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Abstract001

Synthetic data has emerged as a solution to address002

data access challenges in healthcare, particularly for003

accelerating AI tool development. Deep generative004

methods, including generative adversarial networks,005

variational autoencoders, and diffusion models, have006

gained prominence for creating realistic and represen-007

tative synthetic datasets with low re-identification008

risk. However, while sustainability of future com-009

putational needs is a growing topic, computational010

needs are often overlooked when documenting bench-011

marking of synthetic data generators.012

This study compares computational resources013

needed using traditional and deep generative meth-014

ods for generating a synthetic breast cancer dataset,015

relative to differences in statistical similarity be-016

tween the training dataset and the synthetic dataset.017

The findings reveal that while quality performance018

within this experiment is comparable, the deep019

generative methods consume significantly more re-020

sources, necessitating High Performance Computing021

resources. We recommend researchers will increas-022

ingly include computational resources as a parame-023

ter when benchmarking methods, to build a bigger024

canvas of literature to guide the method choice.025

1 Introduction026

There is a growing need for access to high quality027

data to develop, train or test new AI driven tools028

([1]). Synthetic data is seen as a method to over-029

come the issue of access to sensitive healthcare data030

([2]). Some synthetization methods demand high031

computational resources, making them less available032

for mainstream use and challenging its future sus-033

tainability. Deep generative methods like generative034

adversarial networks (GANs), variational autoen-035

coders (VAEs) and diffusion models (DMs) have036

gained traction in the literature as preferred meth-037

ods to producing high quality synthetic data. With038

an initial focus on image data, several methods have039

been tailored to better fit tabular data which is the040

predominant format for Electronic Health Record041

(EHR) data.042

Although the methods are often reported to create043

realistic and representative datasets with minimal044

risk of re-identification, high computational com- 045

plexity leads to resource requirements concerns ([3]) 046

and should be a consideration for choice of method. 047

Still, for synthetic tabular data in healthcare com- 048

putational resource needs are rarely addressed in 049

generation method evaluations ([4]). 050

To guide the practical use of these tools, this 051

study provides an experiment comparing traditional 052

statistical methods and deep generative methods 053

investigating the following questions: 054

055

Q1: What are the practical resource require- 056

ments for running the pipelines of deep generative 057

methods for generating tabular data compared to 058

traditional generators, and 059

Q2: How well does deep generative methods 060

perform for generating tabular data compared 061

to traditional generators in terms of statistical 062

similarity? 063

This experiment benchmarks a traditional method 064

for synthesizing tabular data against deep genera- 065

tive methods, comparing performance in terms of 066

computational resources and statistical similarity to 067

the training data. The experiment on a synthetic 068

breast cancer dataset shows that a traditional gener- 069

ation method – the GaussianCopula - did not require 070

High Performance Computing (HPC) infrastructure 071

yet performed similarly to the resource intensive 072

methods in terms of an average statistical similarity 073

score. This result shows there are situations when 074

the simple methods can be as adequate for the task 075

as the compute heavy methods, making tabular data 076

synthetization available to a broader public in the 077

healthcare sector outside of the academic commu- 078

nity. 079

2 Related Work 080

Deep generative models seem to be gaining popular- 081

ity in the literature in the field of tabular healthcare 082

data ([5], [6]). Although it is widely acknowledged 083

that these are more resource intensive than the tra- 084

ditional methods, few have documented the actual 085

difference between the two classes of approaches. 086

[7] point to specific models being developed to fit 087

tabular data like HealthGAN ([8]), MedGAN ([9]), 088

and CTGAN ([10]). A recent review by [4] on syn- 089

1



NLDL
#21

NLDL
#21

NLDL 2025 Full Paper Submission #21. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

thetic tabular data for healthcare showed that ap-090

proximately 1/3 of the articles benchmarked deep091

generative methods against traditional methods like092

CART ([11]), GaussianCopula ([12]), and Bayesian093

networks ([13]). Four of these articles mentioned094

preprocessing needs or computational resources in095

their evaluation, without necessarily reporting the096

metrics. None of the articles concluded on computa-097

tional needs for specific types of generation methods098

([4]). There seems to be a need for a greater focus099

on using sustainable computing or carbon footprint100

as a performance indicator in the literature.101

3 Methods102

To compare the performance of the deep generative103

models on tabular data (Q2), the experiment was104

run with a GaussianCopula model as a benchmark105

to the Conditional Tabular Generative Adversarial106

Network (CTGAN) and Tabular Variational Au-107

toencoder (TVAE). An experiment was run both108

on a laptop and in a virtual machine (VM) in Mi-109

crosoft Azure with NVIDIA GPU HPC facilities on110

the Veracity platform ([14]). The Synthetic Data111

Vault (SDV) pipeline ([15]) for evaluation metrics112

for the models were compared to answer Q2, and113

practical performance measures (size and runtime)114

was gathered for answering Q1.115

3.1 Dataset116

The experiment was run using a synthetically gener-117

ated dataset from the Dutch cancer registry that can118

be accessed by applying at ([16]), see an extract in119

Figure A.1 in the Appendix. The dataset is a cohort120

of 60.000 hypothetical breast cancer patients and121

has been created with the intention of showcasing122

what real healthcare data looks like, inheriting both123

the statistical patterns but also the typical traits of124

real-world healthcare data like missing values.125

Each patient has one row with 47 columns of126

information about the episode, including measure-127

ments of tumor size and location, treatments etc.128

The table has 60.000 rows x 46 columns (features).129

Some variables are discrete, and others are contin-130

uous. Further details on the data are enclosed in131

Appendix.132

As the dataset has been produced to optimize133

structural similarity while preserving privacy, this134

data cannot be expected to be clinically valid and135

should only be used for methodological experiments.136

However, the dataset remains useful for comparing137

the computational requirements of different genera-138

tors.139

3.2 Data preparation 140

Assuring quality for synthetic data generation starts 141

with the training data [4]. Initial cleaning of the 142

dataset revealed that 10 rows contained missing 143

fields. For the simplicity of this exercise, the rows 144

of patients with missing data were removed. The 145

resulting number of rows left for analysis was 59 146

990. In a real-life experiment, this may not be 147

an optimal approach as missing data fields is an 148

inherent characteristic of healthcare data and the 149

lack of data may harbor clinical information. 150

The pipeline was tested both with and without 151

meta data definition. For the meta data definition, 152

it was assumed there is only one tumor per row, even 153

though a patient can have several tumors. This as- 154

sumption makes both variables patient and episode 155

IDs key-nkr and key-eid primary keys. 156

3.3 Choice of synthetic data genera- 157

tion models 158

To simplify the reproducibility of our results and 159

ensure consistency in the implementation of data 160

generators, we opted for using the well-documented 161

([17]) and maintained open-source python library for 162

synthetic data generation, the SDV library ([15]). 163

The SDV pipeline was chosen as it was the most 164

cited open-source pipeline available at the time of 165

the experiment. This library provides a reliable and 166

standardized framework for synthetic data genera- 167

tion, minimizing the discrepancies that might arise 168

from using different tools or custom implementations. 169

The SDV library’s comprehensive documentation 170

and active community support further facilitate the 171

reproducibility and validation of experimental out- 172

comes. Additionally, its origins as a project at MIT 173

lend it academic credibility in the field of synthetic 174

data generation. 175

A traditional statistical model – the GaussianCop- 176

ula ([18]) was used to compare the performance of 177

two deep generative models, the TVAE ([19]) and 178

CTGAN ([20]) for the tabular healthcare data. 179

The GaussianCopulaSynthesizer ([21]) is based on 180

copula functions. A copula in mathematical terms 181

maps the marginal distribution of a variable to the 182

normal distribution through the probability inte- 183

gral transform. This mathematical function allows 184

a description of the joint distribution of multiple 185

variables, analyzing the dependencies between their 186

marginal distributions ([18]). 187

The TVAE (Tabular Variational Autoencoder) 188

is an adaptation of the variational autoencoder ar- 189

chitecture specifically designed for tabular data. It 190

uses an encoder-decoder structure where the encoder 191

compresses the input data into a latent space rep- 192

resentation, and the decoder reconstructs the data 193

from this latent space. The TVAE is particularly 194

effective at capturing complex relationships between 195
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variables in tabular datasets. The CTGAN (Condi-196

tional Tabular Generative Adversarial Network) is a197

GAN-based model tailored for tabular data. It uses198

a generator to create synthetic samples and a dis-199

criminator to distinguish between real and synthetic200

data. The ”conditional” aspect allows it to handle201

both continuous and discrete columns effectively,202

making it well-suited for heterogeneous tabular data203

often found in healthcare datasets. Both the TVAE204

and CTGAN models were presented at the NeurIPS205

2019 conference in the paper titled ”Modeling Tab-206

ular data using Conditional GAN” ([10]).207

3.4 Setting up the infrastructure208

The experiments were conducted on two platforms:209

(1) a Dell laptop with an Intel i7 CPU and embed-210

ded Intel GPU (without NVIDIA GPU acceleration),211

and (2) a virtual machine on the Microsoft Azure-212

based platform DNV Veracity, equipped with an213

NVIDIA M60 GPU (including CUDA acceleration).214

The pipelines for TVAE, CTGAN, and Gaussian-215

Copula were deployed on both platforms to compare216

performance.217

3.5 Running the experiment218

The original data was split in 20/80. Due to re-219

source consumption, 20 percent (12K patients) were220

used to train the model while the remaining 80 per-221

cent was reserved for evaluating model performance.222

This split allows us to assess not only how well the223

synthetic data captures the training data patterns224

but also how well these patterns generalize to unseen225

data. On the virtual machine, all three models were226

trained and tested using two distinct evaluation ap-227

proaches: (1) unsupervised evaluation (comparing228

the statistical properties of synthetic data directly229

with the training data to assess structural similarity);230

and (2) supervised evaluation (training predictive231

models on both real and synthetic data, then evalu-232

ating their performance on the test set to assess the233

utility of the synthetic data).234

The training was done first without defining meta235

data – describing whether a column (feature) is236

numerical or categorical. An additional test was237

done using only TVAE and the GaussianCopula238

after manually defining this meta data, to evaluate239

the effect. To facilitate the reproducibility of our240

experiments, we used the default hyperparameters241

as defined in the source code for the corresponding242

generators ([22], [23], [24]).243

For the laptop experiment, a smaller amount of244

training data was used (10 percent of the data). The245

deep generative models were trained and tested to246

explore resource consumption. The CTGAN had to247

be aborted due to resource overload.248

3.6 Quality evaluation 249

Our evaluation framework employed both unsuper- 250

vised and supervised approaches to comprehensively 251

assess synthetic data quality. The SDV Evaluation 252

Metrics Library from the original Synthetic Data 253

Vault Project ([15]) was used to evaluate the syn- 254

thetic data generated from each model. The evalua- 255

tion included SDV’s quality report and diagnostics 256

report. The quality report ([25]) presented weighted 257

scores on column shapes and column pair trends. 258

The column pair trends describe structural similar- 259

ity between the synthetic data and the test data; 260

how they vary in relation to each other, for example 261

the correlation. The higher the score, the more the 262

trends are alike ([15]). 263

The diagnostic report ([26]) presented two simi- 264

larity scores that compare synthetic data with the 265

test data, and one score on privacy risk: coverage 266

and boundaries (similarity) and overfitting/copying 267

of test data (privacy risk) ([27]). 268

Coverage means how well the synthetic data covers 269

the categories present in the real data. Boundaries 270

is a measure of how well the synthetic data follows 271

the min/max boundaries set by the real data. The 272

score is between 0 and 1, and the higher the score 273

the better. Overfitting is evaluated by a measure of 274

how many rows are copies of the original data. 275

Using an automated pipeline for quality evaluation 276

is easy to implement and use but may not show all 277

quality dimensions that should be investigated if the 278

synthetic data is to be used in a safety critical clini- 279

cal context ([4]). While average scores are practial 280

for benchmarks, they can obscure deviating perfor- 281

mance for specific features, and diagnostic exercises 282

was performed to evaluate featurewise similarity in 283

addition to the scores. In this pipeline, there was 284

no bias or fairness metrics, no clinical usability, and 285

only one privacy measure. For the context of this 286

experiment, this was deemed sufficient. 287

4 Results 288

There were significant differences in the resource 289

needs for running the generation pipelines, and only 290

minor differences in the measured average statistical 291

similarity between the generators. 292

The computational needs for the generative meth- 293

ods were significantly higher than the traditional 294

method, to the point where certain parts of the 295

experiment were not feasible to complete. When 296

meta data was defined, the GaussianCopula outper- 297

formed the two other models in all similarity scores. 298

When meta data was not defined, the performance of 299

GaussianCopula dropped to below that of the deep 300

generative method TVAE, the TVAE performance 301

was more robust to the lack of meta data. 302

The results section is divided into answering the 303
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Table 1. Practical performance of the different models,
training time and model size. Only the experiment
without meta data was run on the laptop.
* The CTGAN laptop experiment was manually aborted.
** The CTGAN HPC experiment without meta data was
not completed due to CUDA out of memory errors.

Generation method Time laptop Time Azure Model size

WITHOUT META DATA
GaussianCopula NA 17 sec 1.5 Mb
CTGAN more than 420.000 sec* NA** 7825 Mb
TVAE 54.000 sec 1200 sec 7.5 Mb

WITH META DATA
GaussianCopula NA 4 sec 0.5 Mb
CTGAN NA 480 sec 33 Mb
TVAE NA 120 sec 0.5 Mb

two questions, respectively.304

4.1 Pipeline requirements for process-305

ing capacity (Q1)306

The models were trained on 20 percent of the cleaned307

original dataset (11.998 records) on the virtual ma-308

chine, both with and without defining meta data309

(numerical vs categorical values). Table 1 shows310

results of training time and storage needs for the311

models. The training time was notably shorter for312

the traditional GaussianCopula model compared313

to the deep generative models with a factor rang-314

ing from 30 to 565 times faster. Without defined315

meta data, and running on the azure server, the316

traditional GaussianCopula model used 17 seconds317

and the TVAE used 1200 seconds. Notably, the318

CTGAN evaluation in the ”without meta data” sce-319

nario could not be completed due to CUDA out320

of memory errors on our GPU setup, highlighting321

the substantial memory requirements of this model322

when processing unstructured data. With meta data323

the training was faster for all models, rendering the324

relative differences smaller but with a similar distri-325

bution. Storage was notably smaller when the meta326

data was defined.327

The laptop setup proved impractical for the deep328

generative methods. While the TVAE generator329

could run, it took an excessively long time. The330

CTGAN was stopped after two days due to its pro-331

longed runtime. These results highlight the necessity332

of High Performance Computing (HPC) resources333

for deep generative methods when working with334

tabular data of this scale.335

4.2 Similarity benchmark of genera-336

tor performance on tabular data337

(Q2)338

Table 2 shows results from the similarity evaluation339

on the synthetic data run on models with and with-340

out defined meta data (as detailed in meta data341

schema of SDV developer guide 13). With meta342

Table 2. Quality evaluation scores of the models run
with and without manually defined meta data. Scores are
between 0 and 1, higher score is better quality. Descrip-
tion of the quality parameters in section 3.6. Quality
evaluation and details can be found in the [15] library.
(See larger version and data labels dictionary in ap-
pendix.)
** The CTGAN HPC experiment without meta data was
not completed due to CUDA out of memory errors.

Metrics GaussianCopula CTGAN TVAE

WITH META DATA
Quality score
Column shapes 0.9247 0.8831 0.8813
Column pair trends 0.8711 0.8211 0.8158
Diagnostics
Coverage 0.97 1.0 0.93
Copies 1.0 1.0 1.0
Boundaries 1.0 1.0 1.0

WITHOUT META DATA
Quality score
Column shapes 0.76 NA** 0.81
Column pair trends 0.61 NA** 0.72
Diagnostics
Coverage 0.92 NA** 0.76
Copies 1.0 NA** 1.0
Boundaries 1.0 NA** 1.0

data, the TVAE performs adequately but not as 343

well as the simple statistical approach (Gaussian- 344

Copula) on the tabular data, with slightly lower 345

scores for column shapes, column pair trends and 346

coverage. The TVAE shows slightly lower quality 347

scores than the CTGAN and lower coverage. The 348

table values for metrics in the experiment with manu- 349

ally defined meta data have four digits to emphasize 350

the difference between CTGAN and TVAE. 351

Analysing the coverage pr feature, the column 352

shapes showed a more consistent performance with 353

the GaussianCopula with the average score of 0.97 354

versus the TVAE average score of 0.93. The graphs 355

for column coverage (see figure 1) show a difference 356

in the performance for numerical versus (dark blue 357

columns) categorical values (light blue columns). 358

The TVAE performs better than the GaussianCop- 359

ula on numerical values, while the GaussianCopula 360

performs better for the categorical values. The same 361

trend was seen on column shapes. 362

The TVAE performed noticeably worse for one 363

specific variable (tumor morphology). The distribu- 364

tion of this variable was quite particular and difficult 365

to capture for a generator, with ductal carcinoma 366

(code 8500) being noticeably larger than the other 367

groups with 44.426 instances, Lobular carcinoma 368

(code 8520) with 7245 instances and the residual 28 369

groups having a count below 1000 instances (224-889 370

instances). The distribution of the original data for 371

this feature is shown in Figure A.4. 372

When meta data was not manually defined, the 373

TVAE showed better overall similarity performance 374

scores than the GaussianCopula, showcasing the 375

potential of deep generative models compared to tra- 376
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Figure 1. The figure shows a detailing of the average
column coverage score provided in Table 2 in the experi-
ment when the meta data was defined, comparing a) the
TVAE results and b) the GaussianCopula results. The
dark blue RangeCoverage is used for numerical values
and the light blue CategoryCoverage is for categorical
data. See the appendix for a bigger version of the image.

ditional models, for learning the underlying patterns377

of a dataset.378

5 Discussion379

All pipelines were faster when meta data was380

manually defined. The statistical GaussianCopula381

pipeline was the fastest and smallest in terms of stor-382

age need. When it is necessary to work with the com-383

putationally demanding deep generative pipelines,384

it could be beneficial to use the statistical model385

to iterate on your experiments and see that your386

meta data is correct before running the more time-387

consuming generators. It was possible but not prac-388

tical to run the TVAE generator on a laptop since389

the size of the seed dataset had to be limited and it390

had an impractically long runtime (15 hours). The391

resource needs for the CTGAN in this experiment392

confirms the potential extent of computational re-393

quirements for tabular data generation with deep394

generative models, even in the HPC setting. For the395

community to move forward in a sustainable way,396

it would be beneficial to choose traditional and less397

compute intensive methods when quality needs and398

performance requirements allow it.399

When choosing a generation method, one should400

consider all relevant quality dimensions– similar-401

ity, usability (clinical and other), privacy, bias and402

fairness and carbon footprint ([4]) and prioritize403

them according to the intended downstream use of404

the dataset. While investigating all perspectives405

is particularly important in potential high-impact406

areas like healthcare, fairness was excluded in this407

experiment due to the dataset composition (one gen-408

der and homogeneous population, lacking minority409

groups).410

The Gaussian Copula had the highest average 411

quality score when meta data was defined, while the 412

TVAE showed better consistency in performance 413

independently of predefined meta data. The detailed 414

findings of the column coverage (figure 1 ) shows 415

that for certain parameters (tumor morphology) the 416

TVAE showed poor column coverage. This can be 417

explained by the disproportionate distribution of 418

this variable in the training data. Gaussian Copula 419

seemed to perform noticeably worse on numerical 420

data compared to the TVAE, but as there were few 421

numerical values in the dataset this did not affect 422

the average scores significantly. 423

An average score such as the SDV quality evalua- 424

tion score used in this paper is useful for benchmark- 425

ing generators on a generic level, but in choosing 426

the relevant quality parameters for a specific clinical 427

case, one must consider the cohort and what clinical 428

desiderata are relevant for these according to the 429

intended use. 430

A conclusion on quality performance and choice 431

of an optimal generation model cannot be generic 432

and must always be adjusted to the specific data 433

and clinical case at hand. 434

Limitations This paper is a synthetic experiment 435

with no downstream use, and therefore no consider- 436

ations for specific parameters have been discussed. 437

The training dataset used in the experiment is a 438

synthetically generated dataset. Since the real data 439

is not accessible, the actual objective quality com- 440

pared to reality cannot be determined. Creating a 441

synthetic dataset based on a synthetic dataset can 442

only be seen as a practical or methodological test. 443

An important limitation of this study is the reliance 444

on a single library (SDV) for implementation of the 445

synthetic data generation models. While SDV is 446

well-documented and widely cited, using a single 447

library may limit the generalizability of our findings. 448

Future studies should consider implementing models 449

using multiple libraries to provide a more comprehen- 450

sive comparison. There are also other open libraries 451

available like the recently published SynthCity at 452

Cambridge ([28]), and new evaluation metrics are 453

being proposed in the literature. The SDV pipeline 454

could preferably be expanded by additional quality 455

metrics ([29]). In the experiment, we relied on two 456

out-of-the-box reports natively provided by the SDV 457

library: ”The Diagnostic Report” and ”The Quality 458

Report”. According to the library developers, these 459

two reports provide scores for an aggregated and 460

overall comparison of original and synthetic datasets. 461

While this approach offers a simplified version of 462

reporting, focusing on computational resources and 463

their comparisons, we acknowledge that it lacks more 464

rigorous statistical testing. In the experiment, the 465

standard SDV pipeline metrics were used as these 466

are perceived as commonly used for statistical sim- 467
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ilarity. It is unclear whether this score properly468

rewards the desired model behaviour, resulting in469

uncertainty around the results. The evaluation met-470

rics used in this case will not evaluate the usability471

of the data and the clinical logic like the realism472

of the TNM classification of tumors in the different473

cases or in downstream performance. Fairness met-474

rics are not included, and only a simple similarity475

metric of statistical closeness is used for measuring476

privacy. The study is limited to only three genera-477

tion methods. In the future, we plan to investigate478

newer and potentially more effective models such as479

diffusion and large language models.480

To conclude on the actual clinical utility of the481

synthetic data produced by the pipelines, this ex-482

periment should be recreated on a real dataset and483

for a defined downstream application. Other qual-484

ity metrics and mechanisms should also be added,485

to evaluate the clinical usability and logic of the486

resulting synthetic data.487

To better guide practitioners in making sustain-488

able choices, computational resources should be in-489

cluded as a reporting parameter for benchmarking of490

methods. To ensure a focus on sustainable comput-491

ing, metrics of training time and model size could492

be translated into a more comparable metric like493

carbon footprint.494

Further work This experiment covers one data495

modality - tabular data - with synthetic national496

cancer registry type data on breast cancer, and497

using two deep generative methods and one tradi-498

tional method. The generators used were considered499

most common at the time of the experiment and500

available in a public pipeline. To investigate the501

robustness of the conclusions, there is a need for a502

wide range of benchmarks on a range of different503

datasets, investigating other types of both deep and504

traditional generators and for differing use cases505

and data modalities, including more thorough hy-506

perparameter exploration. Future studies could con-507

sider implementing models from multiple libraries508

to provide a more comprehensive comparison. For509

instance, the recently published SynthCity library510

developed at Cambridge University ([28]) could be511

used alongside SDV to broaden the scope of the512

analysis and validate findings across different im-513

plementations. In addition, future research should514

investigate the differences in quality scores for a515

broader range of evaluation criteria covering top-516

ics like fairness, privacy and other representativity517

(similarity and usability) metrics.518

6 Data availability519

The synthetic data from the Dutch breast-cancer520

cohort is available at the website of the Cancer521

Registry of Netherland ([16]).522
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A Figures and images653

This appendix includes larger images of the figures654

in the article and an additional data dictionary from655

the IKNL dataset.656

Figure A.1. Snip of the raw data from the IKNL
dataset
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Figure A.2. Detailing of the average column coverage
score when the meta data was defined, comparing a)
TVAE results and b) GaussianCopula results. The dark
blue RangeCoverage is for numerical values and the light
blue CategoryCoverage is for categorical data.
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Figure A.3. Data dictionary - labels from the IKNL
dataset. The complete dictionary is available at the
website of the Cancer Registry of Netherland ([16]).
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Figure A.4. Distribution of tumor morphology in the
IKNL dataset (the training dataset for this experiment).

11


	Introduction
	Related Work
	Methods
	Dataset
	Data preparation
	Choice of synthetic data generation models
	Setting up the infrastructure
	Running the experiment
	Quality evaluation

	Results
	Pipeline requirements for processing capacity (Q1)
	Similarity benchmark of generator performance on tabular data (Q2)

	Discussion
	Data availability
	Figures and images

