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Abstract

Synthetic data has emerged as a solution to address
data access challenges in healthcare, particularly for
accelerating Al tool development. Deep generative
methods, including generative adversarial networks,
variational autoencoders, and diffusion models, have
gained prominence for creating realistic and represen-
tative synthetic datasets with low re-identification
risk. However, while sustainability of future com-
putational needs is a growing topic, computational
needs are often overlooked when documenting bench-
marking of synthetic data generators.

This study compares computational resources
needed using traditional and deep generative meth-
ods for generating a synthetic breast cancer dataset,
relative to differences in statistical similarity be-
tween the training dataset and the synthetic dataset.

The findings reveal that while quality performance
within this experiment is comparable, the deep
generative methods consume significantly more re-
sources, necessitating High Performance Computing
resources. We recommend researchers will increas-
ingly include computational resources as a parame-
ter when benchmarking methods, to build a bigger
canvas of literature to guide the method choice.

1 Introduction

There is a growing need for access to high quality
data to develop, train or test new Al driven tools
([1]). Synthetic data is seen as a method to over-
come the issue of access to sensitive healthcare data
([2]). Some synthetization methods demand high
computational resources, making them less available
for mainstream use and challenging its future sus-
tainability. Deep generative methods like generative
adversarial networks (GANSs), variational autoen-
coders (VAEs) and diffusion models (DMs) have
gained traction in the literature as preferred meth-
ods to producing high quality synthetic data. With
an initial focus on image data, several methods have
been tailored to better fit tabular data which is the
predominant format for Electronic Health Record
(EHR) data.

Although the methods are often reported to create
realistic and representative datasets with minimal
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Keeping it Simple — Computational Resources in Deep Gener-
ative versus Traditional Methods for Synthetic Tabular Data

risk of re-identification, high computational com-
plexity leads to resource requirements concerns ([3])
and should be a consideration for choice of method.
Still, for synthetic tabular data in healthcare com-
putational resource needs are rarely addressed in
generation method evaluations ([4]).

To guide the practical use of these tools, this
study provides an experiment comparing traditional
statistical methods and deep generative methods
investigating the following questions:

Q1: What are the practical resource require-
ments for running the pipelines of deep generative
methods for generating tabular data compared to
traditional generators, and

Q2: How well does deep generative methods
perform for generating tabular data compared
to traditional generators in terms of statistical
similarity?

This experiment benchmarks a traditional method
for synthesizing tabular data against deep genera-
tive methods, comparing performance in terms of
computational resources and statistical similarity to
the training data. The experiment on a synthetic
breast cancer dataset shows that a traditional gener-
ation method — the GaussianCopula - did not require
High Performance Computing (HPC) infrastructure
yet performed similarly to the resource intensive
methods in terms of an average statistical similarity
score. This result shows there are situations when
the simple methods can be as adequate for the task
as the compute heavy methods, making tabular data
synthetization available to a broader public in the
healthcare sector outside of the academic commu-
nity.

2 Related Work

Deep generative models seem to be gaining popular-
ity in the literature in the field of tabular healthcare
data ([5], [6]). Although it is widely acknowledged
that these are more resource intensive than the tra-
ditional methods, few have documented the actual
difference between the two classes of approaches.
[7] point to specific models being developed to fit
tabular data like HealthGAN ([8]), MedGAN ([9]),
and CTGAN ([10]). A recent review by [4] on syn-
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thetic tabular data for healthcare showed that ap-
proximately 1/3 of the articles benchmarked deep
generative methods against traditional methods like
CART ([11]), GaussianCopula ([12]), and Bayesian
networks ([13]). Four of these articles mentioned
preprocessing needs or computational resources in
their evaluation, without necessarily reporting the
metrics. None of the articles concluded on computa-
tional needs for specific types of generation methods
([4]). There seems to be a need for a greater focus
on using sustainable computing or carbon footprint
as a performance indicator in the literature.

3 Methods

To compare the performance of the deep generative
models on tabular data (Q2), the experiment was
run with a GaussianCopula model as a benchmark
to the Conditional Tabular Generative Adversarial
Network (CTGAN) and Tabular Variational Au-
toencoder (TVAE). An experiment was run both
on a laptop and in a virtual machine (VM) in Mi-
crosoft Azure with NVIDIA GPU HPC facilities on
the Veracity platform ([14]). The Synthetic Data
Vault (SDV) pipeline ([15]) for evaluation metrics
for the models were compared to answer QQ2, and
practical performance measures (size and runtime)
was gathered for answering Q1.

3.1 Dataset

The experiment was run using a synthetically gener-
ated dataset from the Dutch cancer registry that can
be accessed by applying at ([16]), see an extract in
Figure A.1 in the Appendix. The dataset is a cohort
of 60.000 hypothetical breast cancer patients and
has been created with the intention of showcasing
what real healthcare data looks like, inheriting both
the statistical patterns but also the typical traits of
real-world healthcare data like missing values.

Each patient has one row with 47 columns of
information about the episode, including measure-
ments of tumor size and location, treatments etc.
The table has 60.000 rows x 46 columns (features).
Some variables are discrete, and others are contin-
uous. Further details on the data are enclosed in
Appendix.

As the dataset has been produced to optimize
structural similarity while preserving privacy, this
data cannot be expected to be clinically valid and
should only be used for methodological experiments.
However, the dataset remains useful for comparing
the computational requirements of different genera-
tors.
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3.2 Data preparation

Assuring quality for synthetic data generation starts
with the training data [4]. Initial cleaning of the
dataset revealed that 10 rows contained missing
fields. For the simplicity of this exercise, the rows
of patients with missing data were removed. The
resulting number of rows left for analysis was 59
990. In a real-life experiment, this may not be
an optimal approach as missing data fields is an
inherent characteristic of healthcare data and the
lack of data may harbor clinical information.

The pipeline was tested both with and without
meta data definition. For the meta data definition,
it was assumed there is only one tumor per row, even
though a patient can have several tumors. This as-
sumption makes both variables patient and episode
IDs key-nkr and key-eid primary keys.

3.3 Choice of synthetic data genera-
tion models

To simplify the reproducibility of our results and
ensure consistency in the implementation of data
generators, we opted for using the well-documented
([17]) and maintained open-source python library for
synthetic data generation, the SDV library ([15]).
The SDV pipeline was chosen as it was the most
cited open-source pipeline available at the time of
the experiment. This library provides a reliable and
standardized framework for synthetic data genera-
tion, minimizing the discrepancies that might arise
from using different tools or custom implementations.
The SDV library’s comprehensive documentation
and active community support further facilitate the
reproducibility and validation of experimental out-
comes. Additionally, its origins as a project at MIT
lend it academic credibility in the field of synthetic
data generation.

A traditional statistical model — the GaussianCop-
ula ([18]) was used to compare the performance of
two deep generative models, the TVAE ([19]) and
CTGAN ([20]) for the tabular healthcare data.

The GaussianCopulaSynthesizer ([21]) is based on
copula functions. A copula in mathematical terms
maps the marginal distribution of a variable to the
normal distribution through the probability inte-
gral transform. This mathematical function allows
a description of the joint distribution of multiple
variables, analyzing the dependencies between their
marginal distributions ([18]).

The TVAE (Tabular Variational Autoencoder)
is an adaptation of the variational autoencoder ar-
chitecture specifically designed for tabular data. It
uses an encoder-decoder structure where the encoder
compresses the input data into a latent space rep-
resentation, and the decoder reconstructs the data
from this latent space. The TVAE is particularly
effective at capturing complex relationships between
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variables in tabular datasets. The CTGAN (Condi-
tional Tabular Generative Adversarial Network) is a
GAN-based model tailored for tabular data. It uses
a generator to create synthetic samples and a dis-
criminator to distinguish between real and synthetic
data. The ”conditional” aspect allows it to handle
both continuous and discrete columns effectively,
making it well-suited for heterogeneous tabular data
often found in healthcare datasets. Both the TVAE
and CTGAN models were presented at the NeurIPS
2019 conference in the paper titled ”Modeling Tab-
ular data using Conditional GAN” ([10]).

3.4 Setting up the infrastructure

The experiments were conducted on two platforms:
(1) a Dell laptop with an Intel i7 CPU and embed-
ded Intel GPU (without NVIDIA GPU acceleration),
and (2) a virtual machine on the Microsoft Azure-
based platform DNV Veracity, equipped with an
NVIDIA M60 GPU (including CUDA acceleration).
The pipelines for TVAE, CTGAN, and Gaussian-
Copula were deployed on both platforms to compare
performance.

3.5 Running the experiment

The original data was split in 20/80. Due to re-
source consumption, 20 percent (12K patients) were
used to train the model while the remaining 80 per-
cent was reserved for evaluating model performance.
This split allows us to assess not only how well the
synthetic data captures the training data patterns
but also how well these patterns generalize to unseen
data. On the virtual machine, all three models were
trained and tested using two distinct evaluation ap-
proaches: (1) unsupervised evaluation (comparing
the statistical properties of synthetic data directly
with the training data to assess structural similarity);
and (2) supervised evaluation (training predictive
models on both real and synthetic data, then evalu-
ating their performance on the test set to assess the
utility of the synthetic data).

The training was done first without defining meta
data — describing whether a column (feature) is
numerical or categorical. An additional test was
done using only TVAE and the GaussianCopula
after manually defining this meta data, to evaluate
the effect. To facilitate the reproducibility of our
experiments, we used the default hyperparameters
as defined in the source code for the corresponding
generators ([22], [23], [24]).

For the laptop experiment, a smaller amount of
training data was used (10 percent of the data). The
deep generative models were trained and tested to
explore resource consumption. The CTGAN had to
be aborted due to resource overload.
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3.6 Quality evaluation

Our evaluation framework employed both unsuper-
vised and supervised approaches to comprehensively
assess synthetic data quality. The SDV Evaluation
Metrics Library from the original Synthetic Data
Vault Project ([15]) was used to evaluate the syn-
thetic data generated from each model. The evalua-
tion included SDV’s quality report and diagnostics
report. The quality report ([25]) presented weighted
scores on column shapes and column pair trends.
The column pair trends describe structural similar-
ity between the synthetic data and the test data;
how they vary in relation to each other, for example
the correlation. The higher the score, the more the
trends are alike ([15]).

The diagnostic report ([26]) presented two simi-
larity scores that compare synthetic data with the
test data, and one score on privacy risk: coverage
and boundaries (similarity) and overfitting/copying
of test data (privacy risk) ([27]).

Coverage means how well the synthetic data covers
the categories present in the real data. Boundaries
is a measure of how well the synthetic data follows
the min/max boundaries set by the real data. The
score is between 0 and 1, and the higher the score
the better. Overfitting is evaluated by a measure of
how many rows are copies of the original data.

Using an automated pipeline for quality evaluation
is easy to implement and use but may not show all
quality dimensions that should be investigated if the
synthetic data is to be used in a safety critical clini-
cal context ([4]). While average scores are practial
for benchmarks, they can obscure deviating perfor-
mance for specific features, and diagnostic exercises
was performed to evaluate featurewise similarity in
addition to the scores. In this pipeline, there was
no bias or fairness metrics, no clinical usability, and
only one privacy measure. For the context of this
experiment, this was deemed sufficient.

4 Results

There were significant differences in the resource
needs for running the generation pipelines, and only
minor differences in the measured average statistical
similarity between the generators.

The computational needs for the generative meth-
ods were significantly higher than the traditional
method, to the point where certain parts of the
experiment were not feasible to complete. When
meta data was defined, the GaussianCopula outper-
formed the two other models in all similarity scores.
When meta data was not defined, the performance of
GaussianCopula dropped to below that of the deep
generative method TVAE, the TVAE performance
was more robust to the lack of meta data.

The results section is divided into answering the
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Table 1. Practical performance of the different models,
training time and model size. Only the experiment
without meta data was run on the laptop.

* The CTGAN laptop experiment was manually aborted.
** The CTGAN HPC' experiment without meta data was
not completed due to CUDA out of memory errors.

Generation method Time laptop Time Azure Model size
WITHOUT META DATA

GaussianCopula NA 17 sec 1.5 Mb
CTGAN more than 420.000 sec* NA** 7825 Mb
TVAE 54.000 sec 1200 sec 7.5 Mb
WITH META DATA

GaussianCopula NA 4 sec 0.5 Mb
CTGAN NA 480 sec 33 Mb
TVAE NA 120 sec 0.5 Mb

two questions, respectively.

4.1 Pipeline requirements for process-
ing capacity (Q1)

The models were trained on 20 percent of the cleaned
original dataset (11.998 records) on the virtual ma-
chine, both with and without defining meta data
(numerical vs categorical values). Table 1 shows
results of training time and storage needs for the
models. The training time was notably shorter for
the traditional GaussianCopula model compared
to the deep generative models with a factor rang-
ing from 30 to 565 times faster. Without defined
meta data, and running on the azure server, the
traditional GaussianCopula model used 17 seconds
and the TVAE used 1200 seconds. Notably, the
CTGAN evaluation in the ”without meta data” sce-
nario could not be completed due to CUDA out
of memory errors on our GPU setup, highlighting
the substantial memory requirements of this model
when processing unstructured data. With meta data
the training was faster for all models, rendering the
relative differences smaller but with a similar distri-
bution. Storage was notably smaller when the meta
data was defined.

The laptop setup proved impractical for the deep
generative methods. While the TVAE generator
could run, it took an excessively long time. The
CTGAN was stopped after two days due to its pro-
longed runtime. These results highlight the necessity
of High Performance Computing (HPC) resources
for deep generative methods when working with
tabular data of this scale.

4.2 Similarity benchmark of genera-
tor performance on tabular data

(Q2)

Table 2 shows results from the similarity evaluation
on the synthetic data run on models with and with-
out defined meta data (as detailed in meta data
schema of SDV developer guide 13). With meta

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Quality evaluation scores of the models run
with and without manually defined meta data. Scores are
between 0 and 1, higher score is better quality. Descrip-
tion of the quality parameters in section 3.6. Quality
evaluation and details can be found in the [15] library.
(See larger version and data labels dictionary in ap-
pendix.)

** The CTGAN HPC' experiment without meta data was
not completed due to CUDA out of memory errors.

Metrics GaussianCopula CTGAN TVAE

WITH META DATA
Quality score

Column shapes 0.9247 0.8831 0.8813
Column pair trends 0.8711 0.8211 0.8158
Diagnostics

Coverage 0.97 1.0 0.93
Copies 1.0 1.0 1.0
Boundaries 1.0 1.0 1.0
WITHOUT META DATA

Quality score

Column shapes 0.76 NA** 0.81
Column pair trends 0.61 NA** 0.72
Diagnostics

Coverage 0.92 NA** 0.76
Copies 1.0 NA** 1.0
Boundaries 1.0 NA** 1.0

data, the TVAE performs adequately but not as
well as the simple statistical approach (Gaussian-
Copula) on the tabular data, with slightly lower
scores for column shapes, column pair trends and
coverage. The TVAE shows slightly lower quality
scores than the CTGAN and lower coverage. The
table values for metrics in the experiment with manu-
ally defined meta data have four digits to emphasize
the difference between CTGAN and TVAE.

Analysing the coverage pr feature, the column
shapes showed a more consistent performance with
the GaussianCopula with the average score of 0.97
versus the TVAE average score of 0.93. The graphs
for column coverage (see figure 1) show a difference
in the performance for numerical versus (dark blue
columns) categorical values (light blue columns).
The TVAE performs better than the GaussianCop-
ula on numerical values, while the GaussianCopula
performs better for the categorical values. The same
trend was seen on column shapes.

The TVAE performed noticeably worse for one
specific variable (tumor morphology). The distribu-
tion of this variable was quite particular and difficult
to capture for a generator, with ductal carcinoma
(code 8500) being noticeably larger than the other
groups with 44.426 instances, Lobular carcinoma
(code 8520) with 7245 instances and the residual 28
groups having a count below 1000 instances (224-889
instances). The distribution of the original data for
this feature is shown in Figure A.4.

When meta data was not manually defined, the
TVAE showed better overall similarity performance
scores than the GaussianCopula, showcasing the
potential of deep generative models compared to tra-
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a)

Figure 1. The figure shows a detailing of the average
column coverage score provided in Table 2 in the experi-
ment when the meta data was defined, comparing a) the
TVAE results and b) the GaussianCopula results. The
dark blue RangeCoverage is used for numerical values
and the light blue CategoryCoverage is for categorical
data. See the appendix for a bigger version of the image.

b)

ditional models, for learning the underlying patterns
of a dataset.

5 Discussion

All pipelines were faster when meta data was
manually defined. The statistical GaussianCopula
pipeline was the fastest and smallest in terms of stor-
age need. When it is necessary to work with the com-
putationally demanding deep generative pipelines,
it could be beneficial to use the statistical model
to iterate on your experiments and see that your
meta data is correct before running the more time-
consuming generators. It was possible but not prac-
tical to run the TVAE generator on a laptop since
the size of the seed dataset had to be limited and it
had an impractically long runtime (15 hours). The
resource needs for the CTGAN in this experiment
confirms the potential extent of computational re-
quirements for tabular data generation with deep
generative models, even in the HPC setting. For the
community to move forward in a sustainable way,
it would be beneficial to choose traditional and less
compute intensive methods when quality needs and
performance requirements allow it.

When choosing a generation method, one should
consider all relevant quality dimensions— similar-
ity, usability (clinical and other), privacy, bias and
fairness and carbon footprint ([4]) and prioritize
them according to the intended downstream use of
the dataset. While investigating all perspectives
is particularly important in potential high-impact
areas like healthcare, fairness was excluded in this
experiment due to the dataset composition (one gen-
der and homogeneous population, lacking minority

groups).
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The Gaussian Copula had the highest average
quality score when meta data was defined, while the
TVAE showed better consistency in performance
independently of predefined meta data. The detailed
findings of the column coverage (figure 1 ) shows
that for certain parameters (tumor morphology) the
TVAE showed poor column coverage. This can be
explained by the disproportionate distribution of
this variable in the training data. Gaussian Copula
seemed to perform noticeably worse on numerical
data compared to the TVAE, but as there were few
numerical values in the dataset this did not affect
the average scores significantly.

An average score such as the SDV quality evalua-
tion score used in this paper is useful for benchmark-
ing generators on a generic level, but in choosing
the relevant quality parameters for a specific clinical
case, one must consider the cohort and what clinical
desiderata are relevant for these according to the
intended use.

A conclusion on quality performance and choice
of an optimal generation model cannot be generic
and must always be adjusted to the specific data
and clinical case at hand.

Limitations This paper is a synthetic experiment
with no downstream use, and therefore no consider-
ations for specific parameters have been discussed.
The training dataset used in the experiment is a
synthetically generated dataset. Since the real data
is not accessible, the actual objective quality com-
pared to reality cannot be determined. Creating a
synthetic dataset based on a synthetic dataset can
only be seen as a practical or methodological test.
An important limitation of this study is the reliance
on a single library (SDV) for implementation of the
synthetic data generation models. While SDV is
well-documented and widely cited, using a single
library may limit the generalizability of our findings.
Future studies should consider implementing models
using multiple libraries to provide a more comprehen-
sive comparison. There are also other open libraries
available like the recently published SynthCity at
Cambridge ([28]), and new evaluation metrics are
being proposed in the literature. The SDV pipeline
could preferably be expanded by additional quality
metrics ([29]). In the experiment, we relied on two
out-of-the-box reports natively provided by the SDV
library: ”The Diagnostic Report” and ”The Quality
Report”. According to the library developers, these
two reports provide scores for an aggregated and
overall comparison of original and synthetic datasets.
While this approach offers a simplified version of
reporting, focusing on computational resources and
their comparisons, we acknowledge that it lacks more
rigorous statistical testing. In the experiment, the
standard SDV pipeline metrics were used as these
are perceived as commonly used for statistical sim-
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ilarity. It is unclear whether this score properly
rewards the desired model behaviour, resulting in
uncertainty around the results. The evaluation met-
rics used in this case will not evaluate the usability
of the data and the clinical logic like the realism
of the TNM classification of tumors in the different
cases or in downstream performance. Fairness met-
rics are not included, and only a simple similarity
metric of statistical closeness is used for measuring
privacy. The study is limited to only three genera-
tion methods. In the future, we plan to investigate
newer and potentially more effective models such as
diffusion and large language models.

To conclude on the actual clinical utility of the
synthetic data produced by the pipelines, this ex-
periment should be recreated on a real dataset and
for a defined downstream application. Other qual-
ity metrics and mechanisms should also be added,
to evaluate the clinical usability and logic of the
resulting synthetic data.

To better guide practitioners in making sustain-
able choices, computational resources should be in-
cluded as a reporting parameter for benchmarking of
methods. To ensure a focus on sustainable comput-
ing, metrics of training time and model size could
be translated into a more comparable metric like
carbon footprint.

Further work This experiment covers one data
modality - tabular data - with synthetic national
cancer registry type data on breast cancer, and
using two deep generative methods and one tradi-
tional method. The generators used were considered
most common at the time of the experiment and
available in a public pipeline. To investigate the
robustness of the conclusions, there is a need for a
wide range of benchmarks on a range of different
datasets, investigating other types of both deep and
traditional generators and for differing use cases
and data modalities, including more thorough hy-
perparameter exploration. Future studies could con-
sider implementing models from multiple libraries
to provide a more comprehensive comparison. For
instance, the recently published SynthCity library
developed at Cambridge University ([28]) could be
used alongside SDV to broaden the scope of the
analysis and validate findings across different im-
plementations. In addition, future research should
investigate the differences in quality scores for a
broader range of evaluation criteria covering top-
ics like fairness, privacy and other representativity
(similarity and usability) metrics.

6 Data availability
The synthetic data from the Dutch breast-cancer

cohort is available at the website of the Cancer
Registry of Netherland ([16]).
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Figure A.2. Detailing of the average column coverage

score when the meta data was defined, comparing a)

g TVAE results and b) GaussianCopula results. The dark

blue RangeCoverage is for numerical values and the light

blue CategoryCoverage is for categorical data.
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— 1 Ves 1 morfologie 8523 Duct.al carcnoma, mixed with another Dul:t.aal carcinoom, gemengd met ander
ﬁee 2ob 0 ho Nee rcinoma type carcinoomtype
mjamb a = B morfologie 8524 Lobular carcinoma mived with another  Lobulsir carcinoom gemengd met ander
nesjaonh 9 Unknown onbekend Carcnom type - “mnmmp‘ -
ok o o P 8530 Inflammatary Infiammatoir carcinoom
wk N ves ™ morfologie 8540 Paget's disease of the breast Morbus Paget van mamma
ok 5 T — stroerd in regio morfologie 8541 :izi:::'l:eax with infiltrating ductal :::;:gu eninfiltrerend ductzal
fmsart |S01300 | iesive breast cascinoms nvasief mammacarcinoom morfologie 8543 Paget's disease with intraductal carcinoma  Morbus Paget en intraductaal carcinoom
tumsoort 502200  Ductal carcinoma in situ Ductaal carcinoma in situ

{DCis)

{DCis)

ll.lllml‘t 503200 Ln.bulal carcinoma in situ Lobulair carcinoma in situ 1550 Acinar cell carcinema TS ———
xfﬂ l: ::::m ::':\-‘I;‘Tden 8560 q carcinoma Adenosquameus carcinoom
swi_uitslag |1 Sentinl [ymph node negative schildwachtklier negatiet by e e,
swi_uitslag 2 ITC <02 mm) ITC [ 0.2 mm) metaplasia
swi_uitslag 3 Micrometastasis (> 0.2 - < 2 mm) Micrometastase (0.2 - <2 mm) 3571 . with [choncroid) azzeous met [krazkjbenig
swih_uitslag 4 Sentinel lymph node positive (> 2 mm) schildwachtklier positief (> 2 mm) metaplasia metaplasic
swh uitslag 3 Sentinel lymgh nodenotfound  schildwachtidier niet gevonden 8572 i with sgindle cell i met
{lopo €S0 Ereast Borst metaplasia
topo_sublok C500 Breast nipple/areola Mamma tepel/tepelhof 8573 i with 2 met apocriene 2
topo_sublok £501 Breast central part Mamma centraal deel 574 = = == =
topo_sublok C502 Breast medial upper guadrant Mamma mediaal bovenkwadrant differentiatic
topo_sublok C503 Breast medial lower quadrant Mamma mediaal onderkwadrant 8575 NNO Metaplastisch carcinoom, NNO
topo_sublok C504 Breast lateral upper quadrant Mamma lateraal bovenkwadrant BOED Can NMO Carcinosarcoom, NKO
topo_sublok C505 Breast lateral lower quadrant Mamma lateraal anderkwadrant morfologie 8952 Myoeithelial caroinoma Myo-eitheliazl carcinoom
topo_sublok C506 Breast axillary tail Mamma axillaire uitloper = D983 Mali P Maligne adenomyo-epithelicom
topo_sublok C508 Breast overlapping Mamma overlappend therapie 100000 Sungery NNO Chirursie nna
_topo_sublok €500 Breast NNO Mamma NNO therapie 120000  Local tumor resection Lokale tumarresectie
later 1 Left Links therapie 130C50  Breast-conserving surgery NNO Borstsparende chirurgie nno
later 2 Rizht Rachts therapie  131C50  Lumpectomy (without sentinel lymph nade Lumnpectomie (zonder OKD)
later x unknown onbekend biopsy)
morfologie 8000 Meoplasm, NNO Neoplasma, NNO tharapia 132050  Lumpectomy (with sentinel lymph node Lumnpectomis [met OKD)
marfologie 001 Malignant tumar cells Maligne tumorcellen biopzy]
morfologie  B00 Malignant tumor, spindle cell type Maligna tumor, sposlceltype therspie  180C50  Mom-bresst-conserving surgery NNO Niet-barstsparende chirurgie nno
morfologie  B010 carcinoma, NNO carcinoom, NNO therspie  141C50  Mastectomny (without sentinel lymph node  Ablatic [zonder OKD)
morfologie | B012 Large cell carcinoma, NNO Grootallig carcinoom, NNO siopsy)
morfologie | E013 Large call neurcendocrine carcinoma ig rien therapie 142050  Amputation [with sentinel lymph node  Amputatie [met OKD)
marfologie 8020 Undifferentiated carcinoma, NNG. Ongedifferentieerd carcinoom, NNO miopsy)
morfologis 8022 Pleomerphic carcinoma Pleiomorf carcincom tharapie 190000  Resection for other indication (incidentzl  Resectie voor andere indicatie
morfologie 030 Giant cell and spindle cell carcinoma Reuscel- en spoelcelcarcinoom finding] [toevalsbevinding)
morfologie 8032 spindle call carcinoma, NNO spoelcelcarcingom, NNO therapie 315000  Lymph noce dissection of regional lymph  Lymfeklierdissectie regionale
morfologie 8033 arcinoma carcinoom node metastazes tymfekliermetastasen

therapie 690100  Surgical treatment abroad Chirurgische behandeling in buitenland
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Figure A.3. Data dictionary - labels from the IKNL

dataset.

The complete dictionary is available at the

website of the Cancer Registry of Netherland ([16]).
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Figure A.4. Distribution of tumor morphology in the
IKNL dataset (the training dataset for this experiment).
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