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ABSTRACT

Matrix denoising is a crucial component in machine learning, offering valuable in-
sights into the behavior of learning algorithms (Bishop & Nasrabadi, 2006). This
paper focuses on the rectangular matrix denoising problem, which involves esti-
mating the left and right singular vectors of a rank-one matrix that is corrupted by
additive noise. Traditional algorithms for this problem often exhibit high compu-
tational complexity, leading to the widespread use of gradient descent (GD)-based
estimation methods with a quadratic cost function. However, the learning dynam-
ics of these GD-based methods, particularly the analytical solutions that describe
their exact trajectories, have been largely overlooked in existing literature. To fill
this gap, we investigate the learning dynamics in detail, providing convergence
proofs and asymptotic analysis. By leveraging tools from large random matrix
theory, we derive a closed-form solution for the learning dynamics, characterized
by the inner products of the estimates and the ground truth vectors. We rigorously
prove the almost sure convergence of these dynamics as the signal dimensions
tend to infinity. Additionally, we analyze the asymptotic behavior of the learn-
ing dynamics in the large-time limit, which aligns with the well-known Baik-Ben
Arous-Péchée phase transition phenomenon (Baik et al., 2005). Experimental re-
sults support our theoretical findings, demonstrating that when the signal-to-noise
ratio (SNR) surpasses a critical threshold, learning converges rapidly from an ini-
tial value close to the stationary point. In contrast, estimation becomes infeasible
when the ratio of the inner products between the initial left and right vectors and
their corresponding ground truth vectors reaches a specific value, which depends
on both the SNR and the data dimensions.

1 INTRODUCTION

Matrix denoising involves recovering a signal matrix P ∈ Rp×n from a noisy observation X =
P + Z, which is a fundamental challenge in statistics with broad applications in image processing
(Pedersen et al., 2009; Cordero-Grande et al., 2019), genomics (Leek, 2011), wireless communica-
tions (Couillet & Hachem, 2013), and other fields. This model is typically referred to as Johnstone’s
spiked model (Johnstone & Paul, 2018), when the noise Z is a random matrix whose dimensions
p, n are large and comparable, while P is a deterministic matrix with rank r ≪ min(p, n). Exten-
sive research has shown that in high-dimensional settings, the left and right singular vectors of X
corresponding to its top singular values could be utilized as the estimate for P .

However, when the dimensions p and n are very large, the singular value decomposition (SVD)
of X suffers from intolerable storage and computational overhead. To address this issue, iterative
optimization and learning methods have been developed (Björck et al., 2015), among which gradient
descent (GD) plays a crucial role not only in matrix denoising but also many machine learning
problems. In particular, understanding the dynamics of GD is essential in explaining the remarkable
performance of today’s deep neural networks. Inspired by this, we aim to analyze the learning
dynamics of the GD-based rank-one signal estimation algorithm in this work.

1.1 RELATED WORKS

Research on matrix denoising typically studies low-rank deformed random matrix models. Two fun-
damental and widely studied variants are the spiked Wigner model (Benaych-Georges & Nadakuditi,
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2011) and the spiked Wishart model (Benaych-Georges & Nadakuditi, 2012). The seminal work by
Baik, Ben Arous, and Péché (BBP) (Baik et al., 2005) revealed that the extreme eigenvalues and as-
sociated eigenvectors of X undergo a BBP phase transition as the signal-to-noise ratio (SNR) varies.
This pioneering result has since been generalized to a wide range of statistical models for signal esti-
mation, including those with correlated noise (Zhang & Mondelli, 2024; Ding & Yang, 2021; Gavish
et al., 2023), random features (Liao & Couillet, 2018), puncturing (Couillet et al., 2021), random
projections (Yang et al., 2021), among others. A key commonality across these studies is the use of
extreme eigenvalues and eigenvectors for signal recovery.

The aforementioned studies primarily focus on the “static” or asymptotic performance of matrix
denoising. Very limited results have been obtained regarding the learning dynamics of GD-based
estimation. The most relevant work in the literature is (Bodin & Macris, 2021), where the authors
studied the rank-one matrix denoising problem for the deformed Wigner model. In particular, a
closed-form solution for the learning dynamics is obtained for the case where P and Z are sym-
metric. However, the symmetric structure for the noise may not be available in practice, where
the observed data typically consists of a sequence {xj}, and the data matrix X = [x1, . . . ,xn]
is rectangular (the deformed Wishart model). Unfortunately, the overall learning dynamics for this
deformed Wishart model with general structured P and Z have not been fully understood in the
literature. This work aims to fill this research gap.

From a technical perspective, obtaining analytical solutions for the dynamical behavior of the
Wishart model is significantly more challenging than that for the Wigner model, due to its struc-
tural asymmetry and the higher order of the governing differential equations. To overcome these
difficulties, we employ methods from large random matrix theory (RMT) to construct approximate
solutions. For a comprehensive treatment of the relevant techniques, we refer the readers to (Bai
et al., 2010; Pastur & Shcherbina, 2011; Yao et al., 2015; Erdős & Yau, 2017; Vershynin, 2018;
Couillet & Liao, 2022). Our approach was specifically motivated by the almost sure boundedness of
extreme eigenvalues of random matrices (Yin et al., 1988; Bai & Yin, 1993) and strong convergence
results for the resolvents (Bai & Silverstein, 1998; 1999).

1.2 CONTRIBUTIONS

The main contributions of this work are summarized as follows.

• We obtain the deterministic approximations for the evolution of the inner products between
the learned vectors and the ground truth, which are in closed-form. Moreover, we prove
that, as the dimensions of the observation matrix approach infinity, the empirical evolution
processes will converge almost surely to the deterministic approximations.

• The learning dynamics are described and analyzed through a set of differential equations
that involve complex variables and contour integral conditions. We investigate the analyt-
ical properties of these equations. Specifically, we demonstrate that the solution admits
integral representations with respect to certain class of transition kernels. Furthermore, we
establish the existence and uniqueness of the solutions for the concerned equations.

• We investigate the asymptotic behavior of the learning dynamics in the large-time limit. It
is observed that there exists a critical threshold, below which the estimation becomes quite
challenging. This phenomenon is analogous to the well-known BBP phenomenon. How-
ever, the BBP phenomenon concerns the square of the inner product, which is unsigned,
but we derive a signed result and reveal its relationship with the initial conditions.

1.3 NOTATIONS AND ORGANIZATION

Notations: Throughout the paper, lowercase and uppercase boldface letters represent vectors and
matrices, respectively. In represents the identity matrix of size n. For two vectors a and b, their
inner product is defined as ⟨a, b⟩ = a⊤b. Let R+ and R∗ denote the sets R+ = {x : x ⩾ 0}
and R∗ = {x : x > 0}, respectively. The notation C(A) represents the set of continuous functions
defined on A. The norms ∥·∥2, ∥·∥F , ∥·∥C(A), and ∥·∥TV denote the ℓ2-norm for vectors, Frobenius
norm for matrices, supremum norm of continuous functions on A, and the total variation of signed
measures, respectively. The indicator function is denoted as 1{·} and the Dirac measure at a point
x is denoted as δ(x). Notation (f ∗ g)(t) =

∫ t

0
f(t − a)g(a)da represents the convolution of f(t)
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and g(t). The function (x)+ = max(x, 0). The sign function is denoted as Sgn(x) = 1{x >

0} − 1{x < 0} and a.s.−−→ represents almost sure convergence.

Organization: The rest of the paper is organized as follows. In Section 2, we introduce the problem.
In Section 3, we state the main results, including the closed-form deterministic approximation for
the learning dynamics and the asymptotic behavior with long-term learning. The implications and
potential applications of the main results are also discussed. Experiment results are given in Section
4 and Section 5 concludes the paper.

2 PROBLEM SETUP

We consider the following rank-one Jonstone’s spiked model

X = Z + λ · u∗v∗⊤ ∈ Rp×n, (1)

where X is the observation and Z = (Zij) denotes the random noise matrix that contains indepen-
dent and identically distributed (i.i.d.) elements with mean zero and variance n−1. The unit vectors
u∗ ∈ Rp and v∗ ∈ Rn represent the directions of the left and right ground truth signals, respec-
tively. The parameter λ ∈ (0,∞) denotes the SNR (Zhang & Mondelli, 2024). The main target is
to estimate the signal components (u∗,v∗) from the observation matrix X in high dimensions. To
this end, we consider the following cost function (Nadakuditi, 2014)

H(u,v) =
∥∥X − uv⊤∥∥2

F
. (2)

According to the Eckart-Young-Mirsky (EYM) theorem (Eckart & Young, 1936), the optimal solu-
tion to the optimization problem

(ueym,veym) = argmin
∥v∥2=∥u∥2=1

H(v,u), (3)

is given by (ueym,veym) = (û1, v̂1), where û1 and v̂1 denote the left and right singular vectors of
X corresponding to the largest singular value.

However, when both the dimensions p and n are very large, directly computing the SVD is compu-
tationally intensive. As a result, the GD-based estimation has been widely adopted. Given the initial
point (u0,v0), when the steps are small, the process of GD can be approximated by the gradient
flow (Li et al., 2017; Liu, 2017), given by

d

dt

[
ut

vt

]
= −gradH(ut,vt) = −

[
∇uH(ut,vt)− ut ⟨ut,∇uH(ut,vt)⟩
∇vH(ut,vt)− vt ⟨vt,∇vH(ut,vt)⟩

]
, (4)

where grad(·) represents the Riemannian gradient operator, which enforces the unit norm constraint
on ut and vt. During the learning process, the inner products between the ground truth and the
estimates, i.e., qu(t) = ⟨u∗,ut⟩ and qv(t) = ⟨v∗,vt⟩, are of interest. In particular, by ∥x∗ − x∥22 =
2− 2 ⟨x,x∗⟩, the inner product is equivalent to the distance.

In this work, we aim to derive the deterministic approximations for qu(t) and qv(t). To facilitate the
analysis, we make the following assumptions.

Assumption 1. As n → ∞, the ratio p/n → c > 0.

This assumption is common in the study of high-dimensional random matrices (Bai et al., 2010).
Here, p = p(n) can be viewed as a sequence indexed by n. In the following, we use p, n → ∞ to
denote this asymptotic regime.

Assumption 2. The random matrix Z has i.i.d. entries such that E[Zij ] = 0, E[|√nZij |2] = 1, and
E[|√nZij |4] < ∞.

More rigorously, the elements Zij = n−1/2Xij are sampled from a double array {Xij}i,j⩾1,
where Xijs are standardized i.i.d. random variables. This assumption is general and distribution-
independent. The fourth-order moment condition is to ensure that the largest singular value of Z is
almost surely bounded (Yin et al., 1988; Bai & Silverstein, 1998).
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3 MAIN RESULTS

3.1 LEARNING DYNAMICS

Our goal is to obtain a closed-form solution for the inner products qu and qv in high dimensions. We
note that qu and qv are random processes, and will demonstrate that these two random processes will
almost surely converge to two deterministic processes, which have closed-form expressions. These
deterministic processes can be described by the integration of certain “basis” functions with respect
to the famous Marčenko-Pastur (MP) measure (Marčenko & Pastur, 1967)

µ(dx) = (1− c−1)+δ(0) +

√
[x− (1−√

c)2]
+
[(1 +

√
c)2 − x]

+

2πcx
dx. (5)

To simplify the notation, we define the co-MP measure µ(dx) = (1− c)δ(0)+ cµ(dx) and the basis
functions

ℓ1,x(t) = cosh(
√
xt), ℓ2,x(t) =

1

2
√
x
sinh(2

√
xt),

ℓ3,x(t) =
1√
x
sinh(

√
xt), ℓ4,x(t) = cosh(2

√
xt). (6)

Theorem 1. (Deterministic Approximations for qu and qv) Let u0 ∈ Rp and v0 ∈ Rn be the initial
vectors with unit norms and define αu = qu(0) = ⟨u0,u

∗⟩ and αv = qv(0) = ⟨v0,v
∗⟩. Under

Assumptions 1 and 2, we have, for any T > 0

sup
0⩽t⩽T

|qu(t)− q̃u(t)| a.s.−−−−−→
p,n→∞

0, sup
0⩽t⩽T

|qv(t)− q̃v(t)| a.s.−−−−−→
p,n→∞

0, (7)

where q̃u(t) = q̂u(t)/
√

p̂(t) and q̃v(t) = q̂v(t)/
√
p̂(t). Here, the deterministic functions q̂u(t),

q̂v(t), and p̂(t) are defined as

q̂u(t) = −αv

λ

∫

R
x (ℓ3,x ∗ ℓ3,ϑλ

) (t)µ(dx) + αvλℓ3,ϑλ
(t)

− αuc(1 + λ2)

λ2

∫

R
(ℓ1,ϑλ

∗ ℓ3,x)(t)µ(dx) + αuℓ1,ϑλ
(t), (8)

q̂v(t) = −αuc

λ

∫

R
x(ℓ3,x ∗ ℓ3,ϑλ

)(t)µ(dx) + αuλℓ3,ϑλ
(t)

− αv(λ
2 + c)

λ2

∫

R
(ℓ1,ϑλ

∗ ℓ3,x)(t)µ(dx) + αvℓ1,ϑλ
(t), (9)

p̂(t) = 1 + 2

∫ t

0

ĝu,v(a)da

+

∫ t

0

da

∫

R
µ(dx)

{
2αuλ(q̂v · ℓ1,x)(a) + 2λ2q̂v(a) · (q̂v ∗ ℓ1,x)(a)

}
, (10)

ĝu,v(t) =

∫

R
xℓ2,x(t)[µ+ µ](dx)

+ 2

∫

R
x
{
λαu[(q̂v · ℓ1,x) ∗ ℓ2,x](t) + λ2[[q̂v · (q̂v ∗ ℓ1,x)] ∗ ℓ2,x](t)

}
µ(dx)

+ 2

∫

R
x
{
λαv[(q̂u · ℓ1,x) ∗ ℓ2,x](t) + λ2[[q̂u · (q̂u ∗ ℓ1,x)] ∗ ℓ2,x](t)

}
µ(dx)

+

∫

R
x
{
λαu[(q̂v · ℓ3,x) ∗ ℓ4,x](t) + λ2[[q̂v · (q̂v ∗ ℓ3,x)] ∗ ℓ4,x](t)

}
µ(dx)

+

∫

R
x
{
λαv[(q̂u · ℓ3,x) ∗ ℓ4,x](t) + λ2[[q̂u · (q̂u ∗ ℓ3,x)] ∗ ℓ4,x](t)

}
µ(dx), (11)

with ϑλ = (1 + λ2)(c+ λ2)/λ2.
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Proof: The proof of Theorem 1 is given in Appendix C.

The expression for the evolution dynamics q̃u(t) and q̃v(t) involves a large number of integrals
and convolution operations. However, since the MP measures µ and µ have bounded support and
density functions, the terms q̂u(t), q̂v(t), and p̂(t) can be computed numerically for finite t, and the
complexity is affordable. Specifically, by equally partitioning the intervals [0, t] and [(1−√

c)2, (1+√
c)2] into Nt and Nx grid cells respectively and applying the standard rectangle method, the overall

computational complexity is at most O(N2
t Nx).

An interesting observation is that when both αu and αv are zero, the inner products will be approx-
imately zero throughout the learning process. This phenomenon can be intuitively explained by the
gradient flow (4). When ut and u∗, as well as vt and v∗, are orthogonal, their gradients are given
by

dut

dt
= (Ip − utu

⊤
t )Zvt,

dvt

dt
= (In − vtv

⊤
t )Z

⊤ut. (12)

This indicates that vectors ut and vt will only run along the directions spanned by projection of the
noise and fail to learn ground truth. In Section 3.2, we will provide a more general condition under
which learning fails in the large-time limit.

Theorem 1 has several potential applications, as discussed in following remarks.
Remark 1. (Early Stopping Strategy Design) Consider the task of estimating the high-dimensional
signal directions u∗ and v∗. Assume we know the SNR λ and the observation matrix X . Addition-
ally, there is a performance requirement

min {⟨ut,u
∗⟩, ⟨vt,v

∗⟩} ⩾ γ, (13)

for a given threshold γ ∈ (0, 1). Let ĉ = p/n be the estimator for c. According to Theorem 1,
the deterministic approximations only depend on (c, λ, αu, αv). Thus, the following stopping time
estimator can be constructed

t̂(αu, αv) = inf {t ⩾ 0 : min {q̃u(t), q̃v(t)} ⩾ γ} . (14)

We note that t̂(αu, αv) can be efficiently computed by standard numerical methods. Furthermore, if
we know the prior information about (u∗,v∗) (Aubin et al., 2021), we can design the statistically
optimal stopping time. For example, set t̂∗ = Eαu,αv

[t̂(αu, αv)].
Remark 2. (SNR Estimation) Consider the task of estimating the SNR λ. Assume the signal direc-
tions (u∗,v∗) are known. Applying gradient flow, we obtain the following estimator

λ̂(u∗,v∗) = argmin
λ>0

∥⟨ut,u
∗⟩ − q̃u(t)∥C([0,T ]) + ∥⟨vt,v

∗⟩ − q̃v(t)∥C([0,T ]) , (15)

for given T > 0.

We also have the following technical remarks.
Remark 3. The expressions for q̃u and q̃v can be further simplified. For instance, in (8), the term
(ℓ3,x ∗ ℓ3,ϑλ

)(t) in the integration can be computed directly since the basis functions are linear
combinations of exponential functions. Similarly, the term (q̂v ∗ ℓ1,x)(t) on the right-hand side
(RHS) of (10) can also be simplified by interchanging the order of the MP integral and convolution
according to Fubini’s theorem. These simplifications can significantly reduce the complexity of the
numerical evaluation.
Remark 4. (On the Role of ĝu,v) The function ĝu,v can be used to characterize the correlation
between the estimates (ut,vt) and the random noise Z. In particular, it can be verified by the proof
in Appendix C that

sup
0⩽t⩽T

|g̃u,v(t)− ⟨ut,Zvt⟩| a.s.−−−−−→
p,n→∞

0, (16)

where g̃u,v(t) = ĝu,v(t)/p̂(t).
Remark 5. (Comparison with (Bodin & Macris, 2021)) The proof strategy of Theorem 1 is similar
to that in (Bodin & Macris, 2021). Specifically, we first construct a system of differential equations
for the characteristic functions using the resolvent, and then solve it via the Laplace transform.
However, the analytical properties and the existence and uniqueness of the solutions to the charac-
teristic equation were not investigated in (Bodin & Macris, 2021). We note that these properties are

5
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important (Hachem et al., 2007). Specifically, the governing system (41) describes the dynamics of
the inner products, so the uniqueness of the solution to (4) does not guarantee that of the solution to
the constructed system. We show that this solution admits an integral representation via a transition
kernel and is unique under the given representation (cf. Theorem 3). Substituting (ut,vt) from
(4) into the constructed system automatically satisfies the integral representation, which provides a
rigorous theoretical guarantee. This framework can also be applied to study the learning dynamics
of other problems (Bordelon et al., 2020; Loureiro et al., 2021; Paquette et al., 2024; 2021).

As discussed in Section 2, the loss function H(u,v) reaches the global minimum at (û1, v̂1) by the
EYM theorem. We have the following corollary regarding the learning dynamics of the gap between
the loss function and its optimal value.

Corollary 1. (Deterministic Approximation for the Loss Function) With the same settings as Theo-
rem 1, we denote

H(u,v) =
∥∥X − uv⊤∥∥2

F
−
∥∥X − û1v̂

⊤
1

∥∥2
F
. (17)

Further define λc = max(c1/4, λ) and ϑλ,c = (1+ λ2
c)(c+ λ2

c)/λ
2
c . Then, we have, for any T > 0,

sup
0⩽t⩽T

∣∣∣H(ut,vt)− H̃(t)
∣∣∣ a.s.−−−−−→

p,n→∞
0, (18)

where H̃(t) = 2
[√

ϑλ,c − g̃u,v(t)− λq̃u(t)q̃v(t)
]
.

Proof: By algebra, we have

H(ut,vt) = Tr(X − utv
⊤
t )(X

⊤ − vtu
⊤
t )− Tr(X − û1v̂

⊤
1 )(X

⊤ − v̂1û
⊤
1 )

= 2 ⟨û1,Xv̂1⟩ − 2 ⟨ut,Xvt⟩
= 2 [σ1 − ⟨ut,Zvt⟩ − λqu(t)qv(t)] , (19)

where σ1 denotes the largest singular value of X . According to (Liu et al., 2025, Theorem 2), the
largest eigenvalue of XX⊤ converges to ϑλ,c almost surely, as p, n → ∞. This implies σ1 →√

ϑλ,c almost surely, by the continuous mapping theorem (Van der Vaart, 2000, Theorem 2.3).
Using Theorem 1 and (16), (18) is proved.

We note that the loss functions H in (2) and H in (17) are equivalent since the second term on the
RHS of (17) can be viewed as a constant. From Theorem 1 and Corollary 1, it can be observed
that the learning dynamics is rotational invariant. In particular, for any αu, αv ∈ [−1, 1], all initial
points (u0,v0) satisfying ⟨u0,u

∗⟩ = αu and ⟨v0,v
∗⟩ = αv exhibit asymptotically same learning

dynamics, i.e., the same evolution of the inner products and the loss function.

3.2 LARGE-TIME LIMIT

The following theorem demonstrates the asymptotic behavior of the deterministic approximations
q̃u and q̃v , as t → ∞.

Theorem 2. (Asymptotics of the Learning Dynamics) Define I = Sgn{ αv√
1+λ2

+ αu√
λ2+c

}. As
t → ∞, we have

lim
t→∞

q̃u(t) = q̃∞u = I ·
√

1− cλ−4

1 + cλ−2
· 1{λ > c1/4}, (20)

lim
t→∞

q̃v(t) = q̃∞v = I ·
√

1− cλ−4

1 + λ−2
· 1{λ > c1/4}. (21)

Proof: The proof of Theorem 2 is given in Appendix D.

From Theorem 2, we can observe that when λ < c1/4, the gradient flow estimation is asymptotically
trivial as q̃u, q̃v → 0. When λ exceeds c1/4, a phase transition occurs, indicating that c1/4 is the
critical threshold for estimation. This phenomenon is consistent with the well-known BBP phase
transition. In the following remarks, we compare Theorem 2 with the BBP phenomenon and discuss
the potential applications.

6
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Remark 6. (Comparison with BBP Phase Transition) Recall û1 and v̂1 are the left and right singu-
lar vectors of X corresponding to the largest singular value. According to the BBP phase transition
(Baik et al., 2005), we have

|⟨û1,u
∗⟩|2 a.s.−−−−−→

p,n→∞

1− cλ−4

1 + cλ−2
· 1{λ > c1/4}, (22)

|⟨v̂1,v
∗⟩|2 a.s.−−−−−→

p,n→∞

1− cλ−4

1 + λ−2
· 1{λ > c1/4}. (23)

The major difference between (22)-(23) and (20)-(21) lies in the sign and the case αv√
1+λ2

+ αu√
λ2+c

=

0. This indicates that if we have prior information about the initial points αu and αv , it is possible
to determine the confidence intervals for the signs, thereby estimating the directions of the ground
truth with gradient flow. In the experiments, it will be shown that when αv√

1+λ2
+ αu√

λ2+c
= 0, the

estimation becomes difficult.
Remark 7. (Estimation for λ ⩽ c1/4) Even when q̃v, q̃u → 0, there is still a chance to estimate the
signals. Assuming we have prior information about αu and αv , similar to Remark 1, we can set

t̂(αu, αv) = argmax
t⩾0

{|q̃u(t)|+ |q̃v(t)|} , (24)

and design the learning time according to t̂(αu, αv).

We also have the following phase transition phenomenon regarding the asymptotic behavior of the
loss function.
Corollary 2. Define J = 1{ αv√

λ2+1
+ αu√

λ2+c
= 0}. As t → ∞, we have

lim
t→∞

H̃(t) = 2J ·
[√

ϑλ,c − 1−√
c
]
. (25)

Proof: The proof of Corollary 2 is similar to that of Theorem 2 and thus omitted.

Recalling ϑc,λ = (1 + λ2
c)(c + λ2

c)/λ
2
c , it can be observed that when the SNR is smaller than the

critical value, ϑc,λ = (1 +
√
c)2 and the loss tends to 0 as the learning time increases. Furthermore,

Corollary 2 implies that if J ̸= 1 and λ > c1/4, we have

lim
t→∞

g̃u,v(t) =
1

λ

[√
λ2 + c

λ2 + 1
+

√
λ2 + 1

λ2 + c

]
. (26)

Note that g̃u,v(t) approximates the correlation between the estimates (ut,vt) and the noise, i.e.,
g̃u,v(t) ≈ ⟨ut,Zvt⟩. As λ → ∞, the RHS of the above equation tends to 0, indicating that higher
SNR leads to reduced dependence between (ut,vt) and the noise.

4 EXPERIMENTS

In this section, we verify the accuracy of the theoretical results. The simulation results are generated
using GD. In particular, at the k = ⌊t/η⌋-th iteration, we first update the vectors as uk+1/2 = uk −
η∇uH(uk,vk) and vk+1/2 = vk−η∇vH(uk,vk), where η is learning rate set as η = 5e−3. Next,
vectors uk+1/2 and vk+1/2 are projected to the unit sphere, yielding uk+1 = uk+1/2/∥uk+1/2∥2,
and vk+1 = vk+1/2/∥vk+1/2∥2.

Accuracy of the Deterministic Approximations: Figure 1 shows the loss function and inner prod-
uct dynamics compared with their deterministic approximations. The parameters are set as p = 900
and n = 1200. The ground truth vectors are set as u∗ = [1, 0, . . . , 0]⊤ and v∗ = [0, 1, 0, . . . , 0]⊤.
The initial points are set as u0 = (10u∗ +z1)/ ∥10u∗ + z1∥2 and v0 = (5v∗ +z2)/ ∥5v∗ + z2∥2,
where z1 ∈ Rp and z2 ∈ Rn are random vectors with i.i.d. standardized Gaussian elements. In
Figures 1a-1c, the SNR is set to λ = 0.3, which is below the critical threshold c1/4. In contrast, in
Figures 1d-1f, the SNR is set to λ = 1.5 > c1/4. By comparing the dark-colored lines and the light-
colored lines, it can be observed that the deterministic approximations q̃u, q̃v , and H̃ are accurate,
which validates the accuracy of Theorem 1 and Corollary 1. Additionally, it can be seen that the
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Figure 1: Theoretical and Empirical Learning Dynamics.
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Figure 2: Learning Dynamics with Different SNR Values λ.

deterministic approximations become more accurate as the SNR increases. This is because, when
the SNR is lower, the random noise Z dominates, thus qu, qv have more randomness. By compar-
ing the asymptotic values (dash-dotted lines) with the deterministic approximations, the accuracy of
Theorem 2 is verified.

Impact of the SNR: Figure 2 illustrates the theoretical learning curves with different SNR values.
The parameters are set as c = 0.5, αu = 0.211, and αv = −0.121. It can be observed that when
λ ⩽ c1/4 = 0.841, q̃u and q̃v approach to 0 as t → ∞. However, when λ > c1/4, they converge
to q̃∞u and q̃∞v , respectively, which are positive for the concerned case. This validates the accuracy
of Theorem 2 in terms of the sign of the limits, because αv√

1+λ2
+ αu√

c+λ2
is strictly positive for all

λ ∈ [0.1, 2].

It can be observed that as the SNR increases, the GD-based algorithm learns the hidden information
(u∗,v∗) faster. From the third sub-figure in Figure 2, we note that although the loss may be larger
during the early learning stage with higher SNR, it eventually decreases to a lower level during the
training. This indicates that learning is a global process and a rapid initial decrease in loss does not
necessarily imply better final performance. Conversely, for data with high potential (correspond-
ingly, high SNR), the loss may not decrease significantly in the initial stages of learning.

Impact of the Initial Points: Figure 3 illustrates the learning curves of q̃u with different initial
values αu. The parameters are set as c = 0.5 and αv = 0.4. In Figure 3a, the SNR is set to
λ = 1.5 > c1/4, while in Figure 3b, λ = 0.2 < c1/4. The solid red curve corresponds to the case
where αv√

1+λ2
+ αu√

c+λ2
= 0, while the dashed red curve represents the line y = 2(

√
ϑλ,c−1−√

c).
The trend of the loss functions validates the accuracy of Corollary 2.
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Figure 3: Learning Dynamics with Different Initial Values αu.

It can be observed that the initial value affects the speed of convergence for λ > c1/4. When αu is

close to −αv

√
λ2+c
λ2+1 , the gradient flow converges more slowly, whereas when the initial value αu is

near q̃∞u , the gradient flow converges faster. This also provides insights on the learning algorithms.
Given the complex geometric structure of the loss surface, if the initial point is unfortunately located
near some “bad” regions, it may take significant efforts for the model to learn the hidden information
from the data, even though the loss decreases with GD.

5 CONCLUSIONS

In this work, we studied the GD dynamics of the rank-one matrix denoising problem. In particular,
we obtained closed-form deterministic approximations for the inner products between the learned
vectors and the ground truth, and proved that the random learning curves converge to the approxi-
mations almost surely. Additionally, we derived the asymptotic behavior of the learning dynamics,
which is consistent with the BBP phase transition phenomenon. Simulations validated the accuracy
of the theoretical results. Furthermore, it was observed that the gradient flow converges faster when
the SNR is higher and when the initial point is close to the stationary points. In contrast, there exist
“bad points” where learning is disrupted. If the initial value is near the bad points, it takes a longer
time to learn the hidden information even with high SNR.

The main results of this work, i.e., Theorems 1 and 2, have many potential applications and can be
further extended. Given the prior information about the initial points and the ground truth, these
results can be utilized to design early stopping strategies and develop SNR estimation algorithms.
In this work, we have established the almost sure convergence of the gradient flow dynamics, which
corresponds to the “law of large numbers.” The “central limit theorem,” i.e., the asymptotic fluc-
tuation of qh(t) around q̃h(t), h ∈ {u, v}, remains an interesting open problem. Such fluctuations
capture higher-order information about the test errors of learning algorithms. Moreover, the data
model considered in this work is linear. Extending this analysis to nonlinear data structures, such
as random feature models, represents a more general and challenging direction. From a practical
standpoint, investigating these aspects would yield deeper insights into the dynamics of learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Benjamin Aubin, Bruno Loureiro, Antoine Maillard, Florent Krzakala, and Lenka Zdeborová. The
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we utilized LLMs for grammar checking and text polishing to enhance the readability.

B MATHEMATICAL TOOLS

In this section, we introduce the mathematical tools used in our analysis along with related discus-
sions.

B.1 RESULTS ON CALCULUS OF FUNCTIONS

Lemma 1. (Grönwall’s Lemma) Let T > 0 and h be a nonnegative bounded measurable function
on [0, T ] such that, for every t ∈ [0, T ],

h(t) ⩽ a+ b

∫ t

0

h(t)dt, (27)

for constants a ⩾ 0 and b ⩾ 0. Then, we have, for every t ∈ [0, T ],

h(t) ⩽ a exp[bt]. (28)

Lemma 2. (Final Value Theorem) Let f ∈ C(R+) be such that limt→∞ e−atf(t) = A exists for
some a > 0 and A ∈ R. Moreover, assume that g ∈ C(R+) satisfies

∫∞
0

e−at|g(t)|dt < ∞. Then,
we have

lim
t→∞

e−at(f ∗ g)(t) = A ·
∫ ∞

0

e−atg(t)dt. (29)

Lemma 3. Let f ∈ C([a, b]) be such that f(b) ̸= 0 and α > −1. Then,

lim
t→∞

∫ b

a
f(x) exp[

√
xt](b− x)αdx

f(b) exp[
√
bt]Γ(α+ 1)

(
2
√
b

t

)α+1 = 1, (30)

where Γ(z) =
∫∞
0

tz−1 exp[−t]dt denotes the Gamma function.

Proof: The proof of Lemma 3 is given in Appendix E.

B.2 RESULTS ON RANDOM MATRICES

The deterministic approximation of the gradient flow relies on the convergence of the resolvent for
the covariance matrix of Z, which is defined as

Q(z) =
(
ZZ⊤ − zIp

)−1
, (31)

where z ∈ C such that Q(z) is well-defined. The co-resolvent is defined as Q(z) = (Z⊤Z −
zIn)

−1. The convergence of the resolvent is a fundamental topic in RMT (Bai et al., 2010), as it
characterizes the spectral distribution of the random matrix Z. Recall c = limp,n→∞ p/n. Define
E− = (1 − √

c)2, E+ = (1 +
√
c)2, and the set M = {0} ∪ [E−, E+]. The following lemma

describes the asymptotic behavior of the resolvents.
Lemma 4. (Convergence of the Resolvents) Assume Assumptions 1 and 2 hold and let u ∈ Rp and
v ∈ Rn be deterministic vectors with ∥u∥2 = ∥v∥2 = 1. Let Γ be a compact set in C such that
dist(Γ,M) > 0. Then, we have,

sup
z∈Γ

∣∣u⊤Q(z)u−m(z)
∣∣ a.s.−−−−−→

p,n→∞
0, (32)

sup
z∈Γ

∣∣v⊤Q(z)v −m(z)
∣∣ a.s.−−−−−→

p,n→∞
0, (33)
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sup
z∈Γ

∣∣u⊤Q(z)Zv
∣∣ a.s.−−−−−→

p,n→∞
0, (34)

where m(z) is the unique solution to

zcm2(z)− (1− c− z)m(z) + 1, (35)

such that m(z) ∈ C+ ≡ {z : ℑ(z) > 0} for z ∈ C+, and m(z) = cm(z) + (c− 1)/z.

Proof: When Γ is a singleton, the proofs for (32) and (33) can be found in (Bai et al., 2010; Couillet
& Liao, 2022). The extension to a general compact set Γ follows from an ε-net argument and a
similar discussion as in (Bai & Silverstein, 1998, Eq. 3.23). The proof for (34) is given in Appendix
F

In fact, it can be shown that m(z) is the Stieltjes transform (Bai et al., 2010) of the MP distribution.
Specifically, we have the integral representations

m(z) =

∫

R

µ(dx)

x− z
, m(z) =

∫

R

µ(dx)

x− z
, (36)

where

µ(dx) =
(
1− c−1

)+
δ(0) +

√
(x− E−)+(E+ − x)+

2πcx
dx,

µ(dx) = (1− c)+δ(0) +

√
(x− E−)+(E+ − x)+

2πx
dx. (37)

C PROOF OF THEOREM 1

In this section, we will prove Theorem 1. The proof consists of four parts.

1. We first construct a system of differential equations for the characteristic functions (Stieltjes
transforms) associated with (4), which are more tractable.

2. We establish the existence and uniqueness of the solution with a specific integral represen-
tation.

3. Using Lemma 4, we develop a deterministic approximation for the original system and
obtain a closed-form solution.

4. Leveraging the integral representation and the uniqueness property from Step 2, we show
that the solution to the original system converges almost surely to that of the approximate
system.

C.1 DERIVATION OF A TRACTABLE SYSTEM OF DIFFERENTIAL EQUATIONS

We start by expanding the gradient flow in (4) to

d

dt

[
ut

vt

]
=

[
Xvt − utu

⊤
t Xvt

X⊤ut − vtv
⊤
t X

⊤ut

]

=

[
Zvt + λu∗v∗⊤vt − utu

⊤
t Zvt − λutu

⊤
t u

∗v∗⊤vt

Z⊤ut + λv∗u∗⊤ut − vtv
⊤
t Z

⊤ut − λvtv
⊤
t v

∗u∗⊤ut

]

=

[
Zvt + λu∗qv(t)− fu,v,λ(t)ut

Z⊤ut + λv∗qu(t)− fu,v,λ(t)vt

]
, (38)

where fu,v,λ(t) = gu,v(t) + λqu(t)qv(t) and gu,v(t) = ⟨ut,Zvt⟩. Directly solving the above
system is challenging due to its highly coupled nature. To this end, we define the inner products
(qu, qv) and the resolvent-related functions as follows

Cu(z) = ⟨u∗,Q(z)u∗⟩ , Cv(z) = ⟨v∗,Q(z)v∗⟩ , Du,v(z) = ⟨u∗,Q(z)Zv∗⟩ ,
Gu(t, z) = ⟨ut,Q(z)u∗⟩ , Gv(t, z) =

〈
vt,Q(z)v∗〉 , Ξu(t, z) = ⟨ut,Q(z)Zv∗⟩ ,

Ξv(t, z) = ⟨u∗,Q(z)Zvt⟩ , Υu(t, z) = ⟨ut,Q(z)ut⟩ , Υv(t, z) =
〈
vt,Q(z)vt

〉
,

14
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Πu,v(t, z) = ⟨ut,Q(z)Zvt⟩ . (39)

The quantities defined in (39) can be viewed as the characteristic functions (or Stieltjes transforms)
associated with the inner products. To illustrate this, consider Gu(t, z) as an example. By selecting
a positively oriented contour Γ that encloses all the eigenvalues of ZZ⊤, and applying Cauchy’s
integral formula, we obtain

− 1

2πȷ

∮

Γ

Gu(t, z) = qu(t). (40)

To simplify notation, we define the symbolic variables set Sode = {Gu, Gv,Ξu,Ξv,Υu,Υv,Πu,v}.
Using (4), we can derive the differential equations for each S ∈ Sode. Formally, we
introduce the following system of differential equations for the complex-valued functions
Gu, Gv,Ξu,Ξv,Πu,v,Υu,Υv : R+ × C 7→ C

∂

∂t
Gu(t, z) = Ξv(t, z) + λqv(t)Cu(z)− fu,v,λ(t)Gu(t, z), (41a)

∂

∂t
Gv(t, z) = Ξu(t, z) + λqu(t)Cv(z)− fu,v,λ(t)Gv(t, z), (41b)

∂

∂t
Ξu(t, z) = qv(t) + zGv(t, z) + λqv(t)Du,v(z)− fu,v,λ(t)Ξu(t, z), (41c)

∂

∂t
Ξv(t, z) = qu(t) + zGu(t, z) + λqu(t)Du,v(z)− fu,v,λ(t)Ξv(t, z), (41d)

∂

∂t
Πu,v(t, z) = 2 + z[Υu(t, z) + Υv(t, z)] + λ[qv(t)Ξv(t, z) + qu(t)Ξu(t, z)]

− 2fu,v,λ(t)Πu,v(t, z), (41e)
1

2
· ∂

∂t
Υu(t, z) = Πu,v(t, z) + λqv(t)Gu(t, z)− fu,v,λ(t)Υu(t, z), (41f)

1

2
· ∂

∂t
Υv(t, z) = Πu,v(t, z) + λqu(t)Gv(t, z)− fu,v,λ(t)Υv(t, z), (41g)

subjected to the initial conditions

S(0, z) = BS(z), ∀S ∈ Sode. (42)

There exists a bounded interval I ⊂ R such that for any given t ∈ R+ and S ∈ Sode, z 7→ S(t, z)
is analytical on C\I . Additionally, the following constraints hold for all t ∈ R+ and any positively
oriented contour Γ enclosing I

fu,v,λ(t) = gu,v(t) + λqu(t)qv(t),

qu(t) = − 1

2πȷ

∮

Γ

Gu(t, z)dz, qv(z) = − 1

2πȷ

∮

Γ

Gv(t, z)dz,

gu,v(t) = − 1

2πȷ

∮

Γ

Πu,v(t, z)dz, − 1

2πȷ

∮

Γ

Υu(t, z)dz = − 1

2πȷ

∮

Γ

Υv(t, z)dz = 1. (43)

C.2 EXISTENCE AND UNIQUENESS OF THE SOLUTION

A fundamental question is the structure of the solution to the system of differential equations (41).
In the following theorem, we show that if the initial conditions BS(z) for S ∈ Sode, together with
the functions Cu(z), Cv(z), and Du,v(z), admit certain integral representations (which include (39)
as a special case), then the solution to (41) exists and is unique within a certain family.

Before delving into the details, we introduce the definition of a “good transition kernel”. Specifically,
a function µ : R+ × B(R) 7→ R is called a good transition kernel if and only if

• For each t ∈ R+, µ(t, ·) is a signed measure on R+ with bounded total variation.

• The support is uniformly bounded: there exist E < ∞ such that

sup
t⩾0

sup{supp(µ(t, ·))} ⩽ E. (44)
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• For every Borel set A ∈ B(R), the mapping µ(·, A) is continuous in the sense that

lim
δ→0

∥µ(t, ·)− µ(t+ δ, ·)∥TV = 0. (45)

Define the family of functions SK as

SK =

{
f : R+ × C 7→ C

∣∣∣∣f(t, z) =
∫

R+

µ(t,dx)

x− z
, µ is a good transition kernel

}
. (46)

Theorem 3. Assume that functions Cu, Cv , and Du,v admit the following integral representations

Cu(z) =

∫

R

µCu(dx)

x− z
, Cv(z) =

∫

R

µCv (dx)

x− z
, Du,v(z) =

∫

R

µDu,v (dx)

x− z
, (47)

where µC,u, µC,v, and µD,u,v are non-negative finite measures supported over R+. Moreover, their
support is bounded, i.e, supp(µCu), supp(µCv ), and supp(µDu,v ) ⊂ [0, E] for some E < ∞ and
z ∈ C\[0, E]. Further, assume the initial conditions BS , for S ∈ Sode also have the integral
representations of the form

BS(z) =

∫

R

νS(dx)

x− z
, (48)

where νSs are finite signed measures supported in [0, E] and satisfy νΥu
(R+) = νΥv

(R+) = 1.
Then, the system of equations (41) admits a unique solution (Gu, Gv,Ξu,Ξv,Πu,v,Υu,Υv) ∈ S7K.

Proof: We first establish the existence of local solutions via Picard iteration by inductively con-
structing the corresponding integral representations and proving the convergence of the underlying
measures. Choose the initial functions S0 ∈ SK for all S ∈ Sode represented by good transition
kernels µ0

Ss, such that

S0(t, z) =

∫

R

µ0
S(t,dx)

x− z
, ∀S ∈ Sode, (49)

with µ0
Υu

(t,R+) = µ0
Υv

(t,R+) = 1 for all t ⩾ 0 and µ0
S(0, ·) = νS(·) for all S ∈ Sode. Suppose the

induction hypothesis holds for k. We then show that 1) Sk+1 ∈ SK; 2) the support of the underline
measures µk+1

S s are bounded by E, and 3) µk+1
Υu

(t,R+) = µk+1
Υv

(t,R+) = 1 under Picard’s iteration
scheme. In particular, the iterate Gu is given by

Gk+1
u (t, z) = BGu

(z) +

∫ t

0

Ξk
v(a, z) + λqkv (a)Cu(z)− fk

u,v,λ(a)G
k
u(a, z)da. (50)

By the induction hypothesis, we can obtain

Gk+1
u (t, z) =

∫

R+

νGu(dx)

x− z
+

∫ t

0

∫

R+

µk
Ξv

(a,dx)da

x− z
+ λ

∫ t

0

qkv (a)da

∫

R+

µCu(dx)

x− z

−
∫ t

0

∫

R+

fk
u,v,λ(a)µ

k
Gu

(a,dx)da

x− z
, (51)

where qku(t) = µk
Gu

(t,R), qkv (t) = µk
Gv

(t,R), gku,v(t) = µk
Πu,v

(t,R), and fk
u,v,λ(a) = gku,v(a) +

λqku(a)q
k
v (a). By Fubini’s theorem, we can construct the following iterative scheme for µGu

µk+1
Gu

(t, A) = νGu
(A) +

∫ t

0

µk
Ξv

(a,A) + λqkv (a)µCu
(A)− fk

u,v,λ(a)µ
k
Gu

(a,A)da, (52)

for any Borel set A ∈ B(R). The total variation for µk+1
Gu

(t, ·) can be bounded as

∥∥µk+1
Gu

(t, ·)
∥∥
TV

⩽ ∥νGu∥TV +

∫ t

0

∥∥µk
Gu

(a, ·)
∥∥
TV

+ |qkv (a)| ∥µCu∥TV

+ |fk
u,v,λ(a)|

∥∥µk
Gu

(a, ·)
∥∥
TV

da, (53)

which is finite. The continuity condition (45) follows directly from the definition of the iteration
scheme. Since µk

S(a, ·) and νGu(·) are supported over [0, E], the measure µk+1
Gu

(t, ·) also supported
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over [0, E]. Therefore, µk+1
Gu

is a good transition kernel and Gk+1
u ∈ SK. By construction, the

relation Sk+1 ∈ SK for the remaining terms S ∈ Sode can be shown in a similar manner, and we
directly give the iteration scheme for the transition kernels as follows

µk+1
Gu

(t, A) = νGu
(A) +

∫ t

0

µk
Ξv

(a,A) + λqkv (a)µCu
(A)− fk

u,v,λ(a)µ
k
Gu

(a,A)da, (54a)

µk+1
Gv

(t, A) = νGv (A) +

∫ t

0

µk
Ξu

(a,A) + λqku(a)µCv (A)− fk
u,v,λ(a)µ

k
Gv

(a,A)da, (54b)

µk+1
Ξu

(t, A) = νΞu(A) +

∫ t

0

da

∫

A

xµk
Gv

(a,dx) + λqkv (a)µDu,v
(dx)− fk

u,v,λ(a)µ
k
Ξu

(a,dx),

(54c)

µk+1
Ξv

(t, A) = νΞv
(A) +

∫ t

0

da

∫

A

xµk
Gu

(a,dx) + λqku(a)µDu,v
(dx)− fk

u,v,λ(a)µ
k
Ξv

(a,dx),

(54d)

µk+1
Πu,v

(t, A) = νΠu,v
(A) +

∫ t

0

da

∫

A

xµk
Υu

(a,dx) + xµk
Υv

(a,dx) + λqkv (a)µ
k
Ξv

(a,dx)

+ λqku(a)µ
k
Ξu

(a,dx)− 2fk
u,v(a)µ

k
Πu,v

(a,dx), (54e)

µk+1
Υu

(t, A) = νΥu(A) + 2

∫ t

0

da

∫

A

µk
Πu,v

(a,dx) + λqkv (a)µ
k
Gu

(a,dx)− fk
u,v,λ(a)µ

k
Υu

(a,dx),

(54f)

µk+1
Υv

(t, A) = νΥv
(A) + 2

∫ t

0

da

∫

A

µk
Πu,v

(a,dx) + λqku(a)µ
k
Gu

(a,dx)− fk
u,v,λ(a)µ

k
Υv

(a,dx).

(54g)

Obviously, for any µk+1
S , S ∈ Sode, the support of the measure µk+1

S (t, ·) is contained in [0, E].
Here, to show that µk+1

Ξv
is a good transition kernel (the argument for µk+1

Ξu
and µk+1

Πu,v
is analogous),

we use the fact x ⩽ E and

∥∥xµk
Gv

(t, ·)
∥∥
TV

= sup
A

∣∣∣∣
∫

A

xµk
Gv

(t,dx)

∣∣∣∣ ⩽ E sup
A

∣∣∣∣
∫

A

µk
Gv

(t,dx)

∣∣∣∣ = E
∥∥µk

Gv
(t, ·)

∥∥
TV

. (55)

By the induction hypothesis µk
Υu

(t,R+) = µk
Υv

(t,R+) = 1, we have

µk+1
Υu

(t,R+) = νΥu
(R+) + 2

∫ t

0

µk
Πu,v

(a,R+) + λqkv (a)µ
k
Gu

(a,R+)− fk
u,v,λ(a)µ

k
Υu

(a,R+)da

= 1 + 2

∫ t

0

gku,v(a) + λqkv (a)q
k
u(a)− fk

u,v,λ(a)da = 1. (56)

The relation µk+1
Υv

(t,R+) = 1 for any t follows analogously. This completes the inductive step, and
we have thus constructed sequences {Sk}k⩾0 in SK.

Next, we will prove the existence of the local solutions. By the continuity of the kernels, we can
choose a sufficiently small positive number T > 0 such that for any k ⩾ 0, the following holds

sup
0⩽t⩽T

max
{∥∥µk

S(t, ·)− νS(·)
∥∥
TV

,
∥∥µk

S(t, ·)
∥∥}

TV
⩽ U, ∀S ∈ Sode,

sup
0⩽t⩽T

|fk
u,v,λ(t)| ⩽ U, (57)

where U > 0 is a constant. In fact, the bounds (57) are proved by induction. Assume it holds for
some k ⩾ 0. Then for k + 1 and any Borel set A ⊂ R, we have

∣∣µk+1
Gu

(T,A)− νGu
(A)
∣∣ ⩽

∫ T

0

∣∣µk
Ξv

(a,A)
∣∣+ |qkv (a)||µCu

(A)|

+
∣∣fk

u,v,λ(a)
∣∣ ∣∣µk

Gu
(a,A)− νGu

(A)
∣∣+
∣∣fk

u,v,λ(a)
∣∣ |νGu

(A)|da
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⩽ T
(
U + U ∥µCu

∥TV + U2 + U ∥νGu
∥TV

)
. (58)

Now, choose T such that T ⩽ (1 + ∥µCu
∥TV + U + ∥νGu

∥TV )
−1 (note that since µ0

S(t, ·)s
are good transition kernels, such a T exists). Then, for this choice of T , we obtain∣∣µk+1

Gu
(T,A)− νS(A)

∣∣ ⩽ U for any Borel set A. The bounds for the other measures follow similarly
and the details are omitted.

We now prove the convergence of the measures on the interval [0, T ]. To this end, define

Mk(t) = max
S∈Sode

{∥∥µk+1
S (t, ·)− µk

S(t, ·)
∥∥
TV

}
. (59)

Hence, for each k and a ∈ [0, T ], the following estimates hold
∣∣gku,v(a)− gk−1

u,v (a)
∣∣ =

∣∣∣µk
Πu,v

(a,R)− µk−1
Πu,v

(a,R)
∣∣∣ ⩽ Mk−1(a),

∣∣∣fk
u,v,λ(a)− fk−1

u,v,λ(a)
∣∣∣ ⩽ (2λU + 1)Mk−1(a). (60)

Consider the difference of successive iterates for µGu

∣∣µk+1
Gu

(t, A)− µk
Gu

(t, A)
∣∣ =

∣∣∣∣∣

∫ t

0

µk
Ξv

(a,A)− µk−1
Ξv

(a,A)

+ qkv (a)µCu(A)− qk−1
v (a)µCu(A)

−
(
fk
u,v,λ(a)µ

k
Gu

(a,A)− fk−1
u,v,λ(a)µ

k−1
Gu

(a,A)
)
da

∣∣∣∣∣

⩽
∫ t

0

[1 + |µCu | (A) + U(2λU + 1) + U ]Mk−1(a). (61)

Taking the supreme over all Borel sets A, we obtain for all t ⩽ T

∥∥µk+1
Gu

(t, ·)− µk
Gu

(t, ·)
∥∥
TV

⩽ C

∫ t

0

Mk−1(a), (62)

where the constant C = 1 + ∥µCu
∥TV + U(2λU + 1) + U . By analyzing the remaining terms

S ∈ Sode, we can get similar inequalities with different constants C. Combining the estimates for
all S ∈ Sode and using the definition of Mk(t), we obtain

Mk(t) ⩽ C̃

∫ t

0

Mk−1(a), (63)

where the constant C̃ is independent of k. Since M0(a) ⩽ 2U , an induction argument shows that
for every k ⩾ 1

sup
0⩽t⩽T

Mk(t) ⩽
2U(C̃T )k

k!
. (64)

In particular, we have
∑

k⩾1 sup0⩽t⩽T Mk(t) < ∞. Therefore, for each t ∈ [0, T ], the sequence
of measures {µk

S(t, ·)} converges in total variation to a limit measure µ∞
S (t, ·), for every S ∈ Sode.

Passing to the limit k → ∞ in the iterative scheme (54) and using the integral representation, one
can verify that the functions defined by

S(t, z) =

∫

R

µ∞
S (t,dx)

x− z
, t ∈ [0, T ], z ∈ C\[0, E], (65)

satisfy the system (41) for all S ∈ Sode. The convergence of total variation implies that each
µ∞
S (t, ·) is finite and supported within [0, E]. Moreover, since the convergence is uniform in t, i.e.,

supt⩽T

∥∥µk
S(t, ·)− µ∞

S (t, ·)
∥∥
TV

→ 0 as k → ∞, it follows that µ∞
S (t, ·) is continuous in the sense

that limδ→0 ∥µ∞
S (t, ·)− µ∞

S (t+ δ, ·)∥TV = 0 for all t ∈ [0, T ] and S ∈ Sode. This implies µ∞
S ,

S ∈ Sode are good transition kernels.
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To prove uniqueness, we argue by contradiction. Suppose there exist two distinct solutions S1 and
S2 belong to SK with underlying measures µS,1 and µS,2 for each S ∈ Sode. Denote

M(t) = sup
S∈Sode

{
∥µS,1(t, ·)− µS,2(t, ·)∥TV

}
. (66)

By the inversion formula of the Stieltjes transform (Hachem et al., 2007), for i = 1, 2 and any
interval [a, b] ⊂ R, we have

µS,i(t, [a, b]) +
µS,i(t, {a, b})

2
=

1

π
lim
β↓0

∫ b

a

ℑ{Si(t, α+ ȷβ)} dα. (67)

By considering the difference between the two equations associated with S1 and S2, and using the
inversion formula (67) and together with a standard π-λ argument (Le Gall, 2016), we conclude that
M(t) satisfies

M(t) ⩽ C

∫ t

0

M(a)da, ∀t ∈ [0, T ], (68)

for some constant C > 0. Since ∥µS,i(t, ·)∥TV , i = 1, 2, S ∈ Sode is bounded, it follows from
Grönwall’s lemma (Lemma 1) that M(t) = 0 for every t ∈ [0, T ], which establishes local unique-
ness. We have thus demonstrated the existence and uniqueness of the solution on the interval [0, T ].
Using a standard extension argument for solutions of differential equations (Hartman, 2002), the
solution can be extended to all t > 0, and we omit the details. Therefore, we have completed the
proof.

It can be verified that the solution to the system of differential equations (38) exists uniquely. Sub-
stituting this solution (ut,vt) into (39) yields S(t, z) for each S ∈ Sode. Moreover, the functions
BS , Cu, Cv and Du,v satisfy the conditions of Theorem 3 with probability one. Consequently, the
solution {S(t, z), S ∈ Sode} coincides with the solution {S(t, z), S ∈ Sode} given in Theorem 3.
For example, let the SVD of Z be given by Z = UΛV ⊤ =

∑
j σjujv

T
j . Then, we have

Cu(z) = ⟨u∗,Q(z)u∗⟩ =
p∑

j=1

[U⊤u∗]2j
σ2
j − z

=

∫

R

FCu
(dx)

x− z
, (69)

where the distribution function is given by FCu
(x) =

∑p
j=1[U

⊤u∗]2j1{σ2
j ⩽ x}. The integral

representations for the other terms S ∈ Sode can be verified similarly and details are omitted for
brevity.

We note that the agreement between these two solutions indicates that the solution of (41) within SK
accurately captures the learning dynamics of matrix denoising.

C.3 CLOSED-FORM SOLUTION TO THE APPROXIMATED SYSTEM

Although Theorem 3 characterizes the solution structure of (41), obtaining a closed-form solution
is still infeasible. This is due to the fact that the functions Cu, Cv , and Du,v , as well as the initial
conditions BS , are random and lack explicit expressions.

However, in the high-dimensional setting, Lemma 4 implies these quantities will converge to deter-
ministic limits. Specifically, as p, n → ∞, for any z ∈ C\M, we have

Cu(z)
a.s.−−−−−→

p,n→∞
m(z), Cv(z)

a.s.−−−−−→
p,n→∞

m(z), Du,v(z)
a.s.−−−−−→

p,n→∞
0, (70)

and

[BGu
(z), BGv

(z), BΥu
(z), BΥv

(z), BΞu
(z), BΞv

(z), BΠu,v
(z)]

a.s.−−→ [αum(z), αvm(z),m(z),m(z), 0, 0, 0], (71)

where αu = ⟨u0,u⟩, αv = ⟨v0,v⟩, and m(z) and m(z) are defined in Lemma 4. Heuristically,
we may substitute the random functions BS , Cu, Cv , and Du,v with their deterministic limits and
consider the following asymptotic system of differential equations

∂

∂t
Gu(t, z) = Ξv(t, z) + λqv(t)m(z)− fu,v,λ(t)Gu(t, z), (72a)
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∂

∂t
Gv(t, z) = Ξu(t, z) + λqu(t)m(z)− fu,v,λ(t)Gv(t, z), (72b)

∂

∂t
Ξu(t, z) = qv(t) + zGv(t, z)− fu,v,λ(t)Ξu(t, z), (72c)

∂

∂t
Ξv(t, z) = qu(t) + zGu(t, z)− fu,v,λ(t)Ξv(t, z), (72d)

∂

∂t
Πu,v(t, z) = 2 + z[Υu(t, z) + Υv(t, z)] + λ[qv(t)Ξv(t, z) + qu(t)Ξu(t, z)]

− 2fu,v,λ(t)Πu,v(t, z), (72e)
1

2
· ∂

∂t
Υu(t, z) = Πu,v(t, z) + λqv(t)Gu(t, z)− fu,v,λ(t)Υu(t, z), (72f)

1

2
· ∂

∂t
Υv(t, z) = Πu,v(t, z) + λqu(t)Gv(t, z)− fu,v,λ(t)Υv(t, z), (72g)

with initial conditions given in (71) and subject to constraints (43). We note that, according
to Lemma 4 and (71), the initial conditions BS and the functions Cu, Cv , and Du,v (where
µDu,v (t, ·) = 0) satisfy the assumptions required by Theorem 3. Consequently, the system ad-
mits a unique solution within the family SK. The remainder of this section is devoted to deriving the
closed-form expressions for the components in (72). Note that our final objective is to solve for qu
and qv , since they characterize the learning dynamics.

We begin by simplifying the system of differential equations using the method of variation of pa-
rameters. To this end, we define the auxiliary function Fu,v,λ(t) =

∫ t

0
fu,v,λ(a)da and

Gh(t, z) = Ĝh(t, z) exp (−Fu,v,λ(t)) , Υh(t, z) = Υ̂h(t, z) exp (−2Fu,v,λ(t)) ,

Ξh(t, z) = Ξ̂h(t, z) exp (−Fu,v,λ(t)) , qh(t) = q̂h(t) exp (−Fu,v,λ(t)) , h ∈ {u, v},
Πu,v(t, z) = Π̂u,v(t, z) exp (−2Fu,v,λ(t)) , gu,v(t) = ĝu,v(t) exp(−2Fu,v(t)). (73)

To solve for qu and qv , it suffices to analyze q̂u, q̂v , and Fu,v,λ. Substituting (73) into (72), we obtain
the following system of differential equations

∂

∂t
Ĝu(t, z) = λq̂v(t)m(z) + Ξ̂v(t, z), (74a)

∂

∂t
Ĝv(t, z) = λq̂u(t)m(z) + Ξ̂u(t, z), (74b)

∂

∂t
Ξ̂u(t, z) = q̂v(t) + zĜv(t, z), (74c)

∂

∂t
Ξ̂v(t, z) = q̂u(t) + zĜu(t, z), (74d)

∂

∂t
Υ̂u(t, z) = 2Π̂u,v(t, z) + 2λq̂v(t)Ĝu(t, z), (74e)

∂

∂t
Υ̂v(t, z) = 2Π̂u,v(t, z) + 2λq̂u(t)Ĝv(t, z), (74f)

∂

∂t
Π̂u,v(t, z) = e2Fu,v,λ(t) + zΥ̂u(t, z) + zΥ̂v(t, z)

+ λ[q̂v(t)Ξ̂v(t, z) + q̂u(t)Ξ̂u(t, z)]. (74g)

Next, we analyze the equations (74) in the Laplace domain. Here, for a function f , if there exists
a constant a with supt⩾0 |f(t)e−at| being finite, its Laplace transform is defined as L[f ](s) =∫∞
0

f(t)e−stdt for ℜ(s) > a. Treating z as a constant and taking the Laplace transform with
respect to t on both sides of (74), the following linear system of equations is obtained

sL[Ĝu](s, z)− αum(z) = λm(z)L[q̂v](s) + L[Ξ̂v](s, z), (75a)

sL[Ĝv](s, z)− αvm(z) = λm(z)L[q̂u](s) + L[Ξ̂u](s, z), (75b)

sL[Ξ̂u](s, z) = L[q̂v](s) + zL[Ĝv](s, z), (75c)

sL[Ξ̂v](s, z) = L[q̂u](s) + zL[Ĝu](s, z), (75d)
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sL[Υ̂u](s, z)−m(z) = 2L[Π̂u,v](s, z) + 2λL[q̂vĜu](s, z), (75e)

sL[Υ̂v](s, z)−m(z) = 2L[Π̂u,v](s, z) + 2λL[q̂uĜv](s, z), (75f)

sL[Π̂u,v](s, z) = L[e2Fu,v,λ ](s) + zL[Υ̂u](s, z) + zL[Υ̂v](s, z)

+ λ[L[q̂vΞ̂v](s, z) + L[q̂uΞ̂u](s, z)]. (75g)

We first handle (75a)-(75d). Solving L[Ĝu] and L[Ĝv], we have

L[Ĝu](s, z) =
αusm(z) + λsm(z)L[q̂v](s) + L[q̂u](s)

s2 − z
(76)

L[Ĝv](s, z) =
αvsm(z) + λsm(z)L[q̂u](s) + L[q̂v](s)

s2 − z
. (77)

Choose s such that s2 ̸∈ M. Let Γ be a contour that encloses s2 and does not intersect M. Then,
by performing a contour integral with respect to z on both sides of (76) and (77), we obtain

0 = αusm(s2) + λsm(s2)L[q̂v](s) + L[q̂u](s), (78)

0 = αvsm(s2) + λsm(s2)L[q̂u](s) + L[q̂v](s). (79)

Solving the above system of equations with respect to L[q̂v] and L[q̂u], we have

L[q̂u](s) =
αvλs

2m(s2)m(s2)− αusm(s2)

1− λ2s2m(s2)m(s2)
, (80)

L[q̂v](s) =
αuλs

2m(s2)m(s2)− αvsm(s2)

1− λ2s2m(s2)m(s2)
. (81)

We solve q̂u(t) first. According to the fundamental equation (35), we have zm(z) + zm(z)m(z) =
−1 and zm(z) + zcm(z)m(z) = −1. These identities yield

L[q̂u](s) =
αvλs

2m(s2)− αus

λ2

m(s2)
1
λ2 + 1 + s2m(s2)

(a)
=

1 + λ2

λ2

(αvλs
2m(s2)− αus)(cm(s2) + λ2

1+λ2 )

(1 + c
λ2 )(1 + λ2)− s2

=
αv(1 + λ2)

λ

s2cm(s2)m(s2)

ϑλ − s2
+ αvλ

s2m(s2)

ϑλ − s2
− αuc(1 + λ2)

λ2

sm(s2)

ϑλ − s2
− αus

ϑλ − s2

= −αvs
2m(s2)

λ(ϑλ − s2)
− αuc(1 + λ2)

λ2

sm(s2)

ϑλ − s2
− αus

ϑλ − s2
− αv(1 + λ2)

λ(ϑλ − s2)

= Qu,1 +Qu,2 +Qu,3 +Qu,4, (82)

where step (a) follows from the identity (zm(z)+1+ 1
λ2 )(cm(z)+ λ2

1+λ2 ) = m(z)(1+ c
λ2 − z

1+λ2 ).
Next, we calculate the inverse Laplace transform for each term Qu,j separately. Beginning with
Qu,1, we have

L−1 [Qu,1] = −αv

λ
L−1

[
s2m(s2)

ϑλ − s2

]
= −αv

λ
L−1

[∫

R

s2µ(dx)

(ϑλ − s2)(x− s2)

]

(a)
= −αv

λ
L−1

[
1

s2 − ϑλ

]
− αv

λ

∫

R
L−1

[
x

(s2 − ϑλ)(s2 − x)

]
µ(dx)

= −αv

λ
ℓ3,ϑλ

(t)− αv

λ

∫

R
x(ℓ3,ϑλ

∗ ℓ3,x)(t)µ(dx), (83)

where step (a) follows from Fubini’s theorem. The inverse Laplace transform of Qu,2 is given by

L−1 [Qu,2] = −αuc(1 + λ2)

λ2
L−1

[
sm(s2)

ϑλ − s2

]
= −αuc(1 + λ2)

λ2
L−1

[∫

R

sµ(dx)

(ϑλ − s2)(x− s2)

]

= −αuc(1 + λ2)

λ2

∫

R
(ℓ1,ϑλ

∗ ℓ3,x)(t)µ(dx). (84)
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The inverse Laplace transforms of Q2,u and Q3,u can be obtained directly from standard tables:
L−1[Qu,3] = αuℓ1,ϑλ

(t) and L−1[Qu,4] =
αv(1+λ2)

λ ℓ3,x(t). Consequently, summing all the inverse
transform results yields (8). The derivation for q̂v(t) is analogous, and we omit it for brevity. Note
that by analyzing (75a)-(75d), explicit expressions for Ĝh and Ξ̂h, h ∈ {u, v} can also be derived.
However, these intermediate quantities are not directly relevant to the objects. Instead of solving
them explicitly, we use their Laplace transforms.

In the following, we solve (75e)-(75g) to derive the explicit expression for eFu,v,λ(t). Solving for
L[Π̂u,v], we have L[Π̂u,v](s, z) = Π1 +Π2 +Π3 +Π4, where

Π1 =
sL[e2Fu,v ](s)

s2 − 4z
, Π2 =

zm(z) + zm(z)

s2 − 4z
,

Π3 =
2λz[L[q̂vĜu](s, z) + L[q̂uĜv](s, z)]

s2 − 4z
,

Π4 =
λs[L[q̂vΞ̂v](s, z) + L[q̂uΞ̂u](s, z)]

s2 − 4z
. (85)

Let both s2/4, s2 ̸∈ M and choose a contour Γ that encloses the MP support M but excludes
the points s2/4 and s2. We then analyze the contour integral of each term in (85). Clearly,
1

2πȷ

∮
Γ
Π1dz = 0 since Π1 is analytic inside and on Γ. For term Π2, we have

1

2πȷ

∮

Γ

Π2dz =
1

2πȷ

∮

Γ

zm(z) + zm(z)

s2 − 4z
dz =

1

2πȷ

∮

Γ

z

s2 − 4z

∫

R

[µ+ µ](dx)

x− z
dz

= −
∫

R
[µ+ µ](dx)

x

s2 − 4x
. (86)

We now evaluate the integral of Π3. By the definition of the Laplace transform and Fubini’s theorem,
we have

1

2πȷ

∮

Γ

Π3dz =
1

2πȷ

∮

Γ

dz
2λz

[
L[q̂vĜu](s, z) + q̂uĜv](s, z)

]

s2 − 4z

=
1

2πȷ

∮

Γ

dz

∫ ∞

0

2λz
[
q̂v(t)Ĝu(t, z) + q̂u(t)Ĝv(t, z)

]

s2 − 4z
e−stdt

= 2λ

∫ ∞

0

q̂v(t)Π3,u(t)e
−stdt+ 2λ

∫ ∞

0

q̂u(t)Π3,v(t)e
−stdt, (87)

where Π3,u(t) = 1
2πȷ

∮
Γ
dz zĜu(t,z)

s2−4z and Π3,v(t) = 1
2πȷ

∮
Γ
dz zĜv(t,z)

s2−4z . Next, we solve Π3,h(t),
h ∈ {u, v}. Due to their similarity, we will only focus on Π3,u. It is more convenient to handle its
Laplace transform, which is given by

L[Π3,u](r) = L
[

1

2πȷ

∮
zĜu(t, z)

s2 − 4z
dz

]
(r) =

1

2πȷ

∮
zL[Ĝu](r, z)

s2 − 4z
dz

(a)
=

1

2πȷ

∮

Γ

z

s2 − 4z

(
αurm(z) + λrm(z)L[q̂v](r) + L[q̂u](r)

r2 − z

)
dz.

=
αur + λL[q̂v](r)r

2πȷ

∮

Γ

dz

∫

R

zµ(dx)

(s2 − 4z)(r2 − z)(x− z)

= −
∫

R

x(αur + λL[q̂v](r)r)µ(dx)
(s2 − 4x)(r2 − x)

, (88)

where we enforce r2 ̸∈ M and r2 lies outside the contour Γ. In step (a), we use the identity (76).
Taking the inverse Laplace transform (with respect to the variable r) and applying Fubini’s theorem,
we get

Π3,u = −
∫

R

αux

s2 − 4x
L−1

[
r

r2 − x

]
µ(dx)−

∫

R

λx

s2 − 4x
L−1

[L[q̂v](r)r
r2 − x

]
µ(dx)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a)
= −

∫

R

αuxℓ1,x(t)

s2 − 4x
µ(dx)−

∫

R

λx(q̂v ∗ ℓ1,x)(t)
s2 − 4x

µ(dx), (89)

where step (a) follows from the convolution property of the Laplace transform L(f∗g) = L(f)L(g).
Similarly, we can obtain

Π3,v=−
∫

R

αvxℓ1,x(t)

s2 − 4x
µ(dx)−

∫

R

λx(q̂u ∗ ℓ1,x)(t)
s2 − 4x

µ(dx). (90)

Substituting (89) and (90) into (87), we obtain

1

2πȷ

∮

Γ

Π3dz = −2λ

∫ ∞

0

∫

R

αuxq̂v(t)ℓ1,x(t) + λxq̂v(t)(q̂v ∗ ℓ1,x)(t)
s2 − 4x

µ(dx)e−stdt

− 2λ

∫ ∞

0

∫

R

αvxq̂u(t)ℓ1,x(t) + λxq̂u(t)(q̂u ∗ ℓ1,x)(t)
s2 − 4x

µ(dx)e−stdt

= −2λ

∫

R
αuxL[q̂v · ℓ1,x](s)L[ℓ2,x](s) + λxL[q̂v · (q̂v ∗ ℓ1,x)](s)L[ℓ2,x](s)µ(dx)

− 2λ

∫

R
αvxL[q̂u · ℓ1,x](s)L[ℓ2,x](s) + λxL[q̂u · (q̂u ∗ ℓ1,x)](s)L[ℓ2,x](s)µ(dx)

(a)
= −2λ

∫

R
αuxL[(q̂v · ℓ1,x) ∗ ℓ2,x](s) + λxL{[q̂v · (q̂v ∗ ℓ1,x)] ∗ ℓ2,x} (s)µ(dx)

− 2λ

∫

R
αvxL[(q̂u · ℓ1,x) ∗ ℓ2,x](s) + λxL{[q̂u · (q̂u ∗ ℓ1,x)] ∗ ℓ2,x} (s)µ(dx), (91)

where in step (a) we apply the convolution property. The contour integral for Π4 can be evaluated
using a similar method to that for Π3, utilizing the Laplace transforms of Ξ̂u and Ξ̂v . We provide
the result directly as follows

1

2πȷ

∮

Γ

Π4dz = −λ

∫

R
αuxL[(q̂v · ℓ3,x) ∗ ℓ4,x](s) + λxL{[q̂v · (q̂v ∗ ℓ3,x)] ∗ ℓ4,x}(s)µ(dx)

− λ

∫

R
αvxL[(q̂u · ℓ3,x) ∗ ℓ4,x](s) + λxL{[q̂u · (q̂u ∗ ℓ3,x)] ∗ ℓ4,x}(s)µ(dx). (92)

Since 1
2πȷ

∮
Γ
Πu,v(t, z)dz = −gu,v(t), we have 1

2πȷ

∮
Γ
L[Π̂u,v](s, z) = −L[ĝu,v](s). By taking the

inverse Laplace transform and using (86), (91), and (92), (11) is obtained.

Finally, we establish the relation between ĝu,v and eFu,v,λ . Choose Γ that encloses M and let |s| be
large enough such that s2, s2/4 lies outside Γ. Using (75e), we obtain

−sL[e2Fu,v,λ ] =
1

2πȷ

∮

Γ

m(z)dz − 2L[ĝu,v] +
1

2πȷ

∮

λ

2λL[q̂vĜu](s, z)dz, (93)

which yields

e2Fu,v(t) = 1 + 2

∫ t

0

ĝu,v(a)da

+

∫ t

0

da

∫

R
µ(dx)

{
2αuλq̂v(a)ℓ1,x(a) + 2λ2q̂v(a)(q̂v ∗ ℓ1,x)(a)

}
. (94)

Thus, we have derived the closed-form expressions for eFu,v,λ and gu,v . Substituting these results
into (75e)-(75g), the closed-form expressions for (Υ̂u, Υ̂v, Π̂u,v) can be obtained. By verifying that
these solutions satisfy (72a)-(72g), we conclude that the system of equations (72) has been solved.

C.4 ASYMPTOTIC EQUIVALENCE OF THE SOLUTIONS

Let {S(1), S ∈ Sode} denote the solution to (41) where the initial conditions BS and functions Cu,
Cv , Du,v are given in (39) with (ut,vt) = (u0,v0). Denote the underlying measures for S(1) as
µ
(1)
S , for every S ∈ Sode. Similarly, define {S(2), S ∈ Sode} as the solution to (72) with S(2) ∈ SK
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for all S ∈ Sode with underlying measures µ
(2)
S . Let Γ be a positive contour enclosing and all

eigenvalues ZZ⊤ and M. According to (Bai & Silverstein, 1998, Theorem 1.1), the largest and
smallest non-zero eigenvalues of ZZ⊤ converge almost surely to E+ and E−, respectively. There-
fore, the deterministic contour Γ is well-defined with probability one. We note the identification
q
(1)
h (t) = qh(t), q

(2)
h (t) = q̃h(t) for h ∈ {u, v}. Define

M(t) = sup
z∈Γ

max
S∈Sode

{∣∣∣S(1)(t, z)− S(2)(t, z)
∣∣∣
}
, (95)

L = sup
z∈Γ

max
{
|BGu

(z)− αum(z)| , |BGv
(z)− αvm(z)| , |BΥu

(z)−m(z)| ,

|BΥv
(z)−m(z)| , |BΞu

(z)| , |BΞv
(z)| ,

∣∣BΠu,v
(z)
∣∣ ,

|Cu(z)−m(z)| , |Cv(z)−m(z)| , |Du,v(z)|
}
. (96)

In what follows, we show that M(t) → 0 almost surely. By definition, we have |q(1)v (t) − q
(2)
v (t)|,

|q(1)u (t)− q
(2)
u (t)|, |g(1)u,v(t)− g

(2)
u,v(t)| ⩽ |Γ|/(2π)M(t), where |Γ| denotes the length of Γ. Further-

more,
∣∣∣f (1)

u,v,λ − f
(2)
u,v,λ

∣∣∣ ⩽ (1 + λ|q(1)v |+ λ|q(2)u |)| |Γ|M(t)

2π

(a)

⩽ (1 + 2λ)
|Γ|
2π

M(t), (97)

where the variables t are omitted. In step (a), the bound |q(1)v | ⩽ 1 follows from the existence and
uniqueness of the solution to (38) and its agreement to the integral representation in Theorem 3, as
discussed in Section C.2. The inequality |q(2)u | ⩽ 1 can be derived similarly. Now, by considering
the difference of the equations related to Ξu, we obtain
∣∣∣Ξ(1)

u (t, z)− Ξ(2)
u (t, z)

∣∣∣ ⩽ |BΞu
(z)|+

∫ t

0

da|q(1)v (a)− q(2)v (a)|+ |z|
∣∣∣G(1)

v (a, z)−G(2)
v (a, z)

∣∣∣

+ λ
∣∣∣q(1)v (a)

∣∣∣ |Du,v(z)|+
∣∣∣f (1)

u,v,λ(a)
∣∣∣
∣∣∣Ξ(1)

u (a, z)− Ξ(2)
u (a, z)

∣∣∣

+
∣∣∣f (1)

u,v,λ(a)− f
(2)
u,v,λ(a)

∣∣∣
∣∣∣Ξ(2)

u (a, z)
∣∣∣ . (98)

Due to the continuity of the good transition kernels and the finite total variation of the measures, for
any fixed T > 0, there exists a constant U such that sup0⩽t⩽T |fu,v,λ(t)| ⩽ U . Furthermore, for
every j ∈ {1, 2}, S ∈ Sode and z ∈ Γ, we have

sup
0⩽t⩽T

|S(j)(t, z)| ⩽ sup
0⩽t⩽T

∫

R

|µ(j)
S |(t,dx)
|x− z| ⩽ sup

0⩽t⩽T
d−1

∥∥∥µ(j)
S (t, ·)

∥∥∥
TV

⩽ U, (99)

almost surely, where d denotes the distance between the (common) support of the measures and Γ.
Taking the supremum over z on both sides of (98), we get, for every t ∈ [0, T ],

sup
z∈Γ

∣∣∣Ξ(1)
u (t, z)− Ξ(2)

u (t, z)
∣∣∣ ⩽ L+

∫ t

0

( |Γ|
2π

+ sup
z∈Γ

|z|+ (1 + 2λ)U |Γ|
2π

+ U

)
M(a) + λLda

⩽ C1 + C2

∫ t

0

M(a)da, (100)

almost surely, where C1 = (1 + λT )L and C2 = |Γ|
2π + supz∈Γ |z| + (1+2λ)U |Γ|

2π + U . By Lemma
4, it follows that C1 → 0 almost surely as p, n → ∞. In contrast, the constant C2 depends only on
the fixed deterministic contour Γ and the bound U , and thus remains upper bounded. This argument
extends to all other components S(1), S(2) ∈ Sode, leading to the composite bound

M(t) ⩽ C̃1 + C̃2

∫ t

0

M(a)da, (101)

almost surely. where C̃1 are upper bounded by polynomials in L and C̃2 is a bounded constant.
According to Grönwall’s lemma (Lemma 1), we obtain

sup
0⩽t⩽T

M(t) ⩽ C̃1 exp(C̃2T ). (102)
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Again by Lemma 4, we have sup0⩽t⩽T M(t) → 0 almost surely, as p, n → ∞. This implies, in
particular, that for every h ∈ {u, v},

sup
0⩽t⩽T

|q(1)h (t)− q
(2)
h (t)| ⩽ sup

0⩽t⩽T
M(t) → 0, (103)

almost surely. This completes the proof.

D PROOF OF THEOREM 2

D.1 CASE I: λ > c1/4

We begin by analyzing the asymptotic order of q̂u(t) as t → ∞. We express (8) in the form
q̂u(t) = Z1(t)+Z2(t)+Z3(t)+Z4(t) and evaluate each term separately. Through direct calculation,
the following is obtained

ℓ3,x(t) ∗ ℓ3,ϑλ
(t) = − e−

√
ϑλt

2
√
ϑλ(ϑλ − x)

+
e
√
ϑλt

2
√
ϑλ(ϑλ − x)

− e−
√
xt

2
√
x(x− ϑλ)

+
e
√
xt

2
√
x(x− ϑλ)

, (104)

Since λ2 >
√
c, it follows that ϑλ > (1 +

√
c)2 = E+. Consequently, we have

Z1(t) = −αv

λ

e
√
ϑλt

2
√
ϑλ

∫

R

x

ϑλ − x
µ(dx)− αv

2λ

∫

R

√
xe

√
xt

x− ϑλ
µ(dx) + o(1)

(a)
= −e

√
ϑλtαvc

2
√
ϑλλ3

− αv

2λ

∫ E+

E−

√
xe

√
xt

x− ϑλ

√
(x− E−)(E+ − x)

2πx
dx+ o(1)

(b)
= −e

√
ϑλtαvc

2
√
ϑλλ3

+
αv

√
E+ − E−(E

+)1/4

2λ
√
2π(ϑλ − E+)

e
√

E+t

t3/2
+ o(e

√
E+tt−3/2), (105)

where step (a) uses properties of the Stieltjes transform of the MP law (Couillet & Liao, 2022)

ϑλm(ϑλ) = −1− 1

max(cλ−2, λ2)
, (106)

and step (b) follows from Lemma 3. For the term Z2(t), we have

Z2(t) = αvλ
e
√
ϑλt − e−

√
ϑλt

2
√
ϑλ

=
αvλe

√
ϑλt

2
√
ϑλ

+ o(1). (107)

Similar to the evaluation of Z1(t), and using the identity

ℓ1,ϑλ
(t) ∗ ℓ3,x(t) =

e−
√
ϑλt

2(ϑλ − x)
+

e
√
ϑλt

2(ϑλ − x)
− e−

√
xt

2(ϑλ − x)
− e

√
xt

2(ϑλ − x)
, (108)

we can get

Z3(t) = −αuc(1 + λ2)

2λ2

[
e
√
ϑλt

∫

R

µ(dx)

ϑλ − x
−
∫ E+

E−

e
√
xt
√

(E+ − x)(x− E−)

(ϑλ − x)2πcx
dx

]
+O(1)

= −αuc(λ
2 + 1)e

√
ϑλt

2(λ2 + c)λ2
+

αu(1 + λ2)
√

E+ − E−

2λ2(ϑλ − E+)
√
2π(E+)1/4

e
√

E+t

t3/2
+ o(e

√
E+tt−

3
2 ). (109)

By definition, Z4(t) = αue
√
ϑλt/2 + o(1). Combining these results, the following estimation is

obtained

q̂u(t) =
(λ4 − c)

2λ2
√
λ2 + c

[
αv√
1 + λ2

+
αu√
λ2 + c

]
e
√
ϑλt
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+

√
E+ − E−

2
√
2π(ϑλ − E+)

[
αv(E

+)1/4

λ
+

αu(1 + λ2)

λ2(E+)1/4

]
e
√

E+t

t3/2
+ o(e

√
E+t−3/2

t−3/2)

= Aue
√
ϑλt +Bue

√
E+tt−3/2 + o(e

√
E+tt−3/2). (110)

Similar to the evaluation for q̂u(t), we can get

q̂v(t) = Ave
√
ϑλt +Bve

√
E+tt−3/2 + o(e

√
E+tt−3/2), (111)

where

Av =
(λ4 − c)

2λ2
√
λ2 + 1

[
αv√
1 + λ2

+
αu√
λ2 + c

]
, (112)

Bv =

√
E+ − E−

2
√
2π(ϑλ − E+)

[
αu(E+)

1/4

λ
+

αv(c+ λ2)

cλ2(E+)1/4

]
. (113)

Next, we will analyze the order of the denominator p̂(t) for the following two cases.

D.1.1 Au ̸= 0

Under this condition, the solutions have the asymptotic forms q̂u(t) = Aue
√
ϑλt + o(e

√
ϑλt) and

q̂v(t) = Ave
√
ϑλt + o(e

√
ϑλt). To determine the asymptotic order of p̂(t), we first evaluate ĝu,v(t).

Writing (11) as ĝu,v(t) =
∑5

j=1 Gj(t), we focus on the evaluations for G1 and G2 as the remaining
terms follow similar estimations.

Given ϑλ > E+, we observe e−2
√
ϑλtG1(t) → 0 as t → ∞. Therefore, the term G1(t) does not

contribute to the leading order asymptotics. We then analyze e−2
√
ϑλtG2(t). By definition, we have

e−2
√
ϑλtG2(t) = 2λαu

∫

R
e−2

√
ϑλtx(q̂v · ℓ1,x) ∗ ℓ2,xµ(dx)

+ 2λ2

∫

R
e−2

√
ϑλtx[q̂v · (q̂v ∗ ℓ1,x)] ∗ ℓ2,xµ(dx) = G2,1(t) +G2,2(t). (114)

To analyze the limits, we apply the Final Value Theorem (Lemma 2). Since e−
√
ϑλtℓ1,x(t) → 0 and

L[ℓ2,x](2
√
ϑλ) = 1/4(ϑλ − x), Lemma 2 implies G2,1(t) → 0 as t → ∞. Applying Lemma 2

again yields

lim
t→∞

e−
√
ϑλt(q̂v ∗ ℓ1,x)(t) =

√
ϑλAv

ϑλ − x
, (115)

which implies

lim
t→∞

e−2
√
ϑλt{[q̂v · (q̂v ∗ ℓ1,x)] ∗ ℓ2,x}(t) =

√
ϑλA

2
v

4(ϑλ − x)2
. (116)

By the dominated convergence theorem and the properties of the Stieltjes transform, we have

lim
t→∞

G2,2(t) = 2λ2 ·
√
ϑλA

2
v

4

∫

R

x

(ϑλ − x)2
µ(dx) =

λ2
√
ϑλA

2
v

2(λ4 − c)
. (117)

The asymptotic orders of G3, G4, and G5 can be evaluated similarly using Lemma 2. Gathering all
the results gives

lim
t→∞

e−2
√
ϑλtĝu,v(t) =

λ2
√
ϑλ(A

2
v + cA2

u)

λ4 − c
. (118)

As a result, we can get

lim
t→∞

e−2
√
ϑλtp̂(t) =

λ2(A2
v + cA2

u)

λ4 − c
+

λ2(λ2 + 1)A2
v

ϑλλ2

=
λ4 − c

4λ2

[
αv√
1 + λ2

+
αu√
λ2 + c

]2
, (119)

by the observation
∫ t

0
f(a)da = (f ∗ 1)(t). Therefore, provided that Au ̸= 0, the limit values of

q̃u(t) and q̃v(t) are given by limt→∞ q̃u(t) = I ·
√

1−cλ−4

1+cλ−2 and limt→∞ q̃v(t) = I ·
√

1−cλ−4

1+λ−2 ,
respectively.
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D.1.2 Au = 0

According to Lemma 3, we have

G1(t) =
1 + c−1

8π

∫ E+

E−

e2
√
xt
√
(E+ − x)(x− E−)√

x
dx

=
(1 + c−1)

√
E+ − E−(E+)

1/4

16
√
π

e2
√

E+t

t3/2
+ o(e2

√
E+tt−3/2). (120)

Thus, there holds

p̂(t) ⩾ 2

∫ t

0

G1(a)da ⩾ K
e2
√

E+t

t3/2
, (121)

for t sufficiently large and K > 0 is a constant. Therefore, we have

q̃u(t) ⩽
(Bu + o(1))e

√
E+tt−3/2

√
Ke

√
E+tt−3/4

, (122)

which implies limt→∞ q̃u(t) = 0. The relation limt→∞ q̃v(t) = 0 can be obtained similarly.

D.2 CASE II: λ < c1/4

By applying the same method used in (110) and (111) , we obtain q̂h(t) = Bhe
√
E+tt−3/2 +

o(e
√
E+tt−3/2), h ∈ {u, v}. This result aligns with the case discussed in Section D.1.2, which

implies limt→∞ q̃h(t) = 0, h ∈ {u, v}.

D.3 CASE III: λ = c1/4

In this case, we have ϑλ = E+, which is precisely the right endpoint of the support of the MP
distribution. Fortunately, the Stieltjes transform m(x) is right continuous at x = E+ (Couillet &
Liao, 2022). Using Lemma 3 and employing estimates similar to those in (110) and (111), we can
obtain

q̂h(t) = (Ch + o(1))e
√

E+tt−1/2, h ∈ {u, v}, (123)
where Cu and Cv are constants. However, we need to make a more precise estimate for p̂(t) in the
denominator, as the upper bound in (122) increases to infinity. To this end, the following lemma is
useful.
Lemma 5. Assume b > a > 0 and f ∈ C([a, b]) such that f(b) ̸= 0. Then, for any sufficiently large
t, it holds that

KLe
2
√
btt−1/2 ⩽

∫ b

a

f(x)
√
b− xe2

√
xt

[∫ t

0

e
√
by

√
y
e−

√
xydy

]2
dx ⩽ KUe

2
√
btt−1/2, (124)

where KU ⩾ KL > 0 are two constants.

Proof: It suffices to consider f(x) = 1 and restrict the integration to [b − ε, b] for small enough ε,
since e

√
xt concentrates near x = b. For given δ > 0, we choose ε > 0 such that supu∈[0,ε] |δu| ⩽ δ,

where δu is defined in (132). By changing the integration variables via u = b− x, α = ut/
√
b, and

β = y/t, we obtain

e−2
√
btt1/2

∫ b

b−ε

√
b− xe2

√
xt

[∫ t

0

e
√
by

√
y
e−

√
xydy

]2
dx

= t1/2
∫ ε

0

√
ue

− (1+δu)ut√
b

[∫ t

0

y−
1
2 e

(1+δu)uy

2
√

b dy

]2
du

= b
3
4

∫ εt√
b

0

√
αe−(1+δα,t)α

[∫ 1

0

β− 1
2 e

(1+δα,t)αβ

2 dβ

]2
dα = b

3
4 I. (125)
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We next estimate the inner integral
∫ 1

0
β− 1

2 e
(1+δα,t)αβ

2 dβ and derive bounds for I . By splitting the
integration interval at some τ ∈ (0, 1), we have

∫ 1

0

β− 1
2 e

(1+δα,t)αβ

2 dβ =

(∫ τ

0

+

∫ 1

τ

)
β− 1

2 e
(1+δα,t)αβ

2 dβ

⩽ 2
√
τe

(1+δα,t)ατ

2 +
2e

(1+δα,t)α

2√
τα(1 + δα,t)

. (126)

Therefore, by |δα,t| ⩽ δ (133) and (126), we derive an upper bound

I ⩽ I1 + 4

∫ ∞

1

√
ατe(1−δ)α(τ−1) +

1

τα3/2(1− δ)2
+

2e
(1−δ)α(τ−1)

2

α1/2(1− δ)
dα := IU , (127)

where I1 is some absolute constant. It can be verified that IU < ∞ for any τ ∈ (0, 1).

For the lower bound, again using |δα,t| ⩽ δ, we can obtain

I ⩾ I1 +

∫ εt√
b

1

√
αe−(1+δ)α

[∫ 1

0

β− 1
2 e

(1−δ)αβ
2 dβ

]2
dα

⩾ I1 + 4

∫ εt√
b

1

√
αe−(1+δ)α

[
e

(1−δ)α
2

(1− δ)α

]2
dα ⩾ I1 +

4

(1− δ)2

∫ εt√
b

1

e−2δα

α3/2
dα. (128)

Taking t → ∞, we have lim inft→∞ I ⩾ IL for some constant IL > 0. Therefore, we have
completed the proof for Lemma 5.

To determine the asymptotic order for p̂(t), we first give a lower bound for ĝu,v(t). In particular,
we will evaluate the term

∫
R[q̂v · (q̂v ∗ ℓ1,x)] ∗ ℓ2,xµ(dx). Noting that the orders of ℓ1,x and ℓ2,x

are dominated by e
√
xt/2 and e2

√
x
√
x/4, respectively, it suffices to study the simplified integral∫

R
√
x[q̂v · (q̂v ∗ e

√
xt)] ∗ e2

√
xtµ(dx). Rewriting this expression yields

Iv,v =

∫

R

√
x[q̂v · (q̂v ∗ e

√
xt)] ∗ e2

√
xtµ(dx)

=

∫

R

√
x

∫ t

0

q̂v(a)

∫ a

0

q̂v(b)e
√
x(a−b)dbe2

√
x(t−a)da

=
1

2

∫ E+

E−

√
xe2

√
xt

[∫ t

0

q̂v(a)e
−
√
xada

]2 √
(x− E−)(E+ − x)

2πcx
dx

=

∫ E+

E−

f(x)e2
√
xt

[∫ t

0

q̂v(a)e
−
√
xada

]2√
E+ − xdx, (129)

where f(x) =
√
(x− E−)x/(4πcx). According to (123), we know that there exists constant A > 0

such that inft⩾A |q̂v(t)/(e
√

E+tt−1/2)| ⩾ Cv/2. Thus, we have

e−2
√

E+tt
1
2 Iv,v

⩾
e−2

√
E+tt

1
2C2

v

4

∫ E+

E−

f(x)e2
√
xt

[∫ t

A

e(
√

E+−
√
x)a

√
a

da

]2√
E+ − xdx

(a)
=

e−2
√

E+tt
1
2C2

v

4

∫ E+

E−

f(x)e2
√
xt

[∫ t

0

e(
√

E+−
√
x)a

√
a

da

]2√
E+ − xdx+ o(1), (130)

where step (a) is due to
∫ A

0
e(
√

E+−
√

x)a
√
a

da ⩽ 2e(
√

E+−
√
x)A

√
A contributes only lower or-

der terms. By applying Lemma 5, we have lim inft→∞ e−2
√

E+tt
1
2 Iv,v ⩾ KL for some

constant KL. A symmetric argument establishes the corresponding upper bound, yielding
lim supt→∞ e−2

√
E+tt

1
2 Iv,v ⩽ KU for some constant KU > 0.
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At this stage, we can give the upper bound for q̃h(t), h ∈ {u, v}. Combining with (123), we obtain

q̃h(t) ⩽
q̂h(t)√
p̂(t)

⩽
(Ch + o(1))e

√
E+tt−1/2

√
2λ2

∫ t

0
Iu,vdt

(a)

⩽
C̃he

√
E+tt−1/2

e
√

E+tt−1/4
, h ∈ {u, v}, (131)

where C̃h is a constant and step (a) follows from the fact that the ratio
∫ t

0
Iu,vdt/(e

2
√

E+tt−1/2)
converges to a positive value as t → ∞. Therefore, we have completed the proof for Theorem 2.

E PROOF OF LEMMA 3

According to Taylor’s lemma, we have
√
b− u =

√
b

[
1− (1 + δu)u

2b

]
, (132)

for small u. By the continuity of f , for any given δ > 0, we can choose a sufficiently small ε such
that

sup
x,y∈[a,b],|x−y|⩽ε

|f(x)− f(y)| ⩽ δ, sup
0⩽u⩽ε

|δu| ⩽ δ. (133)

Define M = supx∈[a,b] |f(x)|, A(t) =
∫ b

a
f(x) exp[

√
xt](b − x)αdx, and B(t) =

f(b) exp[
√
bt]Γ(α+ 1)

(
2
√
b

t

)α+1

. By calculating |A(t)/B(t)− 1|, we have

∣∣∣∣
A(t)

B(t)
− 1

∣∣∣∣ =
∣∣∣∣∣

∫ b−a

0

f(b− u) exp[
√
b− ut]uαdu

/
B(t)− 1

∣∣∣∣∣

⩽

∣∣∣∣∣
f(b)

∫ ε

0
exp[

√
b− ut]uαdu

B(t)
− 1

∣∣∣∣∣+
δ
∫ ε

0
exp[

√
b− ut]uαdu

B(t)

+
M exp[

√
b− εt]

∫ b−a

ε
uαdu

B(t)
= X1(t) +X2(t) +X3(t). (134)

It is clear that limt→∞ X3(t) = 0. Next, we evaluate X1(t). By plugging (132) into (134), and
using Γ(α+ 1) =

∫∞
0

exp[−y]yαdy, we obtain

f(b) exp[
√
bt]
∫ ε

0
exp

[
− (1+δu)ut

2
√
b

]
uαdu

B(t)

(a)
=

∫ tε

2
√

b

0 exp [−(1 + δu)y] y
αdy∫∞

0
exp[−y]yαdy

⩽

∫∞
0

exp [−(1− δ)y] yαdy∫∞
0

exp[−y]yαdy
⩽

1

(1− δ)α+1
, (135)

where in step (a) we change the variable y = ut/(2
√
b). Similarly, we can derive the lower bound

lim inf
t→∞

f(b) exp[
√
bt]
∫ ε

0
exp

[
− (1+δu)ut

2
√
b

]
uαdu

B(t)
⩾

1

(1 + δ)α+1
. (136)

Combining this with the corresponding upper bound implies

lim sup
t→∞

X1(t) ⩽ max
{
(1− δ)−α−1 − 1, 1− (1 + δ)−α−1

}
. (137)

An analogous analysis yields

lim sup
t→∞

X3(t) ⩽
δ

|f(b)|(1− δ)α+1
. (138)

Since δ > 0 can be chosen arbitrarily small, it follows from (137) and (138) that

lim
t→∞

∣∣∣∣
A(t)

B(t)
− 1

∣∣∣∣ = 0, (139)

which completes the proof.
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F PROOF OF LEMMA 4

To simplify notation, let C denote a constant and Ca denote a constant that depends on a. Their
values may depend on the context. By a standard truncation argument (Bai & Silverstein, 1998), it
suffices to assume that the elements of the random matrix Z are bounded, i.e., |√nZij | ⩽ C, for
some absolute constant C, as this truncation does not alter the asymptotic locations of the eigenval-
ues.

We first prove that u⊤Q(z)Zv − u⊤E[Q(z)Z]v converges to 0 almost surely for given z ∈ C+.
To this end, we control the moment by the martingale difference argument and the Burkholder
inequality (Bai & Silverstein, 1998, Lemma 2.1). Write Z = [z1, . . . ,zn], v = [v1, . . . , vn]

⊤, Zj =

[zj , . . . ,zj−1, zj+1, . . . ,zn], vj = [v1, . . . , vj−1, vj+1, . . . , vn]
⊤, and Qj(z) = (ZjZj − zIp)

−1.
Define the quantities

αj(z) =
1

n
TrQj(z), ηj(z) =

1

1 + αj(z)
, βj(z) =

1

1 + z⊤
j Qj(z)zj

,

∆j(z) = αj(z)− z⊤
j Qj(z)zj . (140)

Let Ej(·) = E(·|z1, . . . ,zj) and E0(·) = E(·). By taking the difference between u⊤Q(z)Zv and
Eu⊤Q(z)Zv, we have

u⊤Q(z)Zv − u⊤E[Q(z)Z]v =

n∑

j=1

[Ej − Ej−1]u
⊤Q(z)Zv

n∑

j=1

[Ej − Ej−1]
(
u⊤Q(z)Zv − u⊤Q(z)Zjvj

)
+
(
u⊤Q(z)Zjvj − u⊤Qj(z)Zjvj

)

= W1 +W2. (141)
We first evaluate W1. By the Woodbury matrix identity, we have

W1 =

n∑

j=1

[Ej − Ej−1]u
⊤Q(z)zjvj =

n∑

j=1

[Ej − Ej−1]
u⊤Qj(z)zjvj
1 + z⊤

j Qj(z)zj

=

n∑

j=1

[Ej − Ej−1]βjηju
⊤Qj(z)zjvj∆j + Ejηju

⊤Qj(z)zjvj =

n∑

j=1

W1,1j +W1,2j , (142)

since the identity βj = ηj + βjηj∆j and the independence between zj and Qj . By apply-
ing the inequality Ej−1|[Ej − Ej−1]x|2 ⩽ 2Ej−1|x|2, the Cauchy-Schwarz inequality Ej |xy| ⩽
E

1
2
j |x|2E

1
2
j |y|2, and the trace lemma (Bai & Silverstein, 1998, Lemma 2.7), we have
n∑

j=1

Ej−1|W1,1j |2 ⩽
2|z|4
ℑ4(z)

n∑

j=1

v2jE
1
2
j−1|u⊤Qj(z)zj |4E

1
2
j−1|∆j |4 ⩽

C|z|4
n2ℑ8(z)

, (143)

where we use the bounds (Zhuang et al., 2025; Hachem et al., 2007) |ηj(z)| ⩽ |z|/ℑ(z), |βj(z)| ⩽
|z|/ℑ(z), and the moment bound Ej−1|∆j |2k ⩽ Ck

nk . On the other hand, we have
n∑

j=1

E|W1,1j |2k ⩽
Ck|z|4k
ℑ4k(z)

n∑

j=1

v2kj E|u⊤Qj(z)zj |2k|∆j |2k ⩽
n∑

j=1

v2kj
Ck|z|4k

n2kℑ8k(z)
. (144)

The evaluation for
∑

j Ej−1|W1,2j |2 can be given by
n∑

j=1

Ej−1|W1,2j |2 ⩽
|z|2
ℑ2(z)

n∑

j=1

v2jEj−1

∣∣u⊤Qj(z)zj
∣∣2 ⩽

C|z|2∑n
j=1 v

2
j

nℑ4(z)
. (145)

Similar to (144), we can get
∑

j E|W2,2j |2k ⩽ Ck|z|2k/(ℑ4k(z)nk). Hence, according to the
Burkholder inequality, we have

E |W1|2k ⩽ Ck

∑

i=1,2


E




n∑

j=1

Ej−1|W1,ij |2


k

+

n∑

j=1

E |W1,ij |2k

 ⩽

Ck(|z|4k + |z|2k)
nk(ℑ8k(z) + ℑ4k(z))

.

(146)
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For k > 1, the RHS of (146) is summable, which implies W1 → 0 almost surely by the
Borel–Cantelli Lemma.

We then evaluate W2, which can be given by

−W2 =

n∑

j=1

[Ej − Ej−1]βju
⊤Qj(z)zjz

⊤
j Qj(z)Zjvj

=

n∑

j=1

[Ej − Ej−1]ηju
⊤Qj(z)zjz

⊤
j Qj(z)Zjvj + ηjβj∆ju

⊤Qj(z)zjz
⊤
j Qj(z)Zjvj

=

n∑

j=1

W2,1j +W2,2j . (147)

The term W2,1j can be written as

W2,1j = Ejηj

(
u⊤Qj(z)zjz

⊤
j Qj(z)Zjvj −

1

n
u⊤Q2

j (z)Zjvj

)
. (148)

By the trace lemma and ∥vj∥ ⩽ ∥v∥ = 1, we have

Ej−1|W2,1j |2 ⩽
C|z|2

n2ℑ6(z)
, E|W2,1j |2k ⩽

Ck|z|2k
n2kℑ6k(z)

, (149)

which implies W2,1j → 0 almost surely. The relation W2,2j → 0 can be shown in a similar manner,
and we omit the details.

Next, we prove that Eu⊤Q(z)Zv = O( 1√
n
). We can show that

u⊤Q(z)Zv =

n∑

j=1

u⊤Q(z)zjvj =

n∑

j=1

βj(z)u
⊤Qj(z)zjvj . (150)

Since Qj(z) and zj are independent, we have

Eu⊤Q(z)Zv = E
n∑

j=1

vj
(
u⊤Qj(z)zj

)
(βj − ηj)

=

n∑

j=1

vjEu⊤Qj(z)zjβjηj∆j . (151)

Using the Cauchy-Schwarz inequality E|xy| ⩽ E 1
2 |x|2E 1

2 |y|2, we have

∣∣Eu⊤Q(z)Zv
∣∣ ⩽ |z|2|vj |

ℑ2(z)

n∑

j=1

E
1
2

∣∣u⊤Qj(z)zj
∣∣2 E 1

2 |∆j |2

⩽
n∑

j=1

C|z|2
nℑ4(z)

|vj | ⩽
C|z|2√
nℑ4(z)

. (152)

This completes the proof for the case z ∈ C+. The same approach can be extended to analyze the
cases where ℑ(z) < 0, z < 0, and z > E+. Furthermore, for any ϵ > 0 and k > 0, it can be shown
that,

P
(∣∣u⊤Q(z)Zv

∣∣ ⩾ ϵ
)
⩽ Cd,zϵ

−dn−k, (153)

for all d sufficiently large, where Cd,z is a constant depending on d and dist(z,M).

Next, we prove the convergence for a general compact set Γ. Since Γ is compact, we can choose an
n− 1

2 -net Nn ⊂ Γ such that for every z ∈ Γ there exists z′ ∈ Nn with |z − z′| ⩽ n− 1
2 , and for any

two distinct points x, y ∈ Nn satisfy |x− y| ⩾ 1
2n

− 1
2 . Then, we have

∣∣u⊤Q(z)Zv − u⊤Q(z′)Zv
∣∣ ⩽ ∥Z∥ |z − z′|

dist(Λ, z) dist(Λ, z′)
, (154)
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where Λ = {λj}1⩽j⩽p are the eigenvalues of ZZ⊤. Inequality (154) gives

sup
z∈Γ

∣∣u⊤Q(z)Zv
∣∣ ⩽ sup

z∈Γ

∣∣u⊤Q(z)Zv − u⊤Q(z′)Zv
∣∣+ sup

z′∈Nn

∣∣u⊤Q(z′)Zv
∣∣

⩽
∥Z∥n− 1

2

dist(Λ,Γ) dist(Λ,Nn)
+ sup

z′∈Nn

∣∣u⊤Q(z′)Zv
∣∣ = X1 +X2. (155)

According to the no-eigenvalue property (Bai & Silverstein, 1998, Theorem 1.1), we have
dist(Λ,Γ) → dist(M,Λ) almost surely as p, n → ∞ and ∥Z∥ is almost surely bounded. Hence,
X1 → 0 almost surely, as p, n → ∞. By (153), for any ϵ > 0 and k > 2, we can choose a d
sufficiently large such that

P(X2 ⩾ ϵ) = P

( ⋃

z′∈Nn

∣∣u⊤Q(z′)Zv
∣∣ ⩾ ϵ

)
⩽
∑

z∈Nn

P
(∣∣u⊤Q(z)Zv

∣∣ ⩾ ϵ
)

⩽
card(Nn)Cd,Γ

ϵdnk

(a)

⩽
4(supx∈Γ |x|+ 1)2Cd,Γ

ϵdnk−1
, (156)

where Cd,Γ is a constant depends on d and dist(Γ,M). Step (a) follows from the fact that, by the
definition of n− 1

2 -net, the disks of radius 1/(2
√
n) centered at points in Nn are mutually disjoint.

Since k > 2, the RHS of the above inequality is summable, which implies X2 → 0 almost surely
by the Borel–Cantelli Lemma. Therefore, we have completed the proof.
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