
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Regression Trees Know Calculus

Anonymous Authors1

Abstract

Regression trees have emerged as a preeminent
tool for solving real-world regression problems
due to their ability to deal with nonlinearities,
interaction effects and sharp discontinuities. In
this article, we rather study regression trees ap-
plied to well-behaved, differentiable functions,
and determine the relationship between node pa-
rameters and the local gradient of the function
being approximated. We find a simple estimate
of the gradient which can be efficiently computed
using quantities exposed by popular tree learn-
ing libraries. This allows tools developed in the
context of differentiable algorithms, like neural
nets and Gaussian processes, to be deployed to
tree-based models. To demonstrate this, we study
measures of model sensitivity defined in terms
of integrals of gradients and demonstrate how
to compute them for regression trees using the
proposed gradient estimates. Quantitative and
qualitative numerical experiments reveal the capa-
bility of gradients estimated by regression trees to
improve predictive analysis, solve tasks in uncer-
tainty quantification, and provide interpretation
of model behavior.

1. Introduction
Tree-based methods, such as regression trees, are a
workhorse of the contemporary data scientist. Their ease of
use, computational efficiency and predictive capability with-
out the need for extensive feature engineering makes them
popular with practitioners. The most widely used version
of regression trees approximate with greedily constructed,
piecewise-constant functions than can handle data which
exhibit discontinuities or divergent behavior in various parts
of the feature-space. Perhaps because of their capability to
tackle pathological problems, it seems that some of their

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Function

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Depth 3 estimate

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Depth 6 estimate

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Depth 10 estimate

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Depth 15 estimate

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
True Vector Field

Figure 1. Illustration of Gradient Estimates. The top left gives a
target function, and the bottom right gives its vector field. Shown
in between are estimates of the gradient extracted from a regression
tree fit to data from the function converging to the true vector field.

properties in approximating well-behaved functions may
have gone unnoticed.

In this article, we will study the approximation of a continu-
ously differentiable function f on the unit cube in dimension
P with a piecewise constant regression tree. In particular,
we will investigate a means of approximating∇f using only
information contained in the tree structure computable in
a single pass through the tree. We find a simple and easily
computable quantity analogous to a finite difference and, via
the tree’s structure, can use it to efficiently form estimates of
integro-differential quantities. Previously, gradient estima-
tion in regression trees has been studied in the context where
the leaves have differentiable models, and the gradients of
these models are used to estimate the gradient (e.g. Chaud-
huri et al. (1995); Loh (2011)). However, the constant-leaf
tree remains prevalent in practice, and the purpose of this
article is rather to examine the implicit gradient estimation
that occurs within these constant-leaf trees where, formally,
the gradient of the tree is almost-everywhere zero.

With a gradient estimator in hand, we unlock for tree-based
models the stable of existing gradient-based methods for
variable interpretation and dimension reduction developed
in other areas. Among many possibilities, we will study in
particular the Active Subspace Method (Constantine, 2015),
a global dimension reduction technique from the Uncer-

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Regression Trees Know Calculus

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

1

Depth = 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

2

Depth = 2

0.0

0.2

0.4

0.6

0.8

1.0

∇f(x) ≈
[
∆1

∆2

]
=[0.8−0.2

1−0
0.6−1.0

1−0

]
=

[
0.6
−0.4

]

Figure 2. Extract finite difference gradient approximations from a regression tree by comparing values of adjacent nodes in splits.

tainty Quantification literature, and the Integrated Gradient
Method (Sundararajan et al., 2017), a local model interpre-
tation technique from the neural network literature.

Active Subspaces provide for linear dimension reduction,
which is already commonly used in the setting of regres-
sions trees, such as when using random projection or PCA
for rotated trees (Breiman, 2001; Rodriguez et al., 2006). In
contrast to these methods, active subspaces consists of super-
vised linear dimension reduction which takes the relation-
ship between features and response into account. Already,
supervised linear dimension reduction has been proposed
for use with tree based methods where, e.g. a kernel method
is used to perform the dimension reduction which is then
applied to a tree-based method (Shan et al., 2015). But here,
we show how to actually use the tree itself to perform a lin-
ear sensitivity analysis, rather than relying on a helper model
to do this. This is essential if the analyst is interested in
model-interpretation (as contrasted with data-interpretation
(Chen et al., 2020)), and to the best of our knowledge the
application of the Active Subspace method, enabled by our
novel gradient estimates, is the first such linear sensitivity
metric for trees. And while we’ve so far discussed what
active subspaces can do for regression trees, we don’t think
this new relationship will be one-sided. Our numerical ex-
periments show that regression trees can serve as scalable
estimators of the active subspace, favorable to existing meth-
ods in certain circumstances. We hope this can highlight
the potential for regression trees in the gradient-based UQ
space.

We view the major contributions of our article as follows:

1. We develop a simple algorithm to extract gradient and
integrated gradient information from regression trees.

2. We show how to use this to port gradient-based in-
terpretability techniques from other fields to benefit
interpretability of regression trees.

3. We find that in certain circumstances gradient-enabled

regression trees can produce better estimates of active
subspaces than existing UQ methods.

We begin in Section 2 by discussing pertinent background
on regression trees and gradient-based interpretability. Our
main methodological contributions are given in Section 3
and developed theoretically in Section 4. Subsequently, we
illustrate these procedure on numerical examples in Section
5 before offering conclusions and future research directions
in Section 6.

2. Background
While small decision trees are easily interpretable, they be-
come significantly less so as they grow in size or if they are
aggregated via Random Forests (Breiman, 2001; 2002) or
gradient boosting (Friedman, 2001). Consequently, devel-
oping methods for increasing the interpretability of trees is
of great importance (Louppe, 2014).

2.1. Variable Interpretation and Selection in Regression
Trees

Several methods for variable importance were suggested
alongside some of the original tree-based methods (Breiman,
2017; 2001; 2002), the two most salient for our study being
the Mean Decrease in Impurity (called MDI or TreeWeight
(Kazemitabar et al., 2017)) and the Feature Permutation
method. MDI assigns importance to variables in proportion
to the mean reduction in cost when splitting along a given
variable, an intuitively reasonable approach. However, MDI
as originally proposed was sensitive to properties of the
feature variables as well as to the depth within the tree that
a split occurred, leading to “debiased” variants (Sandri &
Zuccolotto, 2008; Li et al., 2019). Kazemitabar et al. (2017);
Klusowski & Tian (2020) studied theoretical properties of
a simplified version of this metric using only the first split
(“stumps”). On the other hand Feature Permutation is based
on measuring decrease in performance when shuffling a

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Regression Trees Know Calculus

given feature, and though the method does have some desir-
able properties (Ishwaran, 2007), it has come under criticism
for undesirable behavior in the context of correlated predic-
tors (Hooker et al., 2021). Empirical studies have found
issues in both of these methods (Strobl et al., 2007; 2008).
Against this backdrop of negative results on the behavior
of these initially suggested methods came contributions in
general-purpose machine learning interpretability methods.
SHAP values (Lundberg & Lee, 2017) have been proposed
as a general-purpose tool for understanding machine learn-
ing models. However, they would prove especially popular
for understanding tree-based methods where efficient algo-
rithms have been proposed for estimating these otherwise
combinatorially difficult quantities (Lundberg et al., 2019;
Karczmarz et al., 2022).

2.2. Gradient-based Model Interpretation

The gradient of a function tells us how its output is related
to its input over short distances, and is a natural candidate
to help explain the behavior of a model. Hechtlinger (2016)
suggested to simply look at the gradient of a model evalu-
ated at a particular observation to gain local understanding.
Another approach is the Integrated Gradient (Sundararajan
et al., 2017) introduced in the context of neural networks,
which involves involves privileging some setting of input
features which is called the reference point, which we’ll de-
note x∗. Subsequently, in order to explain a prediction at a
given point x, we integrate the gradient along the path from
x∗ to x and multiply elementwise against that difference;
that is, denoting the output of the neural network as f :

IG(x) := (x−x∗)⊙
∫ 1

α=0

∇f(αx+(1−α)x∗)dα . (1)

This theoretically appealing approach has also seen practical
success in applications including medicine (Sayres et al.,
2019) and chemistry (McCloskey et al., 2019).

One could also integrate the gradient over a larger part of the
space to perform a more global sensitivity analysis. This is
the idea behind the Active Subspace Method (Constantine,
2015). In our context, this involves defining the Active
Subspace Matrix as:

Cf
µ :=

∫
[0,1]P

∇f(x)∇f(x)⊤dµ(x) , (2)

where µ is a measure. Eigenanalysis on Cf
µ reveals lin-

ear combinations of features which are important, similar
to PCA. Various techniques have been developed to esti-
mate active subspaces in the presence only of input-output
data. A Polynomial Ridge Approximation (PRA) proce-
dure (Hokanson & Constantine, 2018) is available, as is a
closed form estimate using Gaussian processes (GP; Wycoff
et al. (2021)), and also an approach based on neural net-

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
i = 1 i = 2

x

Depth = 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

i = 4

i = 3 i = 6

i = 5

x

Depth = 2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Illustration of Notation. In the same example tree as
Figure 2 with a depth K = 2, examples of our notation is as
follows: the indices of nodes at each depth are D1 = {1, 2} and
D2 = {3, 4, 5, 6}; the children of node 2 are cl2 = 5 and cr2 = 6;
the bounds of node 5 are l = [0.5, 0] and u = [1, 0.6]; the value
of intermediate node 2 is v2 = 0.8 and the value of leaf node 6
is 0.6; since the “root node” 0 is split along the x-axis, σ0 = 1
and since nodes 1 and 2 are split along the y-axis, σ1 = σ2 = 2;
since the point x lies within the nodes 2 and 5 at depths 1 and 2
respectively, we have that B1(x) = 2 and B2(x) = 5.

works called the Deep Active Subspace Method (Tripathy &
Bilionis, 2019; Edeling, 2023, DASM) has been proposed.

3. Integro-Differentiation of Regression Trees
In this section we propose an easy to compute estimator of
derivatives and integrals of derivatives for regression trees.
While the underlying idea in this article is simple, discussing
it rigorously requires a fair amount of notation; Figure 3
illustrates our notation on simple regression tree. Say we fit
a regression tree of depth K to data (xn, yn = f(xn) + ϵn)
with xn ∈ [0, 1]P , yn ∈ R for n ∈ {1, . . . , N}, and ϵn
mean zero with finite variance. Purely for simplicity, we
will assume that the tree has leaf nodes only at depth K,
i.e. there is no path through the tree that ends before depth
K. Associate with every node from all depths an integer
index i such that the root node is labeled 0 and if node
i is deeper in the tree than node j, then i > j. That is,
the indices at depth 1 are given by {1, 2}, at depth 2 by
{3, 4, 5, 6}, and generally at depth k the indices are given
by Nk = {2k−1 + 1, . . . , 2k}. We denote the variable
along which the ith node splits by σi ∈ {1, . . . , P} and the
threshold at which that split occurs as τi.

3.1. Differentiation

The difference between the mean response µl
i on the left

side of node i’s split (containing points in that node where
xσi
≤ τi) and the mean response µr

i on the right side (where
xσi

> τi) contains information about the σth
i component

of the gradient in that area. By dividing this difference
proportionally to the size of the node along dimension σi,
we form a quantity similar to a finite difference. Let [lip, u

i
p]

denote the extent of node i along dimension p for p ∈

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Regression Trees Know Calculus

{1, . . . , P}. Then define the following quantity:

∂̃f

∂̃xσi

∣∣∣
i
:=

2(µr
i − µl

i)

ui
σi
− liσi

≈ ∂f

∂xσi

(x) ∀x ∈ [li,ui] . (3)

We have used the notation li = [li1, . . . , l
i
P ] to denote the

vector of lower bounds of the extent of node i and similar
for ui, and by [li,ui] we denote the set of points lying
within the bounds of the ith node. The ratio ∂̃f

∂̃xσi

∣∣
i

contains

information about the partial derivative of f with respect to
xσi

(which is, again, the variable that node i splits along)
inside of [li,ui]. The idea that ∂̃f

∂̃xσi

∣∣
i
≈ ∂f(x)

∂xσi

∣∣
i

for any

x in node i only makes sense if the gradient does not vary
much within it. We expect this to be the case only for very
small nodes, or in other words, very deep trees, estimating
functions with gradients which vary smoothly; we make this
precise in the next section.

At a particular node, we can only form estimates of a single
partial derivative. However, if our tree is sufficiently deep,
we can combine estimates of partial derivatives from nodes
at multiple depths to form an estimate of the entire gradient.
Recall that Nk = {2k−1 + 1, . . . , 2k} contains the index
of all nodes of depth k and let ρi denote the index of the
parent of node i (which will be a member of Nk−1). Then
Algorithm 1 shows how to aggregate the partial derivative
estimates into a gradient estimate.

Algorithm 1 Tree-Based Gradient Estimation
Gi ← 0 ∈ RP for all i.
for k ∈ {1, . . . ,K} do

for i ∈ Nk do
Gi ← Gρi {Get parent’s estimate}
Gi[σi]← 2(µr

i−µl
i)

ui,σi
−li,σi

{Update along split direction}
end for

end for

We thus have associated each node i with an estimator of
the gradient, though if we have not split along a variable
p in the tree upstream of i, the estimate of that component
will simply be 0. This is actually somewhat reasonable,
as the tree will split along variables with small gradient
components less frequently.

Of course, nothing would stop us from comparing values of
means that are adjacent in the input domain but not adjacent
in the tree structure (for example, nodes 3 and 6 of Figure
3). However, the advantage of considering only nodes adja-
cent in the tree is that this Tree-Based Gradient Estimator
(TBGE) can be computed efficiently merely by traversing
the tree. Furthermore, if we needed only an estimate of
a gradient at a particular point x, we would need only to
traverse the regression tree in the standard manner, visiting
only nodes upstream of the leaf nod x. To be explicit, let

B(x) be the index of the node of the greatest depth which
contains x. We use as our estimate of ∇f(x) the TBGE
associated that node; that is, ∇̃f(x) = GB(x).

We can see that once each feature has been iterated over
once, Gi will be in some sense an estimator of the gra-
dient within node i. Furthermore, in the large data limit,
the analysis of Appendix A.2 reveals that this will occur

within (P − 1) log2

(
maxp | ∂f(x)

∂xp|

minp | ∂f(x)
∂xp

|

)
splits when approximat-

ing linear functions. This suggests that depth should grow
linearly with dimension, or least with the number of nonzero
coefficients in the gradient.

3.2. Integration

We next develop estimators for quantities of the form:

I(f) =
∫

h(∇f(x))dµ(x) . (4)

Here, h is some integrable RP → H function and µ is a
measure on RP . The Integrated Gradient at point z with
reference point z∗ may be written in this form by choosing
h(a) = (z − z∗) ⊙ a, H = RP , and µ as the degenerate
uniform measure on the line segment between z and z∗ .
Similarly, Active Subspace can also be seen to belong to
this class by setting h(a) = aa⊤,H = RP×P and arbitrary
µ.

We will consider two classes of estimators for such quanti-
ties. The first is a Monte Carlo Estimator (MCE) which is
appropriate whenever µ is a probability measure which it is
possible to sample from. The second is a Partition-Based Es-
timator (PBE) which is suitable whenever we can compute
µ([a,b]) for arbitrary a, b.

Start with the MCE. We fix some Monte Carlo sample size
M and form the standard Monte Carlo approximation, then
plug in the TBGE where the gradient appears:

I(f) ≈ 1

M

∑
xm∼µ

h(∇f(xm)) ≈ 1

M

∑
xm∼µ

h(Gxm) . (5)

We denote this estimator by ÎMC(f). In particular, we can
form a Tree-Based Integrated Gradient (TBIG) as follows
by sampling random uniform variables um on [0, 1]:

ˆIG(x) = (x− x∗)⊙ 1

M

M∑
m=1

GB(umx+(1−um)x∗) . (6)

Next, we consider the PBE. This involves simply computing
a weighted average of the action of h on the TBGE on
each node at the penultimate depth K − 1, weighted by
the measure of that node. For simplicity, we assume that
µ([0, 1]P ) = 1. In notation, we define the estimator as

ÎPE(f) =
∑

i∈NK−1

h(Gi)µ([li,ui]) . (7)

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Regression Trees Know Calculus

We can use this to form Tree-Based Active Subspace
(TBAS) for f as follows:

Ĉf
µ =

∑
i∈NK−1

GiGi⊤µ([li,ui]) . (8)

Which estimator is preferred in practice will depend on
which properties of µ are computationally tractable. If both
sampling and computing measure of rectangles is simple for
µ, both will be available, and in this circumstance, the PBE
will be favorable as it does not have Monte Carlo error.

4. Asymptotic Analysis
We’ll now make rigorous the intuition developed in the
previous section with a basic asymptotic analysis of the
TBGE under the assumption that the mean value in a node
converges at the usual square root rate, which is the case
under typical regularity conditions.

Theorem 4.1. Let S(N) denote the least number of splits
in the tree along any variable as a function of the sample
size. Under Assumption A.1 of the Appendix, we have that:

∂̃f(x)

∂̃xσi

=
∂f(x)

∂xσi

+OP

(√S(N)

N
+ 2−

S(N)
P

)
.

Proof. We give only an outline of the proof, with the details
given in the Appendix. Expanding f around x can be used
to show that

∂̃f(x)

∂̃xp

=
∂f(x)

∂xσi

+OP

(
1√
η(N)

)
+ o(diam([l,u]) ,

where η(N) is the least number of observations in any node.
Then, noting that η(N) ≤ N

S(N) and measuring the decrease
in node width with depth yields the desired result.

This shows us the trade-off between decreasing the variance
of the mean estimate in each cell and narrowing the sizes
of the cells. Taking S(N) = P logN yields a convergence
rate of

√
PN−1 logN .

In the remainder of this section, we will establish consis-
tency of estimates for integro-differential quantities, which
will require only consistency of the TBGE. We see that
this occurs whenever S(N) grows to ∞ sublinearly such
that there are eventually arbitrarily many splits, each with
arbitrarily many observations as the sample size increases.
We begin with the MCE; the remaining proofs are in the
Appendix.

Theorem 4.2. Under Assumptions A.1 and A.2 of the ap-
pendix, the Partition-Based estimator converges to the true

Figure 4. Integrated Gradient for Trees. Each pair of panels
gives a training example from MNIST. The second pair in the
image superimposes the IG values onto the example. Redder
means more strongly suggesting correct class membership.

integro-differential quantity as the sample size diverges.
That is,

lim
N→∞

ÎPB(f) = I(f) .

where I(f) is the integro-differential quantity given in Equa-
tion 4.

Theorem A.1 of the Appendix gives a similar result for the
MCE.

We also explicitly state there the implications of these re-
sults for Active Subspace and Integrated Gradient estima-
tion, namely the consistency of the estimators Ĉf

µ and ˆIG
proposed in Section 3.

We have thus established consistency of gradient-based
model interpretation quantities for regression trees. Next,
we will empirically study their behavior in finite samples
via a battery of numerical experiments.

5. Numerical Experiments
We now study how the proposed gradient estimator might be
profitably exploited in practice. We begin with a qualitative
study showing how a tree-based integrated gradient (TBIG)
can facilitate local model interpretation. Then come three
quantitative studies, first investigating the potential of a
Tree-Based Active Subspace (TBAS) to improve prediction
accuracy of a downstream tree via a rotation of the space.
Subsequently, we evaluate the capacity of regression trees
to estimate the Active Subspace in low and high dimension.
Finally, we end with another qualitative study demonstrating
how a TBAS can provide data visualization.

5.1. Integrated Gradient for Tree-Based Methods

We now consider random forest classifier fit the to two sub-
sets of the MNIST dataset, one contrasting zeros against

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Regression Trees Know Calculus

Dataset: bike concrete gas grid keggu kin40k obesity supercond

Regression Tree (Depth 4)

TBAS 0.635 0.47 0.578 0.688 0.194 0.856 0.128 0.511
Id 0.655 0.537 0.595 0.773 0.35 0.963 0.226 0.514
PCA 0.655 0.543 0.591 0.773 0.349 0.964 0.226 0.513
Rand 0.656 0.524 0.593 0.752 0.349 0.95 0.226 0.513

Regression Tree (Depth 8)

TBAS 0.402 0.35 0.429 0.521 0.078 0.586 0.094 0.392
Id 0.405 0.403 0.432 0.522 0.121 0.862 0.103 0.395
PCA 0.407 0.395 0.423 0.524 0.122 0.872 0.107 0.392
Rand 0.411 0.391 0.435 0.55 0.124 0.836 0.109 0.397

Random Forest (Depth 4)

TBAS 0.609 0.406 0.559 0.602 0.161 0.802 0.123 0.479
Id 0.65 0.462 0.574 0.659 0.344 0.954 0.173 0.485
PCA 0.649 0.462 0.567 0.654 0.344 0.954 0.174 0.486
Rand 0.646 0.458 0.57 0.66 0.33 0.938 0.173 0.486

Table 1. Predictive Impact of Various Transformations on Selected Datasets. Numbers give 100-fold RMSE; bold indicates confidence
interval overlaps with the lowest confidence interval.

eights and the other fours against sevens. While classifi-
cation was not the focus of this article, we present some
preliminary numerical experiments in Appendix C. We use
the estimator ˆIG of Equation 6 with M = 500 random
points along a given path. Figure 4 gives the results of this
analysis. We see that when comparing eights against zeros,
the intersection point of the eight is most important, while
the left and right sides of the zero are. This makes sense
as they are the parts of each digit which are distinct. By
contrast, the shared upper and lower arcs are not highlighted.
In the four versus seven case, the location of the horizontal
bar seems to be most influential in determining one versus
the other. This suggests that the model is comparing the
relative position of the bar to the rest of the digit in making
its classifications.

5.2. Active-subspace Rotated Trees

This section evaluates the ability of TBAS to improve the
accuracy of a downstream predictive analysis. Given some
mapping L, we refer to postmultiplication of the feature ma-
trix X to form a new feature matrix Z := XL as a rotation.
In standard tree-based methods, non-diagonal rotations can
have an impact on predictive performance because the axes
along which splits are made have been changed. In order to
quantitatively assess the utility of TBAS, we compare the
prediction error of regression trees and random forests on
eight benchmark datasets fit on data augmented by a rota-
tion of the space. We compare TBAS rotations to the those
made by drawing orthogonal directions uniformly over the
Grassmannian (Rand; similar to Breiman (2001)) as well as

those formed from a Principal Components Analysis (PCA;
similar to Rodriguez et al. (2006)) and no rotation at all
(denoted Id). Table 1 presents the results of this analysis.
TBAS does at least as well as the other methods, and some-
times offers significant improvement (such as on the Kin40k
and Keggu datasets).

5.3. Computationally Efficient Active Subspace
Estimation in Low Dimension

In this section we demonstrate the capability of TBAS to of-
fer extremely fast, gradient-free estimation of the active sub-
space in low dimension when significant data are available.
We compare to the three popular methods for gradient-free
active subspace estimation introduced in Section 2.2, based
on a Gaussian Process (GP), Ridge Polynomial (PRA), and
Neural Network (DASM). Each of these methods was tasked
to estimate a one dimensional active subspace in dimensions
2, 3 and 4, using a logarithmically spaced grid of sample
sizes ranging from 10 to 10,000 on a toy algebraic function.
We found that the GP and PRA methods worked efficiently
when sample sizes were small, but computation time grew
quickly, such that we were only able to run these methods
for samples of size 150 or less. Figure 5 shows the active
subspace error against the execution time. We see that the
tree-based estimator forms the majority of the Pareto front
in all three cases.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Regression Trees Know Calculus

10 2 100 102

Execution Time (s)

0.0

0.2

0.4

0.6

Er
ro

r (
Ra

di
an

s)
 P=2

10 2 100 102

Execution Time (s)

0.2

0.4

0.6

0.8

1.0

 P=3

10 2 100 102

Execution Time (s)

0.6
0.7
0.8
0.9
1.0
1.1
1.2

 P=4

DASM
GP
PRA
Tree

Figure 5. Active Subspace Estimation in Low Dimension. Execution time (x-axis) and Subspace Estimation Error (y-axis) for the four
methods, lower is better.

5.4. Estimating Sparse Active Subspaces in High
Dimension

Imposing sparsity in the coefficients of linear dimension
reduction can improve interpretability (Zou et al., 2006).
Because of the manner that tree-based methods produce
gradient estimates, we conjecture that TBAS has built-in
inductive bias to favor entry-wise active subspaces. Our
analysis in Appendix A.2 revealed that in the large sam-
ple limit, the tree-based gradient estimator will behave as
though it was in a lower dimensional space, with dimension
given by the cardinality of the gradient. In this section, we
will investigate this property by comparing TBAS against
the DASM in estimating a sparse active subspace in dimen-
sions 10, 50 and 100. We will use the same setup as the
previous section, except that the true subspace has only three
nonzero coordinates. Because of the sample size that is re-
quired to estimate an active subspace in high dimension, it is
computationally infeasible to deploy the GP or PRA active
subspace estimation methods. Figure 6 shows the results of
this analysis. The TBAS estimator is able to achieve much
better accuracy with a significantly smaller cost,

5.5. Dimension Reduction with the Active Subspace

We now turn to the qualitative benefits of performing an
active subspace analysis using TBAS. We used the NHEFS
dataset of biochemistry tape and mortality data which were
used by Lundberg et al. (2019). This consisted of a dataset
of 14,407 observations and 90 complete variables. We fit
a TBAS to this dataset using a regression tree of depth 15,
requiring at least 10 samples per leaf. We subsequently
performed an eigendecomposition of the estimated active
subspace matrix. Like Lundberg et al. (2019), we found
that age was the most important variable and it mapped
cleanly onto the first active subspace dimension. However,
we found that the next two dimensions consisted of many

variables (see Appendix B.3). Figure 7 shows there result
of this analysis, which reveals that after Age there appears
to be a gap in the spectrum of the active subspace matrix
(Constantine, 2015), indicating the presence of an active
subspace of dimension two (left panel). The middle panel
shows a projection of the data, which breaks into two clus-
ters along the second principal component, while the right
panel shows a projection of randomly sampled points to
visualize the predictive surface of the function. The right
panel reveals the predictive surface has a fairly simple, “S-
shaped” form over these two dimension. It would not be
possible to detect this by considering only main effects or
two factor interactions.

6. Discussion
Summary: We proposed a simple method for estimat-
ing gradients in sufficiently deep regression trees on large
datasets. Subsequently, we demonstrate how these estimates
could be used to calculate active subspaces and integrated
gradients. We found significant improvement in predictive
performance could be achieved by using the tree-based ac-
tive subspace to rotate the space, and also found that these
estimates executed quicker than existing gradient-free active
subspace estimators and had useful inductive bias towards
detecting coordinate-sparse subspaces. Also, we were not
able to run the PRA and GP based active subspace esti-
mators on larger datasets due to computational constraints.
Finally, we used these gradient estimates to reveal the sim-
ple global structure of a tree-based model fit to a complex
dataset as well as the mechanism by which a random forest
conducted MNIST classification.

Limitations: When it comes to limitations of our experi-
ments, when comparing our active subspace estimates to
the DASM, we used a particular neural network architecture
and optimizer. It is possible that a different configuration

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Regression Trees Know Calculus

102 103 104

N

0

1

Ra
di

an
s

Error P=10

102 103 104

N

0

1

Ra
di

an
s

Error P=50

102 103 104

N

0

1

Ra
di

an
s

Error P=100

102 103 104

N

2

0

2

lo
g 

Se
co

nd
s

Time P=10

102 103 104

N

2

0

2

lo
g 

Se
co

nd
s

Time P=50

102 103 104

N

2

0

2

lo
g 

Se
co

nd
s

Time P=100

DASM
Tree

Figure 6. Sparse Active Subspace Estimation in High Dimension. Lower is better.

Figure 7. Projection with TBAS. Left: Spectrum of active subspace matrix suggests a 2D active subspace. Middle: Projection of data
onto active subspace. Left: Projection of predictive surface.

would have performed better. Additionally, when it comes
to limitations of the method, our analysis suggests that it
would take a very deep regression tree to estimate gradients
in high dimension if the gradient is dense in all of its entries.

Conclusions: We think this work offers two high level con-
clusions. First, that trees may have a place in the field of
Uncertainty Quantification, which has more commonly used
differentiable but slow to estimate surrogates such as Gaus-
sian processes and neural networks. Secondly, we hope that
this work can also enable improve cross-pollination between
developments in interpretability for neural networks and for
regression trees by creating analogs for gradient-based neu-
ral network techniques.

We also would like to comment on how TBAS fit into the
existing literature on interpretability in trees. It is some-
what distinct from the axiomatic approach to interpretability
proffered by SHAP (Lundberg & Lee, 2017) and Integrated
Gradients (Sundararajan et al., 2017). While an axiomatic
approach can be useful, its universality should not be ex-
aggerated. Hancox-Li & Kumar (2021) write about how it
is unlikely that any variable selection method could satisfy
all possible demands, no matter how attractive its axiomatic
foundation. Since the active subspace is parameterized by
a measure, it actually consists of an entire family of analy-
ses, with different choices of emphasis over the input space
possibly leading to different conclusions.

Future Work: We are excited about the future work opened
up by the here-proposed gradient estimates. First, while we
have conducted some preliminary analyses in Appendix C,
more work is needed to understand the properties of these
estimates in classification problems with categorical inputs
and missing data. We are also interested in the possibility
of estimating higher order derivatives from tree structure.
Furthermore, extending the class of functions approximated
to nondifferentiable functions is of interest: does the quan-
tity proposed here converge in such a case, and to what?
But we are most excited about the potential to bring in
other gradient-based techniques to tree-based methods. For
instance, physics-informed machine learning (e.g. Raissi
et al. (2019; 2017)) has been making waves in the fluid dy-
namics community (Cai et al., 2021) among other applica-
tions, where they allow the analyst to use information about
function derivatives to improve predictions of differentiable
models such as neural networks or Gaussian processes. Our
gradient estimator opens up the possibility of deploying this
technique in the context of regression trees.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Regression Trees Know Calculus

References
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,

C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Breiman, L. Random forests. Machine learning, 45:5–32,
2001.

Breiman, L. Manual on setting up, using, and understanding
random forests v3. 1. Statistics Department University of
California Berkeley, CA, USA, 1(58):3–42, 2002.

Breiman, L. Classification and regression trees. Routledge,
2017.

Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E.
Physics-informed neural networks (pinns) for fluid me-
chanics: A review. Acta Mechanica Sinica, 37(12):1727–
1738, 2021.

Chaudhuri, P., Lo, W.-D., Loh, W.-Y., and Yang, C.-C. Gen-
eralized regression trees. Statistica Sinica, pp. 641–666,
1995.

Chen, H., Janizek, J. D., Lundberg, S., and Lee, S.-I.
True to the model or true to the data? arXiv preprint
arXiv:2006.16234, 2020.

Constantine, P. G. Active subspaces: Emerging ideas for
dimension reduction in parameter studies. SIAM, 2015.

Edeling, W. On the deep active-subspace method.
SIAM/ASA Journal on Uncertainty Quantification, 11(1):
62–90, 2023.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pp. 1189–1232,
2001.

Hancox-Li, L. and Kumar, I. E. Epistemic values in feature
importance methods: Lessons from feminist epistemol-
ogy. In proceedings of the 2021 ACM conference on
fairness, accountability, and transparency, pp. 817–826,
2021.

Hechtlinger, Y. Interpretation of prediction models using the
input gradient. arXiv preprint arXiv:1611.07634, 2016.

Hokanson, J. M. and Constantine, P. G. Data-driven polyno-
mial ridge approximation using variable projection. SIAM
Journal on Scientific Computing, 40(3):A1566–A1589,
2018.

Hooker, G., Mentch, L., and Zhou, S. Unrestricted permuta-
tion forces extrapolation: variable importance requires at
least one more model, or there is no free variable impor-
tance. Statistics and Computing, 31:1–16, 2021.

Ishwaran, H. Variable importance in binary regression trees
and forests. 2007.

Karczmarz, A., Michalak, T., Mukherjee, A., Sankowski, P.,
and Wygocki, P. Improved feature importance computa-
tion for tree models based on the banzhaf value. In Un-
certainty in Artificial Intelligence, pp. 969–979. PMLR,
2022.

Kazemitabar, J., Amini, A., Bloniarz, A., and Talwalkar,
A. S. Variable importance using decision trees. Advances
in neural information processing systems, 30, 2017.

Klusowski, J. M. and Tian, P. M. Nonparametric variable
screening with optimal decision stumps. arXiv preprint
arXiv:2011.02683, 2020.

Li, X., Wang, Y., Basu, S., Kumbier, K., and Yu, B. A debi-
ased mdi feature importance measure for random forests.
Advances in Neural Information Processing Systems, 32,
2019.

Loh, W.-Y. Classification and regression trees. Wiley inter-
disciplinary reviews: data mining and knowledge discov-
ery, 1(1):14–23, 2011.

Louppe, G. Understanding random forests: From theory to
practice. arXiv preprint arXiv:1407.7502, 2014.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. Advances in neural informa-
tion processing systems, 30, 2017.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin,
J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N.,
and Lee, S.-I. Explainable ai for trees: From local
explanations to global understanding. arXiv preprint
arXiv:1905.04610, 2019.

McCloskey, K., Taly, A., Monti, F., Brenner, M. P., and Col-
well, L. J. Using attribution to decode binding mechanism
in neural network models for chemistry. Proceedings of
the National Academy of Sciences, 116(24):11624–11629,
2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Machine
learning of linear differential equations using gaussian
processes. Journal of Computational Physics, 348:683–
693, 2017.

9

http://github.com/google/jax


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Regression Trees Know Calculus

Raissi, M., Wang, Z., Triantafyllou, M. S., and Karniadakis,
G. E. Deep learning of vortex-induced vibrations. Journal
of Fluid Mechanics, 861:119–137, 2019.

Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J. Rotation
forest: A new classifier ensemble method. IEEE trans-
actions on pattern analysis and machine intelligence, 28
(10):1619–1630, 2006.

Sandri, M. and Zuccolotto, P. A bias correction algorithm
for the gini variable importance measure in classification
trees. Journal of Computational and Graphical Statistics,
17(3):611–628, 2008.

Sayres, R., Taly, A., Rahimy, E., Blumer, K., Coz, D., Ham-
mel, N., Krause, J., Narayanaswamy, A., Rastegar, Z.,
Wu, D., et al. Using a deep learning algorithm and inte-
grated gradients explanation to assist grading for diabetic
retinopathy. Ophthalmology, 126(4):552–564, 2019.

Shan, H., Zhang, J., and Kruger, U. Learning linear rep-
resentation of space partitioning trees based on unsuper-
vised kernel dimension reduction. IEEE Transactions on
Cybernetics, 46(12):3427–3438, 2015.

Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T.
Bias in random forest variable importance measures: Il-
lustrations, sources and a solution. BMC bioinformatics,
8:1–21, 2007.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and
Zeileis, A. Conditional variable importance for random
forests. BMC bioinformatics, 9:1–11, 2008.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In International conference on
machine learning, pp. 3319–3328. PMLR, 2017.

Tripathy, R. and Bilionis, I. Deep active subspaces: A
scalable method for high-dimensional uncertainty prop-
agation. In International Design Engineering Technical
Conferences and Computers and Information in Engi-
neering Conference, volume 59179, pp. V001T02A074.
American Society of Mechanical Engineers, 2019.

Wycoff, N., Binois, M., and Wild, S. M. Sequential learn-
ing of active subspaces. Journal of Computational and
Graphical Statistics, 30(4):1224–1237, 2021.

Zou, H., Hastie, T., and Tibshirani, R. Sparse principal com-
ponent analysis. Journal of computational and graphical
statistics, 15(2):265–286, 2006.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Regression Trees Know Calculus

A. Proofs
We begin by stating our required assumptions. Assumption 1 will be required for Theorem A, establishing the convergence
rate of our gradient estimator. The other results, regarding consistency of integro-differential estimators, will require
Assumption 2 as well.

Assumption 1. Let yn = f(xn) + ϵn. We assume that:

1. The input points xn are sampled independently from a continuous distribution on [0, 1]P .

2. The estimate of the mean of f(x) over some interval [a,b] converges at usual square root rate; this is achieved for
example if the error terms ϵ1, . . . , ϵN are such that E[ϵn] = 0; V[ϵn] ≤ ∞ and ϵn1 ⊥⊥ ϵn2∀n1, n2 ∈ {1, . . . , N}.

3. We alternate between which variable is split along at each depth.

4. f is continuously differentiable.

Items 1 and 2 are necessary for the mean estimates in leaf nodes to converge to the mean value of f on that node, while 3
and 4 are necessary to make a series of f within a node accurate.

Assumption 2. Let S(N) denote the depth as a function of sample size.

1. limN→∞ S(N) =∞.

2. limN→∞
S(N)
N = 0.

3. h is measurable and bounded.

Assumptions 1 and 2 ensure that we accumulate enough data in each leaf node, while still accumulating sufficiently small
leaf nodes, to achieve gradient consistency.

We are now prepared to prove our results.

Theorem 4.1. Let S(N) denote the least number of splits in the tree along any variable as a function of the sample size.
Under Assumption A, we have that:

∂̃f(x)

∂̃xσi

=
∂f(x)

∂xσi

+OP

(√S(N)

N
+ 2−

S(N)
P

)
.

Proof. If x ∈ [l,u], expand f around u (or any other point in [l,u]):

f(x) = f(u) +∇f(u)⊤(x− u) + o(∥x− u∥) (9)

= f(u) +∇f(u)⊤(x− u) + o(diam([l,u])) , (10)

where diam(A) is the diameter of the set A and is given by maxx1,x2∈A ∥x1 − x2∥. We denote the minimal number of
points in any node by η(N). Then:

∂̃f(x)

∂̃xp

=
∂f(x)

∂xσi

+OP

(
1√
η(N)

)
+ o(diam([l,u]). (11)

Denote by S(N) the depth of the tree as a function of the sample size. If we are making cuts at midpoints in each node,
then diam = max1≤p≤P

1
2Sp

, where Sp is the number of splits along variable p. It’s clear that reducing the diameter
is most speedily achieved by alternating which variable is split along such that diam = 2−⌊ S

P ⌋ ≤ C2−
S
P for some C.

We have that η(N) ≤ N
S(N) with equality if the points are evenly distributed. So OP (

√
1

η(N) ) = OP (
√

S(N)
N ) and

o(diam([l,u]) = o(2−
S
P ), which taken together with 11 yield the desired result.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Regression Trees Know Calculus

Theorem 4.2. Under Assumptions A and A, the Partition-Based estimator converges to the true integro-differential quantity
as the observation sample size diverges. That is,

lim
N→∞

ÎPB(f) = lim
N→∞

∑
i∈NK−1

h(Gi)µ([li,ui]) . =

∫
h(∇f(x))dµ(x) = I(f) .

Proof. Since the function sequence gk(x) := GBk(x) converges pointwise to ∇f(x) by Proposition 1, we need only
establish a function H(x) which dominates gk(x) and apply the Dominated Convergence Theorem.

To this end, denote by Cr, Cl the child nodes of node i and examine its gradient estimator’s pth entry, given by:

2(µr
i − µl

i)

ui
p − lip

N→∞→
2
(

1
|NCr |

∫
NCr

f(x)dx− 1
|NCr

i
|
∫
N

Cl
i

f(x)dx
)

ui
p − lip

. (12)

The magnitude of this difference in averages is bounded by the magnitude of the difference of extremes:

| 1

|NCr
i
|

∫
NCr

i

f(x)dx− 1

|NCr
i
|

∫
N

Cl
i

f(x)dx| ≤ max
(x1,x2)∈NCr

i
×N

Cl
i

|f(x1)− f(x2)| . (13)

But since f is continuously differentiable, it is also Lipschitz continuous (call the constant L), and we have that:

max
(x1,x2)∈NCr

i
×N

Cl
i

|f(x1)− f(x2)| ≤ L∥x1 − x2∥2 ≤ PL∥x1 − x2∥∞ . (14)

Therefore:

|
2(vCr

i
− vCl

i
)

ui
p − lip

| ≤ |2(PL∥x1 − x2∥∞)

ui
p − lip

| ≤ 2PL . (15)

Hence the constant 2PL bounds gk(x), and thence 4P 2L2 bounds the outer product function. Since the integral is over
the unit hypercube, the constant function is integrable and we can apply the Dominated Convergence Theorem to yield the
desired result.

Theorem A.1. Under Assumptions A and A, the Monte Carlo estimator converges to the true integro-differential quantity as
the Monte Carlo sample size and the observation sample size diverge. That is,

lim
N,M→∞

ÎMC(f) = lim
N,M→∞

1

M

∑
xm∼µ

h(Gxm) =

∫
h(∇f(x))dµ(x) = I(f) .

Proof. This follows from the fact that

lim
N→∞

lim
M→∞

1

M

∑
xm∼µ

GBK(N)−1(xm)GBK(N)−1(xm)⊤ = (16)

= lim
N→∞

∫
x∈[0,1]P

GBK(N)−1(x)GBK(N)−1(x)⊤dµ = lim
N→∞

∑
i∈Dk

GiG
⊤
i µ(Ni) (17)

and an application of Theorem 4.2.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Regression Trees Know Calculus

A.1. Implications for Active Subspaces and Integrated Gradients

We conclude this section by explicitly stating the implications of these results for Tree-based Active Subspace (TBAS)
estimation.
Corollary A.2. Let K(N) denote the depth of the regression tree as a function of N . Under Assumptions A and A, we have
that

lim
N→∞

∑
i∈DK(N)−1

GiG
⊤
i µ(Ni)

=

∫
[0,1]P

∇f(x)∇f(x)dµ(x) .

Proof. Follows from Theorem 4.2.

As well as for Tree-Based Integrated Gradient (TBIG) estimation.
Corollary A.3. Let K(N) denote the depth of the regression tree as a function of N . Under Assumptions A and A, we have
that, assuming that un are iid uniform on [0,1]:

lim
k,N,M→∞

(x− x∗)⊙ 1

M

M∑
m=1

GBk
(
umx+(1−um)x∗

)
= (x− x∗)⊙

∫ 1

α=0

∇f(αx+ (1− α)x∗)dx .

Proof. Follows from Theorem A.1.

A.2. Thresholding Behavior and Iteration

In this section we study large sample iteration behavior of a greedily estimated regression tree on linear functions f(x) =

a⊤x + b. As the sample size diverges, we have that V[a⊤x; [l,u]] =
∑

p a2
p(u

i
p−lip)

2

12 such that that optimization may be
rewritten as:

argmin
s∈{1,...,P}, t∈[lip,u

i
p]

2
∑
p ̸=s

a2p(u
i
p − lip)

2 + a2s

(
(ui

p − t)2 + (t− lip)
2
)
. (18)

For any fixed s, the minimum with respect to t occurs at ui,s+li,s
2 , yielding the profile problem:

argmin
s∈{1,...,P}

2
∑
p ̸=s

a2p(u
i
p − lip)

2 +
a2p
2
(ui

s − lis)
2 . (19)

By comparing any two costs, we can see that the s that will be chosen is that such that the quantity |as|(ui
s − lis) is

maximized.

Such is the behavior for a specific node at a specific depth. Let’s now reflect on what this implies for the iteration. Initially,
up−lp = 1 for all p, such that the variable with the largest coefficient p will be chosen for the first split; let’s call that variable
p1 := argmaxp|ap|. Subsequently, if p1 is more than twice the size of the second largest coefficient p2 := argmaxp ̸=p1

|ap|,
the second split in each of the two leaves will occur along variable p1 as well. Otherwise, it will occur along variable p2.
Under our large sample assumptions, all the nodes at a given depth will behave uniformly, splitting alternatively along
variables until the terms |ap|(ui

p − lip) are within a multiple of two of one another. Denote the index of the minimum
coefficient as p∧ := argminp|ap| and assume for now that ap∧ is nonzero. Using the notation ⌊c⌋ to denote the integer part
of c, the number of iterations in this first stage is thus given by∑

p ̸=ρ

⌊log2
|ap|
|ap∧ |

⌋ ≤ (P − 1) log2
|ap1
|

|ap∧ |
. (20)

Subsequently, in the second phase, the algorithm will subdivide boxes by proceeding alternatively through the variables one
by one ad infinitum. If one or more ap is zero, the analysis above can be applied on the nonzero parameters. This reduces
the number of iterations until the first phase concludes and the second starts below ∥a∥0 log2

maxp |ap|
min{p:ap ̸=0} |ap| .

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Regression Trees Know Calculus

B. Details of Numerical Experiments
This section gives additional details and discussion of the numerical results presented in Section 5. All tree-based models
are estimated using Scikit-Learn (Pedregosa et al., 2011).

B.1. Rotation Prediction Study Additional Details

In this study, when performing a rotation, we used only the
√
P many PCA components or Active Subspace dimensions, and

appended these to the original design matrix as new variables. We measure prediction error using 100-fold cross validation.

The table below gives the parameters of the datasets used for the prediction study of Section 5.2.

Name N P URL
concrete 1,030 9 https://archive.ics.uci.edu/dataset/165/
kin40k 40,000 9 https://github.com/alshedivat/keras-gp/kgp/datasets/kin40k.py
keggu 65,554 28 https://www.genome.jp/kegg/pathway.html
bike 17,379 13 https://archive.ics.uci.edu/dataset/560/
obesity 2,111 24 https://archive.ics.uci.edu/dataset/544/
gas 36,733 12 https://archive.ics.uci.edu/dataset/224
grid 10,000 13 https://archive.ics.uci.edu/dataset/471/
supercond 21,263 82 https://archive.ics.uci.edu/dataset/464/

We also provide boxplots of Cross Validation errors in Figure 8. Running this study took about five hours on a 40 core
Ubuntu machine with 128 GB of RAM.

B.2. Active Subspace Estimation Study Additional Details

In Section 5.3, We randomly sampled a unit vector a from the uniform distribution over directions and then sampled input
points uniformly at random on the unit cube. We subsequently evaluated the function f(x) = cos(6π(a⊤(x− 0.5)) which
was treated as the noiseless observed response y. We compared the estimates with using the angle each made with a. This
experiment was repeated 20 times.

We used the implementation of PRA provided with the pypi package PSDR1. For GP-based active subspace estimation,
we used the CRAN package activegp. We used all default settings for the PRA method as well as for the GP method.
For the DASM, we used a neural network with an additional layer of width 512 subsequent to the active subspace layer,
and used gradient descent with a step size of 10−3 on the Mean Squared Error cost function. This neural network was
implemented in JAX (Bradbury et al., 2018). In addition to the quantitative advantages enjoyed by the tree-based method of
active subspace estimation, we would also like to note that like the GP-based method, and unlike the PRA and DASM, it
provides an estimate of the entire active subspace matrix, rather than simply a basis for the active subspace. This is important
for two reasons. First, with the active subspace matrix in hand, we can create analogs of PCA scree plots to determine what
dimension of the active subspace is most desirable, or to get some idea of how much information is being lost in, say, a two
dimensional visualization. And secondly, it allows us to decide on an active subspace dimension after having seen the data
rather than before, without requiring the estimation procedure to be re-run.

Running this study took about eight hours on a 40 core Ubuntu machine with 128 GB of RAM.

B.3. NHEFS Data Analysis Details

This table presents the first 3 eigenvectors of the mortality data analysis, restricting to the top 9 variables with highest
coefficients. The first eigenvector captures almost entirely the age variable, which (Lundberg et al., 2019) also found to be
most important. We see that the second eigenvector is evenly distributed across sex and one of the urine variables. The third
eigenvector is dominated by the urineDark variable.

Eigenvector age urineDark sex urineNeg SGOT hemoglobin urineAlb total physical
1 -1.00 -0.00 0.01 0.01 -0.00 -0.00 0.00 -0.00 -0.00
2 0.01 -0.15 0.56 0.53 -0.28 -0.30 0.30 -0.16 0.09
3 -0.00 -0.96 -0.03 -0.11 0.16 0.07 0.02 0.04 0.07

1https://psdr.readthedocs.io/en/latest/

14

https://archive.ics.uci.edu/dataset/165/
https://github.com/alshedivat/keras-gp/kgp/datasets/kin40k.py
https://www.genome.jp/kegg/pathway.html
https://archive.ics.uci.edu/dataset/560/
https://archive.ics.uci.edu/dataset/544/
https://archive.ics.uci.edu/dataset/224
https://archive.ics.uci.edu/dataset/471/
https://archive.ics.uci.edu/dataset/464/


770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Regression Trees Know Calculus

Tree Depth 4

TBAS Id PCA Rand

0.6

0.8
bike

TBAS Id PCA Rand

0.5

1.0
concrete

TBAS Id PCA Rand
0.5

0.6

0.7
gas

TBAS Id PCA Rand

0.6

0.8

grid

TBAS Id PCA Rand

0.2

0.4
keggu

TBAS Id PCA Rand

0.8

1.0

kin40k

TBAS Id PCA Rand
0.0

0.2

obesity

TBAS Id PCA Rand

0.5

0.6
supercond

Tree Depth 8

TBAS Id PCA Rand

0.4

0.5
bike

TBAS Id PCA Rand

0.5

1.0
concrete

TBAS Id PCA Rand

0.4

0.5

gas

TBAS Id PCA Rand

0.5
0.6
0.7

grid

TBAS Id PCA Rand

0.1

0.2

keggu

TBAS Id PCA Rand

0.6

0.8

kin40k

TBAS Id PCA Rand
0.0

0.2

obesity

TBAS Id PCA Rand
0.3

0.4

0.5
supercond

Random Forest Depth 4

TBAS Id PCA Rand

0.5
0.6
0.7

bike

TBAS Id PCA Rand
0.25

0.50

0.75
concrete

TBAS Id PCA Rand

0.5

0.6

0.7
gas

TBAS Id PCA Rand
0.5
0.6
0.7

grid

TBAS Id PCA Rand

0.2

0.3

0.4
keggu

TBAS Id PCA Rand

0.8

1.0
kin40k

TBAS Id PCA Rand

0.1
0.2
0.3

obesity

TBAS Id PCA Rand
0.4

0.5

supercond

Figure 8. Boxplots corresponding to Table 1.

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Regression Trees Know Calculus

When producing the right panel of Figure 7, we used the prediction after accounting for the effect of age in order to
demonstrate the change in the predictive surface over the second and third eigenvalues.

C. Numerical Experiments on Classification Trees
We repeat the experiments of Section 5.2, but now by replacing each regression problem with a classification problem
by assessing whether a given observation falls above or below the median observation. The results are given in Figure 9.
Intriguingly, the results are significantly less promising for the TBAS method, despite the fact that by construction, there is
structure in the data that TBAS could possibly exploit. This indicates that there may be special considerations to be taken in
deploying this methodology to classification problems.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Regression Trees Know Calculus

Tree Depth 4

TBAS Id PCA Rand

0.6

0.8
bike

TBAS Id PCA Rand

0.5

1.0
concrete

TBAS Id PCA Rand
0.5

0.6

0.7
gas

TBAS Id PCA Rand

0.6

0.8

grid

TBAS Id PCA Rand

0.2

0.4
keggu

TBAS Id PCA Rand

0.8

1.0

kin40k

TBAS Id PCA Rand
0.0

0.2

obesity

TBAS Id PCA Rand

0.5

0.6
supercond

Tree Depth 8

TBAS Id PCA Rand

0.4

0.5
bike

TBAS Id PCA Rand

0.5

1.0
concrete

TBAS Id PCA Rand

0.4

0.5

gas

TBAS Id PCA Rand

0.5
0.6
0.7

grid

TBAS Id PCA Rand

0.1

0.2

keggu

TBAS Id PCA Rand

0.6

0.8

kin40k

TBAS Id PCA Rand
0.0

0.2

obesity

TBAS Id PCA Rand
0.3

0.4

0.5
supercond

Random Forest Depth 4

TBAS Id PCA Rand

0.5
0.6
0.7

bike

TBAS Id PCA Rand
0.25

0.50

0.75
concrete

TBAS Id PCA Rand

0.5

0.6

0.7
gas

TBAS Id PCA Rand
0.5
0.6
0.7

grid

TBAS Id PCA Rand

0.2

0.3

0.4
keggu

TBAS Id PCA Rand

0.8

1.0
kin40k

TBAS Id PCA Rand

0.1
0.2
0.3

obesity

TBAS Id PCA Rand
0.4

0.5

supercond

Figure 9. Classification Exercise: Brier Scores are indicated; lower is better.

17


