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ABSTRACT

Multi-modal learning has become increasingly popular due to its ability to lever-
age information from different data sources (e.g., text and images) to improve
the model performance. Recently, CLIP has emerged as an effective approach
that employs vision-language contrastive pretraining to learn joint image and text
representations and exhibits remarkable performance in zero-shot learning and
text-guided natural image generation. Despite the huge practical success of CLIP,
its theoretical understanding remains elusive. In this paper, we formally study
transferrable representation learning underlying CLIP and demonstrate how fea-
tures from different modalities get aligned. We also analyze its zero-shot transfer
performance on the downstream tasks. Inspired by our analysis, we propose a
new CLIP-type approach, which achieves better performance than CLIP and other
state-of-the-art methods on benchmark datasets.

1 INTRODUCTION
Multi-modal learning (Ngiam et al., 2011) integrates information from a variety of data types, resulting
in AI systems that are both robust and precise. Recently, CLIP (Radford et al., 2021) emerged as
a milestone work that leverages vision-language contrastive pretraining to jointly learn image and
text embeddings, using the vast amounts of image-text data available on the web. During the training
process, CLIP considers image-text data that appear together as positive pairs and other combinations
as negative pairs. The goal is to maximize the embedding similarity for the positive pairs while
minimizing it for the negative pairs. Remarkably, this approach has achieved significant success
in zero-shot transfer (Lei Ba et al., 2015), indicating the model’s ability to handle a great variety
of tasks without prior exposure to any of their training data. Inspired by CLIP’s groundbreaking
zero-shot capabilities, subsequent studies (Yao et al., 2022; Li et al., 2022; Mu et al., 2022; Goel
et al., 2022; Zhai et al., 2022; Alayrac et al., 2022) emerged with the primary objective of further
enhancing CLIP’s zero-shot performance. Despite the empirical success of CLIP in zero-shot transfer,
the theoretical understanding of how it works remains elusive. An intriguing inquiry is thus: How
does CLIP learn representations that are transferable to the various downstream tasks?
This paper delves into the mechanisms through which CLIP learns transferable representations (i.e.,
embeddings) and demonstrates how such representations ensure successful zero-shot transfer for
downstream tasks. We begin with identifying several challenges associated with the theoretical
analysis of the transfer mechanism in CLIP: (1) alignment between different modalities, (2) unique
features in different feature domains, and (3) sparsity of shared features across domains. In particular,
unlike unimodal contrastive learning where the embedding function is shared, CLIP employs different
embedding functions f and g for different modalities. This difference poses the alignment challenge
specific to multi-modal learning. Secondly, the feature domains lie in different spaces and may lack a
one-to-one mapping. Some features are shared, while others are unique. Take Figure 1 as an example.
The attribute “stop sign” is a shared feature in both the image and the text. However, the “blue sky”
and “white cloud” are examples of unique features in the images that are not evident in the caption.
This misalignment causes bad alignment at initialization. Lastly, the shared features in multi-modal
contrastive learning (e.g., objects) can be sparse, compared to the unique features (e.g., textures,
colors). Consequently, certain image-text combinations, despite not being paired, may still have
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Figure 1: Illustration of the Challenges. Left: The feature domains are different and not one-to-one mapping.
We need to learn transferrable features while preserving the shared features. Right: The image-text data show in
the same batch can have similar shared features since the shared features are sparse (here is “stop sign”). The
learned similarities between each image-text pair are very close.

shared features, suggesting they should be treated as positive pairs. This challenges the traditional
view of considering image-text data not paired together as negative pairs.
To tackle the above challenges, we present our theoretical result for transferable representation
learning in CLIP and summarize our contributions as follows.
• We theoretically examine transferable representation learning in CLIP. Our analysis shows that if a

near-optimal network is obtained on the training data, features from different modalities become
aligned, enabling zero-shot learning if appropriate prompts are issued. We also demonstrate
that, interestingly, contrastive learning with sparse features may lead to unexpected positive pairs.
Therefore, we need to take it into careful consideration. Moreover, while previous studies typically
require a very large batch size for training, our theoretical framework applies to small batches.

• Building upon our general theoretical findings, we delve deeper into specific cases, providing more
comprehensive theoretical insights. We illustrate how multi-modal learning aligns different features
and reveal when the learned features obtained by CLIP can outperform those obtained through
naive square loss. By comparing CLIP loss and square loss, we formally established that CLIP is
an effective learning objective for zero-shot transfer tasks, whereas square loss does not.

• We conduct experiments on real data to confirm our theoretical predictions. Furthermore, inspired
by our theoretical findings, we propose a new regularization technique for CLIP that effectively
leads to improved zero-shot performance. Empirical results confirm that the proposed regularization
can effectively improve the zero-shot performance across various tasks.

Notation. We use lowercase letters, lowercase boldface letters, and uppercase boldface letters
to denote scalars, vectors, and matrices, respectively. For a vector x, we use ∥x∥2 to denote its
Euclidean norm. For a matrix W, we use ∥W∥F to denote its Frobenius norm. Given two sequences
{xn} and {yn}, we denote xn = O(yn) if |xn| ≤ C1|yn| for some absolute positive constant
C1, xn = Ω(yn) if |xn| ≥ C2|yn| for some absolute positive constant C2, and xn = Θ(yn) if
C3|yn| ≤ |xn| ≤ C4|yn| for some absolute constants C3, C4 > 0. We also use Õ(·) to hide
logarithmic factors of d in O(·). Additionally, we denote xn = poly(yn) if xn = O(yDn ) for some
positive constant D, and xn = polylog(yn) if xn = poly(log(yn)). We also denote by xn = o(yn)
if limn→∞ xn/yn = 0. Finally we use [N ] to denote the index set {1, . . . , N}. In the function space,
let Br(f) denote the ball of radius r centered at f , with the metrics ∥ · ∥∞. A set C is the covering
of function class F with radius r, if and only if F ⊆ ∪f∈CBr(f). The covering number of F with
radius r is the minimum cardinality of any covering of F , denoted as N (F , r).

2 RELATED WORK
Vision-Language Pre-Training. While labeled data are expensive and relatively scarce, images
paired with text descriptions are available in much larger volumes (Thomee et al., 2016). Conse-
quently, numerous studies (Gomez et al., 2017; Sariyildiz et al., 2020; Desai & Johnson, 2021; Zhang
et al., 2022; Liang et al., 2023) have focused on leveraging free-form natural language supervision
to learn visual representations. Recently, CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021)
have emerged as prominent works extending contrastive learning to the vision-language pre-training
framework. Built upon CLIP’s success, several studies (Pham et al., 2021; Gao et al., 2022; Saito
et al., 2022) have refined CLIP’s contrastive methodology to better learn from web-scale image-text
data. Notably, UniCL (Yang et al., 2022) additionally incorporates image-label data, enabling the
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identification of a broader range of positive pairs. FILIP (Yao et al., 2022) introduces a fine-grained
contrastive loss tailored for transformer architectures. DeCLIP (Li et al., 2022) and SLIP (Mu
et al., 2022) additionally incorporate single-modality self-supervised learning. CyCLIP (Goel et al.,
2022) introduces two regularizing terms enforcing cross-modal and in-modal consistency. LiT (Zhai
et al., 2022) and Flamingo (Alayrac et al., 2022) consider training from pre-trained single-modality
models. In our empirical validation of theoretical findings, we employ the same setting and train
from pre-trained image and text encoders.
Theory of self-supervised learning. Numerous studies have been conducted to understand unimodal
contrastive learning, a widely used self-supervised learning approach rooted in data augmentation
(Saunshi et al., 2019; Tsai et al., 2020; Mitrovic et al., 2020; Tian et al., 2020; Wang & Isola, 2020;
Chen et al., 2021; Wang & Liu, 2021; Tosh et al., 2021b;a; HaoChen et al., 2021; Wen & Li, 2021;
Saunshi et al., 2022). In multimodal learning, theoretical explanation has been explored in several
studies (Zadeh et al., 2020; Huang et al., 2021; Lee et al., 2020; Nakada et al., 2023). These works
have established that multimodal learning can surpass unimodal learning in terms of performance.
For instance, Lee et al. (2020) employed square loss prediction to learn image representations
under certain conditional independence assumptions, offering generalization performance guarantees.
Meanwhile, Nakada et al. (2023) examined CLIP within specific linear representation settings and
emphasized its correlation with singular value decomposition (SVD). We note that, these related
works have not considered the zero-shot transfer mechanism and thus can’t adequately explain the
zero-shot transfer capability of CLIP.

3 PROBLEM SETTING AND PRELIMINARIES
3.1 DATA DISTRIBUTION

In our paper, we focus on the setting where the image x and the text y are conditionally independent
given the shared feature z.
Assumption 3.1. Let (x,y) be generated from the joint distribution Dx×y. We assume z to be
a shared feature of x,y satisfying x ⊥ y|z, and further denote (x,y, z) that follows the joint
distribution Dx×y×z with marginal distributions Dx×z,Dy×z. We further assume z to be a discrete
and sparse random variable z ∈ V = {v1, . . . ,vK} with pk := P(z = vk).
Intuitively speaking, the shared feature z in the above assumption may denote a set of shared topics
or keywords underlying image x and text y. We can consider the following simple example to
understand it. Let z = [0, 1, 0, 1]⊤ represent the existence of topics “chair” and “table” and the
absence of topics “car” and “train”. Then, x and y are generated given z such that they both include
“chair” and “table”, yet with different unique features and noises.
Remark 3.2. The assumption of conditional independence is frequently made in the analysis of
self-supervised learning (Saunshi et al., 2019; Lee et al., 2021) and dimension reduction algorithms
(Fukumizu et al., 2004; 2009). Under the premise that x,y are conditionally independent (CI) given
z, it can be posited that any additional patterns found within x|z and y|z should be interpreted as
unique features. Notably, in the absence of discrete and sparse constraints, a suitable z can always be
found, given that one could simply assign z = x or z = y. From the generative model’s point of
view, Assumption 3.1 naively holds when the data are from some generator with x = T1(z, ξ) and
y = T2(z, ζ) where ξ ⊥ ζ|z.
3.2 LEARNING VIA CONTRASTIVE LOSS

CLIP is trained on millions of image and text pairs. Formally, we assume the data set S is drawn from
the distribution Dx×y defined in Assumption 3.1. The CLIP architecture has three main components:
(i) an image encoder network g that can encode the image x into the embedding g(x) ∈ Rd; (ii) a
text encoder network h that can encode the text y into an embedding vector h(y) ∈ Rd; and (iii) a
score function f(x,y) = sim(g,h) that measures the similarity between the image x and the text y
given their embeddings g,h

(
e.g., f(x,y) = ⟨g(x),h(y)⟩

)
.

During the training, we will sample a batch of image-captions pairs S′ = {xi,yi}Bi=1 ⊆ S. The
contrastive objective in CLIP aims to align the image representation g(x) and text representations
h(y) by minimizing the following loss function,

LS′(f, τ) =
1

B

∑
i∈S′

− log

(
exp

(
f(xi,yi)/τ

)∑
j∈S′ exp

(
f(xj ,yi)/τ

))+
1

B

∑
i∈S′

− log

(
exp

(
f(xi,yi)/τ

)∑
j∈S′ exp

(
f(xi,yj)/τ

))
=

1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xj ,yi)− f(xi,yi)

]
/τ

))
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+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xi,yj)− f(xi,yi)

]
/τ

))
, (3.1)

where τ > 0 is a temperature parameter. The training loss LS′ over a single epoch can be viewed as
the empirical version of the following population loss,

LDB (f, τ) = E
[
log

( ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

))]

+ E
[
log

( ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

))]
, (3.2)

where the expectation is taken with respect to all B random pairs (xt,yt) i.i.d. sampled from Dx×y.
Therefore, CLIP learns the score function f with the corresponding representations g and h by
minimizing LDB (f, τ). In fact, we can divide the training dataset S into n batches ∪k∈[n]Sk. The
following theorem shows that the empirical loss ÊS(f, τ) := (1/n)

∑
k∈[n] LSk

(f, τ) concentrates
on the population loss when n is large enough.
Theorem 3.3. Suppose δ ∈ (0, 1) and n ≥ (8τ−1ϵ−2M logB) log(2N (F , ϵ/8M)/δ), then with
probability at least 1− δ, we have

|L̂S(f, τ)− LDB (f, τ)| ≤ ϵ

for all function f ∈ F and |f | ≤ M , where N (F , ϵ) is the covering number of F .

Theorem 3.3 shows that the generalization gap |L̂S(f, τ)−LDB (f, τ)| approaches zero as the number
of batches n increase. In practice, the batch size is limited by the GPU’s memory and is smaller than
the number of batches (or the number of training examples). Therefore, instead of letting the batch
size B go to infinity like in prior studies (Wang & Isola, 2020; Pham et al., 2021), we keep the batch
size B as a constant in (3.2) and Theorem 3.3 to enable the analysis of CLIP even for small batches.
Pham et al. (2021) also provided the generalization gap for CLIP. However, their result is for B → ∞
and a loss function without the log term, i.e., exp

(
f(xi,yi)/τ

)
/
(∑

j∈S′ exp
(
f(xj ,yi)/τ

))
.

4 TRANSFERRABLE REPRESENTATION LEARNING
The key idea of CLIP is to pull the embeddings of positive image-text pairs together while pushing the
embeddings of negative pairs apart. For the data pair (x,y′) generated with x ∼ Dx|z,y

′ ∼ Dy|z′ ,
(x,y′) is a positive pair if z = z′ and a negative pair if z ̸= z′. The reason is that when z = z′, the
joint distribution of (x,y′) is the same as the joint distribution of (x,y) ∼ Dx×y|z since x,y are
mutually independent given the latent variable z. Next, we will show that the learning objective (3.2)
will lead to the distinguishable representation of different latent variables z under certain assumptions.
Assumption 4.1 ((α, β, γ)-Completeness). There exists a score function f∗ bounded by 1 (i.e.,
|f∗| ≤ 1) with f∗ = sim(g∗,h∗) satisfying the following properties,
• For any z ̸= z′, let x ∼ Dx|z,y ∼ Dy|z,x

′ ∼ Dx′|z′ ,y′ ∼ Dy′|z′ . With probability at least 1− α,
we have f∗(x′,y) ≤ f∗(x,y)− γ and f∗(x,y′) ≤ f∗(x,y)− γ.

• Let (x,y, z) ∼ Dx×y×z, assume E(y,z)

[
Varx|z(f∗(x,y))

]
,E(x,z)

[
Vary|z(f∗(x,y))

]
≤ β.

In simple terms, Assumption 4.1 is made on the data distribution to allow the existence of good
encoding functions g∗ and h∗. Specifically, the first bullet guarantees that the data with different z,
the underlying shared feature, is well distinguishable with margin γ. If the data from different z does
not satisfy this condition, the majority of the diagonal term f(xi,yi) in (3.1) can be smaller than
the off-diagonal term f(xj ,yi). In other words, all encoding functions may yield higher similarity
score for negative pairs than positive pairs, which is not favored by the mechanism of CLIP. The
second bullet requires the similarity score within each underlying shared feature not vary too much,
which is naturally satisfied if the learned embeddings g(x),h(y) are consistent and do not vary too
much given the same z. In the following theorem, we establish the result that a CLIP model trained
to convergence exhibits desirable properties in representation learning.

Theorem 4.2. Suppose Assumption 4.1 hold and we can find an ϵ approximate minimum f̂ ∈ F
with respect to the temperature τ such that f̂ is bounded by M and

LDB (f̂ , τ) ≤ LDB (f∗, τ) + ϵ. (4.1)
Then the following results hold:

4



Published as a conference paper at ICLR 2024

1. For (x, z) ∼ Dx×z, {yk ∼ Dy|vk
, k ∈ [K]}, let y∗ =

∑
k∈[K] 1(z = vk)yk , we have

E
[
log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]
≤ ϵ′. (4.2)

2. For (y, z) ∼ Dy×z,{xk ∼ Dx|vk
, k ∈ [K]}, let x∗ =

∑
k∈[K] 1(z = vk)xk, we have

E
[
log

( ∑
k∈[K]

exp
([
f̂(xk,y)− f̂(x∗,y)

]
/τ

))]
≤ ϵ′. (4.3)

3. For (x,y, z) ∼ Dx×y×z, variance E(y,z)

[
Varx|z(f̂(x,y))

]
+ E(x,z)

[
Vary|z(f̂(x,y))

]
≤

16M2ϵ′.
where ϵ′ = (CB+2) ·

[
ϵ+Cτ−1MBα+Cτ−1(βMB)1/3+2B exp(−γ/τ)

]
and C = Õ(1), CB =

Õ(maxk p
−1
k /B).

Remark 4.3. Theorem 4.2 establishes a soft margin between CLIP’s learned embeddings on data of
different z’s. For instance, if an image x has a shared feature z = v1, we have its accurate description
y∗ =

∑
k∈[K] 1(z = vk)yk = y1. From (4.2), it follows that log

(∑
k∈[K] exp

([
f̂(x,yk) −

f̂(x,y1)
]
/τ

))
is small. This can only occur when f̂(x,yk) < f̂(x,y1) for all k ≥ 2, i.e., the

trained model always yield higher similarity score for this image-text pair as compared to all other
texts generated on different topics. This outcome aligns with the expectation that image-text pairs
with the same shared feature will yield the highest similarity score.

Remark 4.4 (Choice of temperature parameter). When the data is well separated (i.e., α, β = 0), a
smaller temperature will invariably lead to a smaller ϵ′ and, consequently, better performance. In
practice, τ is typically set to be 0.01, a sufficiently small value that ensures the term exp(−γ/τ) is
less than 0.0000454 for γ = 0.1. However, when the data is nonseparable (i.e., α and β exceed 0), a
balance must be struck between the terms related to τ . As a consequence, τ should not be too small.
A reasonable choice would be τ = O(γ/ log(B/ϵ)).

Remark 4.5 (Batch size). While we do not demand an increasing batch size B, our analysis does
suggest a preference for larger batch sizes, as they can reduce the constant CB and consequently ϵ′.

5 ZERO-SHOT TRANSFER
In this section, we will discuss why the embeddings learned by CLIP in Section 4 enable zero-shot
transfer learning tasks. In the zero-shot transfer task, we have K prompts {yk, k ∈ [K]} where
yk ∼ Dy|vk

. For a new image x generated from Dx, we want to predict the label of the shared
feature z in x. For example, if x has shared feature v1, then the label of x should be 1. As suggested
by Radford et al. (2021), we calculate the similarity score between x and the prompts yk and pick
the indices for top-r scores as the labels of x. The following corollary provides the guarantee of
zero-shot transfer learning for CLIP.

Image 
encoder

Text 
encoder

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Prompt:  ”A photo of a                       .“

Image data

Image-text data

”A �ight was traveling when the 
animal got free on tuesday night“

......

”This is real fast food!“

Pre-training

......

Figure 2: Illustration of zero-shot transfer learning. With the encoders jointly pre-trained on the image-text
dataset, zero-shot transfer is done by issuing prompts according to all the potential labels of the task. With
similarity score computed between the image embedding and all prompt embeddings, the label that resulted in
highest similarity is the prediction.

5



Published as a conference paper at ICLR 2024

Corollary 5.1. Suppose the result of Theorem 4.2 holds for the learned similarity function f̂ . Then
we calculate the similarity score f̂(x,yk) for all k ∈ [K] and pick the indices of the top-r scores
within the set {f̂(x,yk)} as the predictions of the image x. Then the top-r error is bounded by
ϵ′/ log(1 + r).

In other words, Corollary 5.1 guarantees that a trained CLIP model can achieve small top-r error,
where r is an integer usually selected as 1 or 3 in real-data experiments.
Remark 5.2. The result in Corollary 5.1 can be generalized to out-of-distribution zero-shot transfer.
For example, we can deal with the case where the distribution of the prompts Dy|vk

and the image
distribution Dx are shifted. As long as the χ2 distance between the shifted distributions is bounded,
we can provide a top-r error guarantee (see Appendix F for a detailed discussion).

Next, we will introduce a specific problem to illustrate how CLIP can learn transferable features with
distinguishable margins, which is hard to achieve by simple square loss.
Definition 5.3 (A Case Study). Let shared feature z ∈ RK1 be random variable uniformly drawn from
the set V = {v1, . . . ,vK} where ∥vk∥2 = 1, maxk ̸=k′⟨vk,v

′
k⟩ = 1 − γ. Let ξ ∈ RK2 , ζ ∈ RK3

be unique random features satisfying ∥ξ∥2, ∥ζ∥2 ≤ R and are mutually independent given z. The
image-text pair is generated as

x = G

[
z
ξ

]
= G1z+G2ξ, y = H

[
z
ζ

]
= H1z+H2ζ,

where G ∈ Rd1×(K1+K2) is the image dictionary with full rank (K1 +K2), H ∈ Rd2×(K1+K3) is
the text dictionary with full rank (K1 +K3).

For the distribution in Definition 5.3, locked image-text tuning is enough to learn transferrable
features (Zhai et al., 2022). In particular, we choose the score function as fW = ⟨g(x),h(y)⟩ where
the embeddings are g(x) = Wx,h(y) = y. Next, we verify Assumptions 4.1 for the specified
distribution.
Lemma 5.4 (Completeness). There exist a score function f∗(x,y) = ⟨W∗x,y⟩ with W∗ ∈ Rd2×d1

satisfying
• |f∗| ≤ 1,
• For (x,y, z) ∼ Dx×y×z, variance E(y,z)

[
Varx|z(f∗(x,y))

]
= E(x,z)

[
Vary|z(f∗(x,y))

]
= 0,

• Let x ∼ Dx|z,y ∼ Dy|z,x
′ ∼ Dx′|z′ ,y′ ∼ Dy′|z′ where z ̸= z′. With probability 1, we have that

f∗(x′,y) ≤ f∗(x,y)− γ and f∗(x,y′) ≤ f∗(x,y)− γ.

Then we can use the standard gradient descent on the empirical loss to learn the score function f , i.e.,

W(t+1) = W(t) − η∇WL̂S(f, τ).

The following theorem gives convergence guarantees for CLIP and provides the upper bound of its
zero-shot transfer error.
Theorem 5.5. For sufficiently large n, set the learning rate η = O(ϵτ2∥G∥−2∥H∥−2

2 (1 + R)−4),
gradient descent can find Ŵ within 4∥W(0) − W∗∥2F /(ηϵ) iterations such that LDB (f̂ , τ) ≤
LDB (f∗, τ) + ϵ where f̂ = ⟨Ŵx,y⟩ . In addition, the top-r zero-shot transfer error is bounded by

ϵ′/ log(1 + r), where ϵ′ = (CB + 2) ·
[
ϵ+ 2B exp(−γ/τ)

]
and CB = Õ(K/B).

5.1 SQUARE LOSS FAILS ZERO-SHOT LEARNING

Another conceivable method is to use the square loss to align the embeddings of x,y. Here, we
investigate why such simple loss can not successfully learn transferrable representations and reveal
the significance of contrastive loss in multi-modal learning. In particular, we use E[∥g(x)− y∥22] to
learn the embedding g. By Lee et al. (2021), we know that the embedding g(x) indeed preserves
the information of the shared feature z and can be used to predict the label k (the index of z in the
dictionary) using linear probing with additional Õ(K) examples {(k,x),x ∼ Dx|vk

}. Given the
success of g as a representation for the downstream classification problem, a natural question arises:
Can the learned embedding be used for the zero-shot transfer task, using only K prompts yk, k ∈ [K]
where yk ∼ Dy|vk

?
Surprisingly, the answer is negative. We find that even if we can train with population risk and get
the Bayesian optimal predictor, the learned representation g is not suitable for the zero-shot transfer.
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To make a fair comparison, we also consider the data distribution introduced in Definition 5.3 and
present the following results.

Theorem 5.6. The Bayesian optimal representation g is g(x) = H

[
z

E[ζ|z]

]
.

Since E[ζ|z] lies in the unique feature space, the accuracy of zero-shot learning can be largely
determined by the unique features ζ, i.e., the quality of the prompt. In detail, given a set of prompts
{yk}, we evaluate the similarity between representations g(x) and h(yk) = yk under different
similarity scores, including (1) inner product similarity: f(x,yk) = ⟨g(x),yk⟩; (2) cosine similarity:
f(x,yk) = ⟨g(x)/∥g(x)∥2,yk/∥yk∥2⟩; and (3) L2 similarity: (−1) · ∥g(x) − h(yk)∥2. The
following corollary formally states the negative result.

Corollary 5.7. For the distribution in Definition 5.3 with H =

[
I
0

]
, margin γ < 1/3, text unique

feature ζ ∈ RK3 drawn from {e1, e2} with probability 1/3, 2/3 respectively. Then, the zero-shot
top-1 error is at least 1/(3K) regardless of the three similarity scores.
Remark 5.8. By Theorem 5.5, we can achieve arbitrarily small top-1 error by CLIP as long as ϵ and
τ are sufficiently small. However, for the representation learned from the square loss, the top-1 error
is at least a constant even if we can achieve the Beyasian optimal predictor.

6 LEARN BETTER REPRESENTATION VIA REGULARIZATION
In Corollary 5.1, we know that CLIP can achieve a small error for zero-shot transfer tasks. In this
section, we investigate how large the margin can be achieved between different features z’s. Under
the same condition of Corollary 5.1, we present the following corollary.

Corollary 6.1. Suppose the result of Theorem 4.2 holds for the learned similarity function f̂ . We
calculate the similarity score f̂(x,yk) for all k ∈ [K]. Then with probability at least 1 − 4ϵ′, the
top-1 result gives the correct answer with a margin τ .

Here, the margin depends on the temperature parameter τ . Note that we only achieve the margin with
τ instead of γ guaranteed in the Assumption 4.1. Therefore, CLIP needs to choose τ ≪ γ to ensure a
good performance, indicating a theoretical gap for the learned margin. To further investigate this gap,
we consider the simple case study in Definition 5.3 and have the following negative result.
Theorem 6.2. Under the same condition as Theorem 5.5, there exists a special case with initialization
W(0), such that when we train the model with polynomial iterations T = poly(η−1, ϵ, d1, d2) , with
probability at least 0.99, the top-1 result can only give the correct answer with a margin Õ(τ).

Such a phenomenon also exists in real data: the margin will decrease when temperature τ decreases
(see Figure 3). The reason is that softmax function L(a) = log(

∑
i exp(ai)) is convex but not

strongly convex and has an exponential-decaying tail. Once the score function f with the features g
and h achieves the margin of order Ω(τ), the gradient will exponentially decrease. Therefore, the
weight will not be updated effectively. To obtain a larger margin, it is natural to add the following
regularization to maximize the score of the positive pairs and minimize the score of the negative pairs.

R(f) =
1

|S−|
∑

(x,y′)∈S−

f(x,y′)− 1

|S+|
∑

(x,y′)∈S+

f(x,y′), (6.1)

where S+ is the set of positive pairs that have the same shared feature z = z′, and S− is the set
of the negative pairs that have different shared feature z ̸= z. However, the set S− is very hard to
determine since different image-text pairs in the batch can possibly have the same shared features, as
we demonstrated in Figure 1. On the other hand, the set of S+ can be simply chosen as the training
data set S. Therefore, we propose to use only one direction in (6.1) as the regularization, i.e.,

R(f) = − 1

|S|
∑

(x,y)∈S

f(x,y).

In particular, when g and h are normalized representations with unit L2 norm and we use inner
product similarity f(x,y) = ⟨g(x),h(y)⟩, our regularization can be viewed as the L2 distance
between the embeddings since

RS(f) =
1

2|S|
∑

(x,y)∈S

[
∥g(x)∥22 + ∥h(y)∥22 − 2⟨g(x),h(y)⟩

]
− 1
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=
1

2|S|
∑

(x,y)∈S

∥g(x)− h(y)∥22 − 1.

Similarly, for a sampled batch S′, the regularized loss is defined as L̂S′(f, τ, λ) = LS′(f, τ) + λ ·
RS′(f), where λ > 0 is a small regularization parameter. The following theorem shows that the
regularization will provably improve the margin.
Theorem 6.3. Under the same condition as Theorem 6.2, with sufficiently small τ and appropriately
chosen λ, within polynomial iterations T = poly(η−1, ϵ, d1, d2) , we can find a score function f̂ with
large margin. In particular, with a probability of at least 0.99, the top-1 result gives the correct label
with a margin Ω̃(γ).

Recall in Theorem 6.2, where the vanilla model achieves margin of Õ(τ), the regularization term
provably improves the margin to Ω̃(γ). Lastly, our regularization term shares similar concept as
SimSiam (Chen & He, 2021), which only considers the positive pairs in the single modality setting.

7 EXPERIMENTS
In this section, we present experiment results on real datasets to verify our theoretical findings.
Accordingly, we examine our new CLIP-like training objective and showcase its improvement in
performance on diverse zero-shot transfer and linear probing tasks.
Datasets. For performance evaluation, we primarily focus on Conceptual Captions 3M (CC3M)
(Sharma et al., 2018) as the pretraining dataset, in alignment with prior literature (Li et al., 2022;
Goel et al., 2022). Additionally, we use MSCOCO (Chen et al., 2015) in order to conduct lightweight
real data experiments to validate our theoretical findings.
Architectures. We consider the same setting for experiments on all baseline CLIP-objectives.
Following the original CLIP paper, we employ ResNet (He et al., 2016) as the image encoder and the
Transformer architecture (Vaswani et al., 2017) as the text encoder. We utilize pre-trained weights
for both encoders to achieve faster convergence. These include the pre-trained ResNet-50 from the
PyTorch Image Models library (Wightman, 2019) and pre-trained DistilBERT from the Huggingface
Transformers library (Wolf et al., 2020). We note that, the setting of training from pre-trained weights
is also considered in several previous literature (Zhai et al., 2022; Alayrac et al., 2022). Lastly, our
experiments can be feasibly ran on a single GeForce RTX 2080 GPU. Detailed hyperparameters and
additional experiments are presented in Appendix C.
7.1 EFFECT OF TEMPERATURE ON MARGIN

0.5 0.0 0.5 1.0
Margin

1

2

3

4

Co
un

t (
10

5 )

random
temp=0.01
temp=0.07

Figure 3: The distribution of the margins
with regard to CLIP models trained at differ-
ent temperature values. Margin is computed
within each batch of the data.

In support of our theoretical discussions in Corollary 6.1
and Theorem 6.2 that find the positive correlation between
the margin and the temperature parameter, we conduct real
data experiments to confirm the impact of temperature on
the margin. In Figure 3, we examine the margin distri-
bution of CLIP models trained at varying temperatures.
Specifically, the margin is evaluated by the difference be-
tween a diagonal value and an off-diagonal value within
a batch: f(xi,yi)− f(xj ,yi) and f(xi,yi)− f(xi,yj)
(see Appendix A for details). We collect the results of
untrained and trained CLIP models on all batches within
the MSCOCO training dataset with batch size 64.
As depicted in Figure 3, a CLIP model with random ini-
tialization at the projection layers has margins normally
distributed near zero, whereas trained models exhibit pos-
itive margins, signifying successful training. Furthermore,
we consider CLIP models trained at fixed temperature values of 0.07 (the default starting value for the
original CLIP) and 0.01 (the clipping value). As observed in the figure, the margin distribution shifts
to the left as temperature τ decreases, suggesting that a extremely small τ leads to small margins,
aligning with the results in Corollary 6.1.
7.2 ZERO-SHOT TRANSFER

To confirm Theorem 6.3, we investigate the advantages of incorporating our regularization term during
training by evaluating zero-shot transfer accuracy and linear probing on various datasets. We consider
the following training objectives when adding our regularization: (1) the original CLIP (Radford et al.,
2021), and (2) CyCLIP (Goel et al., 2022) with cross-modal and in-modal consistency regularizations,
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adopting the same hyperparameters for the regularizations as outlined in Goel et al. (2022). All
models are trained on CC3M using the same model architecture, batch size, and optimizer settings.
Further experimental details are provided in Appendix C.
In Table 1, we present the zero-shot test accuracy of CLIP models trained with the original CLIP
objective and the CyCLIP objective. Firstly, we demonstrate the model’s performance when training
solely on the regularization term (L2) and compare to that of the CLIP objective. In alignment
with our Corollary 5.7, we can observe on real data that training exclusively on the L2 objective
leads to a large error and even random guessing on the zero-shot datasets. Combining with our
theoretical analysis, we show that a naive square loss fails to learn transferable representations. In the
context of multi-modal learning, contrastive loss is important. Moreover, confirming our result from
Theorem 6.3, incorporating the regularization term into the contrastive objective effectively enhances
performance across the majority of zero-shot transfer tasks. It improves over the baseline on 5 out of
6 datasets by a good margin. The best performance achieved by adding regularization to the CLIP
objective outperforms its original objective by 3.62% on CIFAR10 and by 2.06% on average of all
datasets.
In Table 2, we report the results of linear probing, where logistic regression classifiers are fitted
to the embeddings learned by the image encoders of our compared models. This table offers an
assessment of the visual representation learning for each training objective. Similarly supporting
Corollary 5.7, training on the regularization term only results in learning bad representations that
yield unsatisfactory performances on linear probing. Moreover, in alignment with Theorem 6.3, we
observe that adding the regularization term consistently improves CLIP’s performance across various
datasets by an average of 1.54%.

Table 1: Zero-shot top-1 accuracy (%). Notably, adding the regularization term successfully improves the
baselines on 5 out of the 6 datasets.

CIFAR10 CIFAR100 STL10 Food101 ImageNetV2 DTD Average

Reg 10.04 1.05 9.95 1.08 0.11 2.07 3.47
CLIP 63.85 31.17 90.35 8.39 20.24 21.22 39.20

CyCLIP 60.71 28.87 89.98 9.72 19.66 20.21 38.19
CLIP+Reg 67.47 33.33 92.64 12.14 22.36 19.63 41.26

Table 2: Linear probing accuracy (%). All logistic regression models are trained till convergence. Adding our
regularization term to CLIP provides decent improvements across all datasets. On CyCLIP, we also makes
improvements on the majority of datasets.

CIFAR10 CIFAR100 STL10 Food101 DTD Flowers OxfordPets Average

Reg 14.09 2.17 17.86 1.73 3.40 2.18 4.12 6.51
CLIP 87.30 66.03 93.26 62.8 56.70 70.24 72.91 72.75

CyCLIP 86.31 63.93 93.69 61.57 56.86 70.56 70.46 71.91
CLIP+Reg 88.49 66.16 94.98 63.39 57.66 72.21 77.13 74.29

8 CONCLUSION
In this paper, we rigorously investigated the theoretical underpinnings of transferable representation
learning in CLIP, addressing the challenges associated with feature domain alignment and shared
feature sparsity. We provided insights through detailed examination of specific cases and corroborated
our theory with empirical evidence. Lastly, we proposed a regularization term grounded in our
theoretical findings to enhance CLIP’s performance in various downstream tasks, including zero-shot
transfer and linear probing. Combining rigorous theoretical analysis with empirical validation, we
contribute to the advancement of understanding in multi-modal contrastive learning.
Limitations and future work. We emphasize that our primary contribution lies in providing
theoretical insights into transferable representation learning in CLIP, which assumes a one-to-one
mapping between image-text pairs. Interesting future works include extending the analysis to more
modalities and exploring other multimodal training algorithms. Another limitation of our work is the
limited computational resources, where we used relatively smaller training data than the large-scale
web data used by CLIP and are also restricted to smaller training batch sizes as compared to industry
standards.
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A DISCUSSION ON THE MARGIN IN CLIP
“Margin” plays an important role in unimodal contrastive learning (Wang & Liu, 2021), which
measures the desired similarity difference between positive and negative pairs in the learned feature
space: f(x,x+)− f(x,x−). This metric ensures that the similarity of positive pair representations
exceeds a specific threshold, while preserving a greater distance for the negative pairs. In practice,
a large margin encourages the model to learn meaningful and discriminative data representations,
thereby achieving better results in the downstream task (Chen et al., 2021).
In exploring the CLIP model, we focus on the concept of margin from a multi-modal perspective.
For two independent tuple (x,y, z) ∼ Dx×y×z and (x′,y′, z′) ∼ Dx×y×z, we formally introduce a
measure as follows

αγ = P
(
z ̸= z′, f(x,y)− f(x,y′) ≤ γ

)
+ P

(
z ̸= z′, f(x,y)− f(x′,y) ≤ γ

)
(A.1)

where γ denotes the margin, and αγ is failure probability of failing to achieve this margin. We note
that when z = z′, x,y,x′,y′ will form positive pairs, thus excluded in equation (A.1). Unfortunately,
we can access Dx×y in real applications but have limited knowledge of the latent variable z. This
limitation complicates the identification of all positive pairs within a batch of data.
A.1 MARGIN AND VISUAL-SEMANTIC ALIGNMENT

When g and h are normalized representations with unit L2 norm and we use inner product similarity
f(x) = ⟨g(x),h(y)⟩. The formula f(x,y)− f(x,y′) can be expressed as

f(x,y)− f(x,y′) =
1

2

[
2− ∥g(x)− h(y)∥22

]
− 1

2

[
2− ∥g(x)− h(y′)∥22

]
=

1

2

[
∥g(x)− h(y′)∥22︸ ︷︷ ︸

Negative−pair Distance

− ∥g(x)− h(y)∥22︸ ︷︷ ︸
Positive−pair Distance

]
, (A.2)

where the second equality uses the property of unit L2 norm. By (A.2), we can see that a larger
margin value implies that the embeddings g and h of the positive pairs remain in closer proximity,
while the embeddings of negative pairs are far away from each other. This is a crucial aspect of
contrastive learning, especially when considering the CLIP model.
In unimodal contrastive learning, y = x+ typically follows the same distribution of x, and h is
chosen to be identical to g. Consequently, the embedding difference g(x) − h(y) will generally
exhibits a zero mean. In this scenario, the variance of the embedding, rather than its mean, becomes
the dominant term for positive-pair distance in (A.2). However, this is not the case for the CLIP
model since x,y belong to different modalities, and thus h is no longer chosen to be identical to g.
Moreover, identifying negative pairs in a batch for image-text data is challenging. To empirically
mitigate the issue, Yang et al. (2022) proposed UniCL for multi-modal contrastive learning. Unlike
vanilla CLIP, UniCL additionally consider image-label data and group these data with identical
classes, which facilitates negative pair identification within the dataset. However, this strategy
necessitates additional group information about the dataset, being either class label or concept. Our
paper aims to theoretically tackle the identification problem by integrating this grouping mismatch
into our analysis. We recognize the significance of empirically addressing this issue like Yang et al.
(2022), but it goes beyond the scope of current work.
A larger margin of f indicates an improved visual-semantic alignment. Thus, we favor a function f
that achieves a larger margin γ with a smaller αγ . Under Assumption 4.1, we define the (α, β, γ)
completeness, ensuring the existence of such a function. To find a function with a larger margin more
effectively, we introduce a new regularizer in Section 6, specifically tailored for the CLIP model.
This regularization approach does not require identifying negative pairs and is particularly suitable
for CLIP, as it only penalizes the positive-pair distance ∥g(x)− h(y)∥22
Chen et al. (2021) proposes a novel large-margin contrastive learning (LMCL) method in unimodal
contrastive learning, regularizing both positive and negative pair distances. In our study, we choose
to regularize only the positive pair distance, acknowledging the unique characteristics of the CLIP
model: different embedding functions g,h for images and texts and the difficulty in identifying
negative pairs. We also conducted an ablation study for only regularizing the off-diagonal term in the
batch. We find that off-diagonal pair regularization yields marginal improvements in downstream
zero-shot tasks and lacks stability compared to the regularizer proposed in Section 6 (detailed in
Section C.2).
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A.2 ESTIMATION OF THE MARGIN

In this subsection, we will discuss how to verify the Assumption 4.1 and measure the quality of the
learned function with margin. We introduce an approximate measure α̂γ as follows,

α̂γ = P
(
f(x,y)− f(x,y′) ≤ γ

)
+ P

(
f(x,y)− f(x′,y) ≤ γ

)
(A.3)

α̂γ differs from the αγ since we didn’t extinguish different classes in the probability. Therefore
we can easily calculate α̂γ without observe z. In practice, (A.3) can be evaluated by the difference
between a diagonal value and an off-diagonal value within a batch: f(xi,yi) − f(xj ,yi) and
f(xi,yi)− f(xi,yj) (as illustrated in Figure 3).
Moreover, we have the following upper and low bounds, which show that α̂γ can approximate αγ .
Theorem A.1. Let γ ≥ 0, then we have that

α̂γ ≥ αγ ≥ α̂γ −
∑

k∈[K]

p2k.

where pk is the probability of the classes in Assumption 3.1. Besides, the second inequality becomes
exact equality for γ = 0.

Proof.

α̂γ = P
(
f(x,y)− f(x,y′) ≤ γ

)
+ P

(
f(x,y)− f(x′,y) ≤ γ

)
= P

(
z ̸= z′, f(x,y)− f(x,y′) ≤ γ

)
+ P

(
z ̸= z′, f(x,y)− f(x′,y) ≤ γ

)
︸ ︷︷ ︸

=αγ

+ P
(
z = z′, f(x,y)− f(x,y′) ≤ γ

)
+ P

(
z = z′, f(x,y)− f(x′,y) ≤ γ

)
︸ ︷︷ ︸

Approximate Error

.

The Approximate Error has a naive lower bound of 0, and we can upper bound it as follows

P
(
z = z′, f(x,y)− f(x,y′) ≤ γ

)
= P

(
f(x,y)− f(x,y′) ≤ γ|z = z′

)
· P(z = z′)

≤ P
(
f(x,y)− f(x,y′) ≤ 0|z = z′

)
· P(z = z′)

= 1/2
∑

k∈[K]

p2k.

were the the inequality is due to fact that γ ≥ 0 and the last equality is because y′ and y are symmetric
give z = z′. Finally, the inequality is an exact equality for γ = 0.

By Theorem A.1, αγ and α̂γ are close to each other if maxk∈[K] pk is small, since∑
k∈[K]

p2k ≤
∑

k∈[K]

pk · max
k∈[K]

pk = max
k∈[K]

pk ·
( ∑

k∈[K]

pk

)
= max

k∈[K]
pk.

Relation with the Figure 6: α̂γ has a strong relationship with Figure 6, where we have plot the
distribution of f(x,y) − f(x,y′) and f(x,y) − f(x′,y). The figure can be viewed as the figure
of the probability density function, and α̂γ can be viewed as the cumulative probability function,
which is the integral of probability mass smaller than γ. From Figure 6, we can deduce that the CLIP
learned with regularization has consistently smaller α̂γ for all γ ≥ 0.

B DISCUSSION ON THE TRAINABLE TEMPERATURE PARAMETER τ
This section considers the setting where the temperature τ is also trainable with the following loss.

LDB (f, τ) = E
[
log

( ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

))]

+ E
[
log

( ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

))]
.
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Suppose τ is clipped to be within the range [τmin, τmax], it is natural to assume that we can obtain
function f̂ with temperature τ̂ ∈ [τmin, τmax] such that

LDB (f̂ , τ̂) ≤ min
τ∈[τmin,τmax]

LDB (f∗, τ) + ϵ (B.1)

= LDB (f∗, τ̂) + ϵ−
(
LDB (f∗, τ̂)− min

τ∈[τmin,τmax]
LDB (f∗, τ)

)
(B.2)

= LDB (f∗, τ̂) + ϵ̃ (B.3)

where ϵ̃ = ϵ −
(
LDB (f∗, τ̂) − minτ∈[τmin,τmax] LDB (f∗, τ)

)
≤ ϵ. Since ϵ̃ is smaller than ϵ, we

can get smaller ϵ′ in Theorem 4.2, and thus get smaller top-r error in zero-shot transfer task by
Corollary 5.1. This observation implies that the representation (f̂ , τ̂) found by trainable temperature
can be better than the representation (f̂ ′, τ̂) found with fixed temperature τ̂ .

C ADDITIONAL EXPERIMENT RESULTS
We consider the same model architecture as CLIP (Radford et al., 2021) and consider ResNet-
50 (He et al., 2016) as the image encoder and transformer (Vaswani et al., 2017) architecture as the
text encoder. Specifically, we use pre-trained weights for the encoders for faster convergence in
training. We follow the code framework in Shariatnia (2021) and use pre-trained ResNet-50 from the
PyTorch Image Models library (Wightman, 2019) and pre-trained DistilBERT from the Huggingface
Transformers library (Wolf et al., 2020). We further have linear projection layers on both image and
text encoders, the same as in CLIP, and consider the embedding dimension to be 512. As we are
training at small-scale data with pre-trained encoders, we follow Shariatnia (2021) and use AdamW
optimizer with learning rate 1e-4 on the image encoder, 1e-5 on the text encoder, and 1e-3 on the
projection layers, with weight decay coefficient 1e-3. Our code is provided anonymously on Github*.
C.1 IMAGE-TEXT RETRIEVAL

We additionally consider the image-to-text and text-to-image retrieval downstream tasks in the
zero-shot setting. Following the setting outlined by Goel et al. (2022), we use Flickr30K (Plummer
et al., 2015) and MSCOCO (Chen et al., 2015) datasets, which are well-established benchmarks for
image-text retrieval tasks. We similarly focus on the test data from the Karpathy (Karpathy & Fei-Fei,
2015) split, with Flickr30K comprising 1k test instances and MSCOCO containing 5k. Consistent
with the findings of Goel et al. (2022), we observe that text retrieval for a given image tends to be less
challenging than image retrieval for a given caption. This is due to the nature of both datasets, where
each image is associated with 5 captions. Our results, as detailed in Table 3 and Table 4, align with
this trend. Notably, while CyCLIP does not consistently outperform CLIP, adding our regularization
term consistently enhances the performance of both the CLIP and CyCLIP.

Table 3: Zero-shot image-to-text and text-to-image retrieval results on Flickr30K test set for CLIP with different
regularization techniques (CyCLIP, our regularization, or both).

Text R@1 Text R@5 Text R@10 Image R@1 Image R@5 Image R@10 Average

CLIP 87.36 93.0 95.18 26.88 54.18 66.22 70.47
CLIP+Reg 87.42 93.42 95.82 29.94 58.00 69.82 72.40
CyCLIP 87.34 93.12 95.04 29.00 56.50 67.62 71.44

CyCLIP+Reg 87.20 93.20 95.56 29.14 56.94 68.64 71.78

Table 4: Zero-shot image-to-text and text-to-image retrieval results on MSCOCO test set for CLIP with different
regularization techniques (CyCLIP, our regularization, or both).

Text R@1 Text R@5 Text R@10 Image R@1 Image R@5 Image R@10 Average

CLIP 81.19 83.21 84.42 4.73 11.66 15.93 46.86
CLIP+Reg 81.25 83.31 84.49 4.98 12.14 16.66 47.14
CyCLIP 81.06 82.92 84.28 4.70 11.66 15.93 46.86

CyCLIP+Reg 81.31 83.28 84.65 5.27 12.17 16.70 47.23

*https://anonymous.4open.science/r/CLIP_theory-BC8F/README.md
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C.2 DISCUSSION ON THE “NEGATIVE” PAIRS

As previously discussed in Figure 1 and Section 6, the use of unlabeled image-text data in CLIP
pre-training may lead to batches containing off-diagonal pairs that are not genuinely negative. In
contrast, in the unimodal setting (Chen et al., 2021), accurately identifying truly negative pairs is
more straightforward due to the availability of class labels. However, treating all off-diagonal pairs as
negatives in the CLIP framework may not be ideal. We investigate taking off-diagonal pairs within a
batch as “negative” pairs and sum them into a regularization term. Again, during the training, we
consider sample a batch of image-captions pairs S′ = {xi,yi}Bi=1 ⊆ S. The regularization term for
the negative pairs is thus

R(f) = λ ·
∑
i∈S′

∑
j∈S′,j ̸=i

f(xi,yj),

where λ > 0 is the regularization parameter. In experiments, we let λ = 0.1/(B2 − B) and all
the other settings remain the same as our previous experiments. In Table 5, our results show that
while positive pair regularization markedly improves performance, off-diagonal pair regularization
yields only marginal enhancements on some datasets and no improvement on others. This unstable
performance may be attributed to the presence of positive pairs among the off-diagonal elements in
the unlabeled image-text data.

Table 5: Zero-shot top-1 accuracy (%) with regularization on positive image-text pairs and “negative” pairs.

CIFAR10 CIFAR100 STL10 Food101 ImageNetV2 DTD Average

CLIP 63.85 31.17 90.35 8.39 20.24 21.22 39.20
CLIP+Pos 67.47 33.33 92.64 12.14 22.36 19.63 41.26
CLIP+Neg 64.36 31.01 91.25 9.59 20.17 20.74 39.52

C.3 INVESTIGATION INTO THE IMAGE-CAPTION DATA

In Figure 4, we focus on the MSCOCO image-caption dataset, specifically examining the existence
of objects present in images but omitted in their corresponding captions. We found that a significant
portion of the data pairs contain at least one such object missing from the caption. In Figure 5,

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of objects not in caption

2

4
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8

10
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t (
10

4 )

Figure 4: Distribution of the image-caption pairs in MSCOCO, where we count the number of object that
appeared in the image but was absent from the captions.

we present a random selection of the image-caption pairs in CC3M dataset. These examples are
illustrative of the whole dataset, although we cannot provide an exhaustive representation of the
numerous examples within the dataset.
C.4 EFFECT OF TEMPERATURE ON MARGIN

Setup. For lightweight exploration in section 7.1, we use the training dataset from MSCOCO (Chen
et al., 2015) Image Captioning Task as the data for vision-language contrastive pre-training. Specifi-
cally, the dataset contains 82, 783 images where each image is coupled with 5 captions. We consider
each image-caption pair as a data example in pre-training and therefore arrive at 413, 915 pre-training
data pairs. We further randomly split the data to keep 20% of the data as validation set and stops
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“A very typical bus station.”
Missing: people, building, ect.

“A flight was traveling when the 
animal got free on tuesday night.”
Missing: cars, road, ect.

“Dog in a kilt :)”
Missing: grass, tree, ect.

“Venture funded company called 
these sugar-glazed , slow-smoked 
ribs.”
Missing: plate, table, ect.

Figure 5: Examples of the image-text pairs from CC3M. We identify a few missing visual objects in the captions.

training as the contrastive loss on validation data no longer decreases to avoid overfitting on the small
dataset.
Margin. Given a training data batch, the margin is consider as the difference between a diagonal
value and an off-diagonal value: f(xi,yi)− f(xj ,yi) and f(xi,yi)− f(xi,yj). We consider CLIP
models trained at fixed temperature τ = 0.07 and τ = 0.01. We note that 0.07 is the default value for
τ to start training in CLIP and 0.01 is the clamping value (equivalently as the maximum logit scale of
4.6052.) In Figure 3, we collected the margins from all batches of size 64 in the MSCOCO training
data, where the data is randomly shuffled.
Additional Experiments. Here, we additionally compare the margin distribution of CLIP trained at
temperature τ = 0.01, without or with our regularization term. We could observe that the margin
distribution shifts to the right with the regularization term, which alleviates the negative influence of
an extremely small temperature value.
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Figure 6: The distribution of the margins with regard to CLIP models trained τ = 0.01 with or withour
regularization. Margin is computed within each batch of the data.

C.5 ZERO-SHOT TRANSFER AND LINEAR PROBING

Setup. In the evaluation of zero-shot transfer and linear probing, we use CC3M (Sharma et al., 2018)
as the pre-training dataset, which contains around 3, 318, 332 image-caption pairs gathered from the
web. While some URLs are broken so that we cannot download the images, we eventually reached
a pre-training dataset of 2, 786, 288 data pairs. When training CLIP models, we use the default
coefficients of CyCLIP regularization terms of λ1 = 0.25 and λ2 = 0.25. For our regularization
term, we use a coefficient of λ = 0.1. As in CLIP, we set the temperature τ from 0.07, equivalently
having maximum logit scale at 2.6593. Lastly, we use a training batch size of 32 and trained for 8
epochs in the results reported in section 7.2.
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Table 6: Summary of datasets used for zero-shot transfer and linear probing.

Dataset Classes Class Description

CIFAR10 10 Categories of animals and vehicles
CIFAR100 100 Categories of objects including animals, foods, vehicles and people
STL10 10 Categories of animals and vehicles
Food101 101 Categories of foods/dishes
ImageNetV2 1000 Categories of objects including animals, foods, vehicles and people
DTD 47 Categories of textures
Flowers102 102 Categories of flower species
Oxford-IIIT Pet 37 Categories of cats and dogs

Evaluations. As similar in previous works (Radford et al., 2021; Yao et al., 2022; Mu et al., 2022;
Goel et al., 2022), we consider the following image classification tasks for zero-shot transfer and
linear probing: CIFAR10/100 (Krizhevsky, 2009), STL10 (Coates et al., 2011), Food101 (Bossard
et al., 2014), ImageNetV2 (Recht et al., 2019), DTD (Describable Textures,Cimpoi et al. (2014)),
Flowers102 (Nilsback & Zisserman, 2008) and Oxford-IIIT Pet (Parkhi et al., 2012). The dataset
statistics are reported in Table 6. For zero-shot transfer, we use the same prompt engineering and
ensembling as the original CLIP and report the top-1 accuracy. For linear probing, as the same
in CLIP, we train a logistic regression classifier on the image embeddings generated by the image
encoder of pre-trained CLIP models on the training data from the considered datasets. The classifiers
are all trained to convergence and we report the test accuracy on each of the test dataset of the tasks.
We note that, due to the limitation of the training data CC3M, the zero-shot test accuracy of all
CLIP-objectives on Flowers102 and Oxford-IIIT Pet are near random guesses. Therefore, we omit
these datasets for zero-shot transfer.
Additional Experiments. We additionally report the zero-shot transfer results of the original
CLIP objective and adding our regularziation term, on a different visual encoder architecture of
TinyViT (Wu et al., 2022) with pre-trained weights from Huggingface.

Table 7: Zero-shot top-1 accuracy (%). Notably, adding the regularization term successfully improves the
baselines on 5 out of the 6 datasets.

CIFAR10 CIFAR100 STL10 Food101 ImageNetV2 DTD Average

CLIP 52.02 15.57 81.89 7.92 16.91 11.80 31.02
CLIP+Reg 53.30 19.67 83.76 7.99 16.06 11.53 32.05

D PROOF OF RESULTS IN SECTION 3
Proof of Theorem 3.3. We first prove that LS′(f, τ) is upper bounded by 4M logB/τ .

LS′(f, τ) =
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xj ,yi)− f(xi,yi)

]
/τ

))

+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xi,yj)− f(xi,yi)

]
/τ

))

≤ 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
(
2M/τ

))
+

1

B

∑
i∈S′

log

( ∑
j∈S′

exp
(
2M/τ

))
= 4M logB/τ. (D.1)

where the inequality is by the fact the |f | ≤ M . On the other hand, we have that

LS′(f, τ) =
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xj ,yi)− f(xi,yi)

]
/τ

))

+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xi,yj)− f(xi,yi)

]
/τ

))

≥ 2

B

∑
i∈S′

log

(
exp

([
f(xi,yi)− f(xi,yi)

]
/τ

))
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≥ 0.

where the inequality is because Exp function is greater than 0. Therefore we have proved that
LS′(f, τ) ∈ (0, 4M log(B)/τ ]. For all f1, f2 ∈ F and any batch S′ with size B, we have that

LS‘(f1, τ)− LS′(f2, τ) =
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xj ,yi)− f1(xi,yi)

]
/τ

))

− 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f2(xj ,yi)− f2(xi,yi)

]
/τ

))

+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xi,yj)− f1(xi,yi)

]
/τ

))

− 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f2(xi,yj)− f2(xi,yi)

]
/τ

))

≤ 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xj ,yi)− f1(xi,yi)

]
/τ

))

− 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xj ,yi)− f1(xi,yi)− 2∥f1 − f2∥∞

]
/τ

))

+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xi,yj)− f1(xi,yi)

]
/τ

))

− 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xi,yj)− f1(xi,yi)− 2∥f1 − f2∥∞

]
/τ

))
= 4∥f1 − f2∥∞/τ.

Similarly, we can get another direction LS′(f2, τ) − LS′(f1, τ) ≤ 4∥f1 − f2∥∞/τ , which yields
to |LS′(f2, τ) − LS′(f1, τ)| ≤ 4∥f1 − f2∥∞/τ . Taking the expectation gives that |LDB (f2, τ) −
LDB (f1, τ)| ≤ 4∥f1 − f2∥∞/τ . By the definition of the covering set, the function class F can
be covered by K subsets B1, . . . ,BK , that is F = B1 ∪ . . . ∪ BK , where K = N (F , τϵ/16) and
B1, . . .BK are the balls of the radius τ · ϵ/16 centered at f1, . . . , fK . Then we have that

PS∼Dn

[
sup
f∈F

∣∣LDB (f, τ)− L̂S(f, τ)
∣∣ ≥ ϵ

]
≤

∑
k∈[K]

PS∼Dn

[
sup
f∈Bk

∣∣LDB (f, τ)− L̂S(f, τ)
∣∣ ≥ ϵ

]

≤
∑

k∈[K]

PS∼Dn

[∣∣LDB (fk, τ)− L̂S(fk, τ)
∣∣ ≥ ϵ/2

]

=
∑

k∈[K]

PS∼Dn

[∣∣LDB (fk, τ)− (1/n)
∑
i∈[n]

LSi
(fk, τ)

∣∣ ≥ ϵ/2

]

≤ 2K exp
(
− nϵ2τ

8M logB

)
= 2N (F , τϵ/16) exp

(
− nϵ2τ

8M logB

)
, (D.2)

the first inequality is by union bound, the second is by triangle inequality, and the
third is by Hoeffding’s inequality and (D.1). Finally, plugging the condition n ≥
(8τ−1ϵ−2M logB) log(2N (F , ϵ/8M)/δ) into (D.2) we have that

PS∼Dn

[
sup
f∈F

∣∣LDB (f, τ)− L̂S(f, τ)
∣∣ ≥ ϵ

]
≤ δ,

which completes the proof.
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E PROOF OF RESULTS IN SECTION 4
Lemma E.1. For bj ≥ 0, j ∈ [m], we have that

log

(
1 +

∑
j∈[m]

bj

)
≤

∑
j∈[m]

log(1 + bj).

Proof. Notice that

Πj∈[J](1 + bj) ≥ 1 +
∑
j∈[J]

bj .

Taking the logarithm over both sides completes the proof.

Lemma E.2. Suppose that a1, . . . am are i.i.d random variable sample lies in [−R,R] where R ≥ 1,
with mean µ := E[a1] and variance σ2 := E[(a1 − E[a1])2]. Then we have that

E[log
( m∑

i=1

exp(a)
)
≥ log(m) + µ+

m− 1

4mR2
σ2.

Proof. Let ā =
[∑m

i=1 ai
]
/m

log
( m∑

i=1

exp(ai)
)
= log(m) +

1

m

m∑
i=1

ai + log
( 1

m

m∑
i=1

exp(a− ā)
)

≥ log(m) +
1

m

m∑
i=1

ai + log
(
1 +

1

3mR2

m∑
i=1

[a− ā]2
)

≥ log(m) +
1

m

m∑
i=1

ai +
1

4mR2

m∑
i=1

[a− ā]2.

where the first inequality is by exp(t) ≥ 1 + t+ t2/(3R2),∀t ∈ [−R,R], the second inequality is
due to log(1 + t) ≥ 3t/4,∀t ∈ [0, 1/3].

Lemma E.3. Suppose f∗ is the function that satisfies Assumption 4.1, then we have that

LDB (f∗, τ) ≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ 6MBα/τ + 3 3

√
6MBβ/τ + 2B exp(−γ/τ)

Proof. Let the event Et be the case that either i) zt = z1 and |f∗(xt,y1) − f∗(x1,y1)| ≤ ρ or ii)
zt ̸= z1 and f∗(xt,y1)− f∗(x1,y1) ≤ −γ. We also denote the complementary set of Et to be Ec

t .
By Assumption 4.1, we have that

P(Et, zt = z1) ≤ β/ρ2

P(Et, zt ̸= z1) ≤ α.

the first inequality is by Chebyshev’s inequality, and the second is by margin assumption. Therefore,
we have that P(Ec

t ) ≤ α+ β/ρ2. Next, let us decompose LDB (f∗, τ) into three parts,

LDB (f∗, τ) = E
[
log

( ∑
t∈[B]

1(zt ̸= z1)1(Et) exp
([
f∗(x1,yt)− f∗(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(Ec
t ) exp

([
f∗(x1,yt)− f∗(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(zt = z1)1(Et) exp
([
f∗(x1,yt)− f∗(x1,y1)

]
/τ

))]

+ E
[
log

( ∑
t∈[B]

1(zt ̸= z1)1(Et) exp
([
f∗(xt,y1)− f∗(x1,y1)

]
/τ

)
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+
∑
t∈[B]

1(Ec
t ) exp

([
f∗(xt,y1)− f∗(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(zt = z1)1(Et) exp
([
f∗(xt,y1)− f∗(x1,y1)

]
/τ

))]

≤ 2E
[
log

(
1 +B exp

(
− γ/τ

)
+

∑
t≥2

1(Ec
t ) exp

(
2M/τ

)
+
∑
t≥2

1(zt = z1) exp
(
ρ/τ

))]

≤ 2E
[
log

(
1 +B exp

(
− γ/τ

))]
︸ ︷︷ ︸

I1

+
∑
t≥2

2E
[
log

(
1 + 1(Ec

t ) exp
(
2M/τ

))]
︸ ︷︷ ︸

I2

+ 2E
[
log

(
1 +

∑
t≥2

1(zt = z1) exp
(
ρ/τ

))]
︸ ︷︷ ︸

I3

(E.1)

where the first inequality is by Assumption 4.1, the second inequality is due to Lemma E.1. Next, we
will bound I1, I2, I3 separately.

I1 ≤ B exp(−γ/τ), (E.2)

where the inequality is due to the fact that log(1 + x) ≤ x.

I2 = E
[
1(Ec

t ) log

(
1 + exp

(
2M/τ

))]
≤ P(Ec

t )
3M

τ
= (α+ β/ρ2) · 3M

τ
. (E.3)

where the first equality is due to log
(
1 + 1(Ec

t ) exp
(
2M/τ

))
= 0) when 1(Ec

t ) = 0, the first

inequality is due to log
(
1+exp

(
2M/τ

))
≤ 3M/τ . The last inequality is due to P(Ec

t ) ≤ α+β/ρ2.

I3 ≤ E
[
log

(
exp

(
ρ/τ

)
+

∑
t≥2

1(zt = z1) exp
(
ρ/τ

))]

= ρ/τ + E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
. (E.4)

where the inequality is because 1 ≤ exp(ρ/τ).
Plugging (E.2), (E.3) and (E.4) into (E.1) gives that,

LDB (f∗, τ) ≤ 2B exp(−γ/τ) + 6MBα/τ + 6MBβ/(τρ2) + 2ρ/τ + 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]

≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ 6MBα/τ + 3 3

√
6MBβ/τ + 2B exp(−γ/τ),

where the second inequality is by choosing ρ = 3
√
6MBβ.

Proof of Theorem 4.2. First by Lemma E.3, we have that

LDB (f̂ , τ) ≤ LDB (f∗, τ) + ϵ ≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ ϵ′ (E.5)

where ϵ′ = ϵ+ 6MBα/τ + 3 3
√
6MBβ/τ + 2B exp(−γ/τ). Notice that

LDB (f̂ , τ) = E
[
log

( ∑
t∈[B]

exp
([
f̂(x1,yt)− f̂(x1,y1)

]
/τ

))]
︸ ︷︷ ︸

I1
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+ E
[
log

( ∑
t∈[B]

exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]
︸ ︷︷ ︸

I2

(E.6)

Next, we prove the bullets in Theorem 4.2 one by one.
First and Second Bullet in Theorem 4.2: Denote the event E as the case that for all t ≥ 1, zt ̸= z1,
which is the event that CLIP favored. We first lower bound I1.

I1 = E
[
log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]

= E
[
log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]

≥ E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
1(Ec) log

( ∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]

= E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
log

( ∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]

≥ E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
log

( ∑
t∈[B]

1(zt = z1) exp
(
E
[
f̂(xt,y1)− f̂(x1,y1)

∣∣zt, z1]/τ))]

= E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]. (E.7)

where the first inequality is because when E holds
∑

t∈[B] 1(zt = z1) exp
([
f̂(xt,y1) −

f̂(x1,y1)
]
/τ

)
= 1 when Ec holds

∑
t∈[B] 1(zt ̸= z1) exp

([
f̂(xt,y1)−f̂(x1,y1)

]
/τ

)
≥ 0, the last

second equality is because when E holds
∑

t∈[B] 1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
= 1,

the second inequality is because LogSumExp function is convex, and the last equality is due to
E[
[
f̂(xt,y1)− f̂(x1,y1)

]
|zt, z1] = 0 when zt = z1. Similarly, we can prove

I2 ≥ E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(x1,yt)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]. (E.8)
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Notice that when event E holds, zt ̸= z1 holds for all t ≥ 2. Therefore, plugging the (E.7) and (E.8)
into (E.6) gives,

E
[
1(E) log

(∑
t≥2

exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]
≤ ϵ′ (E.9)

E
[
1(E) log

(∑
t≥2

exp
([
f̂(x1,yt)− f̂(x1,y1)

]
/τ

)
+ 1

)]
≤ ϵ′. (E.10)

(E.11)

Let us compute the probability of E given z1. Let z1 = v1 without loss of generality, we have that

P(E|z = v1) = (1− p1)
B−1.

Therefore P(E|z = v1) is always positive and is greater than 1/2 as long as B ≤ 1/p1.
Next, consider the following situation. Given z1 = v1, we generate sequence z′1, . . . , z

′
L with length

L = ⌈log(2K)/(B − 1)min pk⌉(̇B − 1) , such that each z′1, . . . , z
′
L are generated from Dz|z̸=v1

.
The probability that the sequence includes vk is

1− (1− pk/(1− pk))
L ≥ 1− (1− pk)

L ≥ 1− exp(−Lpk) ≥ 1− exp(−Lmin pk).

Therefore the probability that the sequence can cover all the other K − 1 classes is at least

1−K exp(−Lmin pk) ≥ 1/2.

Then we look deeper into

E
[
log

(∑
t≥2

exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)∣∣∣∣z1 = v1, z2 ̸= v1, . . . , zK ̸= v1

]
.

We can introduce L/(B − 1) copies x(l)
t with l ∈ [L/(B − 1)] for t ≥ 2, then we have that(

L/(B − 1)
)
· E

[
log

(∑
t≥2

exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)∣∣∣∣z1 = v1, z2 ̸= v1, . . . , zK ̸= v1

]

= E
[∑

l

log

(∑
t≥2

exp
([
f̂(x

(l)
t ,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)∣∣∣∣z1 = v1, z
(l)
2 , . . . , z

(l)
K ̸= v1

]

≥ E
[
log

(∑
l

∑
t≥2

exp
([
f̂(x

(l)
t ,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)∣∣∣∣z1 = v1, z
(l)
2 , . . . , z

(l)
K ̸= v1

]

≥ E
[
log

( ∑
k∈[K]

exp
([
f̂(xk,y)− f̂(x∗,y)

]
/τ

))∣∣∣∣z = v1

]
. (E.12)

where the first inequality is by Lemma E.1, the second inequality is by the fact that the Exp function
is greater than 0, and the xk,x

∗ in the last line are the ones that defined in Theorem 4.2. Plugging
(E.12) into (E.9) and applying total expectation completes the proof for the second bullet. The proof
for the first bullet is the same.
Third Bullet in Theorem 4.2: By the third equality in (E.7), we have that

I1 ≥ E
[
log

( ∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]

= E
[
E
[
log

( ∑
t∈[B]

1(zt = z1) exp
(
f̂(xt,y1)/τ

))∣∣∣∣z1, . . . , zB]]− E[f̂(x1,y1)/τ ]

≥ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]+ E

[ ∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣− 1

4M2
∣∣∣{t ∈ [B]

∣∣∣zt = z1

}∣∣∣Varx1|z1
(f̂(x1,y1))

]
.

(E.13)
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where the inequality is by Lemma E.2. Next we will We analyze the distribution of
{
t ∈ [B]

∣∣∣zt =
z1

}
. Without loss of generality, fix z1 = v1. We know that the probability that

{
t ∈ [B]

∣∣∣zt =

z1

}
≥ 2 is

1− P(z2 ̸= z1) · . . . · P(zB ̸= z1) ≥ 1− (1−min pk)
B−1 ≥ min{0.25 ∗min pk · (B − 1), 0.25},

the last inequality holds since the strictly increasing function F (s) = 1− (1−min pk)
s is 0 at s = 0

and have derivative lower bounded by 0.25 when s ≤ 1/min pk. Therefore we can further lower
bound (E.13) as follows,

I1 ≥ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]+ E
[
min{0.25 ∗min pk · (B − 1), 0.25}

8M2
Varx1|z1

(f̂(x1,y1))

]
Similarly, we can prove that

I2 ≥ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]+ E
[
min{0.25 ∗min pk · (B − 1), 0.25}

8M2
Vary1|z1

(f̂(x1,y1))

]
.

Plugging the bound of I1, I2 into (E.6) completes the proof for the third bullet of Theorem 4.2.

F PROOF OF THE RESULTS IN SECTION 5
Proof of Corollary 5.1. For (x, z) ∼ Dx×z, {yk ∼ Dy|vk

, k ∈ [K]}, let y∗ =
∑

k∈[K] 1(z =

vk)yk. Denote E to be the event that the top-r choice gives the wrong prediction. Then we have that,

ϵ′ ≥ E
[
log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]

≥ E
[
1(E) log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]

≥ E
[
1(E) log(1 + r)

]
= P(E) log(1 + r),

where the first inequality is by the first bullet of Theorem 4.2, the second inequality is due to

the fact that log
(∑

k∈[K] exp
([
f̂(x,yk) − f̂(x,y∗)

]
/τ

))
> 0, the last inequality is due to

log

(∑
k∈[K] exp

([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))
≥ log(1 + r) since there are at least r + 1 number

of f̂(x,yk) are greater than f̂(x,y∗) if the prediction is wrong. Therefore, we have that P(E) ≤
ϵ′/ log(1 + r) which completes the proof.

Discussion for out-of-distribution zero shot learning. The result in Corollary 5.1 can be generalized
to out-of-distribution zero-shot transfer learning. For example, we can deal with the case where the
distribution of the prompts Dy|vk

and the image distribution Dx are shifted. In particular, let us
consider the case that the distribution of the prompts is shifted to D′

y|vk
and the image distribution Dx

is shifted to D′
x. Then the original joint cumulative distribution function function P (x, z,y1, . . . ,yK)

is shifted to Q(x, z,y1, . . . ,yK). Suppose Q is absolutely continuous with respect to P , and the
Pearson χ2 distance is bounded ∫ (

dQ

dP
− 1

)2

dP ≤ C.

Then we have that∫ √√√√log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))
dQ
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=

∫ √√√√log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))(dQ

dP

)
dP

≤

√√√√∫
log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))
dP ·

√∫ (
dQ

dP

)2

dP

=
√
(C + 1)ϵ′,

where the first inequality is by Cauchy Schwartz inequality and the last equality is due to∫ (
dQ
dP

)2

dP =
∫ (

dQ
dP − 1

)2

dP + 1 = C + 1. Then we can follow a similar analysis in the

proof of Corollary 5.1 and have that top-r test error is smaller than
√
(C + 1)ϵ′/ log(1 + r). There-

fore, if the χ2 distance between the shifted distributions is bounded, we can still provide a top-r error
guarantee. It is worth noting the bound for out-of-distribution zero-shot learning is looser. If we want
to do a more general zero shot analysis, we may need to add more data structure in Assumption 4.1.

Proof of Lemma 5.4. We can construct W∗ = H(H⊤H)−1P(G⊤G)−1G⊤, where P ∈

R(K1+K2)×(K1+K3) is the projection matrix
[
I 0
0 0

]
with rank K1.

It is easy to verify that H⊤W∗G = P. Therefore we have that

⟨W∗x,y′⟩ = ⟨z, z′⟩.

Then applying ∥vk∥2 = 1, ⟨vk,v
′
k⟩ ≤ 1− γ,∀k ̸= k′ completes the proof .

Lemma F.1. ∥∇LS(fW, τ)∥F ≤ L where L = 2τ−1∥G∥2∥H∥2(R2 + 1).

Proof. First, we have that

∥∇W⟨Wx,y⟩∥F = ∥xy⊤∥F ≤ ∥x∥2∥y∥2 ≤ ∥G∥2∥H∥2(R2 + 1).

Therefore we have that ∥∇LS(fW, τ)∥F ≤ 2τ−1∥G∥2∥H∥2(R2 + 1) since LogSumExp function
is an 1-Lipschitz function.

Proof of Theorem 5.5. By the gradient update rule, we have that

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
= 2η⟨∇L̂S(W

(t), τ),W(t) −W∗⟩ − η2∥∇L̂S(W
(t), τ)∥2F

≥ 2ηL̂S(W
(t), τ)− 2ηL̂S(W

∗, τ)− η2L2. (F.1)

Take the telescope sum of (F.1) from 0 to T − 1 we have that∑T−1
t=0 L̂S(W

(t), τ)

T
≤ L̂S(W

∗, τ) + ηL2 +
∥W(0) −W∗∥2F − ∥W(T ) −W∗∥2F

2ηT

≤ L̂S(W
∗, τ) + ϵ/4 + ϵ/4

= L̂S(W
∗, τ) + ϵ/2,

where the second inequality is by η ≤ ϵ/(4L2) and T = 4∥W(0) −W∗∥2F /(ηϵ). Therefore, there
exist t′ ≤ T − 1 such that L̂S(W

(t′), τ) ≤ L̂S(W
∗, τ) + ϵ/2. Let T̂ to be the first time that

L̂S(W
(T̂ ), τ) ≤ L̂S(W

∗, τ) + ϵ/2. Again take telescope sum of (F.1) from 0 to T̂ − 1, we have that

∥W(T̂ ) −W∗∥2F ≤ 2ηT̂ L̂S(W
∗, τ)− 2ηT̂

T̂−1∑
t=0

L̂S(W
(t), τ) + 2η2L2T̂ + ∥W(0) −W∗∥2F

≤ −ηT̂ ϵ+ 0.5ηT̂ ϵ+ ∥W(0) −W∗∥2F
≤ ∥W(0) −W∗∥2F ,
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where the second inequality is due to the definition of T̂ , the last inequality is due to −0.5ηT̂ ϵ ≤ 0.
Therefore, within T = 4∥W(0) − W∗∥2F /(ηϵ) we can find Ŵ = W(T̂ ) such that L̂S(Ŵ, τ) ≤
L̂S(W

∗, τ) + ϵ/2 and

∥W(T̂ )∥2F ≤ 2∥W∗∥F + ∥W(0)∥2F
where the inequality is by triangle inequality. Therefore, for any x,y

f̂(x,y) = ⟨W∗x,y⟩+ ⟨Ŵ −W∗x,y⟩

≤ 1 + ∥Ŵ −W∗∥F ∥xy⊤∥F
≤ 1 + ∥Ŵ −W∗∥F ∥G∥2∥H∥2(R2 + 1)

≤ 1 + ∥W∗ −W(0)∥F ∥G∥2∥H∥2(R2 + 1).

Therefore the function f̂ is bonded by M = 1 + ∥W∗ −W(0)∥F ∥G∥2∥H∥2(R2 + 1). Moreover,
the function f̂ must belong to the class F = {⟨Wx,y⟩|∥W∥F ≤ 2∥W∗∥F + ∥W(0)∥2F }. Since
the linear function class F has finite covering the set N (F , ϵ) (Bartlett & Mendelson, 2002; Zhang,
2002), by Theorem 3.3 we know that when n ≥ (8τ−1ϵ−2M logB) log(2N (F , ϵ/32M)/δ), with
probability at least 1− δ we have that

|L̂S(f̂ , τ)− LDB (f̂ , τ)| ≤ ϵ/4

|L̂S(f
∗, τ)− LDB (f∗, τ)| ≤ ϵ/4.

Thus, we can conclude that

L̂DB (f̂ , τ)− L̂DB (f∗, τ) ≤ L̂S(f̂ , τ)− L̂S(f
∗, τ) + |L̂S(f̂ , τ)− LDB (f̂ , τ)|

+ |L̂S(f
∗, τ)− LDB (f∗, τ)|

≤ ϵ/2 + ϵ/4 + ϵ/4

= ϵ.

where the first inequality is by the triangle inequality, the second inequality is by the bounded gap
between empirical and population loss.

Proof of Theorem 5.6.

E
[
∥g(x)− y∥22

∣∣∣z] = E
[
∥g(x)− E[y|z] + E[y|z]− y∥22

∣∣∣z]
= E

[
∥g(x)− E[y|z]∥22

∣∣∣z]+ E
[
∥E[y|z]− y∥22

∣∣∣z]
where the second equality is due to x ⊥ y|z and E

[
E[y|z]−y

∣∣∣z] = 0. Then taking a total expectation
over both sides over z gives that

E
[
∥g(x)− y∥22

]
= E

[
∥g(x)− E[y|z]∥22

]
+ E

[
∥y − E[y|z]∥22

]
≥ E

[
∥y − E[y|z]∥22

]
.

Obviously, E
[
∥g(x)− y∥22

]
achieves global minima when

g(x) = E[y|z] = H

[
z

E[ζ|z]

]
.

This function g is also achievable. We can construct function g2(z) = H

[
z

E[ζ|z]

]
, and projection

function g1(x) = z that is linear. Then we can define g = g2 ◦ g1.

Proof of Corollary 5.7. Since ζ is independent with z, we have that

g(x) = H

[
z

E[ζ|z]

]
= 1/3 ·

[
z
e1
0

]
+ 2/3 ·

[
z
e2
0

]
.
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Besides, we have that

y′ = H

[
z′

ζ′

]
=

[
z′

ζ′

0.

]
Inner product similarity. We have that f(x,y′) = ⟨z, z′⟩+ 1/3 + 1/3 · 1(ζ′ = e2). Since margin
γ < 1/3. There exist j, k such that ⟨vj ,vk⟩ > 2/3. Then for z = vj , we will sample K prompt

y1, . . . ,yK . When yj =

[
vj

e1
0.

]
and yk =

[
vk

e2
0.

]
, we have that

f(x,yj) = 4/3 < ⟨vj ,vk⟩+ 2/3 = f(x,yk),

which leads to the wrong top-1 prediction. The key insight behind this consequence is that f(x,y′) =
⟨z, z′⟩+ 1/3 + 1/3 · 1(ζ′ = e2) is greatly influenced by the unique feature ζ. A similar case also

exists for z = vk with yj =

[
vj

e2
0.

]
and yk =

[
vk

e1
0.

]
. The probability that the above event occurs is at

least 2/K · 1/3 · 2/3 = 4/(9K) ≥ 1/(3K). Therefore, the test error is at least 1/(3K).
Cosine similarity. Notice that ∥g(x)∥2 =

√
1 + 1/9 + 4/9 =

√
14/3, and ∥y∥2 = 1, therefore the

cosine similarity is proportional to inner product similarity with factor
√
14/3. Thus, the test error is

still at least 1/(3K).
L2 similarity. We have that f(x,y′) = −∥z − z′∥22 − 8/9 + 2/3 · 1(ζ′ = e2). Since margin
γ < 1/3. There exist j, k such that ∥vj − vk∥22 < 2/3. Then for z = vj , we will sample K prompt

y1, . . . ,yK . When yj =

[
vj

e1
0.

]
and yk =

[
vk

e2
0.

]
, we have that

f(x,yj) = −8/9 < −∥vj ,vk∥22 + 2/3 = f(x,yk),

which leads to the wrong top-1 prediction. The key insight behind this consequence is that f(x,y′) =
−∥z− z′∥22 − 8/9 + 2/3 · 1(ζ′ = e2) is greatly influenced by the unique feature ζ. A similar case

also exists for z = vk with yj =

[
vj

e2
0.

]
and yk =

[
vk

e1
0.

]
. The probability that the above event occurs

is at least 2/K · 1/3 · 2/3 = 4/(9K) ≥ 1/(3K). Therefore, the test error is at least 1/(3K).

G PROOF OF RESULTS IN SECTION 6
Proof of Corollary 6.1. For (x, z) ∼ Dx×z, {yk ∼ Dy|vk

, k ∈ [K]}, let y∗ =
∑

k∈[K] 1(z =

vk)yk. Denote E to be the event that the top-1 choice gives the wrong prediction or the margin is
smaller than τ . Then we have that,

ϵ′ ≥ E
[
log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]

≥ E
[
1(E) log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]

≥ E
[
1(E) log(1 + exp(−1))

]
= P(E) log(1 + e−1),

where the first inequality is by the first bullet of Theorem 4.2, the second inequality is due to

the fact that log
(∑

k∈[K] exp
([
f̂(x,yk) − f̂(x,y∗)

]
/τ

))
> 0, the last inequality is due to

log

(∑
k∈[K] exp

([
f̂(x,yk) − f̂(x,y∗)

]
/τ

))
≥ log(1 + e−1) since there exists at least one

similarity score f̂(x,yk) greater than f̂(x,y∗)− τ with yk ̸= y∗. Therefore, we have that P(E) ≤
ϵ′/ log(1 + e−1) ≤ 4ϵ′ which completes the proof.
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Proof of Theorem 6.2. Consider the simplest setting where ξ and ζ are all zero vectors, and we can
access to the population loss and its gradient (notice that we are constructing the negative example).
We will show that even under this ideal setting, the learned score function with corresponding
representations may not achieve a margin greater than Õ(τ). Notice that

∇WEDBL(f, τ) = ∇WE
[
log

( ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

))]

+∇WE
[
log

( ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

))]

= E
[
∇W log

( ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

))]

+ E
[
∇W log

( ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

))]

= E
[ ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

)∑
s exp

([
f(x1,ys)− f(x1,y1)

]
/τ

) (yt − y1)x
⊤
1

]

+ E
[ ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

)∑
s exp

([
f(xs,y1)− f(x1,y1)

]
/τ

)y1(xt − x1)
⊤
]

= E
[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(x1,yt)− f(x1,y1)

]
/τ

)∑
s exp

([
f(x1,ys)− f(x1,y1)

]
/τ

) (yt − y1)x
⊤
1

]

+ E
[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(xt,y1)− f(x1,y1)

]
/τ

)∑
s exp

([
f(xs,y1)− f(x1,y1)

]
/τ

) y1(xt − x1)
⊤
]

where the last inequality is by xt = x1 and yt = y1 when zt = z1. Therefore suppose function f can
achieve a margin greater than log

(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ , we have that the gradient∥∥∥∇WEDBL(f, τ)

∥∥∥
F

≤ 2∥G∥2∥H∥2(R2 + 1) · E
[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(x1,yt)− f(x1,y1)

]
/τ

)∑
s exp

([
f(x1,ys)− f(x1,y1)

]
/τ

) ]

+ 2∥G∥2∥H∥2(R2 + 1) · E
[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(xt,y1)− f(x1,y1)

]
/τ

)∑
s exp

([
f(xs,y1)− f(x1,y1)

]
/τ

) ]

≤ 2∥G∥2∥H∥2(R2 + 1) · E
[
1(zt ̸= z1)

∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

)
+ 2∥G∥2∥H∥2(R2 + 1) · E

[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(xt,y1)− f(x1,y1)

]
/τ

)]
≤ 0.25τ∥G∥−1

2 ∥H∥−1
2 (R2 + 1)−1η−1T−1, (G.1)

is very small. Now suppose the SGD trajectory start at W(0) = 2 log
(
16∥G∥22∥H∥22(R2 +

1)2Bτ−1ηT
)
· (τ/γ)W∗. Obviously the score function with weight W(0) achieve a margin

2 log
(
16∥G∥22∥H∥22(R2 +1)2Bτ−1ηT

)
τ . Suppose there exists a time t ≤ T such that ⟨W(t)x,y⟩

can achieve margin larger than 3 log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ or can achieve margin

larger than log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ . Then there must exist a first time t < t′ such
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that the margin at time t lies outsize the range between log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ

and 3 log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ . By definition of t (margin gap), we know that there

exist x,y such that |⟨W(t)x,y⟩ − ⟨W(0)x,y⟩| > τ . On the other hand, we have that∣∣⟨W(t)x,y⟩ − ⟨W(0)x,y⟩
∣∣ ≤ ∥W(t) −W(0)∥F ∥xy⊤∥F
≤ 2∥G∥2∥H∥2(R2 + 1)∥W(t) −W(0)∥F
≤ 2∥G∥2∥H∥2(R2 + 1) · ηT · 0.25τ∥G∥−1

2 ∥H∥−1
2 (R2 + 1)−1η−1T−1

≤ 0.5τ,

a contradiction! Therefore, such a t doesn’t exist. The score function learned by SGD within T

iterations can’t achieve a margin greater than 3 log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ .

Theorem G.1 (Formal statement of Theorem 6.3). Under the same condition as Theorem 5.5, with
ζ = 0. (This problem setting includes the special case considered in Theorem 6.2.) Let ϵ ≤
λγ2 min pk/(3200∥H∥22) and τ ≤ γ/ log(γ2 min pk/(6400B∥H∥22)), within polynomial iterations,
we can find a score function f̂ with large margin. In particular, with a probability of at least 0.99, the
top-1 result gives the correct label with a margin of at least 0.5γ.

Proof. For simplicity, consider the case that we can access the population loss and its gradient, i.e.,
n → ∞. The regularized loss then becomes,

Lnew = LDB (f, τ) + λE[∥g(x)− h(y)∥22].

Since the new loss is still convex and even strongly convex. By applying the same technique in the
proof of the Theorem 5.5, within polynomial iterations, we can find Lnew(f, τ, λ) ≤ Lnew(f∗, τ, λ)+
ϵ. Besides,

Lnew(f∗, τ, λ) = LDB (f∗, τ) ≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ 2B exp(−γ/τ)

where the first equality is by plugging in W∗ = H(H⊤H)−1P(G⊤G)−1G⊤,g(x) = Wx,h(y) =
y , the inequality is by Lemma E.3. Thus we have that

LDB (f, τ) + λE[∥g(x)− h(y)∥22] ≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ ϵ′,

where ϵ′ = ϵ + 2B exp(−γ/τ). By (E.7) and (E.8), we know that LDB (f, τ) ≥

2E
[
log

(∑
t∈[B] 1(zt = z1)

)]
. Therefore, we can conclude that

E[∥g(x)− h(y)∥22] ≤ ϵ′/λ ≤ γ2 min pk/(1600∥H∥22),

where the last inequality is by choose ϵ ≤ λγ2 min pk/(3200∥H∥22) and τ ≤
γ/ log(γ2 min pk/(6400B∥H∥22)). Then by Chebyshev’s inequality, for any z, with probability

1− 0.01 we have ∥g(x)− h(y)∥2 ≤
√
100max p−1

k E[∥g(x)− h(y)∥22] ≤ γ/(4∥H∥2). Then for
any y′ that has the different shared feature from y (i.e., z′ ̸= z) we have that

⟨g(x),h(y′)⟩ − ⟨g(x),h(y)⟩
≤ ⟨h(y),h(y′)⟩ − ⟨h(y),h(y)⟩+ ∥g(x)− h(y)∥2 · (∥h(y′)∥2 + ∥h(y)∥2)
≤ −γ + γ/2

≤ −γ/2,

where the first inequality is by triangle inequality, the second inequality is by ∥g(x) − h(y)∥2 ≤
γ/(4∥H∥2) and ∥h(y′)∥2 = ∥h(y)∥2 ≤ ∥H∥2 since ζ = 0.
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