) = 1
2 ∥A∥2

F + O(∥A∥3
F ).

Substituting into the exponent yields

1
2
[

− log det(I+A) − log det(I−A)
]

= 1
2 ∥A∥2

F + O(∥A∥3
F ),

and exponentiating gives (for sufficiently small ∥A∥F , e.g. ∥A∥F ≤ 1)

|I+A|−1/2|I−A|−1/2 = exp
(

1
2 ∥A∥2

F + O(∥A∥3
F )

)
= 1 + 1

2 ∥A∥2
F + O(∥A∥3

F ).

Substituting into Rχ2(U) = 1
2 (|I+A|−1/2|I−A|−1/2 − 1) yields

Rχ2(U) = 1
4 ∥A∥2

F + O(∥A∥3
F ) = 1

4 ∥C − I∥2
F + O(∥C − I∥3

F ).

(i) KL / total-correlation redundancy: exact identity and expansion. In the standardized Gaussian
setting (P, Q) = (N (0, C), N (0, I)), the KL divergence has the exact closed form

DKL(P∥Q) = 1
2
(
tr(C) − log det C − n

)
= − 1

2 log det C,
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since C is a correlation matrix and tr(C) = n. This is Proposition 3.6. With C = I + A and ∥A∥2 < 1, we
have

− log det(I+A) = −tr log(I+A) =
∑
k≥1

(−1)k

k
tr(Ak).

Because tr(A) = tr(C − I) = 0 and tr(A2) = ∥A∥2
F , the remainder satisfies

∣∣∣ ∑
k≥3

(−1)k

k
tr(Ak)

∣∣∣ ≤
∑
k≥3

1
k

|tr(Ak)| ≤
∑
k≥3

1
k

∥A∥k−2
2 tr(A2) ≤ ∥A∥2

F ∥A∥2

3(1 − ∥A∥2) = O(∥A∥3
F ),

using ∥A∥2 ≤ ∥A∥F . Therefore,

RKL(U) = − 1
2 log det C = 1

4 ∥A∥2
F + O(∥A∥3

F ) = 1
4 ∥C − I∥2

F + O(∥C − I∥3
F ),

as claimed.

C.7 Proof of Definition/Proposition 3.8–3.9 (Spectral Redundancy)

Proof. Let λ1, . . . , λn be the eigenvalues of the correlation matrix C, so
∑n

j=1 λj = tr(C) = n, and define
the normalized spectrum

λ̃i = λi∑n
j=1 λj

,

n∑
i=1

λ̃i = 1.

The spectral entropy is

Hλ(Z) = −
n∑

i=1
λ̃i log λ̃i,

which satisfies Hλ(Z) ∈ [0, log n], with Hλ(Z) = log n if and only if λ̃ is uniform and Hλ(Z) = 0 if and only
if the spectrum is rank one. Setting reff(Z) = exp(Hλ(Z)) ∈ [1, n] and

Rspec(Z) = 1 − reff(Z)
n

,

we obtain
Rspec(Z) ∈

[
0, 1 − 1

n

]
.

The lower and upper extremes correspond, respectively, to the uniform (maximally spread) and rank-one
(completely collapsed) spectra. These bounds follow directly from standard entropy inequalities.

C.8 Proof of Lemma 3.21 (Spectral Norm Control)

Proof. Let Z = WX with ∥W∥2 ≤ M and E∥X∥2 ≤ σ2.

tr(ΣZ) = E∥Z − EZ∥2 = E∥W (X − EX)∥2 ≤ ∥W∥2
2 E∥X − EX∥2 ≤ ∥W∥2

2 E∥X∥2 ≤ M2σ2.

Therefore, the total spectral energy of Z is bounded, implying that the normalized eigenvalue spectrum is
well defined and that reff(Z) ∈ [1, n]. Consequently, Rspec(Z) ∈ [0, 1 − 1

n ] by Definition 3.8, completing the
proof.

C.9 Proof of Lemma 3.22 (KL vs. Frobenius Near Independence)

The proof is provided inline following the lemma statement in Section 3.6.
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C.10 Proof of Lemma 3.23 (Capacity-Side Bound)

Proof. By the entropy decomposition,

H(Z̃) =
∑

i

H(Z̃i) − TC(Z̃) =
∑

i

H(Z̃i) − RKL(Z̃).

Under the assumed entropy budget
∑

i H(Z̃i) ≤ B0, this yields

H(Z̃) ≤ B0 − RKL(Z̃).

Since mutual information is bounded by entropy, I(Z̃; S) ≤ H(Z̃), increasing redundancy necessarily reduces
the maximal mutual information between the representation Z̃ and the task variable S. This yields equation 6
and completes the proof.
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