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ABSTRACT

Hypercomplex neural networks have proved to reduce the overall number of pa-
rameters while ensuring valuable performances by leveraging the properties of
Clifford algebras. Recently, hypercomplex linear layers have been further im-
proved by involving efficient parameterized Kronecker products. In this paper,
we define the parameterization of hypercomplex convolutional layers to develop
lightweight and efficient large-scale convolutional models. Our method grasps the
convolution rules and the filters organization directly from data without requiring
a rigidly predefined domain structure to follow. The proposed approach is flexi-
ble to operate in any user-defined or tuned domain, from 1D to nD regardless of
whether the algebra rules are preset. Such a malleability allows processing multi-
dimensional inputs in their natural domain without annexing further dimensions,
as done, instead, in quaternion neural networks for 3D inputs like color images.
As a result, the proposed method operates with 1/n free parameters as regards its
analog in the real domain. We demonstrate the versatility of this approach to mul-
tiple domains of application by performing experiments on various image datasets
as well as audio datasets in which our method outperforms real and quaternion-
valued counterparts.

1 INTRODUCTION

Recent state-of-the-art convolutional models achieved astonishing results in various fields of appli-
cation by large-scaling the overall parameters amount (Karras et al., 2020; d’Ascoli et al., 2021;
Dosovitskiy et al., 2021). Simultaneously, quaternion neural networks (QNNs) demonstrated to sig-
nificantly reduce the number of parameters while still gaining comparable performances (Parcollet
et al., 2019c; Grassucci et al., 2021a; Tay et al., 2019). Quaternion models exploit hypercomplex
algebra properties, including the Hamilton product, to painstakingly design interactions among the
imaginary units, thus involving 1/4 of free parameters with respect to real-valued models. Fur-
thermore, thanks to the modelled interactions, quaternion networks capture internal latent relations
in multidimensional inputs and preserve pre-existing correlations among dimensions. Therefore,
the quaternion domain is particularly appropriate for processing 3D or 4D data, such as color im-
ages or (up to) 4-channel signals. Unfortunately, most common color image datasets contain RGB
images and a zero channel has to be padded to the input in order to encapsulate the image in the
four quaternion components. Additionally, while quaternion neural components are widespread and
easy to be integrated in pre-existing models, very few attempts have been made to extend models
to higher domain orders. Accordingly, the development of hypercomplex convolutional models for
larger multidimensional inputs, such as magnitudes and phases of multichannel audio signals or 16-
band satellite images, still remains painful. Recently, a parameterized hypercomplex multiplication
(PHM) for fully connected layers have been proposed to generalize hypercomplex multiplications
as sum of Kronecker products, going beyond quaternion algebra. However, no solution exists for
convolutional layers, which remain the most employed layers when dealing with multidimensional
inputs, such as images and audio signals (Wu et al., 2021; Hershey et al., 2017).

In this paper, we propose a parameterized hypercomplex convolutional (PHC) layer to define
lightweight large-scale neural models admitting any multidimensional input, whichever the num-
ber of dimensions. Our method is flexible to operate in domains from 1D to nD, where n can be
arbitrarily chosen by the user or tuned to let the model performance lead to the most appropriate do-
main for the given input data. Such a malleability comes from the ability of the proposed approach
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to subsume algebra rules to perform convolution regardless of whether these regulations are preset
or not. Thus, neural models endowed with our approach adopt 1/n of free parameters with respect
to their real-valued counterparts, and the amount of parameter reduction is a user choice. This makes
PHC layers adaptable to a plethora of applications and hardware, even on the edge where memory
saving is a crucial aspect. Additionally, the PHC versatility allows processing multidimensional
data in its natural domain by simply setting the dimensional hyperparameter n. For instance, color
images can be analyzed in their RGB domain by setting n = 3 without adding any useless informa-
tion, contrary to standard processing for quaternion networks with the padded zero-channel. Indeed,
PHC-based models are able to grasp the proper algebra from input data, while capturing internal
correlations among the image channels and saving 66% of free parameters.

On a thorough empirical evaluation on multiple benchmarks, we demonstrate the flexibility of our
method that can be adopted in different domain of applications, from images to audio signals. We
devise a set of convolutional models endowed with PHC layers for large-scale image classification
and sound event detection tasks, letting them operate in different hypercomplex domain and with
various input dimensionality with n ranging from 2 to 16.

The contribution of this paper is three-fold.

• We introduce a parameterized hypercomplex convolutional (PHC) layer, which aims at
building lightweight and more efficient large-scale convolutional models. The approach
grasps the convolution rules directly from data via backpropagation exploiting the Kro-
necker product properties, thus reducing the number of free parameters to 1/n.

• We show how the proposed approach can be employed with any kind of multidimensional
data by easily changing the hyperparameter n. Indeed, by setting n = 3 the PHC-based
models can process RGB images in their natural domain, while leveraging the properties
of hypercomplex algebras, allowing parameters sharing inside the layers and leading to a
parameter reduction to 1/3. To the best of our knowledge, this is the first approach that pro-
cesses color images with hypercomplex-based neural models without adding any padding
channel. As well, multichannel audio signals can be analysed by simply considering n = 4
for standard first-order ambisonics (which has 4 microphone capsules), n = 8 for an array
of two ambisonics microphones, or even n = 16 if we want to include the information of
each channel phase.

• We devise a family of PHC neural networks, redefining common ResNets, VGGs and
Sound Event Detection networks (SEDnets), operating in any user-defined domain just
by choosing the hyperparameter n, which also drives the number of convolutional filters. 1

The rest of the paper is organized as follows. In Section 2, we recapitulate real and quaternion-valued
convolutional layers. Section 3 theoretically introduces the proposed method and expounds how to
process RGB images with n = 3, while in Section 4 we define the PHC models and we present
the experimental evaluation, including datasets, experiment details and results. Finally, Section 5
reports the related works and in Section 6 we draw conclusions.

2 REAL AND QUATERNION-VALUED CONVOLUTIONAL LAYERS

A brief recall on real-valued and quaternion convolutional layers is appropriate to better understand
the proposed method. A generic convolutional layer can be described by

y = Conv(x) = W ∗ x+ b, (1)

where the input x ∈ Rt×s is convolved (∗) with the filter tensor W ∈ Rs×d×k×k to produce the
output y ∈ Rd×t, where k is the filter size. The bias term b does not heavily influence the number
of parameters, thus the degrees of freedom for this operation are essentially O(sdk2).
Quaternion convolutional layers, instead, build the weight tensor W ∈ Rs×d×k×k by following the
Hamilton product rule and organize filters according to it:

1Full code is available at: https://anonymous.4open.science/r/HyperNets-CBBB.
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where W0,W1,W2,W3 ∈ R s
4×

d
4×k×k are the real coefficients of the quaternion weight matrix

W = W0 +W1 ı̂+W2̂+W3κ̂ and x0,x1,x2,x3 are the coefficients of the quaternion input x
with the same structure. The imaginary units comply with the property ı̂2 = ̂2 = κ̂2 = −1 and
with the non-commutative products ı̂̂ = −̂̂ı; ̂κ̂ = −κ̂̂; κ̂ı̂ = −ı̂κ̂.

As done for real-valued layers, the bias can be ignored and the degree of freedom computations
of the quaternion convolutional layer can be approximated to O(sdk2/4). The lower number of
parameters with respect to the real-valued operation is due to the reuse of filters performed by the
Hamilton product in Eq.2. Also, sharing the parameter submatrices forces to consider and exploit
the correlation between the input components (Parcollet et al., 2019a; Tay et al., 2019; Gaudet &
Maida, 2018).

3 PARAMETERIZING HYPERCOMPLEX CONVOLUTIONS

3.1 PARAMETERIZED HYPERCOMPLEX CONVOLUTIONAL LAYERS

In the following, we delineate the formulation for the proposed parameterized hypercomplex convo-
lutional (PHC) layer. We also show that this approach is capable of learning the Hamilton product
rule when two quaternions are convolved. The PHC layer is based on the construction, by sum
of Kronecker products, of the weight tensor H which encapsulates and organizes the filters of the
convolution. The proposed method is formally defined as:

y = PHC(x) = H ∗ x+ b, (3)

whereby H ∈ Rs×d×k×k is built by sum of Kronecker products between two learnable matrices.
Here, s is the input dimensionality to the layer, d is the output one, and k is the filter size. More
concretely,

H =

n∑
i=1

Ai ⊗ Fi, (4)

in which Ai ∈ Rn×n with i = 1, ..., n are the matrices that describe the algebra rules and Fi ∈
R s

n× d
n×k×k represents the i-th batch of filters that are arranged by following the algebra rules to

compose the final weight matrix. The core element of this approach is the Kronecker product, which
is a generalization of the vector outer product that can be parameterized by n. The hyperparameter
n can be set by the user who wants to operate in a pre-defined real or hypercomplex domain (e.g.,
by setting n = 2 the PHC layer is defined in the complex domain, or in the quaternion one if n
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Figure 1: The quaternion convolution rule can be expressed as sum of Kronecker products between
the matrices Ai that subsume the algebra rules and the matrices Fi that contain the convolution
filters, with i = 1, 2, 3, 4. In this example, the parameters of Ai are fixed for visualization purposes,
but in PHC layers they are learnable parameters.
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is set equal to 4, as Figure 1 illustrates), or tuned to obtain the best performance from the model.
The matrices Ai and Fi are learnt during training and their values are reused to build the definitive
tensor H.

The degree of freedom of Ai and Fi are n3 and sdk2/n, respectively. Usually, real world ap-
plications employ a large number of filters in layers (s, d = 256, 512, ...) and small values for k.
Therefore, frequently sdk2 � n3 holds. Thus, the degrees of freedom for the PHC weight matrix
can be approximated to O(sdk2/n). Hence, the PHC layer reduces the number of parameters by
1/n with respect to a standard convolutional layer in real world problems.

Moreover, when processing multidimensional data with correlated channels, such as color images,
rather than mulichannel audio or multisensor signals, PHC layers bring benefits due to the weight
sharing among different channels. This allows capturing latent intra-channels relations that standard
convolutional networks ignore because of the rigid structure of the weights (Grassucci et al., 2021a;
Parcollet et al., 2019b). The PHC layer is able to subsume hypercomplex convolution rules and
the desired domain is specified by the hyperparameter n. We test this ability with toy problems in
Appendix B. Interestingly, by setting n = 1 a real-valued convolutional layer can be represented
too. Indeed, standard real layers does not involve parameters sharing, therefore the algebra rules are
solely described by the single A ∈ R1×1 and the complete set of filters are included in Fs×d×k×k.
We report detailed explanations in Appendix A.

3.2 PARAMETERIZED LAYERS FOR COLOR IMAGES

In this section, we describe how the PHC layer can be employed to process color images in hy-
percomplex domains without needing any additional information to the input. Different encodes
exist to process color images, however, the most common computer vision datasets are comprised
of three-channel images in R3. In the quaternion domain, RGB images are enclosed into a quater-
nion and processed as single elements (Parcollet et al., 2019a). The encapsulation is performed by
considering the RGB channels as the real coefficients of the imaginary units and by padding a zeros
channel as the first real component of the quaternion.

Here, we propose to leverage the high malleability of PHC layers to deal with RGB images in
hypercomplex domains without embedding useless information to the input. Indeed, the PHC can
directly operate in R3 by easily setting n = 3 and process RGB images in their natural domain while
exploiting hypercomplex algebra properties such as parameters sharing.

Indeed, the great flexibility of PHC layers allows the user to choose whether processing images in
R4 or R3. On one hand, by setting n = 4, the zeros channel is added to the input even so the
layer saves the 75% of free parameters. On the other hand, by choosing n = 3 the network does
not handle any useless information, notwithstanding, it reduces the number of parameters by solely
66%. This is a trade-off which may depend on the application or on the hardware the user needs.
Furthermore, the domain on which processing images can be tuned by letting the performance of
the network indicates the best choice for n.

3.3 PARAMETERIZED LAYERS FOR MULTICHANNEL AUDIO

In the following, we expound how the proposed PHC layer can be employed to deal with multi-
channel audio signals. For instance, first-order Ambisonics (FOA) is composed of 4 microphone
capsules, whose magnitude representations can be enclosed in a quaternion (Comminiello et al.,
2019; Ricciardi Celsi et al., 2020). However, the quaternion algebra may be restrictive if more than
one microphone is employed for registration or whether the phase information has to be included
too. Indeed, quaternion neural networks badly fit with multidimensional input with more than 4
channels.

Conversely, the proposed method can be easily adapted to deal with these additional dimensions
by handily setting the hyperparameter n and thus completely leveraging each information in the
n-dimensional input.
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4 CONVOLUTION-BASED NEURAL MODELS WITH PHC LAYERS

In this section, we expound neural models endowed with PHC layers and we demonstrate how the
proposed method can be employed in various spheres of application. To this end, we devise deep
PHC models for image classification and for sound event detection. For each task, we empirically
substantiate the effectiveness and flexibility of the proposed PHC layer. In order to be consistent with
the literature, we perform each experiment with a real-valued baseline model and then we compare
it with its quaternion counterpart and with the proposed PHC network. Furthermore, we assess the
PHC malleability testing different values of the hyperparameter n, therefore defining PHC models
in multiple hypercomplex domains.

4.1 HYPERCOMPLEX PARAMETERIZATION FOR IMAGE CLASSIFICATION

To begin with, we test the PHC layer on RGB images and we show how, exploiting the correlations
among channels, the proposed method saves parameters while ensuring high performances.

4.1.1 PARAMETERIZED HYPERCOMPLEX RESNETS

In recent literature, a copious set of high performance in image classification is obtained with models
having a residual structure. ResNets (He et al., 2016) pile up manifold residual blocks composed of
convolutional layers and identity mappings. A generic PHC residual block is defined by

y = F(x, {Hj}) + x, (5)

whereby Hj are the PHC weights of layer j = 1, 2 in the block, and F is

F(x, {Hj}) = PHC (ReLU (PHC(x)) . (6)

4.1.2 PARAMETERIZED HYPERCOMPLEX VGGS

Another family of popular methods for image classification is based on the VGG networks (Si-
monyan & Zisserman, 2015) that stack several convolutional layers and a closing fully connected
classifier. To completely define models in the desired hypercomplex domain, we propose to endow
the network with PHC layers as convolution components and with Parameterized Hypercomplex
Multiplication (PHM) layers (Zhang et al., 2021) as linear classifier. The backbone of our PHC
VGG is then

ht = ReLU (PHCt (ht−1)) t = 1, ..., j

y = ReLU (PHM(hj)) .
(7)

We also test a hybrid model by employing standard real-valued fully connected (FC) layers instead
of PHM ones. However, we believe that it is out of the scope of this paper which aims at exploiting
hypercomplex algebras properties to define highly malleable neural networks. Nevertheless, for a
further comparison, we report these additional experiments in the Appendix B.

4.1.3 EXPERIMENTAL SETUP AND EVALUATION

We perform the image classification task with five baseline models. We consider ResNet18,
ResNet50 and ResNet152 from the ResNet family and VGG16 and VGG19 from the VGG one.
Each hyperparameter is set according to the original papers (He et al., 2016; Simonyan & Zisser-
man, 2015). We investigate the performance in four different color images datasets at different
scales. We employ SVHN, CIFAR10, CIFAR100, and ImageNet and any kind of data augmentation
is applied to these datasets in order to guarantee a fair comparison.

We execute initial experiments with VGGs against Quaternion VGGs and two versions of PHC
VGGs with n equal to 2 and to 4. Average and standard deviation accuracy over three runs are
reported for SVHN and CIFAR10 datasets in Table 1. Both the VGG16 and VGG19 PHC-based
versions clearly outperform real and quaternion counterparts while being built with more than a half
the number of parameters of the baseline. Additionally, PHC-based models extraordinarily reduce
the number of training and inference time required with respect to the quaternion model which oper-
ates in a hypercomplex domain as well. Furthermore, when scaling up the experiment with VGG19,
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Table 1: Image classification results for VGG. The accuracy mean and standard deviation over three
runs with different seeds is reported. Training (T) time and inference (I) time required on CIFAR10.
For training time we report, in seconds per 100 iterations, the mean and the standard deviation over
the iterations in one epoch, while the inference time is the time required to decode the test set. The
PHC model with n = 4 outperforms the quaternion counterpart both in terms of accuracy and time.
The PHC with n = 2 far exceeds the real-valued baseline in the considered datasets, while both the
PHC VGG19 versions with n = 2, 4 are more efficient than the real and quaternion-valued baselines
at inference time.

Model Params SVHN CIFAR10 Time (T) Time (I)

VGG16 15M 94.364 ± 0.394 85.067 ± 0.765 2.2 ± 0.02 1.2
Quaternion VGG16 3.8M (-75%) 93.887 ± 0.292 83.997 ± 0.493 5.2 ± 0.02 2.2
PHC VGG16 n = 2 7.6M (-50%) 94.831 ± 0.257 86.510 ± 0.216 3.2 ± 0.02 1.4
PHC VGG16 n = 4 3.8M (-75%) 94.639 ± 0.121 85.640 ± 0.205 3.2 ± 0.02 1.4
VGG19 29.8M 94.140 ± 0.129 85.624 ± 0.257 3.2 ± 0.02 16.0
Quaternion VGG19 7.5M (-75%) 93.983 ± 0.190 83.914 ± 0.129 6.2 ± 0.02 16.3
PHC VGG19 n = 2 14.9M (-50%) 94.553 ± 0.229 85.750 ± 0.286 4.0 ± 0.02 15.4
PHC VGG19 n = 4 7.4M (-75%) 94.169 ± 0.296 84.830 ± 0.733 4.2 ± 0.02 15.5

Table 2: Image Classification results with ResNet models. Each experiment is run three times
with different seeds and mean with standard deviation is reported. The proposed models far ex-
ceed real-valued and quaternion baselines almost in each experiment we conduct. Interestingly, the
PHC model outperform the real-valued counterpart by 4% points in the largest-scale experiment on
CIFAR100. The time is similar to the claims in Table 1 so we do not add here to avoid redundancy.

Model Params FLOPs SVHN CIFAR10 CIFAR100

ResNet18 10.1M 1.01G 93.992 ± 1.317 89.543 ± 0.340 62.634 ± 0.600
Quaternion ResNet18 2.8M (-75%) 1.01G 93.661 ± 0.413 88.240 ± 0.377 59.850 ± 0.607
PHC ResNet18 n = 2 5.4M (-50%) 1.03G 94.359 ± 0.187 89.260 ± 0.625 60.320 ± 2.249
PHC ResNet18 n = 3 3.6M (-66%) 1.03G 94.303 ± 1.234 89.603 ± 0.563 62.660 ± 1.067
PHC ResNet18 n = 4 2.7M (-75%) 1.03G 94.234 ± 0.161 88.847 ± 0.874 61.780 ± 0.689
ResNet50 22.5M 2.36G 94.546 ± 0.269 89.630 ± 0.305 65.514 ± 0.569
Quaternion ResNet50 5.7M (-75%) 2.36G 93.685 ± 0.389 89.670 ± 0.383 63.760 ± 0.717
PHC ResNet50 n = 2 11.1M (-50%) 2.41G 93.849 ± 0.249 89.750 ± 0.386 65.884 ± 0.333
PHC ResNet50 n = 3 7.6M (-66%) 2.41G 93.617 ± 0.497 90.423 ± 0.145 66.497 ± 1.256
PHC ResNet50 n = 4 5.7M (-75%) 2.41G 94.558 ± 0.754 88.897 ± 0.645 66.240 ± 1.165
ResNet152 52.6M 6.62G 94.625 ± 0.355 89.580 ± 0.173 62.053 ± 0.385
Quaternion ResNet152 13.2M (-75%) 6.62G 93.638 ± 0.098 89.227 ± 0.287 61.267 ± 0.784
PHC ResNet152 n = 2 26.6M (-50%) 6.76G 93.915 ± 0.512 90.540 ± 0.401 65.817 ± 0.327
PHC ResNet152 n = 3 17.8M (-66%) 6.76G 93.955 ± 0.152 90.077 ± 0.436 66.347 ± 0.567
PHC ResNet152 n = 4 13.4M (-75%) 6.76G 94.290 ± 0.237 89.897 ± 0.097 66.437 ± 0.064

the proposed methods are more efficient at inference time with respect to the real-valued VGG19.
Therefore, PHC models can be easily adopted in applications with disk memory limitations, due to
the reduction of parameters, and for fast inference problems thanks to the efficiency at testing time.
More initial experiments with various networks on other datasets are reported in Appendix B.

The malleability of the proposed approach when dealing with color images is expressed in the op-
portunity to choose the domain in which operating. Therefore, we test PHC networks in the complex
H2 (n = 2), quaternion H4 (n = 4) or H3 (n = 3) domain, where in the latter we do not concatenate
any zero padding and process the RGB channels of the image in their natural domain. In order to
implement this experiment, we change the number of filters in the baseline and in the corresponding
compared networks to be divisible by each value of n. More details about the implementations are
provided in Appendix B and in the GitHub repository (link in Section 1).
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Table 3: Storage memory required for ResNet152s checkpoints on CIFAR100. Quaternion and PHC
models allow a considerable disk memory saving with respect to the real-valued ResNet.

Model Storage Memory

ResNet152 201 MB
Quaternion ResNet152 51 MB (-75%)
PHC ResNet152 n = 2 103 MB (-49%)
PHC ResNet152 n = 3 70 MB (-65%)
PHC ResNet152 n = 4 53 MB (-74%)

Table 4: ImageNet classification with real-valued baseline against our best model PHC n = 3. Our
approach outperform the baseline while saving the 66% of parameters.

Model Params ImageNet

ResNet50 25.7M 67.990
PHC ResNet50 n = 3 9.6M (-66%) 68.584

Table 2 presents the the mean and standard deviation accuracy over three runs with different seeds
for the ResNet-based models. We perform extensive experiments and the PHC models with n = 4
always outperform the quaternion counterpart gaining a higher accuracy and being more robust.
This underlines the effectiveness of the PHC architectural flexibility over the predefined and rigid
structure of quaternion layers. Furthermore, our method distinctly far exceeds the corresponding
real-valued baselines across the experiments while saving from 50% to 75% parameters. Focusing
on the latter result, the PHC model with n = 3 results to be the most suitable choice in many cases,
proving the validity of processing RGB images in their natural domain leveraging hypercomplex
algebra. However, performance with n = 3 and n = 4 are comparable, thus the choice of this
hyperparameter may depend on the application or on the hardware employed. On one hand, n = 4
may sometimes lead to lower performances, nevertheless it allows saving disk memory, as shown in
Table 3, thus it may be more appropriate for edge applications. On the other hand, processing color
images with n = 3 may bring higher accuracy even so it requires more parameters. Therefore, such
a flexibility makes PHC models adaptable to a large range of applications. Likewise, PHC networks
with n = 2 gain considerable accuracy scores with respect to the real-valued corresponding models
and, due to the larger number of parameters with respect to the PHC with n = 3, sometimes outper-
form it too. Finally, the PHC with n = 4 obtains the overall best accuracy in the largest experiment
of this table. Indeed, considering a ResNet152 backbone on CIFAR100, our method exceeds the
real-valued baseline by more than 4%. This is the empirical proof that, with a very small FLOPs in-
crease, PHC models well scale to large real-world problems by notably reducing the overall number
of parameters. What is more, in Table 3, we report the memory required to store models checkpoints
for inference. Our method crucially reduces the amount of disk memory demand with respect to the
heavier real-valued model.

Further, we perform the image classifcation task on the ImageNet dataset. Since the most valu-
able choice for n when dealing with RGB images has been proved to be 3, we test the real-valued
ResNet50 against the PHC counterpart with n = 3. We train the models for 300k iterations with
batch size 256 following the recipes in (Wightman et al., 2021). Table 4 shows that the proposed
method achieves comparable, and even slightly superior, performance than the real-valued baseline,
while involving 66% fewer parameters. This proves the robustness of the proposed PHC approach,
which can be adopted and implemented in models at different scales.

4.2 HYPERCOMPLEX PARAMETERIZATION FOR SOUND EVENT DETECTION

Sound event detection (SED) is the task of recognizing the sounds classes and at what temporal
instances these sounds are active in an audio signal (Mesaros et al., 2021). We prove that the PHC
layer is adaptable to n-dimensional input signals and, due to parameters reduction and hypercomplex
algebra, is more performing in terms of efficiency and evaluation scores.
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Table 5: SEDnets results with one microphone (4 channels input). Scores are computed over three
runs with different seeds and we report the mean. The proposed method wtih n = 2 far exceeds the
baselines in each metric considered.

Model Conv Params Fscore ↑ ER ↓ SEDscore ↓ P ↑ R ↑

SEDnet 1.6M 0.637 0.450 0.406 0.756 0.5505
Quaternion SEDnet 0.4M (-75%) 0.580 0.516 0.468 0.724 0.484
PHC SEDnet n = 2 0.8M (-50%) 0.680 0.389 0.355 0.767 0.611
PHC SEDnet n = 4 0.4M (-75%) 0.638 0.453 0.407 0.765 0.547

Table 6: SEDnets results with two microphones (8 channels input). Scores are computed over three
runs with different seeds and we report the mean. The PHC SEDnet n = 2 outperform the baselines.

Model Conv Params Fscore ↑ ER ↓ SEDscore ↓ P ↑ R ↑

SEDnet 1.6M 0.663 0.428 0.383 0.788 0.572
Quaternion SEDnet 0.4M (-75%) 0.559 0.556 0.499 0.754 0.444
PHC SEDnet n = 2 0.8M (-50%) 0.669 0.406 0.368 0.767 0.594
PHC SEDnet n = 4 0.4M (-75%) 0.638 0.433 0.397 0.729 0.567
PHC SEDnet n = 8 0.2M (-87%) 0.553 0.560 0.503 0.747 0.439

4.2.1 PARAMETERIZED HYPERCOMPLEX SEDNETS

Sound Event Detection networks (SEDnets) (Adavanne et al., 2019) are comprised of a core con-
volutional component which extracts features from the input spectrogram. The information is then
passed to a gated recurrent unit (GRU) module and to a stack of fully connected (FC) layers with a
closing sigmoid σ which outputs the probability the sound is in the audio frame. Formally, the PHC
SEDnet is described by

ht = PHCt(ht−1) t = 1, ..., j

y = σ (FC (GRU (hj))) .
(8)

After the GRU model, We employ standard fully connected layers, that can be also implemented as
PHM layers with n = 1, since the so processed signal loses its multidimensional original structure.

4.2.2 EXPERIMENTAL SETUP AND EVALUATION

For sound event detection models we consider the augmented version of the SELDnet (Adavanne
et al., 2019; Comminiello et al., 2019) which was proposed as baseline for of the L3DAS21 Chal-
lenge Task 2 (Guizzo et al., 2021) and we perform our experiments with the corresponding released
dataset2. We consider as our baselines the SEDnet (without the localization part) and its quaternion
counterpart. The L3DAS21 Task 2 dataset contains 15 hours of MSMP B-format Ambisonics audio
recordings, divided in 1-minute-long data points, each of which consists of a simulated 3D office
audio environment where up to 3 acoustic events may overlap. We perform experiments with mul-
tiple configurations of this dataset. We first test the recordings from one microphone considering
the magnitudes only (4 channels input), then we test the networks with the signals recorded by two
microphones and magnitudes only (8 channels input). In Appendix B we report the experiments and
the results up to 16 channels input, in which we consider the phase information too.

We investigate PHC SEDnets in complex, quaternion and octonion domain with n = 2, 4, 8 and
train each network for 1000 epochs with a batch size of 16. Other hyperparameters are set as sug-
gested in the paper (Guizzo et al., 2021) and more details are provided in Appendix B. To assess the
performances of our models we take various metrics into account: the Fscore on the detection metric,
Precision (P) and Recall (R) as suggested in the original paper. For a more rigorous evaluation, we
also compute the SEDscore and the Error Rate (ER) (Adavanne et al., 2019; Mesaros et al., 2021).

2L3DAS21 dataset and code are available at: https://github.com/l3das/L3DAS21.
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Table 7: SEDnets FLOPs, training (T) and inference (I) time with 8 channels input. For training time
(seconds/iteration) the mean and the standard deviation over one epoch is reported, for inference
time we report the time required to perform an iteration on the validation set.

Model FLOPs Time (T) Time (I)

SEDnet 37.3G 1.242 ± 0.088 1.198
Quaternion SEDnet 37.3G 1.308 ± 0.088 1.298
PHC SEDnet n = 2 37.3G 1.091 ± 0.074 1.085
PHC SEDnet n = 4 37.3G 1.091 ± 0.032 1.077
PHC SEDnet n = 8 37.3G 1.142 ± 0.042 1.173

The proposed parameterized SEDnets distinctly outperform real and quaternion-valued baselines,
as reported in Table 5 and Table 6. Indeed, the PHC SEDnet with n = 2 gains the best results for
each score and in both one and two microphone datasets, proving that the weights sharing due to
the hypercomplex parameterization is able to capture more information regardless the lower number
of parameters. It is interesting to note that the PHC SEDnet n = 4, which operates in the quater-
nion domain, achieves improved scores with respect to the Quaternion SEDnet that follows the rigid
predefined algebra rules. Further, the malleability of PHC layers allows gaining comparable perfor-
mance with respect to the quaternion baseline even so reducing convolutional parameters by 87%,
just setting n = 8. In Appendix B, we show additional experimental results of PHC models able to
save 94% of convolutional parameters while operating in the sedonion domain by involving n = 16.

Furthermore, PHC SEDnets are more efficient in terms of time required for training and inference,
regardless the equal number of FLOPs. Table 7 shows that each tested version of the proposed
method is faster regards as the real SEDnet and the quaternion one, both at training and at infer-
ence time. Time efficiency is crucial in audio applications where networks are usually trained for
thousands of epochs and datasets are very large and require protracted computations.

5 RELATED WORKS

While a research field deals with scaling up networks (Real et al., 2019), a consistent area in liter-
ature aims instead at making these models more efficient and accessible (Tan & Le, 2019; Sandler
et al., 2018). Among the latter, quaternion neural networks (QNNs) have proved to reduce the
amount of parameters to 1/4 (Parcollet et al., 2019a; 2017). QNNs ensure high performance thanks
to the sharing of weights due to the Hamilton product that preserves correlations among channels in
multidimensional inputs (Grassucci et al., 2021c; Tay et al., 2019; Grassucci et al., 2021b). However,
despite the lower number of parameters, QNNs are often slightly slow with respect to real-valued
baselines (Hoffmann et al., 2020). Recently, several attempts have been made to compress neu-
ral networks relying on Kronecker product decomposition (Huang et al., 2020; Tang et al., 2021).
These methods gain considerable results in terms of model efficiency (Wang et al., 2021). Lately, a
parameterization of hypercomplex multiplications have been proposed to generalize hypercomplex
fully connected layers by sum of Kronecker products (Zhang et al., 2021). The latter method ob-
tains high performance in various natural language processing tasks by also reducing the number of
overall parameters. Lately, other works extended this approach to graph neural networks (Le et al.,
2021) and transfer learning (Mahabadi et al., 2021), proving the effectiveness of Kronecker product
decomposition for hypercomplex operations.

6 CONCLUSION

In this paper, we introduce a parameterized hypercomplex convolutional (PHC) layer which grasps
the convolution rule directly from data and can operate in any domain from 1D to nD, regardless
the algebra regulations are preset. The proposed approach reduces the convolution parameters to
1/n with respect to real-valued counterparts and allows capturing internal latent relations thanks to
parameter sharing among input dimensions. We show our method is flexible to operate in different
fields of application by performing experiments with images and audio signals. We also prove the
malleability and the robustness of our approach to learn convolution rules in any domain by setting
different values for the hyperparameter n from 2 to 16.
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REPRODUCIBILITY STATEMENT

One of the objective of proposing methods that allow a reduction of parameters is to make large
models more accessible and reproducible, even with a lower budget. We strongly believe repro-
ducibility should be a key ingredient for recent deep learning papers. Therefore, we provide detailed
explanations in the Appendix A to better understand the proposed method. Moreover, each experi-
ment reported in the main corpus and in the appendix of this paper is completely reproducible. We
provide the full code at https://anonymous.4open.science/r/HyperNets-CBBB, in-
cluding models, train configurations, L3DAS21 preprocessing and information for dataset download
and thorough instructions and details are provided in the Appendix B. Notebooks tutorials with toy
examples are uploaded too, hoping these may help further research on this topic.

CO2 EMISSION RELATED TO EXPERIMENTS

Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.445
kgCO2eq/kWh. A cumulative of 2000 hours of computation was performed on hardware of type
Tesla V100-SXM2-32GB (TDP of 300W). Total emissions are estimated to be 267 kgCO2eq of
which 0 percents were directly offset. Estimations were conducted using the MachineLearning
Impact calculator presented in Lacoste et al. (2019).

More in detail, considering an experiment for the sound event detection (SED) task, according to
Table 7, the real-valued baseline requires approximately 20 hours for training and validation, with
a corresponding carbon emissions of 2.71 kgCO2eq. Conversely, the proposed PHC model takes
approximately 17 hours with a reduction of carbon emissions of 16%, being 2.28 kgCO2eq.

In conclusion, we believe that the improved efficiency of our method with respect to standard models
may be a little step towards reducing carbon emissions.
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A THEORETICAL ADD-ONS

A.1 QUATERNION ALGEBRA

A quaternion q ∈ H is an hypercomplex number of rank 4. It is defined as the composition of four
real coefficients with three imaginary units as follows:

q = q0 + q1 ı̂+ q2̂+ q3κ̂ = q0 + q, (9)

being q0, q1 q2, q3 ∈ R and ı̂, ̂, κ̂ orthonormal basis in R3. A quaternion with scalar part q0 equal
to 0 is a pure quaternion. Considering two quaternion q and p, the Hamilton product in Eq.2 can be
rewritten in concise form as:

qp = q0p0 − q · p+ q0p+ p0q+ q× p,

where the bold notation is intended for vectors and the plain notation for scalars. From the above
definition, it is easy to derive the Hamilton product between two pure quaternions. It takes the form:

qp = −q · p+ q× p,

in which −q · p is the scalar part of the new quaternion and q × p its vector part. Therefore, the
vector product between two pure quaternions gives rise to a full quaternion.

As complex numbers, also quaternions have their own complex conjugates that are defined as

q∗ = q0 − q1 ı̂− q2̂− q3κ̂ = q0 − q.

The norm of a quaternion is the Euclidean norm in R4 of its real coefficients, that is

|q| =
√
qq∗ =

√
q20 + q21 + q22 + q23 ,

while the inverse is
q−1 =

q∗

|q|2
.

A.2 DEMYSTIFYING PHC LAYERS

We provide a formal explanation of the PHC layer to better understand the Kronecker product and
how it organizes convolution filters to reduce the overall number of parameters to 1/n. In Eq.10,
we show how the PHC layer generalizes from 1D to nD domains. When subsuming real-valued
convolutions in the first line of Eq.10, the Kronecker product is performed between a scalar A and
the filter matrix F, whose dimension is the same as the final weight matrix H, that is s× d× k× k.
Considering the complex case with n = 2 in the second line of Eq.10, the algebra is defined in
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A1 and A2 while the filters are contained in F1 and F2, each of dimension 1/4 the final matrix
H. Therefore, while the size of the weight matrix H remains unchanged, the parameter size is
approximately 1/2 the real one. In the last line of Eq.10, we can see the generalization of this
process, in which the size of matrices Fi, i = 1, ..., n is reduced proportionally to n. It is worth
noting that, while the parameter size is reduced with growing values of n, the dimension of H
remains the same.

[A]
(1×1)

⊗

 F


(s×d×k×k)

=

 H


(s×d×k×k)

[A1]
(2×2)

⊗

[
F1

]
( s

2×
d
2×k×k)

+ [A2]
(2×2)

⊗

[
F2

]
( s

2×
d
2×k×k)

=

 H


(s×d×k×k)

...

...

[A1]
(n×n)

⊗ [ F1 ]
( s

n× d
n×k×k)

+ [A2]
(n×n)

⊗ [ F2 ]
( s

n× d
n×k×k)

+ . . .+ [An]
(n×n)

⊗ [ Fn ]
( s

n× d
n×k×k)

=

 H


(s×d×k×k)

.

(10)

B EXPERIMENTAL ADD-ONS

B.1 TOY EXAMPLES: LEARNING THE MATRIX A

We test the receptive ability of the PHC layer in two toy problems building an artificial dataset. The
first task is learning the proper matrix A to build a quaternion convolutional layer which properly
follows the Hamilton rule in Eq.2. We build the dataset by performing a convolution with a matrix of
filters W ∈ H, that are arranged following the regulation in Eq.2, and a quaternion x ∈ H in input.
The target is still a quaternion, named y ∈ H. As shown in Fig. 2 (right), the PHC loss converges
very fast, meaning that the layer properly learns the matrix A and the Hamilton convolution.

The second toy example is a modification of the previous dataset target.. Here, we want to learn the
matrix A which describes the convolution among two pure quaternions. Pure quaternions may be,
as an example, an input RGB image and the weights of a hypercomplex convolutional layer. Figure
2 (left) displays the convergence of the PHC layer loss during training, proving that the proposed
method is able of subsuming hypercomplex convolutional rules when dealing with pure quaternions
too..
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Figure 2: Loss plots for toy examples. The PHC layer is able to learn the matrix A which describes
the convolution rule for pure quaternions (left) and for full quaternions (right).

Table 8: VGG16 results with real-valued classifier for quaternion and PHC networks. Extension of
Table 1 in the main corpus.

Model Params SVHN CIFAR10

Quaternion VGG16 4.2M (-72%) 94.086 84.126
PHC VGG16 n = 2 7.9M (-62%) 94.885 86.147
PHC VGG16 n = 4 4.2M (-72%) 94.562 85.710

B.2 EXPERIMENTAL ADD-ONS ON IMAGE CLASSIFICATION

B.2.1 IMAGE CLASSIFICATION IMPLEMENTATION DETAILS

To guarantee the complete reproducibility of our experiments, here we provide more implementation
details for the image classification task.

The modified versions of the ResNets are built with an initial convolutional layer with 60 filters.
Then, the subsequent blocks have 60, 120, 240, 516 filters. The number of layers in the blocks
depends on the ResNet chosen, whether 18, 50 or 152.

Instead, VGG19 convolution component comprise two 24, two 72, four 216, and eight 648 filter
layers, with batch normalization. The classifier is composed of three fully connected layers of 648,
516 and with the number of classes neurons each.

The rest of the hyperparameters are set as suggested in the original papers. The batch size is fixed to
128 and training is performed via SGD optimizer with momentum equal to 0.9, weight decay 5e−4

and a cosine annealing scheduler. For ResNets, the initial learning rate is set to 0.1. For VGG is
equal to 0.01. Models on CIFAR10 and CIFAR100 are trained for 200 epochs whereas on SVHN
networks run for 50 epochs.

For the ImageNet dataset, we follow the recipes in (Wightman et al., 2021), so we resize the images
for training at 160 × 160 while keeping the standard size of 224 × 224 for validation and test. We
employ a step learning rate decay every 30 epochs with γ = 0.1, the SGD optimizer and an initial
learning rate of 0.1 with weight decay 0.0001. The training is performed for 300k iterations with a
batch size of 256 employing 4 GPUs.

B.2.2 ADDITIONAL EXPERIMENTS ON IMAGE CLASSIFICATION

In the following, we provide additional preliminary experiments with small models equipped with
the proposed PHC layer. Table 8 contains VGG16s with real-valued final classifier. Table 9 reports
experiments with ResNet20 where we test also n = 1 to replicate the real-valued model, outper-
forming it. Experiments with VGG11 with modified number of filters in order to be divided by each
value of n is also reported in the same table. Finally, in Table 10 additional experiment on SVHN
and CIFAR10 with ResNet56 and ResNet110, the latter with modified number of filters. PHC-based
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Table 9: Additional preliminary experiments on SVHN dataset with ResNet20 and VGG11, the
latter with modified number of filters in order to be divided by each value of n and FC layers in
the closing classifier. We test also the PHC model with n = 1 to replicate the real domain which
outperform the real-valued ResNet20.

Model Params SVHN

ResNet20 0.27M 90.463
Quaternion ResNet20 0.07M (-75%) 93.535
PHC ResNet20 n = 1 0.27M 93.7962
PHC ResNet20 n = 2 0.14M (-50%) 93.708
PHC ResNet20 n = 4 0.07M (-75%) 93.669
VGG11 13.8M 93.488
Quaternion VGG11 3.9M (-71%) 92.888
PHC VGG11 n = 2 7.2M (-48%) 93.958
PHC VGG11 n = 3 5.0M (-64%) 93.804
PHC VGG11 n = 4 3.9M (-71%) 93.919

Table 10: Additional preliminary experiments with ResNet56 and ResNet110, the latter with mod-
ified number of filters in order to be divided by each value of n. Accuracy score is the mean over
three runs with different seeds.

Model Params SVHN CIFAR10

ResNet56 0.9M 94.116 83.700
Quaternion ResNet56 0.2M (-75%) 93.664 81.687
PHC ResNet56 n = 2 0.4M (-50%) 93.722 83.413
PHC ResNet56 n = 4 0.2 (-75%) 94.122 82.720
ResNet110 16.7M 93.461 84.810
Quaternion ResNet110 4.2M (-75%) 92.788 83.920
PHC ResNet110 n = 2 8.4M (-50%) 93.746 83.220
PHC ResNet110 n = 3 5.6M (-66%) 94.712 85.200
PHC ResNet110 n = 4 4.2M (-75%) 94.885 85.280

Table 11: Additional experiments with ResNet-based models. We reduced the number of convo-
lutional filters by 75% and then test the models on three datasets to remove the hypothesis that a
smaller number of parameters leads to higher generalization capabilities.

Model Params SVHN CIFAR10 CIFAR100

ResNet18 10.1M 93.992 89.543 62.634
ResNet18 (reduced) 2.7M (-75%) 93.842 88.310 59.590
ResNet50 22.5M 94.546 89.630 65.514
ResNet50 (reduced) 5.7M (-75%) 93.915 89.370 62.450
ResNet152 52.6M 94.625 89.580 62.053
ResNet152 (reduced) 13.2M (-75%) 94.400 89.001 60.850

models gain good performance in each test we conduct while reducing the amount of free param-
eters. Finally, in order to further remove the hypothesis that smaller number of neural parameters
leads to higher generalization capabilities, we perform experiments with real-valued baselines with
a number of parameters reduced by 75%. Table 11 shows that reducing the number of filters down-
grades the performance and thus it is not sufficient to improve the generalization capabilities of a
model.
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B.3 EXPERIMENTAL ADD-ONS ON SOUND EVENT DETECTION

B.3.1 L3DAS21 DATASET DETAILS

The L3DAS21 Task 2 dataset is a collection of 900 1-minute-long data-points sampled at a rate of
32 kHz. The 14 sounds classes have been selected from the FSD50K dataset and are representative
for an office sounds: computer keyboard, drawer open/close, cupboard open/close, finger snapping,
keys jangling, knock, laughter, scissors, telephone, writing, chink and clink, printer, female speech,
male speech. In this dataset, the volume difference between the sounds is in the range 0 and 20 dB
full scale (dBFS). Considering the array of two microphones 1, 2, the channels order is [W1, Z1,
Y1, X1, W2, Z2, Y2, X2], where WXYZ are the B-format ambisonics channels if the phase (p)
information is not considered. Whether we want to include also this information, the order will be
[W1, Z1, Y1, X1, W1p, Z1p, Y1p, X1p, W2, Z2, Y2, X2, W2p, Z2p, Y2p, X2p] up to 16 channels.
In Fig.3, we show the 8-channel input when considering one microphone and the phase information.
Magnitudes and phases are normalized to be centered in 0 with standard deviation 1.

W
1

Z1
Y1

X1
W

1p
Z1

p
Y1

p
X1

p

Figure 3: Sample spectrograms from L3DAS21 dataset recorded by one microphone with four cap-
sules.The first four figures represent the magnitudes while the last four contain the corresponding
phases information. The black sections represent silent instants.

B.3.2 SED IMPLEMENTATION DETAILS

To guarantee the complete reproducibility of our experiments, here we provide more implementation
details for the sound event detection task.

The extracted features by the preprocessing are fed to the four-layer convolutional stack with
64, 128, 256, 512 filters, with batch normalization, ReLU activation, max pooling and dropout (prob-
ability 0.3), with pooling sizes (8, 2), (8, 2), (2, 2), (1, 1). The bidirectional GRU module has three
layers, each with an hidden size of 256. The tail has is a four-layer fully connected classifier with
1024 filters alternated by ReLUs and with a final dropout and a sigmoid activation function. The
initial learning rate is set to 0.00001.

Following, we define the equations of the evaluation metrics considered in Subsection 4.2. To
be consistent with pre-existing literature, we define True Positives as TP, False Positives as FP
and False Negatives as FN. These are computed according to the detection metric (Guizzo et al.,
2021). Moreover, in order to compute the Error Rate (ER), we consider: S = min(FN,FP),
D = max(0,FN− FP) and I = max(0,FP− FN), as in (Adavanne et al., 2019).
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Fscore =
2TP

2TP + FP + FN

ER =
S + D + I

N

whereby N is the total number of active sound event classes in the reference.

SEDscore =
ER + 1− Fscore

2

For ER and SEDscore, the lower scores, the better the performances, while for the Fscore higher values
stand for better accuracy.

B.3.3 ADDITIONAL EXPERIMENTS ON SOUND EVENT DETECTION

In this section, we provide additional experiments for the sound event detection task. We conduct a
test considering two microphones and the phase information, so to have an input with 16 channels.
For this purposes, we consider as baseline the quaternion model and PHC-based networks with
n = 4, 8, 16 so to test higher order domains. Results are shown in Table 12.

Table 12: SED results with two microphone: magnitudes and phases (16 channels input). We test
higher order hypercomplex domains up to sedonions by setting n = 16. Although the incredible
reduction of the number of parameters with respect to the real-valued baseline in Table 6, the PHC
with n = 16 still has comparable performances with other models. Furthermore, the PHC with
n = 8 outperform also the quaternion baseline which has more degrees of freedom.

Model Conv Params Fscore ↑ ER ↓ SEDscore ↓ P ↑ R ↑

Quaternion SEDnet 0.4M (-75%) 0.580 0.480 0.450 0.655 0.520
PHC SEDnet n = 4 0.4M (-75%) 0.585 0.470 0.443 0.653 0.530
PHC SEDnet n = 8 0.2M (-87%) 0.607 0.466 0.430 0.702 0.534
PHC SEDnet n = 16 0.1M (-94%) 0.588 0.509 0.461 0.734 0.491

C FUTURE PERSPECTIVES

In this work, we demonstrate that the proposed parameterized hypercomplex convolutional (PHC)
layer is able to consistently reduce the free parameters of neural models while ensuring very high
performances thanks to the hypercomplex convolution properties. Therefore, we believe that these
findings pave the way for novel efficient neural networks. As an example, a thorough study on
pruning PHC-based models may further reduce the number of parameters and lead to extremely
lightweight networks.
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