
TopoTune: A Framework for Generalized
Combinatorial Complex Neural Networks

Mathilde Papillon 1 Guillermo Bernárdez 1 Claudio Battiloro * 2 Nina Miolane * 1

Abstract
Graph Neural Networks (GNNs) effectively learn
from relational data by leveraging graph symme-
tries. However, many real-world systems—such
as biological or social networks—feature multi-
way interactions that GNNs fail to capture. Topo-
logical Deep Learning (TDL) addresses this by
modeling and leveraging higher-order structures,
with Combinatorial Complex Neural Networks
(CCNNs) offering a general and expressive ap-
proach that has been shown to outperform GNNs.
However, TDL lacks the principled and standard-
ized frameworks that underpin GNN development,
restricting its accessibility and applicability. To
address this issue, we introduce Generalized CC-
NNs (GCCNs), a simple yet powerful family of
TDL models that can be used to systematically
transform any (graph) neural network into its TDL
counterpart. We prove that GCCNs generalize and
subsume CCNNs, while extensive experiments on
a diverse class of GCCNs show that these architec-
tures consistently match or outperform CCNNs,
often with less model complexity. In an effort to
accelerate and democratize TDL, we introduce
TopoTune, a lightweight software for defining,
building, and training GCCNs with unprecedented
flexibility and ease.

1. Introduction
Graph Neural Networks (GNNs) (Scarselli et al., 2008;
Corso et al., 2024) have demonstrated remarkable perfor-
mance in several relational learning tasks by incorporating
prior knowledge through graph structures (Kipf & Welling,
2017; Zhang & Chen, 2018). However, constrained by the
pairwise nature of graphs, GNNs are limited in their ability

*Equal contribution 1University California Santa Barbara, USA
2Harvard University, USA. Correspondence to: Mathilde Papillon
<papillon@ucsb.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

to capture and model higher-order interactions—crucial in
complex systems like particle physics, social interactions,
or biological networks (Lambiotte et al., 2019). Topologi-
cal Deep Learning (TDL) (Bodnar, 2023; Battiloro, 2024)
precisely emerged as a framework that naturally encom-
passes multi-way relationships, leveraging beyond-graph
combinatorial topological domains such as simplicial and
cell complexes, or hypergraphs (Papillon et al., 2023).1

In this context, Hajij et al. (2023; 2024a) have recently in-
troduced combinatorial complexes, fairly general objects
that are able to model arbitrary higher-order interactions
along with a hierarchical organization among them–hence
generalizing (for learning purposes) most of the combina-
torial topological domains within TDL, including graphs.
The elements of a combinatorial complex are cells, being
nodes or groups of nodes, which are categorized by ranks.
The simplest cell, a single node, has rank zero. Cells of
higher ranks define relationships between nodes: rank one
cells are edges, rank two cells are faces, and so on. Hajij
et al. (2023) also proposes Combinatorial Complex Neural
Networks (CCNNs), deep learning architectures that lever-
age the versatility of combinatorial complexes to naturally
model higher-order interactions. For instance, consider the
task of predicting the solubility of a molecule from its struc-
ture. GNNs model molecules as graphs, thus considering
atoms (nodes) and bonds (edges) (Gilmer et al., 2017). By
contrast, CCNNs model molecules as combinatorial com-
plexes, hence considering atoms (nodes, i.e., cells of rank
zero), bonds (edges, i.e., cells of rank one), and also im-
portant higher-order structures such as rings or functional
groups (i.e., cells of rank two) (Battiloro et al., 2025).

TDL Research Trend. To date, research in TDL has
largely progressed by taking existing GNNs architectures
(convolutional, attentional, message-passing, etc.) and gen-
eralizing them one-by-one to a specific TDL counterpart,
whether that be on hypergraphs (Feng et al., 2019; Chen
et al., 2020a; Yadati, 2020), on simplicial complexes (Rod-
denberry et al., 2021; Yang & Isufi, 2023; Ebli et al., 2020;
Giusti et al., 2022a; Battiloro et al., 2024; Bodnar et al.,

1Simplicial and cell complexes model specific higher-order
interactions organized hierarchically, while hypergraphs model
arbitrary higher-order interactions but without any hierarchy.

1

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Re
ad

ou
t

Rank-Level
Aggregation

Layer

nodes nodes

edges edges

faces edges

�� �� �� �� ��

Layer

Figure 1. Generalized Combinatorial Complex Network (GCCN). The input complex C has neighborhoods NC = {N1,N2,N3}.
A. The complex is expanded into three augmented Hasse graphs GNi , i = {1, 2, 3}, each with features HNi represented as a colored
disc. B. A GCCN layer dedicates one base architecture ωNi (GNN, Transformer, MLP, etc.) to each neighborhood. C. The output of
all the architectures ωNi is aggregated rank-wise, then updated. In this example, only the complex’s edge features (originally pink) are
aggregated across multiple neighborhoods (N2 and N3).

2021b; Maggs et al., 2024; Lecha et al., 2025), on cell com-
plexes (Hajij et al., 2020; Giusti et al., 2022b; Bodnar et al.,
2021a), or on combinatorial complexes (Battiloro et al.,
2025; Eitan et al., 2024). Although overall valuable and
insightful, such a fragmented research trend is slowing the
development of standardized methodologies and software
for TDL, as well as limiting the analysis of its cost-benefits
trade-offs (Papamarkou et al., 2024). We argue these two
challenges are hindering the use and application of TDL be-
yond the community of experts. This is particularly relevant
as practitioners are beginning to turn to TDL for tackling
application-specific scenarios, such as computer network
modelling (Bernárdez et al., 2025).

Current Efforts and Gaps for TDL Standardization.
TopoX (Hajij et al., 2024b) and TopoBench(Telyatnikov
et al., 2024) have become the reference Python libraries for
developing and benchmarking TDL models, respectively.
However, despite their potential in defining and implement-
ing novel standardized methodologies in the field, the cur-
rent focus of these packages is on replicating and analyzing
existing message-passing CCNNs. Works like Jogl et al.
(2022b;a) have instead focused on making TDL accessi-
ble by porting models to the graph domain. They do so
via principled transformations from combinatorial topolog-
ical domains to graphs. However, although these architec-
tures are as expressive as their TDL counterparts (using the
Weisfeiler-Lehman criterion (Xu et al., 2019b)), they are
neither formally equivalent to nor a generalization of their
TDL counterparts. Due to collapse of rank information dur-
ing the graph expansion, the GNNs on the resulting graph
do not preserve the same topological information.

Contributions. This works seeks to accelerate TDL re-
search and increase its accessibility and standardization for

outside practitioners. To that end, we introduce a novel joint
methodological and software framework that easily enables
the development of new TDL architectures in a principled
way—overcoming the limitations of existing works. We
outline our main contributions and specify which of the
field’s open problems (OPs), as defined in Papamarkou et al.
(2024), they help answer:

• Systematic Generalization. We propose the first method
to systematically generalize any neural network to its
topological counterpart with minimal adaptation. Specifi-
cally, we define a novel expansion mechanism that trans-
forms a combinatorial complex into a collection of graphs,
enabling the training of TDL models as an ensemble of
synchronized models. To our knowledge, this is the first
method designed to accommodate many topological do-
mains. (OPs 6, 11: foundational, cross-domain TDL.)

• General Architectures. Our method induces a novel
wide class of TDL architectures, Generalized Combina-
torial Complex Networks (GCCNs), portrayed in Fig. 1.
GCCNs (i) formally generalize CCNNs, (ii) are cell per-
mutation equivariant, and (iii) are as expressive as CCNNs.
(OP 9: consolidating TDL advantages in a unified theory.)

• Implementation. We provide TopoTune, a lightweight
PyTorch module for developing GCCNs fully integrated
into TopoBench (Telyatnikov et al., 2024). (OP 4: need
for software). Using TopoTune, practitioners can, for the
first time, easily define and iterate upon TDL models,
making TDL a much more practical tool for real-world
datasets (OP 1: need for accessible TDL).

• Benchmarking. Using TopoTune, we create a broad class
of GCCNs using four base GNNs and one base Trans-

2

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

former over two combinatorial topological spaces (simpli-
cial and cell complexes). Unlike prior works that compare
models under heterogeneous conditions, our systematic
benchmarking provides a controlled evaluation of GCCNs
across diverse architectures, datasets, and topological do-
mains. A wide range of experiments on graph-level and
node-level benchmark datasets shows GCCNs generally
outperform existing CCNNs, often with smaller model
sizes. Some of these results are obtained with GCCNs that
cannot be reduced to standard CCNNs, further underlin-
ing our methodological contribution. A guide to the code
is available at geometric-intelligence.github.io/topotune.
(OP 3: need for standardized benchmarking.)

Outline. Section 2 provides necessary background. Sec-
tion 3 motivates and positions our work in the current TDL
literature. Section 4 introduces and discusses GCCNs. Sec-
tion 5 describes TopoTune. Finally, Section 6 showcases
extensive numerical experiments and comparisons.

2. Background
To properly contextualize our work, we revisit the funda-
mentals of combinatorial complexes and CCNNs—closely
following the works of Hajij et al. (2023) and Battiloro et al.
(2025)—as well as the notion of augmented Hasse graphs.
Appendix A briefly introduces all topological domains used
in TDL, such as simplicial and cell complexes.

Combinatorial Complex. A combinatorial complex is
a triple (V, C, rk) consisting of a set V , a subset C of the
powerset P(V)\{∅}, and a rank function rk : C → Z≥0

with the following properties:

1. for all v ∈ V, {v} ∈ C and rk({v}) = 0;

2. the function rk is order-preserving, i.e., if σ, τ ∈ C
satisfy σ ⊆ τ , then rk(σ) ≤ rk(τ).

The elements of V are the nodes, while the elements of C
are called cells (i.e., group of nodes). The rank of a cell
σ ∈ C is k := rk(σ), and we call it a k-cell. C simplifies
notation for (V, C, rk), and its dimension is defined as the
maximal rank among its cell: dim(C) := maxσ∈C rk(σ).

Neighborhoods. Combinatorial complexes can be
equipped with a notion of neighborhood among cells. In
particular, a neighborhood N : C → P(C) on a combinato-
rial complex C is a function that assigns to each cell σ in C
a collection of “neighbor cells” N (σ) ⊂ C ∪ ∅. Examples
of neighborhood functions are adjacencies, connecting cells
with the same rank, and incidences, connecting cells with
different consecutive ranks. Usually, up/down incidences

NI,↑ and NI,↓ are defined as

NI,↑(σ) =
{
τ ∈ C

∣∣ rk(τ) = rk(σ) + 1, σ ⊂ τ
}
,

NI,↓(σ) =
{
τ ∈ C

∣∣ rk(τ) = rk(σ)− 1, τ ⊂ σ
}
.

(1)

Therefore, a k + 1-cell τ is a neighbor of a k-cell σ w.r.t. to
NI,↑ if σ is contained in τ ; analogously, a k − 1-cell τ is
a neighbor of a k-cell σ w.r.t. to NI,↓ if τ is contained in
σ. These incidences induce up/down adjacencies NA,↑ and
NA,↓ as

NA,↑(σ) =
{
τ ∈ C

∣∣ rk(τ) = rk(σ), (2)

∃δ ∈ C : rk(δ) = rk(σ) + 1, τ ⊂ δ, σ ⊂ δ
}
,

NA,↓(σ) =
{
τ ∈ C

∣∣ rk(τ) = rk(σ), (3)

∃δ ∈ C : rk(δ) = rk(σ)− 1, δ ⊂ τ, δ ⊂ σ
}
.

Therefore, a k-cell τ is a neighbor of a k-cell σ w.r.t. to NA,↑
if they are both contained in a k + 1-cell δ; analogously, a
k-cell τ is a neighbor of a k-cell σ w.r.t. to NA,↓ if they both
contain a k − 1-cell δ. Other neighborhood functions can
be defined for specific applications (Battiloro et al., 2025).

Combinatorial Complex Message-Passing Neural Net-
works. Let C be a combinatorial complex, and NC a collec-
tion of neighborhood functions. The l-th layer of a CCNN
updates the embedding hl

σ ∈ RF l

of cell σ as

hl+1
σ = ϕ

hl
σ,
⊗

N∈NC

⊕
τ∈N (σ)

ψN ,rk(σ)
(
hl
σ,h

l
τ

) ∈ RF l+1

,

(4)
where h0

σ := hσ are the initial features,
⊕

is an intra-
neighborhood aggregator,

⊗
is an inter-neighborhood ag-

gregator. The functions ψN ,rk(·) : RF l → RF l+1

and the
update function ϕ are learnable functions, which are typi-
cally homogeneous across all neighborhoods and ranks. In
other words, the embedding of a cell is updated in a learn-
able fashion by first aggregating messages with neighboring
cells per each neighborhood, and then by further aggregat-
ing across neighborhoods. We remark that by this definition,
all CCNNs are message-passing architectures. Moreover,
they can only leverage neighborhood functions that consider
all ranks in the complex.

Augmented Hasse Graphs. In TDL, a Hasse graph is a
graph expansion of a combinatorial complex. Specifically, it
represents the incidence structure NI,↓ by representing each
cell (node, edge, face) as a node and drawing edges between
cells that are incident to each other. Going beyond just con-
sidering NI,↓ , given a collection of multiple neighborhood
functions, a combinatorial complex C can be expanded into
a unique graph representation. We refer to this represen-
tation as an augmented Hasse graph (Fig. 2) (Hajij et al.,
2023). Formally, let NC be a collection of neighborhood

3

https://geometric-intelligence.github.io/topotune/

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Figure 2. Augmented Hasse graphs. Expansions of a combinato-
rial complex C (middle) into two augmented Hasse graphs: (left)
the Hasse graph induced by NC = {NI,↓}; (right) the augmented
Hasse graph induced by NC = {NI,↓,NA,↑}. Information on cell
rank is discarded (we retain rank color for illustrative purposes).

functions on C: the augmented Hasse graph GNC of C in-
duced by NC is a directed graph GNC = (C, ENC) with cells
represented as nodes, and edges given by

ENC = {(τ, σ)|σ, τ ∈ C,∃ N ∈ NC : τ ∈ N (σ)}. (5)

The augmented Hasse graph of C is thus obtained by con-
sidering the cells as nodes, and inserting directed edges
among them if the cells are neighbors in C. Notably, such
a representation of a combinatorial complex discards all
information about cell rank.

3. Motivation and Related Works
As outlined in the introduction, TDL lacks a comprehensive
framework for easily creating and experimenting with novel
topological architectures—unlike the more established GNN
field. This section outlines some previous works that have
laid important groundwork in addressing this challenge.

Formalizing CCNNs on graphs. The position paper
(Veličković, 2022) proposed that any function over a higher-
order domain can be computed via message passing over
a transformed graph, but without specifying how to design
GNNs that reproduce CCNNs. Hajij et al. (2023) showed
that, given a combinatorial complex C and a collection of
neighborhoods NC , a message-passing GNN that runs over
the augmented Hasse graph GNC is equivalent to a specific
CCNN as in (4) running over C using: i) NC as collection of
neighborhoods; ii) same intra- and inter-aggregations, i.e.,⊕

=
⊗

; and iii) no rank- and neighborhood-dependent
message functions, i.e., ψN ,rk(·) = ψ ∀N ∈ NC .

Retaining expressivity, but not topological symmetry.
Jogl et al. (2022a;b) demonstrate that GNNs on augmented
Hasse graphs GNC are as expressive as CCNNs on C (us-
ing the WL criterion), suggesting that some CCNNs can be
simulated with standard graph libraries. 2. However, as the
authors state, such GNNs do not structurally distinguish be-
tween cells of different ranks or neighborhoods, collapsing

2The same authors generalize these ideas to non-standard
message-passing GNNs (Jogl et al., 2024).

Figure 3. Ensemble of strictly augmented Hasse Graphs. Given
a complex C with neighborhood structure including both incidence
and upper adjacency (left), this graph expansion (right) produces
one augmented Hasse graph for each neighborhood.

topological relationships. For instance, in a molecule (cellu-
lar complex), two bonds (edges) may simultaneously share
multiple neighborhoods: lower-adjacent through a shared
atom (node) and upper-adjacent through a shared ring (face).
A GNN on GNC collapses these distinctions, applying the
same weights to all connections and losing the structural
symmetries encoded in the domain. While this may suffice
for preserving expressivity, it is inherently a very different
computation than that of TDL models.

The Particular Case of Hypergraphs. Hypergraph neu-
ral networks have long relied on graph expansions (Telyat-
nikov et al., 2023), which has allowed the field to leverage
advances in the graph domain and, by extension, a much
wider breadth of models (Antelmi et al., 2023; Papillon et al.,
2023). Most hypergraph models are expanded into graphs
using the star (Zhou et al., 2006; Solé et al., 1996), the clique
(Bolla, 1993; Rodrı́guez, 2002; Gibson et al., 2000), or the
line expansion (Bandyopadhyay et al., 2020). As noted by
Agarwal et al. (2006), many hypergraph learning algorithms
leverage graph expansions.

The success story of hypergraph neural networks motivates
further research on new graph-based expansions of CCNNs.
These expansions could, at the same time, subsume current
CCNNs and exploit progress in the GNN field. Therefore,
returning to our core goal of accelerating and democratizing
TDL while preserving its theoretical properties, we propose
a two-part approach: a novel graph-based methodology
able to generate general architectures (Section 4), and a
lightweight software framework to easily and widely im-
plement it (Section 5).

4. Generalized Combinatorial Complex
Neural Networks

We propose Generalized Combinatorial Complex Neural
Networks (GCCNs), a novel broad class of TDL architec-
tures. GCCNs overcome the limitations of previous graph-
based TDL architectures by leveraging the notions of strictly
augmented Hasse graphs and per-rank neighborhoods.

4

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Ensemble of Strictly Augmented Hasse Graphs. This
graph expansion method (see Fig. 3) extends from the
established definition of an augmented Hasse graph (see
Fig. 2). Specifically, given a combinatorial complex C and
a collection of neighborhood functions NC , we expand it
into |NC | graphs, each of them representing a neighborhood
N ∈ NC . In particular, the strictly augmented Hasse graph
GN = (CN , EN) of a neighborhood N ∈ NC is a directed
graph whose nodes CN and edges EN are given by:

CN = {σ ∈ C |N (σ) ̸= ∅}, EN = {(τ, σ) | τ ∈ N (σ)}.
(6)

Following the same arguments from (Hajij et al., 2023), a
GNN over the strictly augmented Hasse graph GN induced
by N is equivalent to a CCNN running over C and using
NC = {N} up to the (self-)update of the cells in C/CN .

Per-rank Neighborhoods. The standard definition of ad-
jacencies and incidences given in Section 2 implies that they
are applied to each cell regardless of its rank. For instance,
consider a combinatorial complex of dimension two with
nodes (0-cells), edges (1-cells), and faces (2-cells). Employ-
ing the down incidence NI,↓ as in (1) means the edges must
exchange messages with their endpoint nodes, and faces
must exchange messages with the edges on their sides. It is
impossible for edges to communicate while faces do not.

This limitation increases the computational cost of standard
CCNNs while not always increasing the learning perfor-
mance, as experiments will show. For this reason, we in-
troduce per-rank neighborhoods, examples of which are
depicted in Fig. 4. Formally, a per-rank neighborhood func-
tion N r maps a cell σ to the empty set if σ is a cell of rank
r. For example, the up/down r-incidences N r

I,↑ and N r
I,↓

are defined as

N r
I,↑(σ) =

{
τ ∈ C

∣∣ rk(τ) = rk(σ) + 1, σ ⊂ τ
}
,

if rk(σ) = r,

∅, otherwise,

N r
I,↓(σ) =

{
τ ∈ C

∣∣ rk(τ) = rk(σ)− 1, σ ⊂ τ
}
,

if rk(σ) = r,

∅, otherwise.
(7)

and the up/down r-adjacencies N r
A,↑ and N r

A,↓ can be ob-
tained analogously. So, it is now straightforward to model
a setting in which employing only N 1

I,↓ (Fig. 4iii) allows
edges to exchange messages with their bounding nodes but
not triangles with their bounding edges.

Generating Graph-based TDL Architectures. We use
these notions to define a novel graph-based methodology
for generating principled TDL architectures. Given a com-
binatorial complex C and a set NC of neighborhoods, the

Figure 4. Per-rank neighborhoods. Given a complex C (left), we
illustrate four examples of per-rank neighborhoods (right). In each
case, they only include rank-specific cells.

method works as follows (see also Fig. 1): (i) C is expanded
into an ensemble of strictly augmented Hasse graphs—one
for each N ∈ NC . (ii) Each strictly augmented Hasse
graph GN and the features of its cells are independently
processed by a base model. (iii) An aggregation module

⊗
synchronizes the cell features across the different strictly
augmented Hasse graphs (as the same cells can belong to
multiple strictly augmented Hasse graphs).

This method enables an ensemble of synchronized models
per layer— the ωN s—each of them applied to a specific
strictly augmented Hasse graph.3. The rest of this section
formalizes the architectures induced by this methodology.

Generalized Combinatorial Complex Networks. We
formally introduce a broad class of novel TDL architectures
called Generalized Combinatorial Complex Networks (GC-
CNs), depicted in Fig. 1. Let C be a combinatorial complex
containing |C| cells and NC a collection of neighborhoods on
it. Assume an arbitrary labeling of the cells in the complex,
and denote the i-th cell with σi. Denote by H ∈ R|C|×F

the feature matrix collecting some embeddings of the cells
on its rows, i.e., [H]i = hσi , and by HN ∈ R|CN |×F the
submatrix containing just the embeddings of the cells be-
longing to the strictly augmented Hasse graph GN of N .
The l-th layer of a GCCN updates the embeddings of the
cells Hl ∈ R|C|×F l

as

Hl+1 = ϕ

(
Hl,

⊗
N∈NC

ωN (Hl
N ,GN)

)
∈ R|C|×F l+1

,

(8)
where H0 collects the initial features, and the update
function ϕ is a learnable row-wise update function, i.e.,
[ϕ(A,B)]i = ϕ([A]i, [B]i). The neighborhood-dependent
sub-module ωN : R|CN |×F l → R|CN |×F l+1

, which we re-
fer to as the neighborhood message function, is a learnable
(matrix) function that takes as input the whole strictly aug-
mented Hasse graph of the neighborhood, GN and the em-
beddings of the cells that are part of it, and gives as output a
processed version of them. Finally, the inter-neighborhood

3Contrary to past CCNN simulation works that apply a model
to the singular, whole augmented Hasse graph.

5

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

aggregation module
⊗

synchronizes the possibly multiple
neighborhood messages arriving on a single cell across mul-
tiple strictly augmented Hasse graphs into a single message.
GCCNs enjoy increased flexibility over CCNS (eq. 4) as
their neighborhoods are allowed to be rank-dependent and
their ωN ’s are not necessarily message-passing.

Theoretical properties of GCCNs.

1. Generality. GCCNs formally generalize CC-
NNs.

Proposition 4.1. Let C be a combinatorial com-
plex. Let NC be a collection of neighborhoods
on C. Then, there exists a GCCN that exactly
reproduces the computation of a CCNN over C
using NC .

Proof of Prop. 4.1 (Appendix B.1) relies on
setting the ωN of a GCCN to a simple, single-
layer convolution.

2. Permutation Equivariance. Generalizing CC-
NNs, GCCNs layers are equivariant with re-
spect to the relabeling of cells in the combina-
torial complex.

Proposition 4.2. A GCCN layer is cell permu-
tation equivariant if the neighborhood message
function is node permutation equivariant and
the inter-neighborhood aggregator is cell per-
mutation invariant.

Proof of Prop 4.2 (Appendix B.2) hinges on
the node-wise permutation equivariance of ωN
and the permutation invariance of the inter-
neighborhood aggregation.

3. Expressivity. The expressiveness of TDL mod-
els is tied to their ability to distinguish non-
isomorphic graphs. Variants of the Weisfeiler-
Leman (WL) test, like the cellular WL for cell
complexes (Bodnar et al., 2021a), set upper
bounds on their corresponding TDL models’
expressiveness, as the WL test does for GNNs
(Xu et al., 2019b).

Proposition 4.3. GCCNs are strictly more ex-
pressive than CCNNs.

Proof of Prop. 4.3 (Appendix B.3) shows that
GCCNs surpass CCNNs in expressivity by re-
lating CCNNs to Weisfeiler-Leman (WL) and
GCCNs to k-WL on augmented Hasse graphs.

Given Proposition 4.1, GCCNs allow us to define general
TDL models using any neighborhood message function ωN ,
such as any GNN. Not only does this framework avoid
having to approximate CCNN computations, as is the case
in previous works 4 (Jogl et al., 2022b;a; 2023), but it also
enjoys the same permutation equivariance as regular CCNNs
(Proposition 4.2). We show in Appendix C that the resulting
time complexity of a GCCN is a compromise between a
typical GNN and a CCNN. Differently from the work in
(Hajij et al., 2023), the fact that GCCNs can have arbitrary
neighborhood message functions implies that non message-
passing TDL models can be readily defined. For example,
one could choose ωN to be a spectral convolution neural
network such as Defferrard et al. (2016). To the best of our
knowledge, GCCNs are the only objects in the literature that
encompass all the above properties.

5. TopoTune
Our proposed methodology, together with its resulting GC-
CNs architectures, addresses the challenge of systemati-
cally generating principled, general TDL models. Here,
we introduce TopoTune, a software module for defin-
ing and benchmarking GCCN architectures on the fly—
a vehicle for accelerating TDL research. A quick start
guide to the code and tutorial are provided at geometric-
intelligence.github.io/topotune. This section details Topo-
Tune’s main features.

Change of Paradigm. TopoTune introduces a new per-
spective on TDL through the concept of “neighborhoods of
interest,” enabling unprecedented flexibility in architectural
design. Previously fixed components of CCNNs, such as
choice of topological domain, become hyperparameters of
our framework.

Accessible TDL. Using TopoTune, a practitioner can in-
stantiate customized GCCNs simply by modifying a few
lines of a configuration file. In fact, it is sufficient to specify
(i) a collection of per-rank neighborhoods NC , (ii) a neigh-
borhood message function ωN , and optionally (iii) some
architectural parameters—e.g., the number l of GCCN lay-
ers.5 For the neighborhood message function ωN , the same
configuration file enables direct import of models from Py-
Torch libraries such as PyTorch Geometric (Fey & Lenssen,
2019) and Deep Graph Library (Chen et al., 2020b). Topo-
Tune’s simplicity provides both newcomers and experts with
an accessible tool for defining topological architectures.

4These models employ GNNs running on one augmented Hasse
graph, i.e. a GCCN that, given a collection of neighborhoods
NC , uses a single neighborhood Ntot defined, for a cell σ, as
Ntot(σ) =

⋃
N∈NC

N (σ).
5We provide a detailed pseudo-code for TopoTune module in

Appendix D.

6

https://geometric-intelligence.github.io/topotune/
https://geometric-intelligence.github.io/topotune/

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Accelerating TDL Research. TopoTune is fully inte-
grated into TopoBench (Telyatnikov et al., 2024), a com-
prehensive package offering a wide range of standardized
methods and tools for TDL. Practitioners can access ready-
to-use models, training pipelines, tasks, and evaluation met-
rics, including leading open-source models from TopoX
(Hajij et al., 2024b). In addition, TopoBench features the
largest collection of topological liftings currently avail-
able—transformations that map graph datasets into higher-
order topological domains. Together, TopoBench and Topo-
Tune organize the vast design space of TDL into an ac-
cessible framework, providing unparalleled versatility and
standardization for practitionners.

6. Experiments
We present experiments showcasing a broad class of
GCCN’s constructed with TopoTune. These models con-
sistently match, outperform, or finetune existing CCNNs,
often with smaller model sizes. TopoTune’s integration into
the TopoBench experiment infrastructure ensures a fair com-
parison with CCNNs from the literature, as data processing,
domain lifting, and training are homogeonized.

6.1. Experimental Setup

We generate our class of GCCNs by considering ten possi-
ble choices of neighborhood structure NC (including both
regular and per-rank, see Appendix E.1) and five possible
choices of ωN : GCN (Kipf & Welling, 2017), GAT (Velick-
ovic et al., 2017), GIN (Xu et al., 2019a), GraphSAGE
(Hamilton et al., 2017), and Transformer (Vaswani et al.,
2017). We import these models directly from PyTorch Geo-
metric (Fey & Lenssen, 2019) and PyTorch (Paszke et al.,
2019). TopoTune enables running GCCNs on both an en-
semble of strictly augmented Hasse graphs (eq. 6) and an
augmented Hasse graph (eq. 5). While CCNN results re-
flect extensive hyperparameter tuning by Telyatnikov et al.
(2024) (see that work’s Appendix C.2 for details), we largely
fix GCCN training hyperparameters using the TopoBench
default configuration.

Datasets. We include a wide range of benchmark tasks
(see Appendix E.2). MUTAG, PROTEINS, NCI01, and
NCI09 (Morris et al., 2020) are graph-level classification
tasks about molecules or proteins. ZINC (Irwin et al., 2012)
(subset) is a graph-level regression task about solubility. At
the node level, the Cora, CiteSeer, and PubMed tasks (Yang
et al., 2016) involve classifying publications within citation
networks. We consider two topological domains: simplicial
and cellular complexes. We use TopoBench’s lifting pro-
cesses to infer higher-order relationships in these data. We
use node features to construct edge and face features.

6.2. Results and Discussion

GCCNs outperform CCNNs. Table 1 compares top-
performing CCNNs with our class of GCCNs. GCCNs out-
perform CCNNs across all datasets in the simplicial and cel-
lular domains and match hypergraph CCNNs—something
CCNNs fail to achieve in node-level tasks. Across 16 do-
main/dataset combinations, GCCNs exceed the best CCNN
by > 1σ in 11 cases. In 2 combinations, GCCNs are out-
performed by the best GNN included in Telyatnikov et al.
(2024). Representing complexes as ensembles of augmented
Hasse graphs, rather than a single graph, improves results.

Generalizing existing CCNNs to GCCNs improves per-
formance. TopoTune makes it easy to iterate upon and
improve preexisting CCNNs by replicating their architecture
in a GCCN setting. For example, TopoTune can generate a
counterpart GCCN by replicating a CCNN’s neighborhood
structure, aggregation, and training scheme. We show in
Table 2 that counterpart GCCNs can achieve comparable or
better results than SCCN (Yang et al., 2022) and CWN (Bod-
nar et al., 2021a) just by sweeping over additional choices
of ωN . In the single augmented Hasse graph regime, GCCN
models are consistently more lightweight, up to half their
size (see Table 5).

GCCNs perform competitively to CCNNs with fewer
parameters. GCCNs are often more parameter efficient
than existing CCNNs in simplicial and cellular domains,
and in some instances (MUTAG, NCI1, NCI09), even in
the hypergraph domain. We refer to Table 4. Even as
GCCNs become more parameter-intensive for large graphs
with high-dimensional embeddings—as seen in node-level
tasks—they remain competitive. (We refer to Appendix H.1
for additional results on larger node-level datasets.) For
instance, on the Citeseer dataset, a GCCN (ωN = Graph-
SAGE) outperforms the best existing CCNN while being
28% smaller. Training times in Appendix G show GCCNs
train comparably on smaller datasets but slow down on
larger ones, likely due to TopoTune’s on-the-fly graph ex-
pansion. Preprocessing this expansion in future work could
mitigate the lag.

TopoTune finds parameter-efficient GCCNs. By easily
exploring a wide landscape of possible GCCNs for a given
task, TopoTune helps identify models that maximize per-
formance while minimizing model size. Fig. 5 illustrates
this trade-off by comparing the performance and size of
selected GCCNs (see Appendix I for more). On the PRO-
TEINS dataset, two GCCNs using per-rank neighborhood
structures (orange and black) achieve performance within
2% of the best result while requiring as little as 48% of the
parameters. This reduction is due to fewer neighborhoods
N , resulting in fewer ωN blocks per GCCN layer. Similarly,

7

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Table 1. Cross-domain, cross-task, cross-expansion, and cross-ωN comparison of GCCN architectures with top-performing CCNNs
benchmarked on TopoBench (Telyatnikov et al., 2024). Best result is in bold and results within 1 standard deviation are highlighted
blue . Experiments are run with 5 seeds. We report accuracy for classification tasks and MAE for regression.

Graph-Level Tasks Node-Level Tasks

Model MUTAG (↑) PROTEINS (↑) NCI1 (↑) NCI109 (↑) ZINC (↓) Cora (↑) Citeseer (↑) PubMed (↑)

Graph

GNN (Best Model on TopoBench) 79.57 ± 6.13 76.34 ± 1.66 75.00 ± 0.99 74.42 ± 0.70 0.57 ± 0.04 87.21 ± 1.89 75.53 ± 1.27 89.44 ± 0.24

Cellular

CCNN (Best Model on TopoBench) 80.43 ± 1.78 76.13 ± 2.70 76.67 ± 1.48 75.35 ± 1.50 0.34 ± 0.01 87.44 ± 1.28 75.63 ± 1.58 88.64 ± 0.36

GCCN ωN = GAT 83.40 ± 4.85 74.05 ± 2.16 76.11 ± 1.69 75.62 ± 0.76 0.38 ± 0.03 88.39 ± 0.65 74.62 ± 1.95 87.68 ± 0.33

GCCN ωN = GCN 85.11 ± 6.73 74.41 ± 1.77 76.42 ± 1.67 75.62 ± 0.94 0.36 ± 0.01 88.51 ± 0.70 75.41 ± 2.00 88.18 ± 0.26

GCCN ωN = GIN 86.38 ± 6.49 72.54 ± 3.07 77.65 ± 1.11 77.19 ± 0.21 0.19 ± 0.00 87.42 ± 1.85 75.13 ± 1.17 88.47 ± 0.27

GCCN ωN = GraphSAGE 85.53 ± 6.80 73.62 ± 2.72 78.23 ± 1.47 77.10 ± 0.83 0.24 ± 0.00 88.57 ± 0.58 75.89 ± 1.84 89.40 ± 0.57

GCCN ωN = Transformer 83.83 ± 6.49 70.97 ± 4.06 73.00 ± 1.37 73.20 ± 1.05 0.45 ± 0.02 84.61 ± 1.32 75.05 ± 1.67 88.37 ± 0.22

GCCN ωN = Best GNN, 1 Aug. Hasse graph 85.96 ± 7.15 73.73 ± 2.95 76.75 ± 1.63 76.94 ± 0.82 0.31 ± 0.01 87.24 ± 0.58 74.26 ± 1.47 88.65 ± 0.55

Simplicial

CCNN (Best Model on TopoBench) 76.17 ± 6.63 75.27 ± 2.14 76.60 ± 1.75 77.12 ± 1.07 0.36 ± 0.02 82.27 ± 1.34 71.24 ± 1.68 88.72 ± 0.50

GCCN ωN = GAT 79.15 ± 4.09 74.62 ± 1.95 74.86 ± 1.42 74.81 ± 1.14 0.57 ± 0.03 88.33 ± 0.67 74.65 ± 1.93 87.72 ± 0.36

GCCN ωN = GCN 74.04 ± 8.30 74.91 ± 2.51 74.20 ± 2.17 74.13 ± 0.53 0.53 ± 0.05 88.51 ± 0.70 75.41 ± 2.00 88.19 ± 0.24

GCCN ωN = GIN 85.96 ± 4.66 72.83 ± 2.72 76.67 ± 1.62 75.76 ± 1.28 0.35 ± 0.01 87.27 ± 1.63 75.05 ± 1.27 88.54 ± 0.21

GCCN ωN = GraphSAGE 75.74 ± 2.43 74.70 ± 3.10 76.85 ± 1.50 75.64 ± 1.94 0.50 ± 0.02 88.57 ± 0.59 75.92 ± 1.85 89.34 ± 0.39

GCCN ωN = Transformer 74.04 ± 4.09 70.97 ± 4.06 70.39 ± 0.96 69.99 ± 1.13 0.64 ± 0.01 84.4 ± 1.16 74.6 ± 1.88 88.55 ± 0.39

GCCN ωN = Best GNN, 1 Aug. Hasse graph 74.04 ± 5.51 74.48 ± 1.89 75.02 ± 2.24 73.91 ± 3.9 0.56 ± 0.02 87.56 ± 0.66 74.5 ± 1.61 88.61 ± 0.27

Hypergraph

CCNN (Best Model on TopoBench) 80.43 ± 4.09 76.63 ± 1.74 75.18 ± 1.24 74.93 ± 2.50 0.51 ± 0.01 88.92 ± 0.44 74.93 ± 1.39 89.62 ± 0.25

Table 2. We compare existing CCNNs with ωN -modified GCCN counterparts. We show the result for best choice of ωN . Experiments are
run with 5 seeds.

Graph-Level Tasks Node-Level Tasks

Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed

SCCN (Yang et al., 2022)

Benchmark results (Telyatnikov et al., 2024) 70.64 ± 5.90 74.19 ± 2.86 76.60 ± 1.75 77.12 ± 1.07 82.19 ± 1.07 69.60 ± 1.83 88.18 ± 0.32

GCCN, on ensemble of strictly aug. Hasse graphs 82.13 ± 4.66 75.56 ± 2.48 75.6 ± 1.28 74.19 ± 1.44 88.06 ± 0.93 74.67 ± 1.24 87.70 ± 0.19

GCCN, on 1 aug. Hasse graph 69.79 ± 4.85 74.48 ± 2.67 74.63 ± 1.76 70.71 ± 5.50 87.62 ± 1.62 74.86 ± 1.7 87.80 ± 0.28

CWN (Bodnar et al., 2021a)

Benchmark results (Telyatnikov et al., 2024) 80.43 ± 1.78 76.13 ± 2.70 73.93 ± 1.87 73.80 ± 2.06 86.32 ± 1.38 75.20 ± 1.82 88.64 ± 0.36

GCCN, on ensemble of strictly aug. Hasse graphs 84.26 ± 8.19 75.91 ± 2.75 73.87 ± 1.10 73.75 ± 0.49 85.64 ± 1.38 74.89 ± 1.45 88.40 ± 0.46

GCCN, on 1 aug. Hasse graph 81.70 ± 5.34 75.05 ± 2.39 75.14 ± 0.76 75.39 ± 1.01 86.44 ± 1.33 74.45 ± 1.59 88.56 ± 0.55

on ZINC, lightweight neighborhood structures (orange and
dark green) are competitive with reduced parameter costs.
Node-level tasks, see less benefit, likely due to the larger
graph sizes and higher-dimensional input features.

Impactfulness of GNN choice is dataset specific. Fig.
5 also provides insights into the impact of neighborhood
message functions. On ZINC, GIN clearly outperforms
all other models, which do not even appear in the plot’s

range. In the less clear-cut cases of PROTEINS and Cite-
seer, we observe a trade-off between neighborhood structure
and message function complexity. We find that larger base
models (GIN, GraphSAGE) on lightweight neighborhood
structures perform comparably to simpler base models (GAT,
GCN) on larger neighborhood structures. This tradeoff war-
rants further research on the dataset-specific importance of
neighborhood choice, or lack thereof. We refer to Appendix
H.2 for additional experiments with more advanced GNNs,

8

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

PROTEINS CiteseerZINC

GIN
GraphSAGE

GAT
GCN per-rank

Figure 5. GCCN performance versus size. We compare various GCCNs across three datasets on the cellular domain, two graph-level
(left, middle) and one node-level (right). Each GCCN (point) has a different neighborhood structure NC , some of which can only be
represented as per-rank structures (□ in legend), and message function ωN . The amount of layers is kept constant according to the best
performing model. The axes are scaled relative to this model.

GATv2 (Brody et al., 2021) and PNA (Corso et al., 2020),
as choices of ωN .

7. Conclusion
This work introduces a simple yet powerful graph-based
methodology for constructing Generalized Combinatorial
Complex Neural Networks (GCCNs), TDL architectures
that generalize and subsume standard CCNNs. Additionally,
we introduce TopoTune, the first lightweight software mod-
ule for systematically and easily implementing new TDL
architectures across topological domains. In doing so, we
have addressed, either in part or in full, 7 of the 11 open
problems of the field (Papamarkou et al., 2024). Future
work includes customizing GCCNs for application-specific
and potentially sparse or multimodal datasets, and leverag-
ing software from state-of-the-art GNNs. TopoTune will
also help bridge the gap with other fields such as attentional
learning and k-hop higher-order GNNs (Morris et al., 2019;
Maron et al., 2019).

Acknowledgements
M.P. acknowledges the support of National Science Founda-
tion (NSF) CAREER 2240158 and NSF Grant 2134241, as
well as from the National Science and Engineering Research
Council of Canada. G.B. acknowledges support from NSF
Grant 2134241. C.B. acknowledges support from the Na-
tional Institutes of Health Grant 1R01ES037156-01. N.M.
acknowledges support from NSF Grant 2313150.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agarwal, S., Branson, K., and Belongie, S. Higher order

learning with graphs. In Proceedings of the 23rd interna-
tional conference on Machine learning, pp. 17–24, 2006.

Antelmi, A., Cordasco, G., Polato, M., Scarano, V., Spag-
nuolo, C., and Yang, D. A survey on hypergraph rep-
resentation learning. ACM Comput. Surv., 56(1), aug
2023. ISSN 0360-0300. doi: 10.1145/3605776. URL
https://doi.org/10.1145/3605776.

Bandyopadhyay, S., Das, K., and Murty, M. N. Line hyper-
graph convolution network: Applying graph convolution
for hypergraphs. arXiv preprint arXiv:2002.03392, 2020.

Battiloro, C. Signal Processing and Learning over Topolog-
ical Spaces. PhD thesis, Sapienza Unviersity of Rome,
2024.

Battiloro, C., Testa, L., Giusti, L., Sardellitti, S., Di Lorenzo,
P., and Barbarossa, S. Generalized simplicial attention
neural networks. IEEE Transactions on Signal and Infor-
mation Processing over Networks, 2024.

Battiloro, C., Karaismailoğlu, E., Tec, M., Dasoulas, G.,
Audirac, M., and Dominici, F. E (n) equivariant topo-
logical neural networks. The Thirteenth International
Conference on Learning Representations (ICLR), 2025.

Bernárdez, G., Ferriol-Galmés, M., Güemes-Palau, C., Pa-
pillon, M., Barlet-Ros, P., Cabellos-Aparicio, A., and Mi-
olane, N. Ordered topological deep learning: a network
modeling case study. arXiv preprint arXiv:2503.16746,
2025.

Bernárdez, G., Telyatnikov, L., Montagna, M., Baccini, F.,
Papillon, M., Galmés, M. F., Hajij, M., Papamarkou, T.,

9

https://doi.org/10.1145/3605776

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Bucarelli, M. S., Zaghen, O., Mathe, J., Myers, A., Ma-
han, S., Lillemark, H., Vadgama, S. P., Bekkers, E. J.,
Doster, T., Emerson, T., Kvinge, H., Agate, K., Ahmed,
N. K., Bai, P., Banf, M., Battiloro, C., Beketov, M., Bog-
dan, P., Carrasco, M., Cavallo, A., Choi, Y. Y., Dasoulas,
G., Elphick, M., Escalona, G., Filipiak, D., Fritze, H.,
Gebhart, T., Gil-Sorribes, M., Goomanee, S., Guallar, V.,
Imasheva, L., Irimia, A., Jin, H., Johnson, G., Kanakaris,
N., Koloski, B., Kovac, V., Lecha, M., Lee, M., Leroy, P.,
Long, T., Magai, G., Martinez, A., Masden, M., Meznar,
S., Miquel-Oliver, B., Molina, A., Nikitin, A., Nurisso,
M., Piekenbrock, M., Qin, Y., Rygiel, P., Salatiello, A.,
Schattauer, M., Snopov, P., Suk, J., Sánchez, V., Tec,
M., Vaccarino, F., Verhellen, J., Wantiez, F., Weers, A.,
Zajec, P., Skrlj, B., and Miolane, N. Icml topological
deep learning challenge 2024: Beyond the graph do-
main. CoRR, abs/2409.05211, 2024. URL https:
//doi.org/10.48550/arXiv.2409.05211.

Bodnar, C. Topological Deep Learning: Graphs, Complexes,
Sheaves. PhD thesis, Cambridge University, 2023.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montufar,
G. F., and Bronstein, M. Weisfeiler and Lehman Go
Cellular: CW Networks. Advances in Neural Information
Processing Systems, 34:2625–2640, 2021a.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F.,
Lio, P., and Bronstein, M. Weisfeiler and Lehman Go
Topological: Message Passing Simplicial Networks. In
International Conference on Machine Learning, pp. 1026–
1037. PMLR, 2021b.

Bolla, M. Spectra, euclidean representations and clusterings
of hypergraphs. Discrete Mathematics, 117(1-3):19–39,
1993.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks? In International Conference on
Learning Representations, 2021.

Chen, C., Cheng, Z., Li, Z., and Wang, M. Hypergraph
attention networks. In 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), pp. 1560–1565. IEEE,
2020a.

Chen, Y., Wu, L., and Zaki, M. Iterative deep graph
learning for graph neural networks: Better and ro-
bust node embeddings. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 19314–19326. Curran Associates,
Inc., 2020b. URL https://proceedings.
neurips.cc/paper/2020/file/
e05c7ba4e087beea9410929698dc41a6-Paper.
pdf.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
In Advances in Neural Information Processing Systems,
2020.

Corso, G., Stark, H., Jegelka, S., Jaakkola, T., and Barzilay,
R. Graph neural networks. Nature Reviews Methods
Primers, 4(1):17, 2024.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information pro-
cessing systems, 29, 2016.

Ebli, S., Defferrard, M., and Spreemann, G. Simplicial
neural networks. In Advances in Neural Information Pro-
cessing Systems Workshop on Topological Data Analysis
and Beyond, 2020.

Eitan, Y., Gelberg, Y., Bar-Shalom, G., Frasca, F., Bronstein,
M., and Maron, H. Topological blind spots: Understand-
ing and extending topological deep learning through the
lens of expressivity. arXiv preprint arXiv:2408.05486,
2024.

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y. Hypergraph
neural networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 33, pp. 3558–3565,
2019.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In International Conference on
Learning Representations Workshop on Representation
Learning on Graphs and Manifolds, 2019.

Gibson, D., Kleinberg, J., and Raghavan, P. Clustering cate-
gorical data: An approach based on dynamical systems.
The VLDB Journal, 8:222–236, 2000.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70, ICML’17, pp.
1263–1272. JMLR.org, 2017.

Giusti, L., Battiloro, C., Di Lorenzo, P., Sardellitti, S., and
Barbarossa, S. Simplicial attention networks. arXiv
preprint arXiv:2203.07485, 2022a.

Giusti, L., Battiloro, C., Testa, L., Di Lorenzo, P., Sardellitti,
S., and Barbarossa, S. Cell attention networks. arXiv
preprint arXiv:2209.08179, 2022b.

Grohe, M. Descriptive complexity, canonisation, and de-
finable graph structure theory, volume 47. Cambridge
University Press, 2017.

10

https://doi.org/10.48550/arXiv.2409.05211
https://doi.org/10.48550/arXiv.2409.05211
https://proceedings.neurips.cc/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Hajij, M., Istvan, K., and Zamzmi, G. Cell complex neural
networks. In Advances in Neural Information Processing
Systems Workshop on TDA & Beyond, 2020.

Hajij, M., Zamzmi, G., Papamarkou, T., Miolane, N.,
Guzmán-Sáenz, A., Ramamurthy, K. N., Birdal, T., Dey,
T., Mukherjee, S., Samaga, S., Livesay, N., Walters, R.,
Rosen, P., and Schaub, M. Topological deep learning: Go-
ing beyond graph data. arXiv preprint arXiv:1906.09068
(v3), 2023.

Hajij, M., Papamarkou, T., Zamzmi, G., Ramamurthy, K. N.,
Birdal, T., and Schaub, M. T. Topological Deep Learning:
Going Beyond Graph Data. Online, 2024a. URL http:
//tdlbook.org. Published online on August 6, 2024.

Hajij, M., Papillon, M., Frantzen, F., Agerberg, J., AlJabea,
I., Ballester, R., Battiloro, C., Bernárdez, G., Birdal, T.,
Brent, A., et al. Topox: a suite of python packages for
machine learning on topological domains. Journal of
Machine Learning Research, 25(374):1–8, 2024b.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pp. 1025–1035, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S.,
and Coleman, R. G. ZINC: a free tool to discover chem-
istry for biology. Journal of Chemical Information and
Modeling, 52(7):1757–1768, 2012.

Jogl, F., Thiessen, M., and Gärtner, T. Reducing learning
on cell complexes to graphs. In ICLR 2022 Workshop on
Geometrical and Topological Representation Learning,
2022a.

Jogl, F., Thiessen, M., and Gärtner, T. Weisfeiler and leman
return with graph transformations. In 18th International
Workshop on Mining and Learning with Graphs, 2022b.

Jogl, F., Thiessen, M., and Gärtner, T. Expressivity-
preserving GNN simulation. In Thirty-seventh Con-
ference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=ytTfonl9Wd.

Jogl, F., Thiessen, M., and Gärtner, T. Expressivity-
preserving gnn simulation. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Kiefer, S. Power and limits of the Weisfeiler-Leman algo-
rithm. PhD thesis, Dissertation, RWTH Aachen Univer-
sity, 2020, 2020.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Lambiotte, R., Rosvall, M., and Scholtes, I. From networks
to optimal higher-order models of complex systems. Na-
ture physics, 2019.

Lecha, M., Cavallo, A., Dominici, F., Isufi, E., and Battiloro,
C. Higher-order topological directionality and directed
simplicial neural networks. ICASSP 2025 - 2025 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2025.

Maggs, K., Hacker, C., and Rieck, B. Simplicial represen-
tation learning with neural k-forms. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=Djw0XhjHZb.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.
Provably powerful graph networks. Advances in Neural
Information Processing Systems, 2019.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 4602–4609, 2019.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Morris, C., Lipman, Y., Maron, H., Rieck, B., Kriege, N. M.,
Grohe, M., Fey, M., and Borgwardt, K. Weisfeiler and
leman go machine learning: The story so far. The Jour-
nal of Machine Learning Research, 24(1):15865–15923,
2023.

Papamarkou, T., Birdal, T., Bronstein, M., Carlsson,
G., Curry, J., Gao, Y., Hajij, M., Kwitt, R., Liò, P.,
Di Lorenzo, P., et al. Position paper: Challenges and
opportunities in topological deep learning. arXiv preprint
arXiv:2402.08871, 2024.

Papillon, M., Sanborn, S., Hajij, M., and Miolane, N. Ar-
chitectures of topological deep learning: A survey on
topological neural networks, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems. 2019.

11

http://tdlbook.org
http://tdlbook.org
https://openreview.net/forum?id=ytTfonl9Wd
https://openreview.net/forum?id=ytTfonl9Wd
https://openreview.net/forum?id=Djw0XhjHZb
https://openreview.net/forum?id=Djw0XhjHZb

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., and
Prokhorenkova, L. A critical look at the evaluation of
gnns under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning
Representations.

Roddenberry, T. M., Glaze, N., and Segarra, S. Principled
simplicial neural networks for trajectory prediction. In
International Conference on Machine Learning, pp. 9020–
9029. PMLR, 2021.

Rodrı́guez, J. A. On the laplacian eigenvalues and metric pa-
rameters of hypergraphs. Linear and Multilinear Algebra,
50(1):1–14, 2002.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 2008.

Solé, P. et al. Spectra of regular graphs and hypergraphs and
orthogonal polynomials. European Journal of Combina-
torics, 17(5):461–477, 1996.

Telyatnikov, L., Bucarelli, M. S., Bernardez, G., Zaghen, O.,
Scardapane, S., and Lio, P. Hypergraph neural networks
through the lens of message passing: a common perspec-
tive to homophily and architecture design. arXiv preprint
arXiv:2310.07684, 2023.

Telyatnikov, L., Bernardez, G., Montagna, M., Vasylenko,
P., Zamzmi, G., Hajij, M., Schaub, M. T., Miolane, N.,
Scardapane, S., and Papamarkou, T. Topobench: A frame-
work for benchmarking topological deep learning. arXiv
preprint arXiv:2406.06642, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Veličković, P. Message passing all the way up. arXiv
preprint arXiv:2202.11097, 2022.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., Bengio, Y., et al. Graph attention networks. stat, 1050
(20):10–48550, 2017.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019a. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019b.

Yadati, N. Neural message passing for multi-relational
ordered and recursive hypergraphs. Advances in Neural
Information Processing Systems, 33:3275–3289, 2020.

Yang, M. and Isufi, E. Convolutional learning on simplicial
complexes. arXiv preprint arXiv:2301.11163, 2023.

Yang, R., Sala, F., and Bogdan, P. Efficient repre-
sentation learning for higher-order data with simpli-
cial complexes. In Rieck, B. and Pascanu, R. (eds.),
Proceedings of the First Learning on Graphs Confer-
ence, volume 198 of Proceedings of Machine Learn-
ing Research, pp. 13:1–13:21. PMLR, 09–12 Dec
2022. URL https://proceedings.mlr.press/
v198/yang22a.html.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, pp. 40–48.
PMLR, 2016.

Zhang, M. and Chen, Y. Link prediction based on graph neu-
ral networks. Advances in Neural Information Processing
Systems, 2018.

Zhou, D., Huang, J., and Schölkopf, B. Learning with
hypergraphs: Clustering, classification, and embedding.
Advances in neural information processing systems, 19,
2006.

12

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v198/yang22a.html
https://proceedings.mlr.press/v198/yang22a.html

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Set Graph

���������������������������� �����������������������������������

Combinatorial
complex HypergraphSimplicial

complex
Cellular

complex

is part of not necessarily part of

��������

��������

����	�����

��������

���	����

��������

��

�������

: Nodes : Edges

Figure 6. Topological Deep Learning Domains. Nodes in blue, (hyper)edges in pink, and faces in dark red. Figure adopted from Papillon
et al. (2023).

A. Domains of Topological Deep Learning
We summarize the different discrete domains leveraged within TDL and, in doing so, contextualize how combinatorial
complexes generalize all of them. To that end, we will closely follow the description of (Papillon et al., 2023), using as well
its very clarifying Figure 6. We recommend this survey for a high-level overview of TDL literature, and the more extensive
work of (Hajij et al., 2023) for a detailed formulation of the field. We also refer to Appendix C of Battiloro et al. (2025) for a
concise mathematical description of each domain. From left to right in Figure 6, the different domains in TDL are:

Traditional Discrete Domains

Set / Pointcloud. A collection of points called nodes without any additional structure.

Graph. A set of points (nodes) connected with edges that denote pairwise relationships.

Set + Part-Whole Relations

Simplicial Complex. A generalization of a graph that incorporates hierarchical part-whole relations through the multi-scale
construction of cells. Nodes are rank 0-cells that can be combined to form edges (rank 1 cells). Edges are, in turn, combined
to form faces (rank 2 cells), which are combined to form volumes (rank 3 cells), and so on. In particular, each cell σ in a
simplicial complex must contain all lower dimensional cells τ such that τ ⊆ σ. Therefore, faces must be triangles, volumes
must be tetrahedrons, and so forth.

Cellular Complex. A generalization of an simplicial complex in which cells are not limited to simplexes, but may instead
take any shape: faces can involve more than three nodes, volumes more than four faces, and so on. This flexibility endows
CCs with greater expressivity than simplicial complexes (Bodnar et al., 2021a), but still edges only connect pairs of nodes.

Set + Set-Type Relations

Hypergraph: A generalization of a graph, in which higher-order edges called hyperedges can connect arbitrary sets of
two or more nodes. Connections in HGs represent set-type relationships, in which participation in an interaction is not
implied by any other relation in the system. This makes HGs an ideal choice for data with abstract and arbitrarily large
interactions of equal importance, such as semantic text and citation networks.

Set + Part-Whole and Set-Type Relations

Combinatorial Complex: A structure that combines features of hypergraphs and cellular complexes. Like a hypergraph,
edges may connect any number of nodes. Like a cellular complex, cells can be combined to form higher-ranked structures.
Hence, combinatorial complexes generalize all other topological domains.

13

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

B. Proofs
B.1. Proof of Generality

The proof is straightforward. It is sufficient to set ωN (Hl
N ,GN) to {

⊕
y∈N (σ) ψN ,rk(σ)

(
hl
σ,h

l
τ

)
}σ∈C in (8) as all y ∈ N (σ)

are part of the node set CN of the strictly augmented Hasse graph of N by definition.

B.2. Proof of Equivariance

As for GNNs, an amenable property for GCCNNs is the awareness w.r.t. relabeling of the cells. In other words, given that
the order in which the cells are presented to the networks is arbitrary -because CCs, like (undirected) graphs, are purely
combinatorial objects-, one would expect that if the order changes, the output changes accordingly. To formalize this
concept, we need the following notions.

Matrix Representation of a Neighborhood. Assume again to have a combinatorial complex C containing C := |C| cells
and a neighborhood function N on it. Assume again to give an arbitrary labeling to the cells in the complex, and denote the
i-th cell with σi. The matrix representation of the neighborhood function is a matrix NN ∈ RC×C such that Ni,j = 1 if the
σj ∈ N (σi) or zero otherwise. We notice that the submatrix ÑN ∈ R|CN |×|CN | obtained by removing all the zero rows and
columns is the adjacency matrix of the strictly augmented Hasse graph GCN induced by N .

Permutation Equivariance. Let C be combinatorial complex, NC a collection of neighborhoods on it, and N =
{NN }N∈NC the set collecting the corresponding neighborhood matrices. Let P ∈ RC×C be a permutation matrix. Finally,
denote by PH the permuted embeddings and by {PNNPT }N∈NC , the permuted neighborhood matrices. We say that a
function f :

(
Hl,B

)
7→ Hl+1 is cell permutation equivariant if f

(
PHl, {PNNPT }N∈NC

)
= Pf

(
Hl, {NN }N∈NC

)
for

any permutation matrix P. Intuitively, the permutation matrix changes the arbitrary labeling of the cells, and a permutation
equivariant function is a function that reflects the change in its output.

Proof of Proposition 4.2. We follow the approach from (Bodnar et al., 2021a). Given any permutation matrix P, for a cell
σi, let us denote its permutation as σP(i) with an abuse of notation. Let hl+1

σi
be the output embedding of cell σi for the

l-th layer of a GCCN taking (Hl, {NN }N∈NC) as input, and hl+1
σP(i)

be the output embedding of cell σP(i) for the same
GCCN layer taking

(
PHl, {PNNPT }N∈NC

)
as input. To prove the permutation equivariance, it is sufficient to show that

hl+1
σi

= hl+1
σP(i)

as the update function ϕ is row-wise, i.e., it independently acts on each cell. To do so, we show that the
(multi-)set of embeddings being passed to the neighborhood message function, aggregation, and update functions are the
same for the two cells σi and σP(i). The neighborhood message functions act on the strictly augmented Hasse graph of
GCN of N , thus we work with the submatrix ÑN . The neighborhood message function is assumed to be node permutation
equivariant, i.e., denoting again the embeddings of the cells in GCN with Hl

CN
∈ R|CN |×F l

and identifying GCN with ÑN , it
holds that ωN (PCNHl

CN
,PCN ÑNPT

CN
) = PCNωN (Hl

CN
, ÑN), where PCN is the submatrix of P given by the rows and

the columns corresponding to the cells in GCN . This assumption, together with the assumption that the inter-neighborhood
aggregation is assumed to be cell permutation invariant, i.e.

⊗
N∈NC

PCNωN (Hl
CN
, ÑN) =

⊗
N∈NC

ωN (Hl
CN
, ÑN),

trivially makes the overall composition of the neighborhood message function with the inter-neighborhood aggregation cell
permutation invariant. This fact, together with the fact that the (labels of) the neighbors of the cell σi in N are given by
the nonzero elements of the i-th row of NN , or the corresponding row of ÑN , and that the columns and rows of ÑN are
permuted in the same way the rows of the feature matrix Hl

CN
are permuted, implies

[ÑN]i,j = [PCN ÑNPT
CN

]PCN (i),PCN (j), (9)

thus that σi and σP(i) receive the same neighborhood message from the neighboring cells in N , for all N ∈ NC .

14

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

k-GNN HasseGNN Hasse

k-WL HasseWL Hasse

k-CCWLCCWL

k-CCNNCCNN GCCN

De�nition B.8De�nition B.6

Eq. 8Eq. 4 De�nition B.9, Eq. 11

<

<

<

<

Increasing expressive power

Proposition B.10

Proposition B.11 Proposition B.12

Propositions B.13-14 Propositions B.15-16

Proposition 3

Theorems 1-2
from Morris et al. 2019

Propositions 3, 4
from Morris et al. 2019

Grohe 2017

Figure 7. Graphical summary of the definitions and propositions related to the expressivity of CCNNs and GCCNs and of the different
WL tests. Neural networks expressivity is in red, and WL test expressivity is in blue.

B.3. Proof of Expressivity

We provide the theory required to prove Proposition 4.3, i.e., to prove that GCCNs are strictly more expressive than CCNNs.
The definitions and propositions from this subsection are summarized in Figure 7. This figure serves as a graphical reading
guide for the subsection.

B.3.1. HOMOMORPHISM AND ISOMORPHISM INDUCED BY NEIGHBORHOODS

We first recall the notion of homomorphism of a combinatorial complex (CC) from (Hajij et al., 2023) and generalize it to
the notions of homomorphism and isomorphism of CCs induced by a neighborhood N .

Definition B.1 (CC-Homomorphism (Hajij et al., 2023)). A homomorphism from a CC (V1, C1, rk1) to a CC (V2, C2, rk2),
also called a CC-homomorphism, is a function f : C1 → C2 that satisfies the following conditions:

1. If σ, τ ∈ C1 satisfy σ ⊆ τ , then f(σ) ⊆ f(τ).

2. If σ ∈ C1, then rk1(σ) ≥ rk2(f(σ)).

Definition B.1 proposes a CC-homomorphism that respects the incidence structures of the CCs, denoted by the symbol ⊆ in
the definition above. We generalize Definition B.1 by allowing CC-homomorphisms to take into account a labeling of the
cells and to be defined in terms of general neighborhood structures beyond incidence. We first define a labeled combinatorial
complex.

Definition B.2 (Labeled Combinatorial Complex). A labeled combinatorial complex (C, ℓ) is a CC C equipped with a cell
coloring ℓ : C 7→ Σ with arbitrary codomain Σ. We say that ℓ(σ) is a label or color of cell σ ∈ C.

Next, we provide our definitions of homomorphisms.

Definition B.3 (CC-Homomorphism induced by (N1,N2)). A homomorphism from a CC (V1, C1, rk1) with neighborhood
N1 to a CC (V2, C2, rk2) with neighborhood N2, also called a CC-homomorphism induced by (N1,N2), is a function
f : C1 → C2 that satisfies: If σ, τ ∈ C1 are such that τ ∈ N1(σ), then f(τ) ∈ N2(f(σ)). A labeled CC-homomorphism
induced by (N1,N2) is a CC-homomorphism induced by (N1,N2) that additionally respects labeling of the cells, that is: if
σ, τ ∈ C1 have the same label, then f(σ), f(τ) ∈ C2 also have the same label.

15

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

We prove that a CC-homomorphism induced by (N1,N2) is equivalent to a homomorphism of the respective strictly
augmented Hasse graphs GN1 , GN2 .

Proposition B.4. For every CC-homomorphism f from C1 to C2 induced by (N1,N2), there exists a unique graph
homomorphism between their respective strictly augmented Hasse graphs GN1

and GN2
.

Proof. Consider f a CC-homomorphism from C1 to C2 induced by (N1,N2) as in Definition B.3. Define the function f̃
from nodes of GN1

to the nodes of GN2
corresponding to f , i.e., f̃ : CN1

7→ CN2
defined as f̃(σ̃) = ˜f(σ) where σ̃ is the

node in GN1
corresponding to the cell σ in C1, and ˜f(σ) is the node in GN2

corresponding to the cell f(σ) in C2. We show
that f̃ is a graph homomorphism from GN1 to GN2 , i.e., a function from the nodes of GN1 to the nodes of GN2 that preserves
edges.

By definition of the CC-homomorphism induced by (N1,N2), we have: if τ ∈ N1(σ) then f(τ) ∈ N2(f(σ)). Recognizing
that N1 defines edges of GN1 , and N2 defines edgess of GN2 , we have: if (σ̃, τ̃) is an edge in GN1 , then (f̃(σ̃), f̃(τ̃)) is an
edge in GN2

. Thus, a CC-homomorphism induced by (N1,N2) gives a homomorphism of the strictly augmented Hasse
graphs.

Conversely, if f̃ is a graph homomorphism from GN1 to GN2 , then we similarly construct a CC-homomorphism f between
C1 and C2. This concludes the proof.

Lastly, we can define a notion of CC-isomorphism induced by neighborhood structures.

Definition B.5 (CC-Isomorphism induced by (N1,N2)). A isomorphism from a CC (V1, C1, rk1) with neighborhood N1

to a CC (V2, C2, rk2) with neighborhood N2, also called a CC-isomorphism induced by (N1,N2), is an invertible CC-
homomorphism induced by (N1,N2) whose inverse is a CC-isomorphism induced by (N2,N1). A labeled CC-isomorphism
induced by (N1,N2) is a CC-isomorphism that additionally respects labels.

B.3.2. WEISFEILER-LEMAN (WL) TESTS ON COMBINATORIAL COMPLEXES

We propose two WL tests, called CCWL and (set-based) k-CCWL that generalize the WL and the (set-based) k-WL tests to
labeled combinatorial complexes. We start with the generalization of the WL test to labeled combinatorial complexes.

Definition B.6 (The CC Weisfeiler-Leman (CCWL) test on labeled combinatorial complexes). Let (C, ℓ) be a labeled
combinatorial complex. Let N be a neighborhood on C. The scheme proceeds as follows:

• Initialization: Cells σ are initialized with the labels given by ℓ, i.e.: for all σ ∈ C, we set: c0σ,ℓ = ℓ(σ).

• Refinement: Given colors of cells at iteration t, the refinement step computes the color of cell σ at the next iteration ct+1
σ,ℓ

using a perfect HASH function as follows:

ctN (σ) =
{{
ctσ′,ℓ | ∀σ′ ∈ N (σ)

}}
,

ct+1
σ,ℓ = HASH

(
ctσ,ℓ, c

t
N (σ)

)
.

• Termination: The algorithm stops when an iteration leaves the coloring unchanged.

Next, we generalize the set-based k-WL test to labeled combinatorial complexes, called the k-CCWL test. The set-based
k-WL test is employed in (Morris et al., 2019) where colors are defined on k-sets of nodes, as opposed to k-tuples of nodes
in the standard k-WL test. Specifically, we denote [C]k the set of k-sets formed with cells of C. We generalize the definition
of neighborhood of k-sets of vertices from (Morris et al., 2019) to neighborhood of k-sets of cells.

Definition B.7 (Neighborhood of k-sets of cells). Given a k-set of cells s = {σ1, . . . , σk} in [C]k, we define its neighborhood
as the function Nk : [C]k 7→ P([C]k) defined as:

Nk(s) =
{
t ∈ [C]k | |s ∩ t| = k − 1

}
. (10)

Definition B.8 (The CC k-Weisfeiler-Leman (k-CCWL) test on combinatorial complexes). Let (C, ℓ) be a labeled combina-
torial complex. Let N be a neighborhood on C. The scheme proceeds as follows:

16

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

...
...cells

k-sets

... ...

...
...

features on the k-set
that contains

features on other k-sets
that contains

Figure 8. Notations for Proposition B.10. Denote |C| the number of cells. The number of k-sets that contain a given cell σ is equal to(|C|−1
k−1

)
. The feature on one k-set that contains a given cell has dimension d. Thus, Hl ∈ R|C|×F for F =

(|C|−1
k−1

)
d. We note that the

k-sets for one row do not correspond to the k-sets of another row. However, for every row, there is the same number of k-sets that contain
the cell σ characteristic of that row.

• Initialization: Every k-set s in [C]k is initialized with a color that corresponds to the CC-isomorphism type of the sub-CC
defined by s = {σ1, . . . , σk} induced by N|s where N|s is the neighborhood N restricted to s. This means that two
k-sets s and s′ get the same color if and only if there is a labeled CC-isomorphism (for labeling function ℓ) between the
sub-CCs corresponding to the cells in s and s′, respectively.

• Refinement: Given colors of k-sets at iteration t, the refinement step computes the color of the k-set s at the next iteration
ct+1
s,ℓ using a perfect HASH function, as follows:

ctNk(s),ℓ
=
{{
cts′,ℓ | ∀s′ ∈ Nk(s)

}}
,

ct+1
s,ℓ = HASH

(
cts,ℓ, c

t
Nk(s),ℓ

)
.

• Termination: The algorithm stops when an iteration leaves the coloring unchanged.

Two combinatorial complexes are deemed non-isomorphic according to the CCWL and k-CCWL respectively, if their color
histograms differ upon termination of the scheme. If the histograms are the same, we cannot conclude.

B.3.3. DEFINITIONS OF k-GNNS AND k-CCNNS

We generalize the definition of k-GNNs by (Morris et al., 2019) into a definition of k-CCNNs.

Definition B.9 (k-CCNNs). Let (C, ℓ) be a labeled CC. In each k-CCNN layer t, the feature vector h(t)k (s) ∈ Rd for each
k-set s in [C]k is updated into h(t+1)

k (s) as follows:

h
(t+1)
k (s) = U

h(t)k (s) ·W (t)
1 +

∑
u∈Nk(s)

h
(t)
k (u) ·W (t)

2

 ∈ Rd, (11)

where W (t)
1 ,W

(t)
2 are matrices of parameters for layer t, Nk the neighborhood structure on k-sets, and U is an update

function.

Then, we show that k-CCNNs of Definition B.9 form a subclass of GCCNs.

Proposition B.10. GCCNs generalize and subsume k-CCNNs.

17

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Proof. Let be given a k-CCNN defined by (11). We show that we can recover (11) by an appropriate choice of feature
dimensionality F , update function ϕ and sub-module ωN in (8) defining GCCNs, and thus that any k-CCNN can be
expressed as a GCCN.

For simplicity of notations, we assume that the layers of the k-CCNN have same feature dimensionality, denoted d. Given
that there are

(|C|−1
k−1

)
k-sets containing a given cell σ, we define F =

(|C|−1
k−1

)
d to be the feature dimensionality of the layers

of a GCCN. Denote Hl(σ) the row of Hl containing F -dimensional feature corresponding to cell σ, as well as Hl(σ, s) the
subrow containing the d-dimensional feature corresponding to one k-set s to which σ belongs. Figure 8 illustrates these
notations. We then define:

Hl+1 = ϕ
(
Hl, ω(Hl)

)
by defining ϕ and ω on (σ, s)-blocks of the matrix Hl. Specifically, we have:

Hl+1(σ, s) = ϕ(σ,s)
(
Hl(σ, s), ω(σ,s)(H

l)
)

= U

Hl(σ, s) ·W (t)
1 +

∑
u∈Nk(s)

Hl(σ, u) ·W (t)
2

 ,

where:
ω(σ,s)(H

l) =
∑

u∈Nk(s)

Hl(σ, u) ·W (t)
2 , ϕ(σ,s)(A,B) = U(A ·W (1)

1 +B). (12)

In other words, we first use ω defined as a sequence of ω(σ,s) to update each (σ, s)-block of Hl into an auxiliary feature
B = H̃l. Then, we use ϕ as a sequence of ϕ(σ,s) to perform a block-wise operations. Thus, we have built a GCCN that
reproduces the computations of the k-CCNN. Therefore, GCCNs generalize and subsume k-CCNNs.

B.3.4. RELATIONSHIPS BETWEEN CCWL/GCWL TESTS AND CCNNS/GCCNS

We prove relationships between the expressivity of the WL tests and the expressivity of the corresponding neural networks.
We first recall results on WL tests on graphs and GNNs (Morris et al., 2019). In what follows, (G, ℓ) is a labeled graph,
and W (t) denote the parameters of a GNN up to layer t. We encode the initial labels ℓ(v), for a vertex v, by vectors
h(0)(v) ∈ R1×d.

WL/GNNs and k-WL/k-GNNs Theorem 1 in (Morris et al., 2019) states that, for every encoding of the graph labels ℓ(v)
as d-vectors h(0)(v), and for every choice of parameters W (t), the coloring c(t)ℓ of the WL test always refines the coloring
h(t) induced by the GNN parameterized by W (t). Theorem 2 in (Morris et al., 2019) states that there exists parameter
matrices W (t) such that GNNs have exactly the same power as the WL test. Consequently, we say that GNNs have the same
expressivity as the WL test. Similarly, Propositions 3 and 4 from (Morris et al., 2019) show that k-GNNs have the same
expressivity as the k-WL test.

CCWL/CCNNs and k-CCWL/GCCNs We generalize the equivalence between WL tests and GNNs to the framework of
CCs. First, we prove two propositions establishing equivalence of WL tests between CCs and Hasse graphs.

Proposition B.11 (CCWL and WL on the Hasse graph). Let (C, ℓ) be a labeled CC. Let N be one neighborhood on this
CC and GN the associated strictly augmented Hasse graph. The CCWL test defined in Def. B.6 is equivalent to the WL test
defined on GN .

Proof. We prove the equivalence between the CCWL and the WL on GN .

Equivalence of initializations. The CCWL test initializes cell colors using the labels given by ℓ. The labeling function ℓ
labels cells of C and therefore its restriction to CN labels nodes of the associated Hasse graph GN . This turns GN into a
labeled graph (GN , ℓCN). We initialize the WL test on GN with colors from ℓCN .

Equivalence of refinements. By construction of the strictly augmented Hasse graph GN , nodes in GN are cells in CN and
edges in GN are neighbors in CN for the neighborhood N . Thus, the refinement equation of the CCWL test is equal to the
refinement equation of the WL test on GN . This proves that CCWL and the WL on GN are equivalent.

18

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Proposition B.12 (k-CCWL and k-WL on the Hasse graph). Let (C, ℓ) be a labeled CC. Let N be one neighborhood on
this CC and GN the associated strictly augmented Hasse graph. The k-CCWL defined in Def. B.8 is equivalent to the k-WL
test on GN .

Proof. We prove the equivalence between the k-CCWL and the k-WL on GN .

Equivalence of initializations. The k-CCWL test initializes colors of k-sets based on the CC-isomorphism class of every
sub-CC defined by every k-set. Using Proposition B.4, the CC-isomorphism class of a sub-CC s corresponds to the graph
isomorphism class on the associated subgraph in the strictly augmented Hasse graph. We initialize the k-WL test on GN
with colors on k-sets associated with this isomorphism class.

Equivalence of refinements. By construction of the strictly augmented Hasse graph GN , k-sets of nodes in GN are k-sets of
cells in CN , and the neighborhoods of k-sets of nodes defined in (Morris et al., 2019) are the neighborhoods of k-sets of
cells defined in Definition B.7. Thus, the refinement equation of the k-CCWL test is equal to the refinement equation of the
k-WL test on GN .

This proves that k-CCWL and the k-WL on GN are equivalent.

Given the equivalence between the computations in C and in GN provided by Proposition B.11, we can pull the results from
Theorems 1 and 2 from (Morris et al., 2019) and provide the following propositions.

Proposition B.13. Let (C, ℓ) be a labeled CC. Then for all t ≥ 0 and for all choices of initial colorings h(0) consistent with
ℓ, and weights W(t), c(t)ℓ ⊑ h(t), i.e., the coloring c(t)l induced by the CCWL test refines the coloring induced by the CCNN
h(t).

Proposition B.14. Let (C, ℓ) be a labeled CC. Then for all t ≥ 0 there exists a sequence of weights W(t), and a CCNN
architecture such that c(t)ℓ ≡ h(t)., i.e., the coloring of the CCWL and the CCNN are equivalent.

Consequently, CCNNs have the same power as the CCWL. Next, we measure the power of k-CCNNs using the k-CCWL.

Proposition B.15. Let (C, ℓ) be a labeled CC and let k ≥ 2. Then, for all t ≥ 0, for all choices of initial colorings h(0)k

consistent with ℓ and for all weights W(t), c(t)s,k,ℓ ⊑ h
(t)
k i.e., the coloring c(t)s,k,l induced by the k-CCWL test refines the

coloring induced by the k-CCNN h
(t)
k . .

Proposition B.16. Let (C, ℓ) be a labeled CC and let k ≥ 2. Then, for all t ≥ 0 there exists a sequence of weights W(t),
and a k-CCNN architecture such that c(t)s,k,ℓ ≡ h

(t)
k .

Propositions B.15 and B.16 are given by Proposition B.12 and Propositions 3 and 4 from Morris et al. (2019). They show
that k-CCNNs have the same power as the k-CCWL.

B.3.5. PROOF

We now provide the proof for Proposition 4.3 that states that GCCNs are strictly more expressive than CCNNs.

Proof. We prove that GCCNs are strictly more powerful than CCNNs in distinguishing non-isomorphic combinatorial
complexes. We leverage the propositions of this subsection summarized on Figure 7.

By Proposition B.10, GCCN have at least the same expressive power as k-CCNNs. By Propositions B.15-B.16, k-CCNNs
have the same expressive power as the k-CCWL. By Proposition B.12, the k-CCWL test is equivalent to the k-WL test on
the associated strictly augmented Hasse graph. It is known (e.g., (Grohe, 2017)) that the k-WL test on graph is strictly more
powerful than the WL test. Thus, the k-WL test on the strictly augmented Hasse graph is strictly more powerful than the
WL test on that same graph. By Proposition B.11, the WL test on the strictly augmented Hasse graph is equivalent to the
CCWL test on the corresponding CC. By Propositions B.13-B.14, the CCWL test on the CC has the same expressive power
as CCNNs.

Consequently, we have shown that GCCN are strictly more powerful than CCNNs in distinguishing nonisomorphic CCs.

Additionally, we construct two combinatorial complexes C1 and C2 that are indistinguishable by CCNNs but distinguishable
by GCCNs.

19

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Strictly augmented
Hasse graph for

Combinatorial
complex

��

��

Figure 9. a. Pair of combinatorial complexes: C1 is an icosahedron polygon, and C2 is five tetrahedrons. b. Strictly augmented Hasse
graphs corresponding to each combinatorial complex, given a choice of neighborhood N 2

A,↑.

Let C1 and C2 be two combinatorial complexes with a neighborhood structure NC = N 2
A,↓ (down-adjacency of faces). These

complexes are illustrated in Figure 9a.

The corresponding strictly augmented Hasse graphs G1 and G2 (Fig. 9b) represent the 20 faces of each complex as nodes,
where each node has degree 3. Thus:

• Both G1 and G2 are 3-regular graphs.

• It is known that regular graphs of the same order are indistinguishable by the WL test (see, e.g., (Kiefer, 2020; Morris
et al., 2023)).

• Every pair of graphs with n nodes are distinguishable by the n-WL test (Morris et al., 2023).

Since CCWL is equivalent to WL on GN (Proposition B.11), the two complexes C1 and C2 are indistinguishable by CCWL.
Since CCWL has the same expressive power as CCNNs (Propositions B.13-B.14), the two complexes C1 and C2 are
indistinguishable by CCNNs.

Since k-CCWL is equivalent to k-WL on GN (Proposition B.12), the two complexes C1 and C2 are distinguishable by
k-CCWL. Since k-CCWL has the same expressive power as k-CCNNs (Propositions B.15-B.16), the two complexes C1 and
C2 are distinguishable by k-CCNNs. Since GCCNs generalize and subsume k-CCNNs (Proposition B.10), C1 and C2 are
distinguishable by GCCNs.

Thus, we have constructed two combinatorial complexes C1 and C2 that are indistinguishable by CCNNs, but are distinguish-
able by GCCNs.

20

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

C. Time Complexity
To analyze the time complexity (in terms of FLOPs) of the Generalized Combinatorial Complex Neural Network (GCCN),
we derive the complexity of its submodule ωN and then compute the complexity of a GCCN layer. We then compare it with
GNN and CCNN complexity.

C.1. Key Definitions

• Message Complexity (M): The complexity of a single message computation along a route (e.g., node → node). For
example, in a Graph Convolutional Network (GCN), a single message is defined as:

mx→y = axyhyΘ,

where hy is a 1×F vector, Θ is an F×F weight matrix, and axy is a scalar. This involves a matrix-vector multiplication,
contributing a complexity of O(F 2) per message.

• Update Complexity (U): The complexity of the update function in the reference GNN. For simplicity, we assume the
update is an element-wise function, giving U = O(|N |), where |N | is the number of nodes.

C.2. Complexity of ωN

Assuming each ωN submodule is a single-layer GNN, the complexity of ωN can be decomposed into three components:
message computation, aggregation, and update.

CωN = Cmessage + Caggregation + Cupdate

This breaks down as:
CωN = 2|E|M +

∑
n∈N

deg(n)A+ |N |U,

where:

• |E|: Number of edges in the graph,

• M : Complexity per message (O(F 2)),

• deg(n): Degree of node n,

• A: Complexity of aggregation (e.g., assuming sum/average, O(F)),

• U : Complexity of the update function (O(1) per node).

Substituting assumptions for convolutional message passing, summation aggregation, and constant node degree d:

CωN = 2|E|F 2 +
∑
n∈N

deg(n)F +O(|N |),

CωN = 2|E|F 2 + |N |dF +O(|N |),

CωN = O(|E|F 2 + |N |dF + |N |).

C.3. Complexity Using Combinatorial Complex Notations

Up until now, we have expressed CωN in terms of the nodes and edges making up the strictly expanded Hassse graph it
receives as input. To be able to write the complexity of a whole GCCN layer, we must express CωN in terms of the original
cells represented as nodes in the graph. Specifically, we will denote the source cells (cells sending messages) as cells of rank
r and the destination cells (cells receiving messages) as cells of rank r′. The relationships governing adjacency between the
nodes representing these cells will come from the neighborhood N to which the submodule ωN is assigned.

Rewriting in terms of combinatorial complex notations, where:

21

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

• ∥N∥0: Total number of relationships in N (i.e. number of nonzero entries in matrix corresponding to N),

• nr′ : Number of r′-cells.

• dr′ : Assumed constant degree of r′-cells,

The complexity becomes:
CωN = O(∥N∥0F 2 + nrows(N)dr′F + nr′),

CωN = O(∥N∥0F 2 + nrows(N)dr′F + nrows(N)).

C.4. Complexity of a GCCN Layer

A GCCN layer is composed of a set of ωN ’s, one for each N ∈ NC . The complexity of a GCCN layer is the sum of all
the complexities of its submodules, plus the complexity of the module responsible for aggregating the outputs of each
neighborhood, i.e. the inter-neighborhood aggregation. We assume this inter-aggregation to be a sum. The layer complexity
is:

CGCCN =
∑

N∈NC

CωN + Cinter-agg,

where:
Cinter-agg =

∑
r′∈[0,R′]

nr′nNr′F,

and nNr′ is the number of neighborhoods sending messages to r′-cells.

C.5. Takeaways

• GNN Comparison: GCCNs increase complexity compared to traditional GNNs due to :

– the introduction of multiple neighborhoods. A GCCN considers many N ∈ NC , going beyond the simple
node-level adjacency NC = A0 of a GNN. This is what allows TDL models (GCCNs and CCNNs) to operate on a
richer topological space than GNNs.

– inter-neighborhood aggregation.

• CCNN Comparison: Unlike traditional CCNNs, GCCNs allow per-rank neighborhoods, enabling many smaller
possible sets of neighborhoods NC . This more selective inclusion of neighborhoods reduces redundancy. Concretely,
this means the sum

∑
N∈NC

CωN can be smaller.

• Tradeoff: GCCNs’ time complexity are a compromise between GNNs and CCNNs. While they do introduce Cinter-agg
(like CCNNs) and additional elements to the sum

∑
N∈NC

CωN , they can introduce less elements to this sum than
CCNNs.

22

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

D. Software
Algorithm 1 shows how the TopoTune module instantiates a GCCN by taking a choice of model ωN and neighborhoods NC
as input. Given an input complex x, TopoTune first expands it into an ensemble of strictly augmented Hasse graphs that are
then passed to their respective ωN models within each GCCN layer.

Remark. We decided to design the software module of TopoTune, i.e., how to implement GCCNs, as we did for mainly
two reasons: (i) the full compatibility with TopoBench (implying consistency of the combinatorial complex instantiations
and the benchmarking pipeline), and (ii) the possibility of using GNNs as neighborhood message functions that are not
necessarily implemented with a specific library. However, if the practitioner is interested in entirely wrapping the GCCN
implementation into Pytorch Geometric or DGL, they can do it by noticing that a GCCN is equivalent to a heterogeneous
GNN where the heterogeneous graph the whole augmented Hasse graph, with node types given by the rank of the cell (e.g.
0-cells, 1-cells, and 2-cells) while the edge type is given by the per-rank neighborhood function (e.g. ”0-cells to 1-cells” or
”2-cells to 1-cells” for N 0

I,↑ and N 2
I,↓, respectively).

23

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

E. Additional details on experiments
In this section, we delve into the details of the datasets, hyperparameter search methodology, and computational resources
utilized for conducting the experiments.

E.1. Neighborhood Structures

In order to build a broad class of GCCNs, we consider X different neighborhood structures on which we perform graph
expansion. Importantly, three of these structures are lightweight, per-rank neighborhood structures, as proposed in Section 4.
The neighborhood structures are:

{
N 0

A,↑,N 1
A,↑

} {
N 0

A,↑,N 2
I,↓

}
{NA,↑,NI,↑} {NA,↑,NA,↓,NI,↓} {NA,↑}{

NA,↑,N 1
A,↓

}
{NA,↑,NA,↓} {NA,↑,NI,↓} {NA,↑,NA,↓,NI,↑} {NA,↑,NA,↓,NI,↓,NI,↑}

E.2. Datasets

Dataset statistics

Table 3 provides the statistics for each dataset lifted to three topological domains: simplicial complex, cellular complex, and
hypergraph. The table shows the number of 0-cells (nodes), 1-cells (edges), and 2-cells (faces) of each dataset after the
topology lifting procedure. We recall that:

• the simplicial clique complex lifting is applied to lift the graph to a simplicial domain, with a maximum complex
dimension equal to 2;

• the cellular cycle-based lifting is employed to lift the graph into the cellular domain, with maximum complex dimension
set to 2 as well.

Table 3. Descriptive summaries of the datasets used in the experiments.

Dataset Domain # 0-cell # 1-cell # 2-cell

Cora
Cellular 2,708 5,278 2,648
Simplicial 2,708 5,278 1,630

Citeseer
Cellular 3,327 4,552 1,663
Simplicial 3,327 4,552 1,167

PubMed
Cellular 19,717 44,324 23,605
Simplicial 19,717 44,324 12,520

MUTAG
Cellular 3,371 3,721 538
Simplicial 3,371 3,721 0

NCI1
Cellular 122,747 132,753 14,885
Simplicial 122,747 132,753 186

NCI109
Cellular 122,494 132,604 15,042
Simplicial 122,494 132,604 183

PROTEINS
Cellular 43,471 81,044 38,773
Simplicial 43,471 81,044 30,501

ZINC (subset)
Cellular 277,864 298,985 33,121
Simplicial 277,864 298,985 769

24

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Dataset selection and limitations

The datasets employed in this work and other TDL studies are predominantly adapted from the GNN literature. Among
these, molecular datasets stand out due to the inherent importance of cycles and hyperedges, which effectively capture
chemical rings and functional groups. These are structures that are naturally represented in topological domains.

While TDL methods are not intrinsically constrained to these datasets, the lifting procedures used to construct higher-
order cells introduce computational bottlenecks, particularly in memory usage. For instance, operations such as cycle
detection and clique enumeration, required for constructing cellular complexes or simplicial complexes, respectively, become
computationally prohibitive for large or densely connected graphs.

To address these limitations, ongoing research is focused on developing scalable lifting procedures that can extend TDL
methods to broader datasets, including those with more complex structures or larger scales. For example, Bernárdez et al.
(2024) propose innovative topological liftings, paving the way for more scalable and applicable datasets in TDL.

E.3. Hyperparameter search

Five splits are generated for each dataset to ensure a fair evaluation of the models across domains. Each split comprises 50%
training data, 25% validation data, and 25% test data. An exception is made for the ZINC dataset, where predefined splits
are used (Irwin et al., 2012).

To avoid the combinatorial explosion of possible hyperparameter sets, we fix the values of all hyperparameters beyond
GCCNs: hence, to name a few relevant parameters, we set the learning rate to 0.01, the batch size to the default value of
TopoBench for each dataset, and the cell hidden state dimension to 32. Regarding the internal GCCN hyperparameters, a
grid-search strategy is employed to find the optimal set for each model and dataset. Specifically, we consider 10 different
neighborhood structures (see Section E.1), and the number of GCCN layers is varied over {2, 4, 8}. For GNN-based
neighborhood message functions, we vary over {GCN,GAT,GIN,GraphSage} models from PyTorch Geometric, and for each
of them consider either 1 or 2 number of layers. For the Transformer-based neighborhood message function (Transformer
Encoder model from PyTorch), we vary the number of heads over {2, 4}, and the feed-forward neural network dimension
over {64, 128}.

For node-level task datasets, validation is conducted after each training epoch, continuing until either the maximum number
of epochs is reached or the optimization metric fails to improve for 50 consecutive validation epochs. The minimum number
of epochs is set to 50. Conversely, for graph-level tasks, validation is performed every 5 training epochs, with training
halting if the performance metric does not improve on the validation set for the last 10 validation epochs. To optimize
the models, torch.optim.Adam is combined with torch.optim.lr scheduler.StepLR wherein the step size
was set to 50 and the gamma value to 0.5. The optimal hyperparameter set is generally selected based on the best average
performance over five validation splits. For the ZINC dataset, five different initialization seeds are used to obtain the average
performance.

E.4. Hardware

The hyperparameter search is executed on a Linux machine with 256 cores, 1TB of system memory, and 8 NVIDIA A100
GPUs, each with 80GB of GPU memory.

25

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

F. Model Size
We provide details on model size for reported results in Section 6.

Table 4. Model size corresponding to results reported in Table 1.
Graph-Level Tasks Node-Level Tasks

Model MUTAG PROTEINS NCI1 NCI109 ZINC Cora Citeseer PubMed

Cellular

CCNN (Best Model on TopoBench) 334.72K 101.12K 63.87K 17.67K 88.06K 451.85K 1032.84K 163.72K

GCCN ωN = GAT 15.11K 46.27K 68.99K 49.63K 39.78K 341.54K 1677.32K 344.83K

GCCN ωN = GCN 45.44K 45.25K 65.92K 30.69K 29.54K 801.16K 1507.59K 443.91K

GCCN ωN = GIN 63.62K 23.49K 49.03K 66.79K 64.35K 669.58K 1674.25K 211.97K

GCCN ωN = GraphSAGE 44.42K 76.99K 47.49K 115.17K 79.71K 1195.14K 741.5K 640.51K

GCCN ωN = Transformer 112.26K 78.79K 82.05K 115.43K 317.02K 249.51K 468.29K 331.59K

GCCN ωN = Best GNN, 1 Hasse graph 14.98K 18.88K 18.05K 15.91K 20.83K 150.12K 367.88K 66.50K

Simplicial

CCNN (Best Model on TopoBench) 398.85K 10.24K 131.84K 135.75K 617.86K 144.62K 737.29K 134.40K

GCCN ωN = GAT 15.11K 46.27K 68.99K 49.63K 67.42K 341.45K 1677.32K 344.83K

GCCN ωN = GCN 45.44K 45.25K 65.92K 30.69K 64.35K 801.16K 1507.59K 443.91K

GCCN ωN = GIN 63.62K 23.49K 49.03K 66.79K 118.11K 669.58K 1674.25K 211.97K

GCCN ωN = GraphSAGE 44.42K 76.99K 47.49K 115.17K 147.30K 1195.14K 741.51K 640.51K

GCCN ωN = Transformer 113.15K 213.70K 82.05K 166.24K 148.83K 284.58K 468.29K 331.59K

GCCN ωN = Best GNN, 1 Hasse graph 19.07K 14.66K 31.11K 15.91K 29.54K 150.12K 367.88K 66.50K

Hypergraph

CCNN (Best Model on TopoBench) 84.10K 14.34K 88.19K 88.32K 22.53K 60.26K 258.50K 280.83K

Table 5. Model sizes corresponding to results in Table 2.

Graph-Level Tasks Node-Level Tasks

Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed

SCCN

TopoBench 398.85K 397.31K 131.84K 135.75K 155.88K 782.34K 457.99K

1 Hasse graph / N , ωN = Best(GNN) 852.74K 851.97K 248.58K 291.39K 159.46K 791.56K 510.47K

1 Hasse graph for {N}, ωN = Best(GNN) 104.32K 153.09K 71.17K 54.85K 143.66K 741.51K 376.58K

CWN

TopoBench 334.72K 101.12K 124.10K 412.29K 343.11K 1754.50K 163.72K

1 Hasse graph / N , ωN = Best(GNN) 350.46K 353.54K 95.75K 465.28K 900.23K 177.10K 159.56K

1 Hasse graph for {N}, ωN = Best(GNN) 219.65K 283.91K 78.85K 264.45K 138.95K 163.94K 138.95K

26

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

G. Model Training Time
We provide training times for all experiments reported on in Section 6. We measure these training times by running each
experiment on a single A30 NVIDIA GPU. We note that these times include the on-the-fly graph expansion method, which
slows down the model forward proportionally to dataset size. We plan on moving this process into data preprocessing in the
future.

Table 6. Model training time (seconds) corresponding to results reported in Table 1.
Graph-Level Tasks Node-Level Tasks

Model MUTAG (↑) PROTEINS (↑) NCI1 (↑) NCI109 (↑) ZINC (↓) Cora (↑) Citeseer (↑) PubMed (↑)

Cellular

CCNN (Best Model on TopoBench) 100 ± 23 132 ± 19 238 ± 89 254 ± 39 228 ± 44 75 ± 15 57 ± 4.4 128 ± 50

GCCN ωN = GAT 80 ± 11 64 ± 10 778 ± 118 486 ± 75 3173 ± 954 46 ± 3 63 ± 1 202 ± 22

GCCN ωN = GCN 43 ± 7 67 ± 16 544 ± 40 495 ± 108 4013 ± 620 46 ± 4 65 ± 3 149 ± 12

GCCN ωN = GIN 61 ± 18 59 ± 18 523 ± 119 386 ± 76 3301 ± 440 64 ± 8 77 ± 2 207 ± 33

GCCN ωN = GraphSAGE 43 ± 12 43 ± 3 691 ± 80 364 ± 102 2863 ± 262 49 ± 2 60 ± 3 211 ± 25

GCCN ωN = Transformer 50 ± 19 786 ± 147 1005 ± 27 1484 ± 181 15320 ± 5386 121 ± 20 94 ± 20 5459 ± 1374

GCCN ωN = Best GNN, 1 Aug. Hasse graph 33 ± 7 70 ± 24 451 ± 123 441 ± 130 3162 ± 340 47 ± 5 72 ± 6 194 ± 35

Simplicial

CCNN (Best Model on TopoBench) 123 ± 57 104 ± 28 172 ± 50 183 ± 62 178 ± 86 143 ± 16 75 ± 23 114 ± 18

GCCN ωN = GAT 25 ± 5 70 ± 17 755 ± 158 794 ± 151 2242 ± 275 49 ± 3 68 ± 2 192 ± 38

GCCN ωN = GCN 40 ± 7 138 ± 26 548 ± 185 603 ± 181 2428 ± 833 49 ± 5 67 ± 2 167 ± 22

GCCN ωN = GIN 61 ± 7 66 ± 21 904 ± 180 538 ± 39 3603 ± 475 71 ± 6 77 ± 8 210 ± 42

GCCN ωN = GraphSAGE 31 ± 3 61 ± 27 572 ± 124 511 ± 74 1721 ± 201 51 ± 3 74 ± 8 221 ± 37

GCCN ωN = Transformer 35 ± 5 947 ± 333 1386 ± 404 1360 ± 410 7979 ± 1373 146 ± 58 77 ± 2 5281 ± 827

GCCN ωN = Best GNN, 1 Aug. Hasse graph 25 ± 2 78 ± 27 598 ± 31 312 ± 7 2681 ± 910 52 ± 4 72 ± 8 156 ± 16

Hypergraph

CCNN (Best Model on TopoBench) 127 ± 48 96 ± 20 220 ± 74 128 ± 49 387 ± 105 121 ± 38 48 ± 1 177 ± 71

Table 7. Model training times (seconds) corresponding to results in Table 2.

Graph-Level Tasks Node-Level Tasks

Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed

SCCN (Yang et al., 2022)

Benchmark results (Telyatnikov et al., 2024) 11 ± 2 60 ± 18 247 ± 65 311 ± 83 102 ± 39 101 ± 41 143 ± 35

GCCN, on ensemble of strictly aug. Hasse graphs *2, dig 14 ± 1 75 ± 8 413 ± 120 298 ± 15 121 ± 2 172 ± 6 285 ± 20

GCCN, on 1 aug. Hasse graph *2, dig 5 ± 1 59 ± 10 283 ± 90 217 ± 100 110 ± 3 166 ± 10 376 ± 27

CWN (Bodnar et al., 2021a)

Benchmark results (Telyatnikov et al., 2024) 11 ± 2 43 ± 5 240 ± 50 252 ± 92 54 ± 25 52 ± 5 119 ± 14

GCCN, on ensemble of strictly aug. Hasse graphs *2, dig 12 ± 1 73 ± 10 536 ± 38 426 ± 90 91 ± 17 49 ± 1 125 ± 19

GCCN, on 1 aug. Hasse graph *2, dig 11 ± 1 62 ± 11 573 ± 107 410 ± 64 96 ± 2 46 ± 1 130 ± 20

27

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

H. Additional experiments
H.1. Larger node-level datasets

Table 8 additionally presents the experimental results on 4 heterophilic datasets introduced in (Platonov et al.) (Amazon
Ratings, Roman Empire, Minesweeper, and Questions). These represent larger node-level classification tasks than those
shown in the main Table 1, with up to 48,921 nodes and 153,540 edges in the case of the Questions graph. Except on this
precise dataset, which was not considered in previous TDL literature, we compare the results against CCNNs and hypergraph
models from Telyatnikov et al. (2024). We observe that overall GCCNs achieve similar performance than regular CCNNs,
and they outperform them by a significant margin on Minesweeper.

Amazon Ratings Roman Empire Minesweeper Questions

Best GCCN Cell 50.17 ± 0.71 84.48 ± 0.29 94.02 ± 0.28 78.04 ± 1.34
Best CCNN Cell 51.90 ± 0.15 82.14 ± 0.00 89.42 ± 0.00 -

Best GCCN Simplicial 50.53 ± 0.64 88.24 ± 0.51 94.06 ± 0.32 77.43 ± 1.33
Best CCNN Simplicial OOM 89.15 ± 0.32 90.32 ± 0.11 -

Best Hypergraph Model 50.50 ± 0.27 81.01 ± 0.24 84.52 ± 0.05 -

Table 8. Results on larger node level datasets, each experiment run with 5 seeds. We report accuracy for Amazon Ratings and Roman
Empire, and AUC-ROC for Minesweeper and Questions. The values for the best CCNNs and hypergraph models are extracted from
TopoBench (Telyatnikov et al., 2024).

H.2. More advanced GNNs

We include a subset of experiments with the same protocol as in Table 1 using GATv2 (Brody et al., 2021) and PNA (Corso
et al., 2020) in the cellular domain. Results show how the GCCNs built with these models perform consistently well across
node-level and graph-level tasks on the cell domain, often < 1σ of the best (standard-GNN) GCCN as reported in Table 1,
but only outperform them on MUTAG.

Table 9. Cross-domain, cross-task, cross-expansion, and cross-ωN comparison of GCCN architectures built with GATv2 (Brody et al.,
2021) and PNA (Corso et al., 2020) with top-performing GCCNs from Table 1 and benchmarked on TopoBench (Telyatnikov et al.,
2024). Best result is in bold and results within 1 standard deviation are highlighted blue . Experiments are run with 5 seeds. We report
accuracy for classification tasks and MAE for regression.

Graph-Level Tasks Node-Level Tasks

Model MUTAG (↑) PROTEINS (↑) NCI1 (↑) NCI109 (↑) Cora (↑) Citeseer (↑) PubMed (↑)

Cellular

CCNN (Best Model on TopoBench) 80.43 ± 1.78 76.13 ± 2.70 76.67 ± 1.48 75.35 ± 1.50 87.44 ± 1.28 75.63 ± 1.58 88.64 ± 0.36

GCCN ωN = Best Standard GNN 86.38 ± 6.49 74.41 ± 1.77 78.23 ± 1.47 77.10 ± 0.83 88.57 ± 0.58 75.89 ± 1.84 89.40 ± 0.57

GCCN ωN = PNA 83.83 ± 6.31 73.91 ± 2.63 77.24 ± 1.72 76.5 ± 0.88 87.27 ± 0.64 74.63 ± 1.32 86.34 ± 0.38

GCCN ωN = GATv2 86.38 ± 4.15 72.54 ± 3.3 77.78 ± 0.94 77.04 ± 0.63 85.11 ± 0.46 72.03 ± 2.54 88.32 ± 0.38

I. Performance versus Size Complexity
In, Fig. 10, we extend Fig. 5 to all benchmark datasets. As before, we keep GCCN layers and GNN sublayers in each
subplot constant, matching those of the best model of that dataset.

28

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

GNN used as
Neighborhoods

Figure 10. Performance versus size, scaled to best model. We consider models within 10% of the best performance on each dataset.

29

