
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DIFFERENTIATION THROUGH BLACK-BOX
QUADRATIC PROGRAMMING SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, many deep learning approaches have incorporated layers that solve
optimization problems (e.g., linear, quadratic, and semidefinite programs). Inte-
grating these optimization problems as differentiable layers requires computing
the derivatives of the optimization problem’s solution with respect to its objec-
tive and constraints. This has so far limited the use of state-of-the-art black-box
numerical solvers within neural networks, as they lack a differentiable interface.
To address this issue for one of the most common convex optimization problems
– quadratic programming (QP) – we introduce dQP, a modular framework that
enables plug-and-play differentiation for any QP solver, allowing seamless inte-
gration into neural networks and bi-level optimization tasks. Our solution is based
on the core theoretical insight that knowledge of the active constraint set at the QP
optimum allows for explicit differentiation. This insight reveals a unique relation-
ship between the computation of the solution and its derivative, enabling efficient
differentiation of any solver, that only requires the primal solution. Our implemen-
tation, which will be made publicly available upon acceptance, interfaces with an
existing framework that supports over 15 state-of-the-art QP solvers, providing
each with a fully differentiable backbone for immediate use as a differentiable
layer in learning setups. To demonstrate the scalability and effectiveness of dQP,
we evaluate it on a large benchmark dataset of QPs with varying structures. We
compare dQP with existing differentiable QP methods, demonstrating its advan-
tages across a range of problems, from challenging small and dense problems to
large-scale sparse ones, including a novel bi-level geometry optimization problem.

1 INTRODUCTION

Computational methods rely heavily on solving optimization problems, i.e., finding an optimum of
a given function, under some given constraints on the solution. Optimization is arguably the most
popular method to approach computational problems that do not admit a closed-form solution. This
in turn has led to the development of both open-source and commercial numerical solvers special-
ized for different classes of optimization, especially constrained convex optimization (Wright, 2006;
Boyd & Vandenberghe, 2004). It is, thus, quite enticing to incorporate optimization as a “layer”
within machine learning architectures, e.g., where a neural network’s intermediate output defines
the optimization problem, and the solution of that optimization problem is taken as the final output
of the neural network (Amos & Kolter, 2017; Agrawal et al., 2019a; Blondel & Roulet, 2024). This
approach has proven successful on many practical tasks including image classification (Amos et al.,
2017), optimal transport (Rezende & Racanière, 2021; Richter-Powell et al., 2021), zero-sum games
(Ling et al., 2018), tessellation (Chen et al., 2022), control (Amos et al., 2018; de Avila Belbute-
Peres et al., 2018; Ding et al., 2024), decision-making (Tan et al., 2020), robotics (Holmes et al.,
2024), biology (Zhang et al., 2023), and natural language processing (Thayaparan et al., 2022).

In general, training a neural network requires the ability to backpropagate gradients to optimize
the network’s weights and biases. Hence, in case the network includes an optimization layer as
described above, one needs to have a way to differentiate that layer, i.e., compute the gradients of
the solution of the optimization problem with respect to the parameters of the optimization problem
itself. Gradients can be obtained through optimality conditions, which provide a characterization
that allows for the application of the implicit function theorem (Krantz & Parks, 2012) and im-
plicit differentiation. However, this approach requires the dual solution and yields a linear system

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

for the gradients that can be costly to invert for large problems. As a result, previous differen-
tiable methods tightly couple the differentiation to a custom tailor-made solver that outputs a dual
solution, allows information from the solution algorithm to be re-used, or uses GPU acceleration.

Ti
m

e
(s

)
D

ua
lit

y
G

ap

Problem Size

10-10

10-2

102

101 102 103 104 105

100

10-2

10-4

10-8

10-6

10-4

Ours (Gurobi)

OptNet
QPLayer

Figure 1: Comparison over QP prob-
lems of increasing size. Ours (us-
ing Gurobi) outperforms OptNet and
QPLayer in terms of forward time
(solid), backward time (dashed), and
accuracy as problem size increases.
OptNet and QPLayer become in-
tractable for larger problems.

The existing tight coupling between neural architecture and
optimizer severely limits the applicability of neural opti-
mization methods: in general, solving optimization prob-
lems is a hard, challenging task, requiring state-of-the-art
solvers such as Gurobi (Gurobi Optimization, LLC, 2024)
and MOSEK (Andersen & Andersen, 2000) which have been
developed through years of commercial and academic re-
search. These solvers provide the capability to efficiently
and reliably handle problems at a scale that non-optimized
implementations cannot achieve. More so, even having one
of these solvers at hand is not enough, since none of them
is a “catch-all” solution. Instead, it is necessary to choose
and swap between specific solvers for specific structures of
optimization problems that may emerge in different learning
tasks. To solve this issue and obtain a general, efficient way
to interface between general solvers and neural networks via
backpropgation, one needs to devise a “bridge” to differenti-
ate through these blackbox solvers.

In this paper, we focus on completely removing the above limitation to one of the most canonical and
important convex optimization problems, quadratic programing (QP), which minimize a quadratic
objective under linear inequality constraints. Our framework, which we dub dQP (as in differential
notation), augments any QP solver into a differentiable one and seamlessly integrates it as a differ-
entiable layer. dQP stems from our main novel theoretical observation: the gradients of the optimal
point of a QP can be obtained explicitly from a primal solution provided by the optimizer, and the
active set of constraints, which can be deduced from the solution.

Figure 2: dQP solves a bi-
level optimization problem to
compute the bijective planar
embedding of a large-scale
ant mesh (15k vertices).

We draw this conclusion by leveraging classic sensitivity theory,
and by clarifying the role of the active set which has otherwise ap-
peared in recent work, but without emphasis and not in this form.
Notably, our explicit perspective recasts the traditional implicit dif-
ferentiation approach into an explicit method, which provides a
straightforward pathway to complete solver modularity. Namely,
we avoid the costly linear solve for the necessary gradients by show-
ing the full gradients can be expressed solely through the (much
smaller) active set. Furthermore, we show that this reduced sys-
tem can also be used to solve for the active dual variables, if not
provided by a solver. This enables us to implement dQP on top of
a minimal open-source interface (Caron et al., 2024b), which pro-
vides direct access to over 15 free and commercial QP solvers and
easily supports the integration of additional solvers.

Using the modularity of our method, we conducted a comprehensive evaluation on a diverse bench-
mark dataset comprising over 2,000 QPs, comparing dQP’s performance against existing differ-
entiable QP methods. As highlighted in Figure 1, dQP demonstrates a significant advantage in
structured QPs when paired with state-of-the-art sparse QP solvers. We show the superiority of our
method on tasks such as sparse projections, as well as in a novel geometric bi-level optimization
experiment that was intractable for previous methods, whereas our method excels.

To summarize, our contributions are:

1. We prove that QPs can be explicitly differentiated using only the primal solution via a locally-
equivalent linear system.

2. Building on this, we devise and implement a fully modular differentiable layer compatible with
any QP solver, allowing for plug-and-play flexibility where users can easily select the best solver
for their specific task. Our open-source implementation will be made publicly available.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3. We demonstrate state-of-the-art performance in solving and differentiating large-scale, sparse
QPs using various solvers across a series of extensive experiments.

2 RELATED WORKS

Implicit Layers. Optimization layers are an example of recently introduced implicit layers that
leverage implicit differentiation to compute gradients of solution mappings without requiring closed-
form expressions (Duvenaud et al., 2020). This category also includes deep equilibrium models,
which represent fixed-point mappings and can be viewed as networks of infinite depth (Bai et al.,
2019; Kawaguchi, 2021; El Ghaoui et al., 2021; Gurumurthy et al., 2021; Winston & Kolter, 2020;
Bai et al., 2020). Extending beyond algebraic equations, similar techniques are applied in neural
ordinary differential equations using the adjoint state method from parametric control for partial
differential equations (Lions, 1971; Xue et al., 2020; Beatson et al., 2020; Chen et al., 2018). Im-
plicit differentiation is also used in bi-level programming where optimization problems are nested
in one-another (Colson et al., 2007; Kunisch & Pock, 2013; Gould et al., 2016; Alesiani, 2023)
and meta-learning where the outer learning process is optimized (Finn, 2018; Andrychowicz et al.,
2016; Hochreiter et al., 2001; Hospedales et al., 2021; Rajeswaran et al., 2019; Sambharya et al.,
2024). Alternative approaches avoid implicit differentiation by using approximation techniques. For
instance, they apply automatic differentiation directly to iterative algorithms through loop unrolling
(Belanger & McCallum, 2016; Belanger et al., 2017; Metz et al., 2019; Scieur et al., 2022) or, in
the case of fixed-point mappings, by differentiating a single iteration or employing a Jacobian-free
method (Geng et al., 2021; Fung et al., 2022; Bolte et al., 2023).

Sensitivity Analysis and Parametric Programming. There is extensive mathematical theory on
the local behavior of optimization problems under perturbations (Rockafellar, 1970; Rockafellar &
Wets, 1998), particularly in assessing the sensitivity and stability of solutions (Fiacco, 1983; 1990;
Fiacco & McCormick, 1968; Lee et al., 2010; Bonnans & Shapiro, 2013). For this, the implicit
function theorem is a central analytical tool, but unlike fixed point mappings, an intermediate step
is required before it can be applied. Particularly, one must first pass from the optimization prob-
lem itself to its optimality conditions, often requiring a number of assumptions in order for them
to be completely equivalent. The theoretical results of sensitivity theory underpin applications in
multi-parametric programming (Pistikopoulos et al., 2020), like model predictive control, where the
problem is solved for various input parameters, leading to intense computations. To address this,
Bemporad et al. (2002) observed that QP systems have a closed-form solution if the active or binding
set is known beforehand, allowing it to be pre-computed offline. This approach requires partition-
ing the parameter space into regions of fixed active set (Spjøtvold et al., 2006), inside which the
active set is stable to perturbations. Methods based on this idea continue to be developed for solving
parametric QPs (Ferreau et al., 2014; Narciso et al., 2022; Arnström & Axehill, 2024).

Differentiable Programming. Our work follows OptNet (Amos & Kolter, 2017; Amos, 2019)
which differentiates QPs through their optimality conditions, and focuses on small dense problems
for GPU batching. They solve the full Jacobian system efficiently by reusing the factorization em-
ployed in their custom interior-point method. However, as noted in (Bambade et al., 2024), this
comes at the cost of ill-conditioning due to symmetrization. More recent differentiable QP meth-
ods include Alt-Diff and SCQPTH (Sun et al., 2022; Butler & Kwon, 2023; Butler, 2023) which
use first-order ADMM and approximately differentiate the fixed point map, and QPLayer (Bam-
bade et al., 2024) focusing on accommodating infeasibility via extended conservative Jacobians.
Similarly to OptNet, several other solvers are tightly integrated with specific algorithms, often to en-
able access to internal computations required for differentiation. Alt-Diff is coupled with a custom
ADMM method, SCQPTH reimplements OSQP, and QPLayer is built on ProxQP. Several works
have highlighted the importance of the active constraint set in differentiating constrained optimiza-
tion problems (Amos et al., 2017; Gould et al., 2022; Paulus et al., 2021), as well as in the context
of quadratic programming (Amos et al., 2018; Bambade et al., 2024; Pan et al., 2024; Niculae
et al., 2018). A common observation is that the algebraic system obtained through implicit differ-
entiation can be simplified by removing rows corresponding to inactive constraints. Amos et al.
(2017); Pan et al. (2024) have additionally observed that backpropagation can be cast as an equality-
constrained QP parameterized by incoming gradients. However, existing approaches do not directly
utilize the formation of a significantly dimension-reduced symmetric linear system to efficiently
differentiate arbitrary black-box QP solvers, thus missing the opportunity to effectively decouple

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

optimization and differentiation. Other classes of optimization problems, such as convex cone pro-
grams (Agrawal et al., 2019b) and mixed-integer programs (Paulus et al., 2021), have also been
differentiated. Frameworks proposed in (Agrawal et al., 2019a; Blondel et al., 2022; Pineda et al.,
2022; Besançon et al., 2024; Paulus et al., 2024) provide a differentiable interface to broader classes
of optimization problems, with QP as a subset. However, CVXPYLayers (Agrawal et al., 2019a)
reformulates the QP into a cone program to utilize diffcp internally (Agrawal et al., 2019b). As a
result, it does not support specialized QP solvers and instead relies exclusively on the cone solvers
SCS, ECOS, and Clarabel. The framework Theseus (Pineda et al., 2022) directly handles only un-
constrained problems and similarly lacks support for QP-specific solvers. JAXopt (Blondel et al.,
2022) includes a differentiable reimplementation of OSQP and an implicit differentiation wrapper
for CVXPY, which requires symbolic compilation of the QP. Both CVXPYLayers with diffcp and
JAXopt with a QP solver necessitate the entire primal-dual solution to construct the linear system
for derivatives obtained via implicit differentiation. Additionally, both frameworks demonstrated
subpar performance compared to the specialized QPLayer, as reported in (Bambade et al., 2024).

3 APPROACH

We now detail the theoretical underpinning of our method that can transform any black-box QP
solver into a differentiable layer. We begin by formulating the problem concretely, move on to
establishing basic theory of differentiation of QP’s (via sensitivity analysis and KKT conditions),
and finally connect those with our main novel theoretical observation, leading to a straightforward
algorithm. We note that various subparts of the theoretical background discussed in the following
have been used in recent years to develop differentiable QP layers, see Section 2. However, no
single work has fully leveraged this theory to completely decouple optimization and differentiation
in a manner that supports arbitrary state-of-the-art QP solvers while also ensuring efficient, robust
differentiation.

3.1 PROBLEM SETUP: DIFFERENTIATING QUADRATIC PROGRAMS

We consider a quadratic program which is feasible and strictly convex (i.e., P ≻ 0) in standard form,

z∗(θ) = argmin
z

1

2
zTP (θ)z + q(θ)T z

subject to A(θ)z = b(θ)

C(θ)z ≤ d(θ),

(1)

where P ∈ Rn×n, q ∈ Rn, A ∈ Rp×n, b ∈ Rp, C ∈ Rm×n and d ∈ Rm are smoothly parameterized
by some θ ∈ Rs. This θ can either be the output of a previous layer in a neural network, or otherwise
learnable parameters. To simplify notation, in the following we omit θ.

To motivate our work, consider the case in which a QP of the form Equation (1) is incorporated as
the ℓ-th layer of a neural network, i.e., the QP layer receives an input vector xℓ and outputs a vector
xℓ+1 satisfying the relation xℓ+1 = z∗ (xℓ). In other words, the QP layer’s input, xℓ, serves as the
parameters θ that control the objective and constraints of the QP, and the optimal point z∗(xℓ) is
the layer’s output. Training a neural network requires backpropagating gradients through it, which
involves computing the Jacobian of the layer’s output with respect to its input, ∂xℓ+1

∂xℓ
. In the case of

a QP layer, these gradients are exactly ∂z∗

∂θ , i.e., the derivative of the optimal point z∗ with respect to
the parameters θ. The same derivative is also essential when using descent methods to solve certain
bi-level optimization problems (Colson et al., 2007).

In this work, we focus on computing ∂θz
∗(θ) = ∂

∂θ z
∗(θ), the derivative of the optimal point of the

QP Equation (1) with respect to the parameters θ. Intuitively, this derivative quantifies the change in
the optimal point of the QP in response to a perturbation of its parameters θ. Our goal is to efficiently
compute ∂θz

∗(θ) independently of the method used to approximate the optimal point z∗(θ).

3.2 THEORETICAL DIFFERENTIATION OF QPS VIA KKT CONDITIONS AND SENSITIVITY

Our goal is to devise a method for differentiating QPs based solely on the solution provided by a
black-box numerical solver. First, we need to establish the theoretical foundations necessary for the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

desired derivatives. These derivatives, as is common in optimization, are obtained through sensitivity
analysis applied to the KKT conditions. In this section, we elaborate on these concepts, synthesizing
key theoretical insights from optimization, sensitivity analysis, parametric programming, and differ-
entiable programming techniques, distilling them in the context of QPs to lay the groundwork for
our results and the development of dQP.

Optimality Conditions. The first-order Karush–Kuhn–Tucker (KKT) conditions (Karush, 1939;
Kuhn & Tucker, 1951; Boyd & Vandenberghe, 2004; Wright, 2006) provide a useful algebraic char-
acterization of the optimal points of constrained optimization problems. In essence, they are an
extension of the method of Lagrange multipliers for problems that include inequalities. For the QP
Equation (1), the KKT conditions take the form,

Pz∗ + q +ATλ∗ + CTµ∗ = 0

Az∗ − b = 0

Cz∗ − d ≤ 0

µ∗ ≥ 0

D(µ∗)(Cz∗ − d) = 0,

(2)

where D(µ∗) = diag(µ∗), and the additional added variables λ∗ ∈ Rp and µ∗ ∈ Rm are called
the optimal dual variables of the linear equalities and inequalities, respectively. With these dual
variables, one considers the extended primal-dual solution ζ∗(θ) = (z∗(θ), λ∗(θ), µ∗(θ)) of the QP
Equation (1). Crucially, under strict convexity and feasibility, the QP Equation (1) has a unique
solution ζ∗(θ), and the KKT conditions Equation (2) are necessary and sufficient for its optimality.

Active Set and Complementary Slackness. A main point of interest in this work lies in the last
equation of Equation (2), which is the nonlinear complementary slackness condition. Intuitively, it
encodes the two situations in which each original inequality constraint from Equation (1), (Cz∗ −
d)j ≤ 0, may be. Either (1) the constraint is active, i.e., it is satisfied as an equality (Cz∗−d)j = 0,
in which case µ∗

j ≥ 0; or (2) the constraint is inactive, i.e., it is satisfied with a strict inequality,
in which case µ∗

j = 0. Importantly, an inactive constraint implies that the same optimal solution
z∗ would be obtained even if that specific constraint were removed from the QP. We denote by
J(θ) = {j : (C(θ)z∗(θ)− d(θ))j = 0} the set of active constraints.

Derivatives via Sensitivity Analysis. To define derivatives of QPs, we turn to the Basic Sensitivity
Theorem (Theorem 2.1 in Fiacco (1976)), which provides the foundation for differentiating the KKT
conditions with respect to θ. To differentiate at θ, the theorem requires the additional condition of
strict complementary slackness; this prohibits the degenerate case where both (Cz∗ − d)j = 0 and
µ∗
j = 0, ensuring that a small perturbation of the parameters does not alter the active set. Under

strict complementary slackness, it establishes that in a neighborhood of θ, the primal-dual point
ζ∗(θ) = (z∗(θ), λ∗(θ), µ∗(θ)) is a differentiable function of θ, optimal for the QP Equation (1),
uniquely satisfies the KKT conditions Equation (2), and maintains strict complementary slackness.
Crucially, the active set J(θ) remains fixed within this neighborhood.

Since the active set is stable, the equality conditions in Equation (2) suffice to provide a local char-
acterization of ζ∗(θ). Implicit differentiation of these yields the Jacobians of the solution ∂θζ

∗ in
terms of the following linear system, P AT CT

A 0 0
D(µ∗)C 0 D(Cz∗ − d)

[
∂θz

∗

∂θλ
∗

∂θµ
∗

]
= −

∂θPz∗ + ∂θq + ∂θA
Tλ∗ + ∂θC

Tµ∗

∂θAz∗ − ∂θb
D(µ∗)(∂θCz∗ − ∂θd)

 . (3)

Under the conditions for the Basic Sensitivity Theorem, the linear system Equation (3) is invertible.
It degenerates exactly in the presence of weakly active constraints µ∗

j = (Cz∗ − d)j = 0, for which
the QP is non-differentiable (see, e.g., Amos & Kolter (2017)). For any inactive constraint j /∈ J ,
the dual variable µ∗

j vanishes, and thus the corresponding rows and columns of Equation (3) can be
removed, simplifying it into the reduced form P AT CT

J
A 0 0
CJ 0 0

[
∂θz

∗

∂θλ
∗

∂θµ
∗
J

]
= −

∂θPz∗ + ∂θq + ∂θA
Tλ∗ + ∂θC

T
J µ

∗
J

∂θAz∗ − ∂θb
∂θCJz

∗ − ∂θdJ

 , (4)

where µ∗
J , CJ and dJ denote restriction to rows corresponding to active inequality constraints j ∈ J .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.3 EXTRACTING DERIVATIVES FROM A QP SOLVER’S SOLUTION

Through the above theory, we can obtain our main theoretical results and introduce dQP, a straight-
forward algorithm for efficient and robust differentiation of any black-box QP solver.

Our approach stems from two straightforward yet powerful insights: (1) given the primal solution
of a QP, it is easy to identify the active set of a QP; (2) once the active set is known, both the primal-
dual optimal point and its derivatives can be explicitly derived in closed-form. Furthermore, the
computation of these quantities can then be achieved efficiently using a single matrix factorization
of a reduced-dimension symmetric matrix.

These observations in turn lead to a simple algorithm that is easy to implement: first, solve the
optimization problem using any QP solver; then, use the solution to identify the active set and solve
a linear system to compute the derivatives. Consequently, we can define a “backward pass” for any
layer that uses a QP solver, allowing for the seamless integration of any solver best suited to the
problem, thus leveraging years of research and development invested in state-of-the-art QP solvers.

Figure 3: Schematic active set differ-
entiation. Left: a QP is shown by
its quadratic level sets and polyhedral
feasible set; the solution lies on a facet
of the boundary; perturbations of the
constraints lead to perturbations in the
solution. Right: the perturbation of
the solution remains the same when
inactive constraints are eliminated.

Explicit Active Set Differentiation. Consider a QP and its
optimal point ζ∗(θ), along with the set J(θ) of active con-
straints (see Section 3.2). We define the reduced equality-
constrained quadratic program, obtained by removing inac-
tive inequalities and converting active inequality constraints
into equality constraints,

z∗(θ) = argmin
z

1

2
zTP (θ)z + q(θ)T z

subject to
[

A(θ)
C(θ)J(θ)

]
z =

[
b(θ)

d(θ)J(θ)

]
.

(5)

Under the assumptions of Section 3.2, this simpler QP is, in
fact, locally equivalent to the QP Equation (1), as illustrated
in Figure 3 with a 2D example. Moreover, it provides an
explicit expression for both the primal-dual optimal point
and its derivatives:
Theorem 1. The QP Equation (5) is locally equivalent to the reduced equality-constrained QP
Equation (1) and its solution ζ∗(θ) = (z∗(θ), λ∗(θ), µ∗(θ)) admits the explicit form[

z∗

λ∗

µ∗
J

]
=

 P AT CT
J

A 0 0
CJ 0 0

−1 [−q
b
dJ

]
. (6)

Furthermore, the optimal point can be explicitly differentiated to obtain[
∂θz

∗

∂θλ
∗

∂θµ
∗
J

]
= −

 P AT CT
J

A 0 0
CJ 0 0

−1 ∂θP ∂θA
T ∂θC

T
J

∂θA 0 0
∂θCJ 0 0

[
z∗

λ∗

µ∗
J

]
−

[−∂θq
∂θb
∂θdJ

] . (7)

A proof of this Theorem, based on the Basic Sensitivity Theorem (Fiacco, 1976), is provided in
Appendix A, along with a calculation of the derivatives using differential matrix calculus (Petersen
& Pedersen, 2008; Magnus & Neudecker, 1988). We note that this result is closely related to anal-
yses studied in multi-parametric programming (Bemporad et al., 2002; Pistikopoulos et al., 2020;
Spjøtvold et al., 2006; Arnström & Axehill, 2024; Narciso et al., 2022).

Notably, in the case of quadratic programming, the Basic Sensitivity Theorem allows one to bypass
the need for implicit differentiation techniques (Krantz & Parks, 2012). It is important to emphasize
that this observation does not change the fact that the general solution and the corresponding active
set lack a closed-form expression. Moreover, while we perform explicit differentiation, the implicit
function theorem remains key in establishing the local equivalence between the two problems. The
derivatives are indeed the same, and we do not suggest otherwise. However, the derivations to find
them differ. The derivatives in Equation (7) are obtained by ordinary (explicit) differentiation of the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Algorithm 1 – dQP: Differentiation through Black-box Quadratic Programming Solvers
Input: P, q,A, b, C, d, and tolerance ϵJ
Output: z∗, λ∗, µ∗ and ∂θz

∗, ∂θλ
∗, ∂θµ

∗

1: Solve QP Equation (1) with any solver for the primal solution z∗ (and λ∗, µ∗ if available)
2: Compute the active set by hard thresholding with tolerance: J = {j : (Cz∗ − d)j ≥ −ϵJ}

3: Factorize the reduced KKT system matrix: KJ =

[
P AT CT

J

A 0 0
CJ 0 0

]
4: Compute λ∗, µ∗ (if not obtained in step (1)):

[
z∗

λ∗

µ∗
J

]
= K−1

J

[−q
b
dJ

]
5: Compute the derivatives:

[
∂θz

∗

∂θλ
∗

∂θµ
∗
J

]
= −K−1

J

([
∂θP ∂θA

T ∂θC
T
J

∂θA 0 0
∂θCJ 0 0

][
z∗

λ∗

µ∗
J

]
−

[
−∂θq
∂θb
∂θdJ

])

closed-form solution to the reduced QP Equation (6). On the other hand, the ones in Equation (4)
are obtained by implicit differentiation of the original nonlinear KKT Equation (2) and followed
by eliminating inactive rows. This perspective and Theorem 1 underscore a critical computational
insight: once a black-box solver provides the primal solution to the QP, the active set can be deter-
mined, and additionally the derivatives can be computed via Equation (7). Furthermore, if the solver
provides only the primal solution and not the primal-dual pair, the dual can be completed through
Equation (6). Since the computation of the derivatives in Equation (7) requires the factorization
of the KKT matrix KJ , completing the primal-dual solution through Equation (6) adds negligible
computational cost – a single factorization produced by any direct solver (e.g., from SuperLU (Li,
2005)) can be thus be used for both completing the dual solution via Equation (6) and computing
the derivatives in Equation (7). All these insights lead up to the key algorithm of dQP, summarized
in Algorithm 1.

Numerical Computation. Our approach leads to a compact and efficient computation of gradients.
Indeed, the linear system Equation (7) that we factorize to compute the derivatives and dual solution
is symmetric and reduced in size. In contrast, implicit differentiation of the full KKT conditions
Equation (1) leads to a significantly larger, asymmetric system Equation (3). Beyond simplifying the
derivative computation, our approach enables the use of fast, specialized linear solvers that exploit
the reduced systems symmetric indefinite KKT matrix structure (e.g., using an LDL factorization as
in QDLDL (Stellato et al., 2020; Davis, 2005)).

(b) full
reduced

C
on

di
tio

n

100

105(a)Empirically, we observe that the reduced linear system
Equation (7) is often significantly better conditioned than
its full counterpart. The inset figure illustrates this with
an example of a QP governed by two parameters θ =
(θ1, θ2) from Spjøtvold et al. (2006), computed using
DAQP (Arnström et al., 2022). The figure visualizes (a)
regions in which the active set is constant, and (b) the
conditioning of the full and reduced linear systems along a cross-section in parameter space (right),
demonstrating that eliminating inactive constraints improves conditioning.

This figure also highlights the challenge of calculating derivatives near singularities, where the ac-
tive set changes and some inequalities turn into weakly active, leading to ill-defined derivatives.
Near such singularities, implicit differentiation suffers from severe ill-conditioning. This affects our
approach as well, manifesting in the challenge of determining the active set at an approximate solu-
tion. Various methods have been proposed to address this issue, such as specialized algorithms for
active set identification (Cartis & Yan, 2016; Oberlin & Wright, 2006; Burke & Moré, 1988). Our
implementation includes an optional heuristic for active set refinement to address this instability,
described in Appendix B. However, we found that simple hard thresholding of the primal residual
rj = (Cz∗ − d)j ≥ −ϵJ was sufficiently robust in all of our experiments, as shown in Section 4.

Implementation. Our open-source implementation will be made publicly available. We implement
dQP, Algorithm 1, as a fully differentiable module in PyTorch (Paszke et al., 2019), providing a
simple-to-use interface for easily integrating differentiable QPs into machine learning algorithms or
bi-level programming. Our implementation offers full end-to-end support for both dense and sparse
problems with appropriate QP and linear solvers. As a PyTorch module, it is necessary to render
Equation (7) as a backpropogation step, which we describe in Appendix C. To ensure modularity, we

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

offer complete flexibility in selecting a QP solver for the forward pass by interfacing with the open-
source qpsolvers library (Caron et al., 2024b). Their library provides a minimal-overhead interface
supporting over 15 free and commercial QP solvers, and easily supports the integration of additional
solvers. We similarly provide flexibility in choosing the linear solver used for differentiation: our
code supports several popular direct linear solvers. These include solvers for large-scale sparse
systems, like Pardiso (Schenk & Gärtner, 2004), and solvers for symmetric indefinite KKT systems,
such as QDLDL (Stellato et al., 2020; Davis, 2005). For users who wish to determine the “best”
QP solver for their problem, dQP includes a simple profiling tool (see Appendix D). More details
are given in Appendix E including constraint normalization, handling non-differentiable points, and
options like warm-starting for bi-level optimization.

4 EXPERIMENTAL RESULTS

D
ua

lit
y

G
ap

Time (s)

10-10

10-6

10-2

10-3 10-1 101 103

D
ua

lit
y

G
ap

Time (s)

10-10

10-6

10-2

10-3 10-2 10-1 100

10-14

(a)

(b)

OptNet
QPLayer
SCQPTH
Ours

PIQP
Gurobi
ProxQP
Clarabel

100
10
9
7

30%
60%
43%
100%

OptNet
QPLayer
SCQPTH
Ours

quadprog
QPALM
qpSWIFT

60
4
1

93%
100%
100%
100%

Figure 4: Accuracy versus total for-
ward/backward solve for the (a) MPC
and (b) Maros-Meszaros datasets. Each
point represents a solved problem; point
size illustrates dimension; problems
solved solely by dQP circled. Legend
shows percentages of success rates, and
counts of forward solvers used by dQP
for each problem.

We have extensively tested dQP to ensure its robustness,
evaluate its performance against competing methods for
differentiable quadratic programming, and demonstrate
its applicability and advantages in large-scale structured
problems. Notably, we emphasize dQP’s strengths in han-
dling large, sparse problems, complementing custom dif-
ferentiable GPU-batched solvers such as OptNet (Amos
& Kolter, 2017), which are optimized for solving many
small, dense problems simultaneously. Given this focus,
and considering the limited availability of state-of-the-art
GPU-batchable QP solvers, we conduct our experiments
on CPUs, similar to prior works such as QPLayer, SC-
QPTH, and Alt-Diff (Bambade et al., 2024; Butler, 2023;
Sun et al., 2022). Our evaluation includes a large bench-
mark consisting of over 2,000 dense and sparse challeng-
ing QPs taken from public datasets as well as randomly
generated problems, designed to test dQPs robustness and
performance. We also present two prototype applications,
demonstrating the applicability of dQP in a learning ex-
periment and in bi-level optimization. See Appendix G
for the full details on each experiment’s configuration.

Modularity and Performance. We tested dQP on nearly
200 QPs from the QP benchmark (Caron et al., 2024a), in-
cluding 65 small Model Predictive Control (MPC) prob-
lems and 129 challenging, sparse problems from the stan-
dard Maros-Meszaros (MM) dataset (Maros & Mészáros,
1999), which includes large-scale instances. These prob-
lems are designed to serve as stress tests for QP solvers.
We compared dQP with other differentiable QP meth-
ods: OptNet (Amos & Kolter, 2017), QPLayer (Bambade
et al., 2024), and SCQPTH (Butler, 2023), each inter-
grated with its specialized QP solver. For its forward pass,
dQP was paired with the leading QP solver for each prob-
lem as reported by QP Benchmark (Caron et al., 2024a).
The total runtime (forward and backward passes), accu-
racy (duality gap), and dimension (illustrated by point
size) are reported in the scatter plots in Figure 4 for each
problem and each differentiable QP solver. The average
performance across the entire dataset and on the subset
of problems solved by all methods is shown in Table 1. For small, dense MPC problems, dQP is
typically comparable to QPLayer while achieving much higher accuracy. MM problems, being sig-
nificantly more challenging, often cause competing methods to fail. OptNet and SCQPTH solved
less than 50% of the problems, while dQP successfully solved all MM problems and was the only
differentiable solver to succeed in 38 of them (circled in the figure). Moreover, dQP was the fastest
and most accurate in 81% and 83% of all problems, respectively. It particularly excelled in larger

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Full Dataset Subset of Problems Solved by All Methods

Dataset Solver # Probs Avg Fwd Avg Bwd Avg Total Avg Accuracy # Probs Avg Fwd Avg Bwd Avg Total Avg Accuracy
Solved [ms] [ms] [ms] Bwd/Total [duality gap] Solved [ms] [ms] [ms] Bwd/Total [duality gap]

MPC

dQP 65 1.19 14.42 15.61 42% 1.15× 10−8 60 0.30 0.19 0.50 38% 1.02× 10−8

QPLayer 65 4.19 0.85 5.05 41% 2.17× 10−5 60 0.23 0.16 0.39 43% 2.28× 10−5

OptNet 60 2.82 0.30 3.12 9% 1.76× 10−5 60 2.82 0.30 3.12 9% 1.76× 10−5

SCQPTH 65 134.75 2.17 136.93 11% 5.02× 10−4 60 11.97 0.49 12.46 12% 5.39× 10−4

MM

dQP 129 471 996 1467 57% 7.39× 10−6 24 10 83 93 35% 1.73× 10−7

QPLayer 77 15089 632 15721 18% 2.21× 10−2 24 2828 433 3261 29% 1.77× 10−4

OptNet 38 39329 2139 41468 6% 2.36× 10−3 24 9199 559 9758 7% 1.71× 10−4

SCQPTH 55 16344 6551 22895 13% 1.81× 10−2 24 14048 3019 17067 14% 8.75× 10−3

Table 1: Performance of differentiable QP methods for 65 small Model Predictive Control (MPC)
problems and 129 challenging, sparse problems from the Maros-Meszaros (MM) dataset.

problems (dimension over 1000), where it was the fastest and most accurate in 98% and 95% of
cases, respectively. Further technical details, along with additional experiments on 450 random
dense QPs and 625 sparse QPs with dimensions ranging from 10 to 104, are provided in Appendix
G.1.1, showing similar results.

Scalability. We evaluated dQP on large-scale sparse problems, a regime where state-of-the-art QP
solvers hold a significant advantage over less optimized solvers. We tested dQP and other available
differentiable QP solvers on two prototypical projection layers expressed as constrained QPs:

P1(x) = argmin
z

∥x− z∥22 subject to 0 ≤ z ≤ 1,
∑

zi = 1, and

P2(x1, . . . , xn) = argmin
z1,...,zn

∑
∥xj − zj∥22 subject to ∥zj − zj+1∥∞ ≤ 1.

Results for P1 are shown in Figure 1, demonstrating dQP’s scalability compared to OptNet and
QPLayer. Other methods fail on all but small problems (see Appendix G.1.2). In dimensions greater
than 2000, dQP outperforms competing methods by 2-3 orders of magnitude in both speed and
accuracy. Competing methods are limited to dense calculations and fail in dimensions beyond 104.
It’s worth noting that P1 is the projection onto the probability simplex, also known as SparseMAX,
for which more efficient, non-QP-based methods exist (Martins & Astudillo, 2016). Results for P2,
representing projection onto ”chains” with bounded links, exhibit similar scalability and are detailed
in Appendix G.1.3.

Lo
ss

0 510-3

10-2

10-1

Epoch
10 15 20

Ours (Train)
Ours (Test)

OptNet (Train)
OptNet (Test)

Learning Sudoku. We evaluated dQP in a popular learn-
ing setting, first introduced in OptNet (Amos & Kolter,
2017). In this experiment, linear constraints model the
rules of the Sudoku game, which are then learned from
examples of solved Sudoku boards via differentiable QPs.
We reproduced the experiment from (Amos & Kolter,
2017) by integrating dQP into their code. As shown in
the inset, the training and testing losses achieved by OptNet and dQP paired with PIQP (Schwan
et al., 2023) are comparable. This experiment similar to the MPC results shown in Figure 4(a), val-
idates dQP’s ability to perform on par with leading differentiable QP packages. However, we note
that, compared to tightly integrated forward-backward implementations, dQP has some disadvan-
tages, e.g., QPLayer supports differentiation of infeasible QPs, and OptNet natively supports GPU
batching, which is not available for black-box state-of-the-art sparse QP solvers, and thus cannot be
easily integrated with dQP.

Bi-Level Geometry Optimization. We further test dQP in a non-learning, optimization-based set-
ting inspired by the geometric problem of intersection-free straight-edge planar graph drawing: em-
bed a planar graph representing a triangular mesh into a non-convex domain, such edges are drawn
as straight non-overlapping lines. Kovalsky et al. (2020) formulate a linear inequality constraint-
satisfaction problem for which they show exists an (unknown) Laplacian M that defines a quadratic
energy and thus a QP which, when solved, yields exactly such a straight-edge drawing. However,
their conditions are nonconstructive and have remained theoretical. We cast this problem as the
following bi-level optimization problem:

M∗ = argmin
M

∥µ∗(M)∥22

subject to (v∗(M), λ∗(M), µ∗(M)) = argmin
v

{
tr
(
vTMv

)
subject to Bv = u, CMv ⪰ 0

}
9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

where v ∈ Rn×2 represents the n coordinates of the mesh vertices, M ∈ Rn×n is a parameterized
Laplacian, and B,u and C encode the boundary conditions of Kovalsky et al. (2020). The results of
Kovalsky et al. (2020) then imply that v∗(L∗) represents a straight line drawing if the dual variable
µ∗(M), corresponding to linear inequalities of the nested optimization, vanishes.

(a) (b) (c) (d)

In our experiments, we solve this bi-level problem
using dQP paired with PIQP. The inset shows an ex-
ample of this experiment: (a) the triangulated unit
square is the chosen graph; (b) an invalid embed-
ding produced by choosing an arbitrary Laplacian;
(c) a valid embedding which minimizes the above bi-level problem; (d) with additional regulariza-
tion on the shape of the triangles.

Vertices
M

ea
n

Ti
m

e
(s

)
101

100

102 103 10410-3

10-2

10-1
Ours (PIQP)
Ours (Back)

OptNet
QPLayer
SCQPTH

Figure 5: Solver speed under mesh refinement for
mapping into a non-convex perturbed square, vi-
sualized at different resolutions.

Figure 5 shows a refinement experiment show-
ing that dQP scales favorably as mesh size in-
creases compared to OptNet, QPLayer and SC-
QPTH; in particular, only dQP scales up to
problems with over 104 vertices. We only re-
port forward (QP) time for OptNet, QPLayer
and SCQPTH because OptNet and SCQPTH
do not output, nor differentiate the duals, and
while QPLayer does, it suffers poor scaling
from dense operations as the others. Lastly,
Figure 2 presents the large-scale bijective em-
bedding of an ant mesh.

5 CONCLUSION

dQP is shown to provide a differentiable interface to any QP solver, and yield an extremely efficient
QP-based layer which can be used in, e.g., neural architectures. We believe this work is the first step
in providing similar differentiable layers for other popular optimization problems (e.g., semidefinite
programming), which we plan to tackle next. Additionally, we note that our current method does
not enable neither full parallelization nor GPU support, and we mark these as important challenges
to tackle.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter.
Differentiable convex optimization layers. In Advances in Neural Information Processing Sys-
tems, 2019a.

Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M. Moursi. Differentiating
through a cone program. Journal of Applied and Numerical Optimization, 1(2):107–115, 2019b.

Francesco Alesiani. Implicit bilevel optimization: Differentiating through bilevel optimization pro-
gramming. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
14683–14691, 2023.

Brandon Amos. Differentiable optimization-based modeling for machine learning. Ph.D. Thesis,
2019.

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International conference on machine learning, pp. 136–145. PMLR, 2017.

Brandon Amos, Lei Xu, and J. Zico Kolter. Input convex neural networks. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 146–155. PMLR, 06–11 Aug 2017.

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J. Zico Kolter. Differentiable mpc for
end-to-end planning and control. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Erling D. Andersen and Knud D. Andersen. The mosek interior point optimizer for linear program-
ming: an implementation of the homogeneous algorithm. In High performance optimization, pp.
197–232. Springer, 2000.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Daniel Arnström and Daniel Axehill. A high-performant multi-parametric quadratic programming
solver, 2024.

Daniel Arnström, Alberto Bemporad, and Daniel Axehill. A dual active-set solver for embedded
quadratic programming using recursive LDLT updates. IEEE Transactions on Automatic Control,
67(8):4362–4369, 2022.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale deep equilibrium models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 5238–5250. Curran Associates, Inc., 2020.

Antoine Bambade, Fabian Schramm, Sarah El Kazdadi, Stéphane Caron, Adrien B. Taylor, and
Justin Carpentier. Proxqp: an efficient and versatile quadratic programming solver for real-time
robotics applications and beyond. 2023.

Antoine Bambade, Fabian Schramm, Adrien B. Taylor, and Justin Carpentier. Leveraging
augmented-lagrangian techniques for differentiating over infeasible quadratic programs in ma-
chine learning. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Alex Beatson, Jordan T. Ash, Geoffrey Roeder, Tianju Xue, and Ryan P. Adams. Learning compos-
able energy surrogates for pde order reduction. In Proceedings of the 34th International Confer-
ence on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

David Belanger and Andrew McCallum. Structured prediction energy networks. In International
Conference on Machine Learning, pp. 983–992. PMLR, 2016.

David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for structured prediction
energy networks. In International Conference on Machine Learning, pp. 429–439. PMLR, 2017.

Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002. ISSN 0005-1098.

Mathieu Besançon, Joaquim Dias Garcia, Benoı̂t Legat, and Akshay Sharma. Flexible differentiable
optimization via model transformations. INFORMS Journal on Computing, 36(2):456–478, 2024.

Mathieu Blondel and Vincent Roulet. The elements of differentiable programming. arXiv preprint
arXiv:2403.14606, 2024.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
Advances in neural information processing systems, 35:5230–5242, 2022.

Jerome Bolte, Edouard Pauwels, and Samuel Vaiter. One-step differentiation of iterative algorithms.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

J. Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization problems.
Springer Science & Business Media, 2013.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

James V. Burke and Jorge J. Moré. On the identification of active constraints. SIAM Journal on
Numerical Analysis, 25(5):1197–1211, 1988. ISSN 00361429.

Andrew Butler. Scqpth: an efficient differentiable splitting method for convex quadratic program-
ming. 08 2023.

Andrew Butler and Roy H. Kwon. Efficient differentiable quadratic programming layers: an admm
approach. Computational Optimization and Applications, 84(2):449–476, 2023.

Stéphane Caron, Akram Zaki, Pavel Otta, Daniel Arnström, Justin Carpentier, Fengyu Yang, and
Pierre-Alexandre Leziart. qpbenchmark: Benchmark for quadratic programming solvers available
in Python, 2024a.

Stéphane Caron et al. QPSOLVERS: Quadratic Programming Solvers in Python, March 2024b.

Coralia Cartis and Yiming Yan. Active-set prediction for interior point methods using controlled
perturbations. Computational Optimization and Applications, 63(3):639–684, Apr 2016. ISSN
1573-2894.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Semi-discrete normalizing flows through
differentiable voronoi tessellation. In ICLR Workshop on Deep Generative Models for Highly
Structured Data, 2022.

Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. Annals of
operations research, 153:235–256, 2007.

Timothy A Davis. Algorithm 849: A concise sparse cholesky factorization package. ACM Transac-
tions on Mathematical Software (TOMS), 31(4):587–591, 2005.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico Kolter. End-
to-end differentiable physics for learning and control. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Shutong Ding, Jingya Wang, Yali Du, and Ye Shi. Reduced policy optimization for continuous
control with hard constraints. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Xingyi Du, Noam Aigerman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Danny M. Kaufman,
and Tao Ju. Lifting simplices to find injectivity. ACM Transactions on Graphics, 39(4), 2020.

David Duvenaud, J. Zico Kolter, and Matthew Johnson. Deep implicit layers tutorial-neural odes,
deep equilibirum models, and beyond. Neural Information Processing Systems Tutorial, 2020.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep
learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and Moritz Diehl.
qpoases: A parametric active-set algorithm for quadratic programming. Mathematical Program-
ming Computation, 6:327–363, 2014.

Anthony V. Fiacco. Sensitivity analysis for nonlinear programming using penalty methods. Mathe-
matical Programming, 10(1):287–311, Dec 1976. ISSN 1436-4646.

Anthony V. Fiacco. Introduction to sensitivity and stability analysis in non linear programming.
New York: Academic Press,, 1983.

Anthony V. Fiacco and Garth P. McCormick. Nonlinear programming: sequential unconstrained
minimization techniques. John Wiley & Sons, New York, NY, USA, 1968. Reprinted by SIAM
Publications in 1990.

Yo Fiacco, Anthony V.and Ishizuka. Sensitivity and stability analysis for nonlinear programming.
Annals of Operations Research, 27(1):215–235, 1990.

Chelsea B Finn. Learning to learn with gradients. University of California, Berkeley, 2018.

Gianluca Frison and Moritz Diehl. Hpipm: a high-performance quadratic programming framework
for model predictive control**this research was supported by the german federal ministry for
economic affairs and energy (bmwi) via eco4wind (0324125b) and dyconpv (0324166b), and by
dfg via research unit for 2401. IFAC-PapersOnLine, 53(2):6563–6569, 2020. ISSN 2405-8963.
21st IFAC World Congress.

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley J. Osher, and Wotao Yin.
JFB: jacobian-free backpropagation for implicit networks. In Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp. 6648–6656. AAAI Press,
2022.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021.

D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex quadratic
programs. Mathematical Programming, 27(1):1–33, Sep 1983. ISSN 1436-4646.

Paul J. Goulart and Yuwen Chen. Clarabel: An interior-point solver for conic programs with
quadratic objectives, 2024.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447, 2016.

Stephen Gould, Richard Hartley, and Dylan Campbell. Deep declarative networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44(8):3988–4004, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Swaminathan Gurumurthy, Shaojie Bai, Zachary Manchester, and J. Zico Kolter. Joint inference and
input optimization in equilibrium networks. Advances in Neural Information Processing Systems,
34:16818–16832, 2021.

B. Hermans, A. Themelis, and P. Patrinos. QPALM: A Newton-type Proximal Augmented La-
grangian Method for Quadratic Programs. In 58th IEEE Conference on Decision and Control,
Dec. 2019.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In Artificial Neural Networks—ICANN 2001: International Conference Vienna, Austria, August
21–25, 2001 Proceedings 11, pp. 87–94. Springer, 2001.

Connor Holmes, Frederike Dümbgen, and Timothy D. Barfoot. Sdprlayers: Certifiable backpropa-
gation through polynomial optimization problems in robotics, 2024.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method. Mathematical Pro-
gramming Computation, 10(1):119–142, Mar 2018. ISSN 1867-2957.

William Karush. Minima of functions of several variables with inequalities as side constraints.
Master’s thesis, Department of Mathematics, University of Chicago, 1939.

Kenji Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers.
In International Conference on Learning Representations, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Shahar Z Kovalsky, Noam Aigerman, Ingrid Daubechies, Michael Kazhdan, Jianfeng Lu, and Stefan
Steinerberger. Non-convex planar harmonic maps. arXiv preprint arXiv:2001.01322, 2020.

Steven G. Krantz and Harold R. Parks. The Implicit Function Theorem. Birkhäuser Boston, MA,
2012.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Jerzy Neyman (ed.), Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University
of California Press, 1951.

Karl Kunisch and Thomas Pock. A bilevel optimization approach for parameter learning in varia-
tional models. SIAM Journal on Imaging Sciences, 6(2):938–983, 2013.

Gue Lee, Nng Tam, and Dong Yen Nguyen. Quadratic programming and affine variational inequal-
ities, a qualitative study. Springer New York, NY, 01 2010.

Xiaoye S. Li. An overview of superlu: Algorithms, implementation, and user interface. ACM Trans.
Math. Softw., 31(3):302–325, September 2005. ISSN 0098-3500.

Chun Kai Ling, Fei Fang, and J. Zico Kolter. What game are we playing? end-to-end learning in
normal and extensive form games. arXiv preprint arXiv:1805.02777, 2018.

Jacques-Louis Lions. Optimal control of systems governed by partial differential equations.
Springer-Verlag, Berlin, 1971. ISBN 3340051155. Translation of Contrôle optimal de systèmes
gouvernés par des équations aux dérivées partielles.

Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus. New York, 1988.

Istvan Maros and Csaba Mészáros. A repository of convex quadratic programming problems. Opti-
mization methods and software, 11(1-4):671–681, 1999.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Pro-
ceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pp. 1614–1623, New York, New York, USA, 20–22 Jun 2016.
PMLR.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556–4565. PMLR, 2019.

Diogo A.C. Narciso, Iosif Pappas, F.G. Martins, and Efstratios N. Pistikopoulos. A new solution
strategy for multiparametric quadratic programming. Computers & Chemical Engineering, 164:
107882, 2022. ISSN 0098-1354.

Vlad Niculae, Andre Martins, Mathieu Blondel, and Claire Cardie. SparseMAP: Differentiable
sparse structured inference. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 3799–3808. PMLR, 10–15 Jul 2018.

Christina Oberlin and Stephen J. Wright. Active set identification in nonlinear programming. SIAM
Journal on Optimization, 17(2):577–29, 2006. Copyright - Copyright] © 2006 Society for Indus-
trial and Applied Mathematics; Last updated - 2023-12-04.

Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applica-
tions, 169(3):1042–1068, 2016.

Jianming Pan, Xiao Yang, Weidong Ma, Weiqing Liu, Lewen Wang, and Jiang Bian. BPQP: A
differentiable convex optimization framework for efficient end-to-end learning, 2024.

Abhishek Goud Pandala, Yanran Ding, and Hae-Won Park. qpswift: A real-time sparse quadratic
program solver for robotic applications. IEEE Robotics and Automation Letters, 4(4):3355–3362,
2019.

Adam Paszke et al. PyTorch: an imperative style, high-performance deep learning library. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Anselm Paulus, Michal Rolinek, Vit Musil, Brandon Amos, and Georg Martius. Comboptnet: Fit the
right np-hard problem by learning integer programming constraints. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 8443–8453. PMLR, 18–24 Jul 2021.

Anselm Paulus, Georg Martius, and Vı́t Musil. LPGD: A general framework for backpropagation
through embedded optimization layers. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the
41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 39989–40014. PMLR, 21–27 Jul 2024.

Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix cookbook. Technical University
of Denmark, 7(15):510, 2008.

Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky T. Q. Chen,
Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, Jing Dong, Brandon Amos, and
Mustafa Mukadam. Theseus: A library for differentiable nonlinear optimization. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 3801–3818. Curran Associates, Inc., 2022.

Efstratios N. Pistikopoulos, Nikolaos A. Diangelakis, and Richard Oberdieck. Multi-parametric
optimization and control. John Wiley & Sons, 2020.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. Advances in neural information processing systems, 32, 2019.

Danilo J. Rezende and Sébastien Racanière. Implicit riemannian concave potential maps, 2021.

Jack Richter-Powell, Jonathan Lorraine, and Brandon Amos. Input convex gradient networks. arXiv
preprint arXiv:2111.12187, 2021.

R. Tyrell Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970. ISBN
9781400873173.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

R. Tyrrell Rockafellar and Roger Wets. Variational Analysis, volume 317. Springer Berlin, Heidel-
berg, 01 1998. ISBN 978-3-540-62772-2.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. Learning to warm-start
fixed-point optimization algorithms. Journal of Machine Learning Research, 25(166):1–46, 2024.

Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of linear equations with par-
diso. Future Generation Computer Systems, 20(3):475–487, 2004.

Roland Schwan, Yuning Jiang, Daniel Kuhn, and Colin N. Jones. PIQP: A proximal interior-point
quadratic programming solver. In 2023 62nd IEEE Conference on Decision and Control (CDC),
pp. 1088–1093, 2023.

Damien Scieur, Gauthier Gidel, Quentin Bertrand, and Fabian Pedregosa. The curse of unrolling:
Rate of differentiating through optimization. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Jørgen Spjøtvold, Eric C. Kerrigan, Colin N. Jones, Petter Tøndel, and Tor A. Johansen. On the
facet-to-facet property of solutions to convex parametric quadratic programs. Automatica, 42
(12):2209–2214, 2006. ISSN 0005-1098.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator splitting solver
for quadratic programs. Mathematical Programming Computation, 12(4):637–672, 2020.

Haixiang Sun, Ye Shi, Jingya Wang, Hoang Duong Tuan, H Vincent Poor, and Dacheng Tao. Alter-
nating differentiation for optimization layers. arXiv preprint arXiv:2210.01802, 2022.

Yingcong Tan, Daria Terekhov, and Andrew Delong. Learning linear programs from optimal de-
cisions. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 19738–19749. Curran Associates, Inc.,
2020.

Mokanarangan Thayaparan, Marco Valentino, Deborah Ferreira, Julia Rozanova, and André Freitas.
Diff-explainer: Differentiable convex optimization for explainable multi-hop inference. Transac-
tions of the Association for Computational Linguistics, 10:1103–1119, 2022.

Ezra Winston and J. Zico Kolter. Monotone operator equilibrium networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 10718–10728. Curran Associates, Inc., 2020.

Stephen J. Wright. Numerical optimization, 2006.

Tianju Xue, Alex Beatson, Sigrid Adriaenssens, and Ryan Adams. Amortized finite element analysis
for fast PDE-constrained optimization. In Hal Daumé III and Aarti Singh (eds.), Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 10638–10647. PMLR, 13–18 Jul 2020.

Haishan Zhang, Dai Hai Nguyen, and Koji Tsuda. Differentiable optimization layers enhance gnn-
based mitosis detection. Scientific Reports, 13(1):14306, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A PROOF OF THEOREM 1

In this section we provide a proof of Theorem 1, which we restate below:
Theorem 1. The QP Equation (5) is locally equivalent to the reduced equality-constrained QP
Equation (1) and its solution ζ∗(θ) = (z∗(θ), λ∗(θ), µ∗(θ)) admits the explicit form[

z∗

λ∗

µ∗
J

]
=

 P AT CT
J

A 0 0
CJ 0 0

−1 [−q
b
dJ

]
. (6)

Furthermore, the optimal point can be explicitly differentiated to obtain[
∂θz

∗

∂θλ
∗

∂θµ
∗
J

]
= −

 P AT CT
J

A 0 0
CJ 0 0

−1 ∂θP ∂θA
T ∂θC

T
J

∂θA 0 0
∂θCJ 0 0

[
z∗

λ∗

µ∗
J

]
−

[−∂θq
∂θb
∂θdJ

] . (7)

Proof. We begin by establishing that the QP Equation (1) and the equality-constrained reduced QP
Equation (5) are equivalent. For any θ satisfying the assumptions of the theorem, the QP Equation (1)
has a unique solution characterized by the KKT system

P (θ)z∗(θ) + q(θ) +A(θ)Tλ∗(θ) + C(θ)Tµ∗(θ) = 0

A(θ)z∗(θ)− b(θ) = 0

C(θ)z∗(θ)− d(θ) ≤ 0

µ∗(θ) ≥ 0

D(µ∗(θ))(C(θ)z∗(θ)− d(θ)) = 0.

(8)

Complementarity implies that active constraints j ∈ J(θ) have µ∗(θ)j > 0 and therefore must
be satisfied with an equality (C(θ)z∗(θ)− d(θ))j = 0, while inactive constraints j /∈ J(θ) have
µ∗(θ)j = 0 and thus can be eliminated, without altering the solution. Therefore, the unique solution
ζ∗(θ) = (z∗(θ), λ∗(θ), µ∗(θ)) of Equation (8) is also the unique solution of the reduced system

P (θ)z∗(θ) + q(θ) +A(θ)Tλ∗(θ) + C(θ)TJ(θ)µ
∗(θ)J(θ) = 0

A(θ)z∗(θ)− b(θ) = 0

C(θ)J(θ)z
∗(θ)− d(θ)J(θ) = 0,

(9)

which are exactly the KKT conditions of the equality-constrained reduced QP Equation (5). Unique-
ness of solution then implies that Equation (1) and Equation (5) are pointwise equivalent at θ. More-
over, since P, q,A, b, C, d are smoothly parameterized by θ, the Basic Sensitivity Theorem (Fiacco,
1976) asserts that the primal-dual solution ζ∗(θ) for Equation (1) is a differentiable function of θ
in a neighborhood of θ, defined implicitly through the KKT’s equality conditions. Furthermore, the
active set J(θ) is fixed in this neighborhood, therefore Equation (1) and Equation (5) are locally
equivalent.

Equation (9) implies that the reduced primal-dual solution ζ∗J(θ) = (z∗(θ), λ∗(θ), µ∗
J(θ)) satisfies

KJ(θ)ζ
∗
J(θ) = vJ(θ), where

KJ(θ) =

 P (θ) A(θ)T C(θ)TJ(θ)
A(θ) 0 0

C(θ)J(θ) 0 0

 , vJ(θ) =

[−q(θ)
b(θ)

d(θ)J(θ)

]
. (10)

Under the assumptions of the theorem, the reduced KKT matrix KJ(θ) is invertible and

ζ∗J = K−1
J vJ , (11)

yielding Equation (6). Moreover, since J(θ) is locally constant, the Basic Sensitivity Theorem
establishes that ζ∗J(θ) is differentiable. Using the formal derivative of the matrix inverse (Magnus &
Neudecker, 1988; Petersen & Pedersen, 2008) we explicitly differentiate Equation (11) to obtain

∂θζ
∗
J = (−K−1

J (∂θK)K−1
J)vJ +K−1

J (∂θvJ) = −K−1
J (∂θKJ)ζ

∗
J +K−1

J (∂θvJ), (12)

yielding Equation (7).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

(a) (b)

-1.5 1.50
-1.5

0

1.5

-1.5 1.50
-1.5

0

1.5

Figure 6: The set-up in figure 3.3 with looser solver tolerance ϵabs = 10−4, active tolerance ϵJ =
10−7, and solver PIQP. (a) The computed active set is degraded due to the inaccurate solution. (b)
Our heuristic active set refinement algorithm recovers the ground truth active sets.

B ACTIVE SET REFINEMENT

Inaccuracy in a solution may lead to instability in the active set near weakly active constraints,
degrading the gradient quality. To show this, we repeat the experiment in Figure 3.3 which has
a simple polyhedral active set parameter space. One setup where instability appears is illustrated
in Figure 6 where we use absolute solver tolerance ϵabs = 10−4 and active tolerance ϵJ = 10−7.
Qualitatively, the active set at each solution is severely degraded, even for points away from the
boundaries where the set changes. We provide a optional heuristic algorithm to address this, which
recovers the desired set in this problem. First, we order the constraints by increasing residual and
select an initial active set from the tolerance ϵJ . Then, we progressively add constraints by checking
if the residual of the system 6 for ζ∗J decreases, and greedily accepting until adding constraints no
longer improves the residual. At each step, we keep the primal solution from the forward fixed,
and solve for the new active dual variables. While this algorithm works well on simple examples,
more sophisticated and efficient techniques may be desired for harder problems. We did not use this
refinement algorithm in any of our experiments.

C BACKPROPAGATION

Like other differentiable QP layers implemented within automatic differentiation frameworks such
as PyTorch (Paszke et al., 2019), we do not directly compute the derivative ∂θζ

∗. Specifically,
dQP directly receives the QP parameters P, q,A, b, C, d and not θ, and so in backpropogation we
are not concerned with θ. This is rather accounted for in the next step outside dQP, usually by
automatic differentiation. Instead, backpropogation requires that we compute a so-called Jacobian-
vector product which are products of the Jacobians with an “incoming” gradient of a quantity or
loss ℓ that depends on ζ∗. This requires less computation and does not require the formation of a
3-tensor. Since ζ∗J = K−1

J vJ is a formal matrix-vector multiplication, the Jacobian-vector product
is well-known,

∇vJ ℓ = (K−1
J)T ∇ζ∗

J
ℓ, (13)

and
∇KJ

ℓ = −∇vJ ℓ ζ
∗
J
T , (14)

with respect to KJ , vJ , respectively. Although backpropogation introduces a transposition, the re-
use of a factorization from solving for the active duals is unaffected. This follows from the symmetry
of the reduced KKT matrix which simplifies Equation (13) into ∇vJ ℓ = K−1

J ∇ζ∗
J
ℓ. Next, we

extract the gradients with respect to the parameters by the chain rule. This amounts to tracking their
position in the blocks and accounting for symmetry constraints. It is helpful to write (dz, dλ, dµJ

) =
−∇vJ ℓ so that we express

∇P ℓ =
1

2

(
dz z

∗T + z∗ dTz
)

∇qℓ = dz

∇Aℓ = dλz
∗T + λ∗dTz ∇bℓ = −dλ (15)

∇CJ
ℓ = dµJ

z∗T + µ∗
Jd

T
z ∇dJ

ℓ = −dµJ
,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Ti
m

e
(s

)

10-3

10-2

10-1

QP Solver
PIQP OSQP QPALM SCS Clarabel Gurobi HiGHS ProxQP MOSEK CVXOPT

10-2
10-5
10-8

Figure 7: Evaluating the best QP solver for the cross geometry problem using our diagnostic tool.
The solution tolerance regimes are varied between ϵabs = 10−8, 10−5, 10−2.

similar to OptNet (Amos & Kolter, 2017). We note that the gradient with respect to P is constrained
to lie within the subspace of symmetric matrices. Similarly, if the matrices P,A,C are sparse, then
we project the gradient to lie within the non-zero entries, which can be implemented efficiently in
Equations 15. Although the above argument is for a scalar loss ℓ, the same approach is naturally
adapted if ζ∗ is mapped to a vector in the immediate next layer.

D CHOOSING A SOLVER

Since our work enables users to choose any QP solver as the front-end for their differentiable QP
applications, we include a simple diagnostic tool for quantitatively measuring solver performance.
We present an example result in Figure 7 for the cross geometry experiment in section 4, finding
PIQP, OSQP, and QPALM to be the most efficient. For this reason, we choose PIQP in the geometry
experiments. We also include tools for checking the solution and gradient accuracy.

E IMPLEMENTATION DETAILS

Tolerances In addition to the active set tolerance ϵJ , QP solvers often support additional user-
provided tolerances. These include the primal residual which measures violations of feasibility, the
dual residual which measures violations of stationary, and for some solvers also the duality gap,
which provides a direct handle on solution accuracy. We inherit the structure of qpsolvers for setting
custom tolerances on different QP solvers, though we set a heuristic default which is sufficient for
many of the experiments in this work.

Convexity and Feasibility Two key assumptions of our method are strict convexity and feasibility.
However, these are often violated in practice. We include optional checks that P is symmetric
positive definite. On the other hand, we do not perform any special handling for infeasibility – a
limitation of our method compared to, for example, QPLayer (Bambade et al., 2024).

Non-differentiable Points For non-differentiable problems, we solve for the derivatives in the
least-squares sense, plugging the system into qpsolvers which can handle least-squares, or a stan-
dard least-squares solver. We attempt to anticipate weakly active constraints which cause non-
differentiability by measuring the norms of the primal residual and the dual. The reduced KKT is
also non-invertible if the active dual solution is not unique. To detect this, we check a necessary
condition: the total number of active constraints plus the number of equalities must be less than the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

dimension. Otherwise, if these necessary checks are passed, we attempt the standard linear solve
and pass to least-squares if it fails.

Normalization Some problems have large variations in scale between different rows within the
constraints. This influences the primal residual and thus the active set, which is determined by
comparing with an absolute threshold tolerance. To address this issue for these problems, we include
an optional differentiable normalization step on the constraints before Algorithm 1 is carried out.
Under this choice, the resulting relative primal residual becomes the scale-invariant distance to the
constraint.

Equality Constraints While we include equality constraints in our general formulation, they are
not required.

Warm-Start Since qpsolvers supports warm-starting, we inherit it as an option and store data in the
PyTorch module from previous outer iterations, which can be used as initialization. This is useful
for bi-level optimization problems where the input θ changes little between outer iterations.

Fixed Parameters For fixed parameters, we do not compute the corresponding derivative. This
saves the cost of unwrapping the linear solve as in Equation (15) and saves the memory to form the
loss gradients, which are matrices for P,A,C.

Active Set Refinement See the discussion in Appendix B.

QP Solvers Throughout this work, we use a number of QP solvers available in qpsolvers including
Clarabel (Goulart & Chen, 2024), DAQP (Arnström et al., 2022), Gurobi (Gurobi Optimization,
LLC, 2024), HiGHS (Huangfu & Hall, 2018), HPIPM (Frison & Diehl, 2020), MOSEK (Andersen
& Andersen, 2000), OSQP (Stellato et al., 2020), PIQP (Schwan et al., 2023), ProxQP (Bambade
et al., 2023), QPALM (Hermans et al., 2019), qpSWIFT (Pandala et al., 2019), quadprog (Goldfarb
& Idnani, 1983), and SCS (O’Donoghue et al., 2016).

F VALIDATING ALGORITHM 1

D
ua

lit
y

G
ap

Time (s)

10-10

10-8

10-6

10-3 10-2 10-1

10-12

10-14

10-16
Compute Dual
Recyle Dual

Figure 8: Forward and backward evaluation on the MPC dataset with the dual output by the QP
solver (red) and the one obtained by solving 6.

The solvers currently available in qpsolvers provide dual solutions. Thus, to validate our modular
algorithm which does not require them, we repeat the experiment in Figure 4(a). We ignore the dual
solution received from the forward solver, and instead perform the optional step of computing them
from the reduced KKT system 6. The results are shown in Figure 8. The additional computation
of the duals has a small effect on the total backward time, as we prefactorize KJ and use it for
the derivatives as well. Using the reduced KKT to solve for the duals also impacts the duality gap,
which can be seen for the larger problems in the MPC dataset, but still respect the absolute tolerance
set on the duality gap.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

G EXPERIMENTAL DETAILS

For completeness and reproducibility, we include additional details on the experiments. We run all
experiments and methods on CPU, including methods that support GPU such as OptNet.

G.1 PERFORMANCE EVALUATION

All experiments in this section were run on a Macbook Air with Apple M2 chips, 8 cores, and 16GB
RAM.

In our QP benchmark experiments, we evaluate the solution accuracy using the primal residual rp
(the maximum error on equality and inequality constraints), dual residual rd (the maximum error on
the dual feasibility condition), and duality gap rg (the difference between primal and dual optimal
values).

rp = max
(
∥Az − b∥∞ , [Cz − d]+

)
rd =

∥∥Pz + q +ATλ+ CTµ
∥∥
∞

rg = |zTPz + qT z + bTλ+ dTµ|

Throughout our experiments, we present results for the duality gap to indicate the solution accuracy
since, for a strongly convex QP, a zero duality gap rg = 0 is a necessary and sufficient condition for
optimality.

For the forward, we set the absolute residual tolerance to 10−6. We set the active constraint tolerance
to ϵJ = 10−5. We run each problem separately with batch size 1.

In our benchmark, we regard a problem as successfully solved if it meets the following criteria:

1. The solve time is less than a practical 800s time limit.

2. The primal residual, dual residual, and duality gap are less than 1.0. This is a coarse check,
less stringent than the imposed tolerances.

3. The differentiation is executed, and does not lead to a fatal error (e.g. due to non-
invertibility of a linear system).

Experimental results are averaged over 5 independent samples.

Since SCQPTH does not support equality constraints, we convert them into an corresponding set of
inequality constraints.

G.1.1 RANDOM DENSE/SPARSE PROBLEMS

We generated two sets of random QPs: dense and sparse. For the dense set, the data is generated
as P = QTQ + 10−4I , where Q ∈ Rn×n with Qij ∼ U(0, 1), C ∈ Rm×n with Cij ∼ U(0, 1),
d = C1 + 1, and A ∈ Rp×n with Aij ∼ U(0, 1), b = A1. The set, with 450 problems, has
dimensions n ∈ {10, 20, 50, 100, 220, 450, 1000, 2100, 4600}, m = n, and p = n/2. Each
dimension contains 50 problems. We use DAQP and ProxQP as the forward solvers. Figure 9 and
Table 2 show that our method is comparable to OptNet and QPLayer in both time and accuracy.
For smaller dimensions (n ≤ 1000), DAQP provides higher accuracy, while for larger problems,
ProxQP is more efficient.

For the sparse set, P is generated as P = LTL, where L is the standard Laplacian matrix of k-
nearest graph (k = 3). Entries of C and A are filled by N (0, 1) random numbers with density of
5 × 10−4 and zero row is avoided. The vectors d and b are generated similarly to the dense set.
The set, with 625 problems, has dimensions n ∈ {100, 220, 450, 1000, 2100, 4600, 10000}, with
m = n and p = n/2. For n ≤ 4600, each dimension contains 100 problems and 25 problems
for n > 4600. KKT systems in these problems tend to be ill-conditioned. We use Gurobi as the
forward solver and employ least squares solver for backward. In our experiments OptNet fails on all
problems and SCQPTH is substantially slower and fails for n ≥ 4600, and are thus excluded in our
report. Figure 9 and Table 3 demonstrate our superior accuracy and efficiency over QPLayer.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Solver Metric Problem Size

20 100 450 1000 2100 4600

dQP (daqp)

Accuracy 1.59× 10−11 1.20× 10−8 2.35× 10−6 4.08× 10−5 5.26× 10−4 Failed
Forward [ms] 0.20 1.31 131.35 1115.62 10065.77 -
Backward [ms] 0.14 0.48 11.22 56.90 313.90 -
Total [ms] 0.34 1.81 144.91 1174.47 10379.68 -

dQP (proxqp)

Accuracy 4.71× 10−6 6.42× 10−5 9.11× 10−4 7.26× 10−4 4.13× 10−4 4.25× 10−4

Forward [ms] 0.29 2.54 61.12 379.74 2553.82 26408.12
Backward [ms] 0.17 1.85 13.53 70.25 385.04 3369.77
Total [ms] 0.46 4.32 73.68 455.22 2935.93 29771.33

OptNet

Accuracy 6.89× 10−8 2.51× 10−8 3.80× 10−8 3.51× 10−7 2.80× 10−6 3.34× 10−5

Forward [ms] 2.99 7.09 78.56 463.04 3176.59 29387.34
Backward [ms] 0.23 0.45 5.55 29.30 185.80 1540.07
Total [ms] 3.22 7.56 84.20 491.57 3362.25 30931.00

QPLayer

Accuracy 3.08× 10−6 6.88× 10−5 3.98× 10−5 1.31× 10−4 1.35× 10−5 1.48× 10−4

Forward [ms] 0.14 0.99 43.11 407.77 3973.89 43740.91
Backward [ms] 0.15 0.34 9.67 74.24 601.25 5781.58
Total [ms] 0.29 1.35 52.99 482.17 4575.13 49558.44

SCQPTH

Accuracy 3.48× 10−5 4.62× 10−4 4.32× 10−5 6.54× 10−5 1.83× 10−4 2.26× 10−3

Forward [ms] 10.01 26.72 120.12 664.74 6802.36 384565.40
Backward [ms] 0.47 1.28 26.80 184.22 1733.72 15203.05
Total [ms] 10.50 27.90 147.25 850.37 8550.04 399699.87

Table 2: Time and accuracy performance statistics on random dense problems.

Solver Metric Problem Size

100 220 450 1000 2100 4600 10000

dQP (Gurobi)

Accuracy 4.46× 10−8 9.23× 10−8 1.34× 10−7 6.89× 10−7 1.34× 10−6 3.16× 10−6 3.43× 10−6

Forward [ms] 2.57 3.44 5.53 11.07 60.68 2446.70 143209.89
Backward [ms] 1.79 2.86 4.73 9.70 24.03 309.10 9364.61
Total [ms] 4.37 6.33 10.28 20.72 90.01 2760.07 151471.27

QPLayer

Accuracy 6.46× 10−6 1.25× 10−5 1.69× 10−5 3.04× 10−5 6.12× 10−5 1.77× 10−3 7.82× 10−5

Forward [ms] 1.04 5.47 31.11 235.00 2268.24 23597.22 199009.91
Backward [ms] 0.30 1.17 7.46 51.00 393.68 3538.53 38466.29
Total [ms] 1.34 6.63 38.56 285.99 2658.82 27133.19 240084.62

Table 3: Time and accuracy performance statistics on random sparse problems.

G.1.2 PROJECTION ONTO THE PROBABILITY SIMPLEX

This formulation projects a vector onto the probability simplex, as formulated in P1. We set x ∈ Rn

with xi ∼ N (0, 1). The set, with 500 problems, has dimensions n ∈ {10, 20, 50, 100, 220, 450,
1000, 2100, 4600, 10000, 100000}. For n ≤ 4600, each dimension contains 50 problems and 25
problems for n > 4600. Gurobi serves as our forward sparse solver. Figure 1 shows the median
performance within the 1/4 and 3/4 quantiles for each dimension. SCQPTH failed for all problems
with n > 50 is is thus excluded from our report. The statistics in Table 4 show that we outperform
competing methods for differentiable QP in both forward and backward times.

G.1.3 PROJECTION ONTO CHAIN

As formulated in P2, this experiment projects the input point cloud x1, ..., xm ∈ Rd onto a chain
with link of length bounded by 1 in ∞-norm. We set xi ∼ N (0, 100Id), with the number of points
m = 100. By varying the dimension of the vector, d, we generated 300 problems in this set with
dimensions n ∈ {200,500,1000,2000,4000,10000,100000}. For n ≤ 4000, each dimension contains
50 problems and 25 problems for n > 4000. Gurobi was used as our forward solver. Figure 10 and
Table 5 show performance similar to that shown in Figure 1 in terms of efficiency. In addition, dQP
successfully solves large-scale problems other solvers fail to solve.

G.2 SUDOKU

The Sudoku experiment was run on an Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz with 6 cores
and 16GB RAM.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Ti
m

e
(s

)
D

ua
lit

y
G

ap

Problem Size Problem Size
101 102 103

Dense Random Sparse Random

102

100

10-2

10-8

10-6

10-4

Ours (Gurobi)
QPLayer

Ours (DAQP)
Ours (ProxQP)

OptNet
QPLayer
SCQPTH

102 103 104

Figure 9: Time and accuracy performance on random dense/sparse problems.

Solver Metric Problem Size

20 100 450 1000 4600 10000 100000

dQP (Gurobi)

Accuracy 1.07× 10−9 8.88× 10−10 2.26× 10−9 1.47× 10−9 2.72× 10−9 9.55× 10−10 6.67× 10−10

Forward [ms] 1.38 1.65 2.66 4.37 15.83 42.21 423.91
Backward [ms] 0.24 0.28 0.46 0.69 2.58 6.21 53.45
Total [ms] 1.63 1.92 3.13 5.06 18.46 49.00 476.64

OptNet

Accuracy 4.04× 10−8 4.24× 10−8 1.64× 10−8 2.67× 10−8 3.95× 10−8 6.08× 10−8 Failed
Forward [ms] 2.72 4.72 33.46 165.50 7788.73 65976.45 –
Backward [ms] 0.20 0.46 3.99 17.48 720.43 4958.74 –
Total [ms] 2.92 5.19 37.66 182.99 8514.65 70856.43 –

QPLayer

Accuracy 9.53× 10−6 3.65× 10−5 4.16× 10−4 2.19× 10−4 1.16× 10−3 1.94× 10−3 Failed
Forward [ms] 0.14 1.23 66.73 657.88 71724.25 869532.53 –
Backward [ms] 0.14 0.37 10.85 91.72 7594.93 77831.58 –
Total [ms] 0.29 1.61 77.56 751.14 79314.49 946174.68 –

Table 4: Time and accuracy performance statistics for projection onto the probability simplex.

The set-up of the Sudoku problem is a perturbed linear program

z∗(q;A, b) = argmin
z

αzT z + qT z

subject to Az = b

z ≥ 0,

(16)

where q encodes the input unsolved board and z∗(q) encodes the solved board. We distinguish
q from the other input data, the constraints A, b, which model the Sudoku rules are learnable pa-
rameters that are optimized by minimizing the mean squared error to the ground truth solution for
training boards. Instead of treating A, b as completely independent, they are parameterized to en-
sure feasibility. The perturbation α = 0.1 makes the problem amenable to differentiable quadratic
programming.

Our reproduction of the 2x2 Sudoku experiment from OptNet follows closely with their original
settings (Amos & Kolter, 2017), except that we use batch size one, run exclusively on CPU, and
modify the solution tolerances. For OptNet and dQP, we use the same solution tolerance ϵabs =
10−6, and for dQP, we use the active tolerance ϵJ = 10−5. We use the optimizer Adam with
learning rate 10−3 for both methods for the training over 10000 samples, split into 9000 training
and 1000 test samples (Kingma & Ba, 2017).

G.3 BI-LEVEL GEOMETRY OPTIMIZATION

The geometry experiments were run on an Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz with 6
cores.

The cross and ant (Figure 2) meshes and boundary constraints are obtained from the datasets in
(Du et al., 2020). We create the mesh refinement example in Figure 5 by perturbing the corner

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Ti
m

e
(s

)
D

ua
lit

y
G

ap
Problem Size

103 104 105

102

100

10-2

10-8

10-6

10-4

Ours (Gurobi)

OptNet
QPLayer
SCQPTH

Figure 10: Time and accuracy performance for projection onto chains.

Solver Metric Problem Size

200 500 1000 2000 4000 10000 100000

dQP (Gurobi)

Accuracy 2.73× 10−7 2.02× 10−6 3.79× 10−6 9.16× 10−6 2.64× 10−5 4.29× 10−5 2.81× 10−4

Forward [ms] 5.66 12.04 24.41 44.79 82.57 209.79 2263.54
Backward [ms] 0.49 0.98 1.74 3.18 5.81 14.69 172.80
Total [ms] 6.15 12.99 26.19 47.94 88.35 224.89 2432.64

OptNet

Accuracy 6.97× 10−8 1.75× 10−7 9.22× 10−8 2.43× 10−7 2.60× 10−7 1.98× 10−7 Failed
Forward [ms] 23.37 156.49 845.24 5124.87 32528.54 536702.00 –
Backward [ms] 1.98 13.06 61.41 365.02 2266.20 35438.33 –
Total [ms] 25.38 169.64 907.25 5491.56 34799.98 571710.06 –

QPLayer

Accuracy 8.46× 10−5 8.78× 10−5 1.82× 10−4 2.97× 10−4 6.95× 10−4 1.03× 10−3 Failed
Forward [ms] 6.60 69.90 505.05 3484.47 26921.57 414295.22 –
Backward [ms] 1.44 12.10 72.13 512.95 3833.25 57219.68 –
Total [ms] 8.04 81.93 577.11 3996.92 30748.67 471649.91 –

SCQPTH

Accuracy 1.67× 10−5 2.83× 10−5 4.76× 10−5 6.64× 10−5 7.80× 10−5 1.21× 10−4 Failed
Forward [ms] 10.02 39.49 236.61 1617.88 8258.89 65507.05 –
Backward [ms] 3.17 28.46 170.88 1126.46 8374.37 129385.97 –
Total [ms] 13.20 67.55 407.13 2755.28 16628.15 195462.18 –

Table 5: Time and accuracy performance statistics for projection onto chains.

of a square mesh. Importantly, all of the boundary maps selected in our experiments are free of
self-intersections, so that preventing triangle inversions implies the global bijectivity of the maps.

To optimize over Laplacians M , we directly parameterize the space of Laplacians; we impose that
the diagonals are the absolute row sums during optimization and that the off-diagonals are negative.
We also constrain M to have the same sparsity pattern as the combinatorial Laplacian Mc. We
note that the original conditions of (Kovalsky et al., 2020) were formulated in terms of negative
semi-definite Laplacians, and so we must transform the problem into the standard form 1. Since the
Laplacian M which takes the place of the quadratic term in 1 has a trivial eigenvalue, the resulting
QP does not have strict convexity. To address this, we perturb M by a small scaling of the identity
10−4I .

Throughout the geometry experiments, we use the same solution tolerance ϵabs = 10−5 and active
tolerance ϵJ = 10−4 with the forward solver PIQP as determined in Appendix D. For the outer
optimization, we use the optimizer Adam with learning rate 10−2 (Kingma & Ba, 2017). We ini-
tialize the bi-level optimization with Mc. The optimization for the cross experiment is shown in
Figure 11(a) where the unregularized loss is driven to the desired tolerance, accompanied by sudden
changes in the active set as the dual variables are driven to zero. We terminate the optimization
at convergence, once all constraints are inactive to guarantee a bijective map. For the regularized
optimization (Figure 11(b)), we penalize deviations from the initial combinatorial Laplacian up to a
rescaling using the regularization λ∥ M

∥M∥F
− Mc

∥Mc∥F
∥∞. In the cross shown in section 4, we choose

the regularization hyper-parameter to be λ = 10 after sample testing. This regularization is initially
weak and so the duals are driven down, eventually crossing the regularization loss as it increases.
Yet, while this slows convergence, it does not prevent it – crucial to reach a bijective map because
the conditions in (Kovalsky et al., 2020) require all of the inequality constraints to be inactive.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

(b)(a)

Lo
ss

10-2

10-4

10-3

Iteration

101

10-1

100

0 60 1204020 80 100

Lo
ss

10-2

10-4

10-3

Iteration

101

10-1

100

0 150 30010050 200 250 350

Figure 11: The evolution of the loss for the mappings of the square into the cross. Iterations for
which the active set change are denoted with vertical red lines. (a) Without regularization, the loss
is driven monotonically to the tolerance. (b) With a competing regularizing loss term (dashed)
convergence to the tolerance is slowed but not prevented.

The backward timing that we report in Figure 5 is for the backpropogation through only dQP, as
described in Appendix 15. Thus, we remove any contribution coming from the set-up of the param-
eterized Laplacian and directly report the time to solve the reduced KKT and extract the gradients
with respect to M .

25

	Introduction
	Related Works
	Approach
	Problem Setup: Differentiating Quadratic Programs
	Theoretical Differentiation of QPs via KKT Conditions and Sensitivity
	Extracting derivatives from a QP solver's solution

	Experimental Results
	Conclusion
	Proof of Theorem 1
	Active Set Refinement
	Backpropagation
	Choosing a Solver
	Implementation Details
	Validating Algorithm 1
	Experimental Details
	Performance Evaluation
	Random dense/sparse problems
	Projection onto the probability simplex
	Projection onto chain

	Sudoku
	Bi-Level Geometry Optimization

