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Abstract

The longstanding goal of multi-lingual learn-
ing has been to develop a universal cross-
lingual model that can withstand the changes
in multi-lingual data distributions. However,
most existing models assume full access to the
target languages in advance, whereas in realis-
tic scenarios this is not often the case, as new
languages can be incorporated later on. In this
paper, we present the Cross-lingual Lifelong
Learning (CLL) challenge, where a model is
continually fine-tuned to adapt to emerging
data from different languages. We provide in-
sights into what makes multilingual sequential
learning particularly challenging. To surmount
such challenges, we benchmark a representa-
tive set of cross-lingual continual learning al-
gorithms and analyze their knowledge preser-
vation, accumulation, and generalization capa-
bilities compared to baselines on carefully cu-
rated datastreams. The implications of this
analysis include a recipe for how to measure
and balance between different cross-lingual
continual learning desiderata, which goes be-
yond conventional transfer learning.

1 Introduction

With more than 7,000 languages spoken around the
globe, downstream applications still lack proper
linguistic resources across languages (Joshi et al.,
2020), necessitating the use of transfer learning
techniques that take advantage of data that is mis-
matched to the application. In an effort to simplify
architecture complexity and energy consumption,
it is desirable to unify multi-lingual performance
into a single, parameter- and memory-constrained
model, and to allow this model to evolve, learning
on multi-lingual training data as it becomes avail-
able. Such is the longstanding goal of language
representation learning. Existing multi-lingual rep-
resentations such as M-BERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2020) are strong pil-
lars in cross-lingual transfer learning, but if care is
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Figure 1: An overview of CLL: We use an example
of a non-stationary datastream moving from high to
low resource languages. To support this problem set-
ting, we evaluate the cross-lingual capabilities of con-
tinual approaches such as model expansion, regulariza-
tion, replay, and distillation. Those capabilities include
knowledge preservation on old languages, accumula-
tion to the current language, generalization to unseen
languages, and model utility at the end of training.

not taken when choosing how to train, they can ne-
glect to maximize transfer and are subject to forget-
ting (French, 1993), where performance decreases
after exposure to some new task or language.

Most previous work that attempts to deal with
the challenge of transfer exploitation and forget-
ting mitigation focuses on the problem of sequen-
tially learning over different NLP downstream tasks
or domains (Sun et al., 2020; Han et al., 2020;
Madotto et al., 2021), rather than on language shifts.
Indeed, the current literature for learning over se-
quences of languages is rather scarce, and mostly
focuses on cross-lingual transfer learning between
a pair of languages. Previous works that fall into
that category include Liu et al. (2021) and Garcia
etal. (2021). Liu et al. pre-train a (parent) language
model and then fine-tune it on a downstream task
in one of several different (child) languages. This
“two-hop” case conflates task transfer and language
transfer, and confuses analysis — the interference



between the pre-trained language model ‘task’ and
the fine-tuned task along with the parent and child
languages cannot be disentangled. Garcia et al. fo-
cus on sequentially learning over two sets of parent
and children language pairs in machine translation.
However, this still focuses on the ‘two-hop’ case;
the effect of multiple shifts in the datastream is not
trivially generalizable to more than two hops. Gar-
cia et al. also constrain their focus to the mitigation
of forgetting with the objective of adapting bet-
ter to new languages. This is an almost exclusive
focus in continual learning literature (Lopez-Paz
and Ranzato, 2017; Hayes et al., 2018). However,
there is more than forgetting while sequentially
learning over multiple languages. We need a more
robust and balanced evaluation between differ-
ent cross-lingual continual learning desiderata
that balance the dynamics of transfer and gen-
eralization in addition to forgetting.

In this paper, we prescribe a multi-hop contin-
ual learning evaluation that simulates sequentially
learning a single task, as the multi-lingual model is
exposed to training data from different languages.
We formulate the Cross-lingual Lifelong Learning
challenge and experiment with balanced streams
of n data scenarios for n > 2. Unlike previ-
ous work, this paper defines comprehensive goals
including knowledge preservation, accumulation,
generalization, and model utility as guidelines for
analyzing the cross-lingual capabilities of multilin-
gual sequential training. To measure them, we de-
fine evaluation metrics and tweak data distribu-
tions and language permutations to investigate
(1) the capabilities and obstacles of a multi-lingual
language model in preserving and accumulating
knowledge across different languages and (2) the
effectiveness of different continual learning algo-
rithms in mitigating those challenges.

We apply this test bed to a six-language task-
oriented dialogue task and analyze a wide vari-
ety of successful continual learning algorithms in
that context. We cover a representative set of ap-
proaches spanning over: (a) model-expansion ap-
proaches (Pfeiffer et al., 2020b), (b) regularization-
based (Kirkpatrick et al., 2017), (c) memory re-
play (Chaudhry et al., 2019b), and (d) distillation-
based (Hinton et al., 2015; Aguilar et al., 2020).
Our findings confirm the need for a multi-hop anal-
ysis and the effectiveness of continual learning al-
gorithms, especially model expansion and mem-
ory replay approaches, in enhancing knowledge

preservation and accumulation of M-BERT. We ad-
ditionally demonstrate the robustness of different
continual learning approaches to variations in indi-
vidual data setup choices that would be misleading
if presented in a traditional manner.

Our main contributions are: (1) We are the first
to explore and analyze cross-lingual continual fine—
tuning! across multiple hops and show the impor-
tance of this multi-hop analysis in reaching clearer
conclusions with greater confidence compared to
conventional cross-lingual transfer learning (§4.5).
(2) We evaluate the aggregated effectiveness of a
range of different continual learning approaches
(Figure 1) at reducing forgetting and improving
transfer (§4.2). (3) We show that that the order of
languages and data set size impacts the knowledge
preservation and accumulation of multi-lingual se-
quential fine-tuning and that certain continual learn-
ing approaches bridge that gap (§4.3). (4) We make
concrete recommendations on model design to bal-
ance transfer and final model performance with
forgetting (§4.2). (5) We analyze zero-shot gener-
alization trends and their correlation with forget-
ting (§4.4).

2 Cross-lingual Continual Learning

We first formally define cross-lingual lifelong learn-
ing, its goals and challenges, the downstream tasks
and datastreams, the analysis setup goals, and the
evaluation protocols that support them.

2.1 Problem Formulation

We define cross-lingual lifelong learning as
the problem of sequentially fine-tuning the
Transformer-based model 6 for a particular down-
stream task over a cross-lingual data stream. Let
L ={ly,£2--- Ly} be aset of labeled languages,
let §(Z) be the set of all permutations of £, and
without loss of generality let p € &(.%) be one
such permutation and let p[i] € .Z be the ith lan-
guage in p . In this case, a training data stream
is made of IV labeled and distinct datasets D;...n,
each consisting of separate train and test portions.
The language of D; is p[i]. Let hop i be the stage
in cross-lingual lifelong learning where 6;_ is op-
timized to 6; via exposure to D;. Let D; and D~;
refer to a sequence of dataset (train or test portions,
depending on context) used in hops from 1 to ¢ and
1 to N (excluding i), respectively.

!To encourage future research in this direction, we release
our github repository in the camera-ready version.



2.2 Goals

We define the goals for our study of cross-lingual
lifelong learning as follows (also depicted in Fig-
ure 1): 1) Cross-lingual preservation. This is the
ability to retain previous knowledge on seen lan-
guages. 2) Cross-lingual accumulation. This is the
ability to accumulate knowledge learned from pre-
vious languages to benefit the learning on current
language. 3) Cross-lingual generalization. This
goes beyond learning for the current languages to-
wards generalizing uniformly well to unseen lan-
guages. 4) Model utility. This tests how well we
can use one final model for all languages.

2.3 Challenges

Learning sequentially from a non-stationary data
distribution (i.e., task datasets coming from differ-
ent languages) can impose considerable challenges
on the goals defined earlier: 1) Catastrophic for-
getting. This happens when fine-tuning a model
on D>; leads to a decrease in the performance on
Di. 2) Negative transfer. This happens when
fine-tuning a model up to D<; leads to a lower per-
formance on D; than training on it alone. 3) Low
zero-shot transfer. This happens when fine-tuning
on D«; gives a low performance than on unseen
D~;. 4) Low final performance. This happens
when fine-tuning on all D<y gives a low perfor-
mance when tested on D« at the end of training.

2.4 Downstream Tasks and Datastreams

Here, we describe the downstream tasks and multi-
lingual sequential datastreams used.

Downstream Tasks. We choose task-oriented di-
alogue parsing as a use case and consider the
multi-lingual task-oriented parsing (MTOP) bench-
mark (Li et al., 2021). Task-oriented dialogue pars-
ing provides a rich testbed for analysis, as it en-
compasses two subtasks: intent classification and
slot filling, thus allowing us to test different task
capabilities in cross-lingual continual learning.
Data Stream Construction. For a set of V lan-
guages .Z, our study considers a permutation sub-
set P C &(%) according to the following proper-
ties:?
* |P| = |Z| = N, where V¥; € P appears exactly
once in each stream.
eVl € £,Vj€e1l...N,there exists some p € P
such that p[j] = ¥;.

Details of the different language permutations used for
the data streams can be found in Appendix B.1.

Train / Dev / Test
Lang ISO

Original Version \ Balanced Version
English | EN 15,667 /2,235 /4,386
German | DE 13,424/ 1,815/ 3,549
French FR 11,814 /1,577 /3,193
Hindi HI 11,330/2,012/2,789 9.21971,28572,299
Spanish | ES 10,934 /1,527 /2,998
Thai TH 10,759 /1,671 /2,765

Table 1: Statistics of MTOP per language and split.

* high?low € P, the permutation from most high-
resource to most low-resource fine-tuning data
sets, based on the training dataset size.

* low2high € P, the permutation from most low-
resource to most high-resource fine-tuning data
sets, based on the training dataset size.

We use MTOP which is a multi-lingual dataset cov-
ering 6 typologically diverse languages and span-
ning over 11 domains. In this evaluation, we use
only the decoupled representation. We use the orig-
inal data for most experiments. For one additional
ablation study, we fix the distribution of the train-
ing, development, and testing sentences following
a balanced distribution over the intents for all lan-
guages. Table 1 shows a summary of the statistics
per language and split for both versions.

2.5 Analysis Setup

We provide an extensive analysis in the form of
different ablation studies. These revolve around
the continual learning goals, described in §2.2.

Q1. Can a multi-lingual language model learn
to preserve and accumulate knowledge across
different languages? Specifically, we investi-
gate whether multi-lingual sequential fine-tuning
can accumulate and retain knowledge and how well
its final checkpoint can be used for all languages at
the same time. This is a fundamental question to
help us determine if the use of continual learning
is needed at all to perform sequential cross-lingual
fine-tuning. We investigate the performance of
the baseline and reference models (§3.1) using the
meta-metrics (§2.6), on the average over language
permutations and the original version of the dataset
set shown in Table 1 (§2.4).

Q2. Are continual learning algorithms effec-
tive in boosting knowledge preservation and ac-
cumulation compared to naive sequential fine-
tuning? We compare different continual learning
algorithms, analyze their accumulation capabilities
and final model utility in reaching a compromise be-
tween them and retaining previous knowledge. For
that purpose, we compare the performance of the



algorithms (§3.2) using the second and third met-
rics (§2.6) and analyze their relationship to knowl-
edge preservation (first metric), taking the average
over language permutations (§2.4).

Q3. Which language permutations impose
more challenges on knowledge preservation
and accumulation? We wish to understand the
role of language order in knowledge preservation,
accumulation, and final model utility of multi-
lingual sequential fine-tuning and which continual
learning approaches bridge the gap between dif-
ferent language permutations. We use the same
experiment plan as in questions Q1 and Q2 with
respect to different languages permutations and the
original version of the dataset (§2.4). For additional
ablation studies on the role of fine-tuning data set
size, we use the balanced dataset.

Q4. How do different continual learning mod-
els generalize to unseen languages? We anal-
yse the zero-shot generalization to unseen lan-
guages in the stream. For that purpose, we look
at several continual learning models and compare
them to the baseline over the average of different
language permutations in terms of the last met-
ric (§2.6). We also analyze the relationship be-
tween generalization and preservation to check for
any correlations or trade-offs.

QS. How is a multi-hop different from two-hop
continual learning analysis? Finally, we wish
to investigate which insights a multi-hop analysis
over multiple languages in the stream provides us
with that is different from the conventional two-
hop cross-lingual continual transfer learning from
a source to a target language. For this purpose, we
conduct several experiments involving only the first
and last language in each stream (§2.4) to compare
them to the corresponding full stream involving the
remaining languages in between.

2.6 Evaluation Protocols

Let R be some metric for evaluating K and R; <;
be the evaluation on test set for language £; using
a model trained on D;...;, we define the following
meta-metrics (which are inspired, but slightly dif-
ferent from the metrics defined in Lopez-Paz and
Ranzato (2017) and Chaudhry et al. (2019a)):

» Forgetting (F) |. This is the average for-
getting over all hops (excluding the first hop
as no forgetting occurred yet) computed as:

F = 3500, Fej (1), such that Feoj =
j%l Zf;ll Fi<j (2) is the average forgetting
that occurred at hop 7. We compute F; <; =
maxkglvj_l] Ri,gk’ - Ri,gj (3), where Fi,gj is
the degree to which performance on D; has suf-
fered by continuing to train up to D; instead of
stopping before D;_.

* Transfer (T) 1. This is the average forward trans-
fer computed as: T = Zf\;zTZ (4), such
that T; = R; <;—R; (5), where R; denotes evalu-
ation of a model fine-tuned only on D;. T; is thus
the incremental impact of sequentially training
on datasets prior to seeing D;.

* Final performance (FP) 1. This is the average
performance after training on all datasets in the
. N
studied stream: FP = £ Y| R; <. (6)

To measure generalization to new languages, we
add a zero-shot transfer (701) metric, which is
measured as: 70 = 1 fo\ig T? (7), where
TP = ;4 317 Ri<j — R (8) is the average per-
formance of a model on the forward transfer to a
language £; after seeing all datasets before and not
including it compared to the random performance
R; before even fine-tuning on any language.

3 Methods

We use the same architecture as in Castellucci et al.
(2019); M’hamdi et al. (2021) to jointly learn in-
tent classification and slot filling subtasks on top
of M-BERT.? In this section, we describe several
baselines and continual learning algorithms of how
this architecture is trained sequentially or jointly
on multiple languages.

3.1 Baselines & Reference Models

Before delving into continual learning approaches,
we consider simple baselines,* which either train
in a sequential multi-hop or a joint one-hop manner
and are either language-specific or multi-lingual.

Lower-bound Baseline. This consists of naive
sequential fine-tuning (Naive Seq FT), which se-
quentially fine-tunes with no continual learning.

Upper-bound Models. These are stronger refer-
ence models, as they either train from scratch for

3More details about the architecture can be found in Ap-
pendix A.

*All those baselines and reference models use the same
base model architecture and its loss with no further additions
or special optimizations to the architecture.
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Figure 2: A comparison between different variants of model expansion for this problem setting: either at the side
of the input (Lang-Spec Trans), the output (Lang-Spec Task), or using adapters (Lang-Spec Ada).

each new language or have access to all languages:

* Language-specific fine-tuning (Lang-Spec FT).
This is the baseline that trains a model on the
data set for each language Dy, independently.

* Multi-lingual learning (Multilingual). This trains
one model jointly across all data sets D;...y.

* Incremental joint learning (Inc Joint). This incre-
mentally trains adding the data set for each lan-
guage in the stream. This consists of the follow-
ing hops: 1) Dy, 2) D¢, 4,, -+, and N) Dy..n.

3.2 Continual Learning Approaches

To continually fine-tune on different tasks, we es-
tablish several strong approaches from the follow-
ing categories:’

Model Expansion. We consider the following
approaches shown in Figure 2. We either expand on
the input side, i.e. M-BERT representations, (Lang-
Spec Trans) or on the output side, i.e. the task-
specific prediction heads (Lang-Spec Task) for each
language, while sharing the rest in each case (the
output and input respectively). We also separately
add MAD-X adapters (Pfeiffer et al., 2020b). We
either fine-tune the adapter layers and freeze the
rest of M-BERT (Lang-Spec Ada(F)) or tune them
both (Lang-Spec Ada(T)).

Regularization. We focus on elastic weight con-
solidation (EWC) (Kirkpatrick et al., 2017), which
tackles catastrophic forgetting by reducing the
changes in parameters that are deemed critical to
past tasks. We use the online version of EWC
(EWC-Online) for efficiency purposes.

Memory Replay. We use experience replay
(ER) (Chaudhry et al., 2019b), which alleviates for-
getting by maintaining a fixed-size memory equally
balanced between the different languages and regu-
larly drawing examples from the memory to replay.

SMore details about the approaches can be found in Ap-
pendix A and the hyperparameters used can be found in B.2.

Distillation-based. On top of ER, we distill
dark knowledge from previous model checkpoints.
We explore two variants: logit distillation (KD-
Logit) (Hinton et al., 2015) and representation dis-
tillation (KD-Rep) (Aguilar et al., 2020), which
optimize the minimum square error loss between
either the output logits or M-BERT representations
between the current and previous models.

4 Results & Analysis

In this section, we present our results and findings
for the different analysis questions raised in §2.5.
For §4.1, scores are reported using accuracy (Acc)
and F1-score (F1) for intent classification and slot
filling, respectively.® All experiments are run for
one single seed and then bootstrap sampling is used
to compute the average and confidence intervals
over either just the random shuffling of the test data
(§4.3) or also averaging over language permuta-
tions. More details can be found in Appendix B.3.

4.1 Multi-lingual Sequential Learning

Model | Acc F1

Naive Seq FT | 90.52 £1.42 69.10 £1.24
Lang-Spec FT | 93.20 £0.08 73.59 +0.81
Inc Joint 94.20 £0.15 74.97 £0.51
Multilingual 94.25 +0.07 76.34 +0.82

Table 2: The average final performance across differ-
ent language permutations for the baseline compared to
reference models. We highlight the best scores in bold
and underline the second best across models.

Our analysis begins with an investigation of how
well different baselines and reference models learn
to preserve and accumulate knowledge across dif-
ferent languages, by looking at the average over
language permutations (Q1 in §2.5). Since not all
reference models are sequential, we start by com-
paring them all to the baseline using their final

For the remaining sections, all results are reported for

intent classification for space efficiency and more results for
slot filling can be found in Appendix C.



performances. The final performance is indicative
of how well a single final model can encapsulate
the knowledge across languages. From Table 2, we
notice that Naive Seq FT and Multilingual have
the worst and best final performances, respectively.
This suggests that a multilingual joint model is
more beneficial than sequential models, but in
practical scenarios having access to all languages
at the same time might be costly or prohibitive.
While Lang-Spec FT improves only over Naive
Seq FT by 2.68% and 4.49%, it falls behind Inc
Joint by 1% and 1.38% and Multilingual by 1.05%
and 2.75% on intent classification and slot fill-
ing, respectively. Therefore, training sequentially
is more beneficial than training a model from
scratch, to exploit cross-lingual transfer capabili-
ties.

Fl Tt
Acc F1 Acc F1
Naive Seq FT | 2.99 £1.20 6.22 +£0.95 | 0.76 £0.09 1.42 +0.33
0.15 +0.10 0.93 +0.38 | 0.85 £0.12 1.33 +£0.83

Model

Inc Joint

Table 3: Forgetting (F) and transfer (T) performance
averaged across different language permutations for se-
quential baseline and reference models. We highlight
the best models in bold and underline the second best.

We focus, thereafter, more on Naive Seq FT and
its forgetting and transfer trends compared to Inc
Joint, which is a sequential variant of the refer-
ence model Multilingual. Inc Joint exhibits signif-
icantly less forgetting which also causes its final
performance to be higher than Naive Seq FT. This
suggests that recalling previously used training
data is helpful in knowledge preservation. How-
ever, the difference between the two, in terms of
their transfer performance, is not statistically sig-
nificant.” We hypothesize that this could be due to
exposing Inc Joint to all resources from previously
seen languages, so it is likely that the data distri-
bution between all these languages may distract
the model from learning on the new one.

4.2 The Effectiveness of Continual Learning

To investigate the effectiveness of continual learn-
ing approaches in improving knowledge preserva-
tion and accumulation, we compare them to the
baseline using the average over language permu-
tations (Q2 in §2.5). We show, in scatter plots 3
and 4, the transfer and final performances of differ-

"We report the p-values from pairwise Tukey’s HSD analy-
sis to gain a reliable unified view that individual t-tests may fail
to convey. More explanation can be found in Appendix B.3.

ent approaches, respectively, as functions of their
negative forgetting. In general, we observe that
continual learning approaches mitigate forgetting,
improve transfer, and final performance compared
to Naive Seq FT (except for EWC-Online, where
even the small improvement in transfer is not sta-
tistically significant (Appendix D)).

From Figure 4, we notice that model expan-
sion approaches®(Lang-Spec Trans and Lang-Spec
Enc[0-8]) are the best in mitigating forgetting and
improving the final performance unlike Lang-Spec
Task. This proves that M-BERT, when trained in a
language specific manner, is responsible for encap-
sulating the cross-lingual representations necessary
for enabling knowledge preservation, whereas any
changes to the downstream task-specific layers do
not make much of a difference. This implies that
in cross-lingual continual learning more attention
should be paid to how to train those representa-
tions in a language-specific manner efficiently.
Lang-Spec Ada(T) are one way to do it more effi-
ciently, but its performance still lags behind. ER
achieves a performance closer to Lang-Spec Trans
and Lang-Spec Enc[0-8]° and this suggests that
even tiny bits of memory are beneficial.
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Figure 3: Transfer versus negative forgetting for intent
classification task. Outliers are in red.

In the baseline approach which suffers from the
lowest forgetting, we also notice the lowest transfer
and final performance in Figures 3 and 4. As con-
tinual learning approaches reduce forgetting, they
also improve the final performance and some of
them also improve transfer but not to the same de-
gree. This suggests that the lower the forgetting
a model can achieve, the easier it gets for it to

8We include a full analysis of the expansion over several
subsets of M-BERT components in Appendix C.2.

This trains M-BERT encoder layers € 1...9 in a

language-specific manner, while sharing the embeddings, the
rest of the layers € 10. . .12, and prediction heads.
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Figure 4: Final performance versus negative forgetting
for intent classification task.

accumulate knowledge. There are some outliers
like Lang-Spec Trans which is the best model in
terms of reducing forgetting but also the worst in
terms of transfer. This could be due to the fact
that Lang-Spec Trans exhibits a similar behavior
to Lang-Spec FT thus the transfer, which is the
difference with Lang-Spec FT, is almost null.

4.3 Analysis across Different Language

.
Permutations
Fl T FP 1

Model high2low  low2high H high2low  low2high ‘ high2low  low2high

Naive Seq FT 1.74 £0.02 542 +0.04 || 0.83 £0.02 0.85 +0.01 | 91.87 +0.02 87.65 +0.02
Lang-Spec Trans | 039 +0.01  0.62 £0.02 || 0.71+£0.02 028 +0.02 || 93.86 +0.01 93.38 +0.01
Lang-Spec Enc[0-8] | 0.59 £0.01 1.08 £0.02 || 1.13 £0.01 0.95 £0.01 || 93.77 £0.01 93.16 £0.01
Lang-Spec Task 1.55£0.01 547 +0.04 || 098 £0.02 0.63£0.01 || 91.97 £0.02  87.66 +0.02
Lang-Spec Ada(T) | 113£0.01 473 £0.04 || 0.94+£0.02 074 £0.01 || 92.44£0.01 88.91 +£0.02
Lang-Spec Ada(F) 0.95 +0.02  1.18 £0.04 || 3.30 +0.02 2.10 £0.02 || 90.87 +0.02 89.84 +0.02
EWC-Online 20140.02 635 +£0.04 || 0.94£0.02 059 £0.01 || 90.72£0.02 87.79 +0.02
ER 0.93 £0.02 1.81 £0.03 || 0.87 £0.01 0.56 £0.02 || 93.24 +£0.01 92.68 +0.02
KD-Logit 182002 457 +0.04 || 076 £0.02 0.76 +0.02 || 91.25 £0.02 89.53 +0.02

KD-Rep 1.87 £0.02  3.78 £0.04 || 0.80 £0.02 0.93 +0.01 || 90.86 +£0.02 89.75 +0.02

Table 4: Performance on intent classification compar-
ison between the baseline and continual learning algo-
rithms across two language permutations. We highlight
the lowest forgetting (F), highest transfer (T), and final
performance (FP) of accuracy scores among high2low
and low2high in bold, whereas the best and second best
scores across approaches for high2low and low2high
separately are underlined and italicized, respectively.

So far our analysis has focused on the average
over different language permutations, but are the
same patterns observed for different language per-
mutations? To shed the light on that, we analyze
the performance of different continual learning al-
gorithms and baselines in terms of their forget-
ting, transfer, and final performance over high2low
and low2high permutations (Q3 in §2.5), in Ta-
ble 4.0 In general, we observe that for Naive Seq
FT and some continuous learning approaches,
it is more challenging to learn from low to high

10Full results for slot filling, more language permutations,
and the balanced data can be found in Appendix C.3.

resource languages, as there is a huge differ-
ence in forgetting and final performance and to
a lesser degree a decrease in transfer. On the other
hand, model expansion and memory replay ap-
proaches reduce the forgetting and final gap
between language permutations. We hypothe-
size that low2high being more challenging than
high2low could be due to the fine-tuning training
data size that is different between languages.

Model

Tt
‘highzlow low2high ‘highzlow low2high H high2low low2high

1.74 £0.02 542 £0.04
1.25+0.02  5.81 £0.05

Original Data
Balanced Data

0.83 £0.02 0.85+0.01 || 91.87 £0.02 87.65 £0.02
0.89 £0.02  0.75 +0.02 89.33 £0.02  85.81 £0.02

Table 5: Performance on intent classification compar-
ison between two versions of the data: original data
version and balanced data for Naive Seq FT across the
same permutations as (Table 4). We embolden the best
among high2low and low2high for each metric.

To verify this hypothesis, we dig deeper to check
if the differences among training fine-tuning data
sizes between languages is the main factor by per-
forming an ablation study on that. Therefore, we
use the same amount of training resources for each
language and report the results on Naive Seq FT
in Table 5. We can see that there is still a gap
between these two language permutations for for-
getting and final performance. This suggests that
the difference in fine-tuning training data size is
not what accounts for the differences between
the two language permutations. There are per-
haps biases in the pre-training or other linguistic
artifacts that need to be studied in future work.

4.4 Zero-Shot Generalization in
Cross-lingual Continual Learning

To analyze the zero-shot transfer to unseen lan-
guages, we plot the performance on zero-shot trans-
fer as a function of negative forgetting for the base-
line and continual learning approaches, to investi-
gate any relationship between generalization and
preservation (Q4 in 2.5). In Figure 5, we infer
that most continual learning approaches don’t
substantially improve the generalization com-
pared to Naive Seq FT. We notice that model
expansion approaches (in red), in particular, hurt
the generalization performance even if they signif-
icantly reduce forgetting. This zero-shot trans-
fer versus interference trade-off is referred to as
the stability-plasticity dilemma (Mermillod et al.,
2013), where the weights responsible for improv-
ing on new tasks are often responsible for the for-
getting on previous tasks. If we exclude model



expansion approaches (sub-figure on the right), we
notice that approaches which reduce forgetting also
improve generalization compared to Naive Seq FT.
Better approaches to balance between the two can
be investigated in future work.
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Figure 5: Zero-shot generalization versus negative for-
getting for intent classification. Outliers are high-
lighted in red. We zoom over the rest of the models
in the upper right corner subplot.

4.5 Multi-Hop vs Two-Hop Cross-lingual
Continual Learning
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Figure 6: Comparison between forgetting trends for
intent classification using two-hop (crossed boxplots)
and multi-hop analysis (dotted boxplots), on the left
and right respectively for each approach, showing the
variance over different language permutations.

To motivate this cross-lingual continual learning
work further, we dig deeper into how a multi-hop
analysis is different from a conventional transfer
learning analysis (Q5 in §2.5). Figure 6 shows a
comparison between the two in terms of forgetting
for different approaches aggregated over different
language permutations. More results for slot fill-
ing and other metrics can be found in Figure 11 in
Appendix C.5. Lang-Spec Trans tends to have the

least forgetting and Naive Seq FT the most, but im-
portantly the variance for a multi-hop analysis
is much smaller than that for two-hop analysis.

5 Related Work

Continual learning approaches have found favor
especially among the computer vision community,
including regularization-based (Kirkpatrick et al.,
2017; Zenke et al., 2017; Li and Hoiem, 2016; Rit-
ter et al., 2018), memory-based (Shin et al., 2017;
Chaudhry et al., 2019b,a), etc. Only recently, it has
started gaining more interest in the NLP commu-
nity. Current approaches often fail to effectively
retain previous knowledge and adapt to new infor-
mation simultaneously (Biesialska et al., 2020; Han
et al., 2020; de Masson d'Autume et al., 2019).
Existing continual learning work for cross-
lingual NLP is even more scarce, either focusing on
proposing cross-lingual approaches that indirectly
support lifelong learning, such as Artetxe et al.
(2020), on the transfer-ability of monolingual mod-
els. Other approaches derive a cross-lingual contin-
ual learning problem directly from cross-lingual
transfer learning, such as Garcia et al. (2021),
which investigate a lexical approach for cross-
lingual continual machine translation. Liu et al.
(2021) explore continual techniques to fine-tune on
downstream applications for new languages, while
preserving the original cross-lingual ability of the
pre-trained model. However, they focus on a two-
hop analysis from high to low resource language
pairs or from pre-training to fine-tuning tasks, un-
like our work, which analyzes across multiple hops.

6 Conclusion

We formulate the cross-lingual lifelong learning
problem setup. We show that simple naive sequen-
tial fine-tuning is prone to catastrophic forgetting
and has poor accumulation and generalization capa-
bilities sensitive to different language permutations.
To address these issues, we provide the first bench-
mark to compare the effectiveness of different con-
tinual learning algorithms for the cross-lingual case.
We show that continual learning models improve
cross-lingual knowledge preservation, which also
contributes to facilitating knowledge accumulation,
but to a lesser degree on generalization. We also
discuss the challenges of sequentially training for
certain language permutations. We hope that this
study will encourage more analyses in the same
spirit to gain more insights that go beyond conven-
tional cross-lingual transfer learning.
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A More Details about Approaches

A.1 Base Model Architecture

We use the same architecture as in Castellucci et al.
(2019); M’hamdi et al. (2021) to jointly learn intent
classification and slot filling subtasks. As shown in
Figure 7, we leverage features from Transformer
(Vaswani et al., 2017) encoder and add classifica-
tion prediction heads on top of it. More specifically,
a multi-lingual pre-trained model is used to encode
the input. Then, to predict the intent and slot spans,
we add task-specific prediction heads. For intent
prediction, this takes the form of a linear layer plus
softmax on top of the [C'LS| token representation.
For slot filling, we use a sequence labeling layer
in the form of a linear layer plus CRF respectively.
We use the sum of both intent and CRF based slot
losses to optimize the model parameters.

o ¢ & ¢

Inte_nt CRF + Slot Classifier
Classifier

Multilingual Transformer

ETokI ‘ ETokN-1 ’ E’TakN
Set alarm .. 7 am

Figure 7: Architecture of base-task oriented dialogue.

A.2 Adapters

Adapters consist of downsampling layers followed
by upsampling layers inserted between layers of
our Transformer encoder in addition to their in-
vertible components. We don’t add task-specific
adapters which, according to our ablation stud-
ies, didn’t prove beneficial. We add adapter
components to every encoder layer following
MAD-X configuration and using their pre-trained
weights obtained from AdapterHub (Pfeiffer et al.,
2020a).!" We either fine-tune the weights for the
languages available in AdapterHub or train from
scratch for languages for which there are no pre-
training adapter weights. At inference time, we use
adapter layers fine-tuned independently for each
language in the datastream.

"https://adapterhub.ml/explore/text_
lang/
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A.3 Online Elastic Weight Consolidation
(EWC-Online)

To penalize changes in the parameters crucial to
previous languages, we use EWC, which adds a
regularization term to the loss applied only after
the first data set D; in the language stream is seen.

Vi € 2... N, we compute the total loss as follows:
éotal ‘C?:ur + )“Ciegp (9)

where L., is the usual loss of the downstream
task on the current data D; and L, is the regular-
ization term and A is a hyperparameter to control
the regularization strength. For efficiency purposes,
we use the online version of EWC (EWC-Online),
which number of quadratic terms in the regular-
ization terms doesn’t increase with the number of
languages seen so far. Following that, our regular-
ization term is computed as, based on the formula-
tion in van de Ven and Tolias (2019):

reg ZFZ Y 0 _ek)

where 0 are the parameters of the transformers
model in addition to the downstream prediction
heads, NN, is the total number of parameters, and

(10)

ﬁ}.(;_l) is the Fisher information matrix on the last
language just before training on D;. This is com-
puted as the running sum of the i*" diagonal ele-
ments of the Fisher Information matrices of D, for

allj e 1...(i—1). Fjgj) = FJ(; 2 + F}; and
Fjlj = F};. In practice, F" is simply the gradlents

all parameters flattened into one single matrix.

A.4 Experience Replay (ER)

After training for each D; forall7 € 1... N, we
populate the memory with randomly sampled ex-
amples from D;. Foreach D; forall: € 2... N, af-
ter training for every £ = 100 mini-batches and op-
timizing for the current loss separately, the model
randomly samples an equal batch from the memory
for each D; such that j € 1... (i — 1) and replays
them using the current model checkpoint used for
training on D;. We retrieve an equal amount of
memory from each language and at each step and
hop. The loss from the current D; and the loss on
the memory on the D; are interleaved as the replay
on the memory only happens every k steps. This
prioritization of the current language helps make
the training more stable without over-fitting on the
small memory from previous languages.


https://adapterhub.ml/explore/text_lang/
https://adapterhub.ml/explore/text_lang/

A.5 Knowledge Distillation (KD-Logit &
KD-Rep)

We use the same strategy explained in §A.4 to se-
lect the memory to be replayed using a knowledge
distillation loss. For each D; for allz € 2... N,
after training for every k£ = 100 mini-batches, we
randomly samples an equal batch from the memory
foreach D; suchthat j € 1...(i—1). We also load
the model checkpoints for each hop j and use that
model and the memory for D; to compute either
the intent and slot logits in the case of KD-Logit
or the multilingual representations of M-BERT in
the case of KD-Rep. We do the same thing using
the current model checkpoint this time. Then, we
use the minimum square error loss to minimize the
distance between the intent logits obtained using
the previous and current model checkpoints and do
the same thing for slot logits for KD-Logit. Then,
we take the same over intent and slot distillation
losses across different language retrieved from the
memory. The same is done for computing the dis-
tillation loss over the multilingual representations
in KD-Rep.

B Experimental Setup Details

B.1 Datastreams

Order1 Order2 Order3 Order4 Order5 Order6
English  Thai Spanish ~ French  Hindi German
German  Spanish  Hindi Thai English  French
French Hindi English  German Spanish  Thai
Hindi French  German English  Thai Spanish
Spanish  German  Thai Hindi French English
Thai English  French  Spanish German Hindi

Table 6: Simulated language permutations.

We use the following data streams for all our
experiments as summarized in Table 6. The
MTOP dataset has been released by Facebook (Li
et al., 2021) under Creative Commons Attribution-
ShareAlike 4.0 International Public License which
allows its usage.

B.2 Implementation Details

For all experiments, we use M-BERT (bert-base-
multilingual-cased)'? with 12 layers as our pre-
trained Transformer model. We use the dev set
to pick the hyperparameters of the optimizer to

12github .com/huggingface/transformers
version 3.4.0 pre-trained on 104 languages, including all
languages evaluated on in this paper.
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be used. We perform a search for the most op-
timal learning rate over a range [le — 4, 3e — 4,
le — 5, 3e — 5] for Adam optimizer (Kingma and
Ba, 2015) and finally fix the learning rate to 3e — 5
for all experiments for a fair comparison. We use
e =1e—8, 51 =0.9, B3 = 0.99, batch size of 16,
v = 0.1 for EWC Online, 6000 memory size for
ER and knowledge distillation. For all experiments,
we run for 10 epochs maximum and pick the best
model based on dev data. We also fix a seed of
42 for the random initialization of numpy, random,
and torch over all experiments. All experiments
are run using the same computing infrastructure
Pytorch version 1.7.1, using one Tesla P100 GPU
of 16280 MiB of memory CUDA version 11.2.

The runtime and the number of parameters de-
pend on the approach used and the mode of train-
ing are detailed in Table 7. With the exception of
model expansion approaches, all approaches have
the same number of parameters coming from the
sum of M-BERT and prediction head parameters.
Lang-Spec Trans has the highest number of parame-
ters which is six times more than Naive Seq FT but
only requires two times more runtime as only one
fracl6 part of language-specific M-BERT is up-
dated at each hop for each whereas the rest is used
in evaluation mode only. Lang-Spec Ada(F) has
the smallest number of parameters which around
24% and takes 2 times less than the usual runtime
of Naive Seq FT (while exhibiting lower forgetting
and higher transfer than Naive Seq FT, as shown
in Table 8). Memory replay and knowledge dis-
tillation approaches have more runtime (slightly
more than Lang-Spec Trans) as they store and han-
dle memory and compute the replay or distillation
losses interleaved with the main loss which makes
them time-consuming.

B.3 Bootstrap Sampling & Statistical
Significance

We run all experiments over one fixed seed of 42.
We then use bootstrap sampling (Koehn, 2004) to
compute the mean and confidence intervals for each
of the metrics described in §2.6 over a single ap-
proach. For each language permutation, and for
each I; <, representing some performance metric
on language #; after training on D;...;, we sample
with replacement 600 sentences from the testing
data over 600 iterations. By using this number of
iterations and sampling sentences, we ensure and
also double check that all sentences in the test set


github.com/huggingface/transformers

Model Runtime # Param
Naive Seq FT 3h16min 178,081,402
Lang-Spec FT 52min 178,081,402
Inc Joint 1d22h51min 178,081,402
Multilingual 16h45min 178,081,402
Lang-Spec Embed 7h46min 639,123,322
Lang-Spec Enc[0-2]  Th52min 284,399,482
Lang-Spec Enc[3-5]  7h12min 284,399,482
Lang-Spec Enc[6-8]  7Th8min 284,399,482
Lang-Spec Enc[9-11] 7h20min 284,399,482
Lang-Spec Enc[0-8] 8hlmin 497,035,642
Lang-Spec Trans 7h15min 1,067,348,602
Lang-Spec Enc[0-11] 7Th53min 603,353,722
Lang-Spec Enc[0-5]  7h16min 390,717,562
Lang-Spec Enc[6-11] Th10min 390,717,562
Lang-Spec Task 6h18min 179,221,212
Lang-Spec Ada(T) 4h34min 222,301,402
Lang-Spec Ada(F) 1h57min 44,447,962
EWC-Online 1d3h17min 178,081,402
ER 8h55min 178,081,402
KD-Logit 7h23min 178,081,402
KD-Rep 8h 178,081,402

Table 7: Runtime and parameters statistics.

are covered in the evaluation ensuring a uniform
evaluation across approaches. Let z be the list
of results we get for each iteration independently.
Then, we compute the mean and standard deviation
7 and std(z) respectively and the 95% confidence
interval size C'I using the following equation:

19639 x std(x)

CI ,
v/600 — (11D
std(z) = ) =& =2

600

This computes x and C for each language per-
mutation separately. To aggregate this across dif-
ferent language permutations, we simply take the
average and the standard deviation.

To compute the statistical significance between
different approaches, we use ANOVA and per-
form a multiple pairwise comparisons analysis us-
ing Tukey’s honestly significant difference (HSD)
test'? over different language permutations for each
metric.

C More Results & Analysis
C.1 Full Average Results

Table 8 shows the full results and confidence in-
tervals for different continual learning approaches.
Compared to intent classification, we observe a
higher forgetting and slightly higher transfer but a
lower zero-shot transfer and final performance in

3We use bioinfokit library https://github.com/
reneshbedre/bioinfokit
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the case of slot filling. This could be due to the
nature of the task of slot filling which is more chal-
lenging to learn. In general, we can observe the
same forgetting, transfer, zero-shot transfer, and
final performance trends between intent classifica-
tion and slot filling. In other words, if a model a has
higher forgetting of intent classification than model
b then the same thing applied to slot filling. Some
exceptions include ER which the highest zero-shot
transfer on slot filling, while having not the highest
but the second highest zero-shot transfer on intent
classification. This could be due to the transfer
between intent classification and slot filling that is
maximized when training them jointly.

C.2 Per M-BERT Components Analysis

Table 9 shows ablation studies for the analysis of
M-BERT components following four different cat-
egories: groups of 12 layers with or without em-
beddings, groups of 3 layers, 6 layers, and 9 layers
at a time trained in a language specific manner
and the rest shared between languages. We no-
tice that training the full Lang-Spec Trans has the
best in terms of forgetting. Training only the first
8 encoder layers Lang-Spec Enc[0-8], excluding
embeddings, in a language-specific manner comes
next with the second lowest forgetting, a better
transfer, an even better one for zero-shot forward
transfer, but a slightly better final performance. An-
other good model reaching a good compromise
between zero-shot transfer and forgetting with less
language-specific layers is Lang-Spec Enc[0-5].
Naive Seq FT is still the best compared to those
model-expansion approaches in terms of zero-shot
performance, but has a lower final performance and
higher forgetting. We also notice the same trend for
language-specific embeddings Lang-Spec Embed
which reaches the second best zero-shot transfer
performance, but with also a high forgetting. This
suggests that language-specific knowledge is less
likely to be encoded in the embeddings and more at
the encoder layers. This shows that there is a real
plasticity-stability tradeoff between zero-shot trans-
fer and knowledge preservation (which we explain
in more details in §4.3).

C.3 Full Results on Language Permutations

Full results for all language permutations can be
found in Tables 10, 11, and 12. By looking at
additional language permutations, low2high (Thai
— Spanish — Hindi — French — German — En-
glish) is still the most challenging one in terms


https://github.com/reneshbedre/bioinfokit
https://github.com/reneshbedre/bioinfokit

Fl T4 TO 4 FP 1
Model Acc FlI Acc Fl Acc FI Acc FlI
Shared {Trans, Task} Baselines
Naive Seq FT 299 £1.20 6.22£0.95 | 0.76 £0.09 1.42 £0.33 | 49.21 £3.21 36.10 £2.15 | 90.52 £1.42 69.10 £1.24
Lang-Spec FT 93.20 +£0.08 73.59 £0.81
Lang-Spec FT + Ada(T) 93.26 £0.08 73.01 +0.86
Lang-Spec FT + Ada(F) 88.81 £0.13  65.79 +£0.90
Inc Joint 0.15+0.10 0.93 +£0.38 | 0.85 +0.12 1.33 £0.83 | 50.12 +2.50 36.34 £2.59 | 94.20 +0.15 74.97 £0.51
Multilingual 94.25 +0.07 76.34 +0.82
Model Expansion Baselines
Lang-Spec Trans 0.49 £0.08 1.28 £0.21 | 0.42 +£0.16 1.26 £0.15 | -0.43 £0.15  0.42 +£0.06 93.52 £0.18 74.71 +£0.15
Lang-Spec Enc[0-8] 0.78 £0.16  1.954+0.48 | 1.00 +£0.09 1.74 £0.64 | 24.23 +1.75 12.33 £1.25 | 93.49 +0.21 74.16 +0.85
Lang-Spec Task 2.89 £1.24 527 £1.02 | 0.854+0.12 1.50 £1.05 | 0.10 £0.25  0.07 £0.02 90.85 +£1.47 69.48 +1.54
Lang-Spec Ada(T) 230 £1.18 4.68 £0.86 | 0.79 £0.07 1.87 +£0.72 | 49.04 +£3.10 35.80 £2.27 | 91.50 £1.27 70.25 +1.78
Lang-Spec Ada(F) 1.04 £0.19 2.85+£0.96 | 2.64 +0.39 4.74 +£0.49 | 8.36 +1.19  3.63 £0.81 90.32 £0.34 67.98 +0.73
Other continual Learning Algorithms

EWC-Online ‘ 323 £1.45 6.16 £1.03 ‘ 0.79 £0.12 1.54 +£0.31 ‘ 49.02 £2.98 36.06 £2.23 ‘ 90.49 +£1.35 69.34 +1.58
ER ‘ 1.26 +£0.32  3.20 +0.39 ‘ 0.82 +0.13  1.92 +0.54 ‘ 49.69 +3.28 36.58 £2.09 ‘ 92.96 +0.21 73.37 £0.74
KD-Logit 2.67 £0.92 583 +0.81 | 0.76 £0.11 1.62 £0.55 | 49.32 £2.95 36.20 £2.34 | 91.17 £0.80 69.54 +1.34
KD-Rep 243 £0.62 5.60 £0.72 | 0.76 £0.09 1.67 £0.56 | 48.80 £3.01 36.15 £2.23 | 91.20 £0.74 69.64 £1.56

Table 8: A summary of results for different continual learning approaches over the average across language order.
For each metric and score, we highlight the best score in bold and underline the second best score.

Fl T% T 4 FP 1

Model ‘ Acc FlI ‘ Acc Fl ‘ Acc FlI Acc Fi

Naive Seq FT | 299 £1.20  6.2240.95 | 0.76 £0.09 1.4240.33 | 49.21 +£3.21 3610 £2.15 | 90.52 £1.42  69.10 £1.24
Lang-Spec FT 93.20 £0.08  73.59 £0.81
Lang-Spec Trans 049 £0.08 128 £0.21 | 0.42£0.16 126 £0.15 | -0.43 £0.15  042£0.06 | 93.52+£0.18 74.71£0.15
Lang-Spec Enc[0-11] | 048 £0.07 1.32+0.16 | 043 £0.19 1.08+0.27 | -0.30 £0.18  0.57 £0.08 | 93.51 £0.13  74.50 £0.25
Lang-Spec Embed 312+1.34 589 £0.95 | 0.95+0.16 1.62+0.68 | 50.66 £2.97 36.61 £1.89 | 90.68 £1.28  69.59 £1.26
Lang-Spec Enc[0-2] | 190 £0.77  4.33 £0.66 | 0.97 £0.13 1.61 +0.56 | 5218 £3.26 37.41£1.99 | 92.25+0.75 71.56 £1.51
Lang-Spec Enc[3-5] | 1.46+£0.64 2.90+0.35 | 0.98+0.19 195+0.4 | 47.82+2.98 34.65+1.77 | 9272 £0.67 73.04£0.95
Lang-Spec Enc[6-8] | 143 £0.55 3.08 £0.57 | 0.89 +£0.15 1.64+£0.41 | 3833 £3.01 23.67+2.35 | 9244 £0.76 72.25 £1.08
Lang-Spec Enc[9-11] | 221 £0.88 410 £0.87 | 0.67£0.2  1.63 +0.55 | 41.37+£2.13 20.05+1.92 | 91.41 £1.06 71.16 £1.13
Lang-Spec Enc[0-5] | 129 £0.67 2.99 +0.65 | 1.07 £0.11 1.95+0.56 | 45.25+2.56 31.22+2.19 | 92.90 £0.52 7330 £1.07
Lang-Spec Enc[6-11] | 1.66 £0.36  3.33 £0.67 | 051 £0.3 096 £0.59 | 6.04 £1.13  452£0.96 | 91.97 £0.38 71.62£1.18
Lang-Spec Enc[0-8] | 0.78£0.16 ~ 1.95+0.48 | 1.00 £0.09 174 +0.64 | 2423 £1.75 1233 £1.25 | 9349 £0.21 74.16 =0.85
Lang-Spec Enc[9-11] | 2.21 £0.88 4.10 £0.87 | 0.67 £0.2  1.63 £0.55 | 41.37 £2.13  20.05+£1.92 | 91.41 £1.06 71.16 £1.13

Table 9: Per group layer analysis: ablation studies of different M-BERT’s components. Best, second best, and
third best scores for each metric are emboldened, underlined, and italicized respectively.

of knowledge preservation, accumulation, general-
ization, and model utility. High2low (English —
German — French — Hindi — Spanish — Thai)
is still the easiest to learn. Order 5(Hindi — En-
glish — Spanish — Thai — French — German)
is the second most challenging language permuta-
tion to train. In general, the same trends regarding
the more challenging nature of training for certain
language permutations are observed for both intent
classification and slot filling uniformly. Table 13 in-
cludes the results for more language permutations
for the balanced data.

C.4 Per Language Analysis

Tables 14, 15, and 16 show the full results for for-
getting, transfer, and zero-shot transfer respectively,
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across different languages averaged over different
language permutations. We notice that languages
like English, German, French, and Spanish have
constantly lower forgetting than languages like
Hindi and Thai for both intent classification and
slot filling for Naive Seq FT compared to the ref-
erence model Inc Joint for which the forgetting is
low and nearly equal. Approaches like Lang-Spec
Trans, Lang-Spec Enc[0-8], Lang-Spec Ada(F),
and to a certain degree ER also reduce that gap.
We also notice that approaches that lower forget-
ting for a particular languages do so uniformly for
all languages. The performance in terms of zero-
shot transfer is significantly lower in the case of
Thai.



high2low [ low2high
Model Test Intent Accuracy On
Fl T4 T ¢ FP 1 || Fl T4 T 4 FP 1
Shared {Trans, Task} Baselines
Naive Seq FT 1.74 £0.02 0.83 £0.02 49.1 £0.03 91.87 £0.02 || 542 +0.04 0.85+0.01 44.73 £0.02 87.65 £0.02
Lang-Spec FT 93.20 +0.08 93.20 +0.08
Lang-Spec FT + Ada(T) 93.26 +0.08 93.26 +0.08
Lang-Spec FT + Ada(F) 88.81 +0.13 88.81 £0.13
Inc Joint 0.28 £0.01  0.98 £0.02  50.61 £0.03 94.04 £0.01 || 0.13 £0.01 0.93 £0.01  45.84 £0.03  94.31 +0.01
Multilingual 94.25 +£0.07 94.25 +£0.07
Model Expansion Baselines
Lang-Spec Trans 0.39 £0.01 0.71 +£0.02 -0.48 £0.00 93.86 £0.01 || 0.62 £0.02 0.28 £0.02  -0.53 £0.00  93.38 £0.01
Lang-Spec Enc[0-8] 0.59 £0.01 1.13+0.01 2197 £0.02 93.77 £0.01 || 1.08 £0.02 0.95+0.01  22.49 £0.01 93.16 +£0.01
Lang-Spec Task 1.55+£0.01 0.17 £0.00 0.98 +£0.02 91.97 £0.02 || 547 £0.04 -0.11 +£0.00 0.63 £0.01 87.66 £0.02
Lang-Spec Ada(T) 1.13 £0.01 094 £0.02 49.27 £0.03 92.44 £0.01 || 4.73 +£0.04 0.74 £0.01  43.79 £0.02 88.91 £0.02
Lang-Spec Ada(F) 0.95 £0.02  3.30 £0.02 9.21 +0.01 90.87 +0.02 || 1.18 £0.04 2.10£0.02  8.63 £0.01 89.84 +0.02
Other continual Learning Algorithms
EWC-Online | 2014£0.02 0.9440.02 49.77 £0.03 90.72 +£0.02 || 6.354+0.04 0.59+£0.01 4426 £0.02 87.79 0.02
ER | 093+0.02 0.87£0.01 49.1540.03 93.24 £0.01 || 1.81 £0.03 0.56 £0.02 4437 £0.02  92.68 +£0.02
KD-Logit 1.82 £0.02 0.76 £0.02 49.17 £0.03 91.25 +£0.02 || 4.57 £0.04 0.76 £0.02  44.45 £0.02 89.53 +£0.02
KD-Rep 1.87 £0.02 0.80 £0.02 49.34 £0.03  90.86 +0.02 || 3.78 £0.04 0.93 £0.01  43.91 £0.03  89.75 £0.02
Test Slot Filling On
Fl Tt TO 4 FP 1 || Fl Tt T 4 FP 1
Shared {Trans, Task} Baselines
Naive Seq FT 4.63 £0.23 1.36 £0.16  37.02 £0.06 69.46 £0.14 || 7.73 £0.25 0.89 £0.19  32.64 £0.04 66.94 £0.14
Lang-Spec FT 73.59 £0.81 73.59 +£0.81
Lang-Spec FT + Ada(T) 73.01 £0.86 73.01 +£0.86
Lang-Spec FT + Ada(F) 65.79 £0.9 65.79 £0.9
Inc Joint 1.11 £0.14 2,16 £0.18  37.66 +0.05 75.82 £0.13 || 0.25+0.12 -0.12+0.16 32.75+0.03 75.15 £0.14
Multilingual 76.34 +0.82 76.34 +0.82
Model Expansion Baselines
Lang-Spec Trans 0.99 +0.12 1.12 £0.17  0.33 £0.00 7476 £0.14 || 1.14 £0.14 1.05+0.17  0.39 £0.00  74.77 £0.13
Lang-Spec Enc[0-8] 2.37 £0.15 2.08 £0.16 10.58 £0.01  72.59 £0.13 || 1.97 £0.15 0.93 +£0.18  12.67 £0.01 74.08 +0.14
Lang-Spec Task 4.09 £0.18  0.06 £0.00 2.08 +0.17 68.99 +0.13 || 7.24 £0.24  0.06 £0.00  -0.40 £0.18  66.39 +0.14
Lang-Spec Ada(T) 4.15+£0.20 2.74+£0.19 37.66 £0.05 70.11 £0.13 || 6.29 £0.22 1.41+0.17  31.69 £0.03 67.21 £0.13
Lang-Spec Ada(F) 2.25+0.18 4.93 £0.18 4.44 +0.00 68.35 +0.15 || 493 £0.24 3.824+0.18  2.52£0.00 66.43 +£0.15
Other continual Learning Algorithms

EWC-Online | 477 4+0.2 1.22+0.17 3771 +£0.06 67.61 £0.12 || 8.124+0.27 1.144+0.18  32.61 +£0.03  66.80 +0.14
ER | 258 4+0.15 1.9240.15 38.08£0.06 72.44 +£0.13 || 3.69 £0.25 0.96 £0.18  33.40 £0.03  73.0 £0.13
KD-Logit 4.65+£0.20 1.71+0.16 37.914+0.06 68.30 £0.13 || 6.91 £0.25 0.62+0.16  32.424+0.03 67.77 £0.13
KD-Rep 4.35+0.18 1.29 £0.17 37.85+0.06 68.49 +0.14 || 6.85+£0.25 0.7 +£0.19 32.80 £0.03  67.04 +£0.13

Table 10: Per language permutation view: a pairwise comparison between high2low (English — German —
French — Hindi — Spanish — Thai) and low2high (Thai — Spanish — Hindi — French — German — English).
We highlight the best forgetting (lowest), transfer (highest), zero-shot transfer (highest), and final performance
(highest) of accuracy and fl scores among those two orders for each approach in bold, whereas the best scores
across approaches for the two orders separately are underlined.

C.5 More Analysis

Figures 8a, 8b, and 8c plot transfer, final perfor-
mance, and zero-shot transfer versus negative for-
getting for the subtask of slot filling. The same
trends observed for intent classification can also be
observed for slot filling. Figures 9a and 9b show
how Naive Seq FT intent classification accuracy
score and slot filling F1 score, respectively, change
for each language separately after different hops
of training. We can see that although performance
increases as more hops are seen for high-resource
Latin-script languages like English, Spanish and to
some degree French, the same cannot be said for
low-resource languages Thai and Hindi, which also
suffer from being script isolates.
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To analyze the zero-shot generalization to un-
seen languages, we analyze the performance of
each model across different hops. In other words,
we consider the average performance after see-
ing from 1 to 5 languages, enabled by the bal-
anced datastreams we carefully curated 2.4. We
can check the performance after training on each
x language(s) from exactly one datastream. Fig-
ures 10a and 10b show a comparison between dif-
ferent approaches across different hops of training
using zero-shot transfer metric for intent classifi-
cation and slot filling, respectively. In general, we
can observe that the average performance of the
zero-shot transfer after seeing n languages, where
n € [1 .. 5]. In this case, after seeing one language,



Spanish — Hindi — English — German — Thai — French H French — Thai — German — English — Hindi — Spanish
Model Test Intent Accuracy On

Fl Tt T ¢ FP 1 || Fl Tt T ¢ FP 1

Shared {Trans, Task} Baselines
Naive Seq FT 2.12 £0.02 0.83 £0.01 52.17 +£0.03  91.63 0.02 2.95+0.03 0.72+0.01  51.934+0.02 91.29 +0.02
Lang-Spec FT 93.20 +0.08 93.20 +0.08
Lang-Spec FT + Ada(T) 93.26 +0.08 93.26 +0.08
Lang-Spec FT + Ada(F) 88.81 £0.13 88.81 £0.13
Inc Joint 0.10 £0.01  0.79 £0.02 53.85 +0.03  94.03 £0.01 0.22 +£0.01 0.72+0.01  50.53 +£0.02 94.11 £0.01
Multilingual 94.25 +£0.07 94.25 £0.07
Model Expansion Baselines
Lang-Spec Trans 0.44 +0.01 0.37 £0.01 -0.37 £0.00  93.45 £0.01 0.53 +£0.02 0.52 £0.01  -0.49 £0.00  93.65 £0.01
Lang-Spec Enc[0-8] 0.62 +0.01 0.88 £0.01 26.36 £0.02  93.67 £0.01 0.81 +£0.02 0.92 £0.01  25.25+0.02 93.57 £0.01
Lang-Spec Task 2.24 £0.03  0.47 £0.00 0.81 +0.02 91.70 £0.02 2.98 £0.03 -0.09 £0.00  0.94 +0.01 90.93 £0.02
Lang-Spec Ada(T) 1.334+0.02 0.76 £0.02 51.01 £0.02  92.92 +£0.02 2.35+0.03 0.75+0.01  51.76 £0.02 91.86 +0.02
Lang-Spec Ada(F) 0.92+0.02 2.76 £0.02 6.34 +0.01 90.38 +0.02 0.91 +£0.03 2.28 £0.02  9.35+0.01 89.96 +0.02
Other continual Learning Algorithms
EWC-Online | 236 £0.02 0.78 £0.02 51.81+0.03 91.884+0.02 || 3.16 £0.03 0.72+0.01  51.16 £0.02 91.00 £0.02
ER | 1.01+0.02 077 £0.01 52.80£0.03 93.13+0.01 || 1.55+0.02 0.88+0.02 5248 +0.02 92.72 +0.02
KD-Logit 1.83 £0.02  0.77 £0.01  52.57 +0.03  92.08 0.01 2.42 £0.03 0.54 £0.01  51.09 +£0.02  91.63 £0.02
KD-Rep 2.08 £0.02 0.72 £0.01  52.04 +0.03  92.10 £0.02 236 +£0.03 0.66 £0.02  50.55+0.02 91.46 £0.02
Test Slot Filling On
Fl Tt TO 4 FP 1 || Fl Tt TO 4 FP 1
Shared {Trans, Task} Baselines
Naive Seq FT 5.80 +0.26 1.47 £0.16 37.924+0.04 70.88 £0.13 6.47 £0.25 1.24 £0.18  36.64 £0.04 68.19 £0.15
Lang-Spec FT 73.59 +£0.81 73.59 +£0.81
Lang-Spec FT + Ada(T) 73.01 £0.86 73.01 £0.86
Lang-Spec FT + Ada(F) 65.79 +£0.90 65.79 +£0.90
Inc Joint 0.83+0.14 1.60 £0.17 37.46 +£0.04 74.82 £0.14 0.95+0.13 2.32+£0.17  37.57 +£0.04 75.25 £0.15
Multilingual 76.34 +0.82 76.34 +£0.82
Model Expansion Baselines
Lang-Spec Trans 1.47 £0.16 1.42 £0.16  0.49 £0.00 74.72 £0.14 1.37 +£0.15 126 +£0.16  0.47 0.00 74.59 £0.15
Lang-Spec Enc[0-8] 1.83+£0.16 2.11+0.15 13.30£0.01  75.06 £0.13 1.28 £0.15 0.76 £0.18  13.57 £0.01  74.59 £0.13
Lang-Spec Task 493 +0.22 0.11+0.00 2.35+0.16 71.13 £0.13 4.69 +0.21 0.06 £0.00  1.72+0.17  70.61 £0.14
Lang-Spec Ada(T) 3.76 £0.21 2.40 £0.16 37.50 £0.04  72.62 £0.15 4.67£0.19 1.14 £0.16  36.77 £0.04 68.93 £0.13
Lang-Spec Ada(F) 2.18 £0.17 5.29 £0.18 3.81 +0.00 68.20 +0.14 2.58 £0.18 4.54£0.16  4.34 +0.00 68.26 +0.14
Other continual Learning Algorithms

EWC-Online | 6.16£0.28 1.38+£0.16 37.89+£0.05 70.93+0.13 || 6.10 £0.24 1.97 £0.17  36.25+£0.04 69.58 £0.14
ER | 313+£0.19 1.84+£0.17 38.39+0.04 73.56+0.12 || 330 £0.21 1.83+0.17 36.89 £0.04 72.67 £0.15
KD-Logit 5.06 +£0.24 1.58 £0.16 38.31 £0.05  71.26 £0.14 6.40 £0.25 1.67 £0.18  36.13 £0.04 69.21 £0.14
KD-Rep 5.52+0.27 219 +£0.17 37.83+0.04 71.33£0.13 5.67£0.26 2.05+0.16 3594 4+0.04 69.92 4+0.14

Table 11: Per language permutation view: a pairwise comparison between Order 3 (Spanish — Hindi — English
— German — Thai — French) and Order 4 (French — Thai — German — English — Hindi — Spanish). We
highlight the best forgetting (lowest), transfer (highest), zero-shot transfer (highest), and final performance (high-
est) of accuracy and f1 scores among those two orders for each approach in bold, whereas the best scores across
approaches for the two orders separately are underlined.

the performance is equivalent to conventional trans-
fer learning involving two hops, whereas the per-
formance after seeing n >= 2 is for multi-hop
continual learning. We notice that as we increase
the number of hops, the transfer capabilities de-
crease nearly uniformly across most approaches,
making the problem more challenging and different
from conventional transfer learning. Figures 10c
and 10d show the generalization trends for differ-
ent continual learning approaches compared to the
baselines for intent classification and slot filling,
respectively. We can see that most continual learn-
ing approaches improve over Naive Seq FT and the
gap increases mainly as more languages are seen
(except at hop 4). After 5 hops, there is a clear
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gap between Naive Seq FT and continual learning
approaches on top of them Lang-Spec Ada(T) and
KD-Logit. Figure 11 show more results for multi-
hop versus two-hop analysis for more metrics and
tasks. In general, we can observe the same trend,
whereby multi-hop boxplots analysis has smaller
confidence intervals than two-hop boxplots

D Statistical Significance

We show in Figures 12 and 13 the results for differ-
ent approaches with a p-value lower than 0.05 for
confidence intervals of 95%, thus rejecting the null
hypothesis that they are drawn from the same dis-
tribution. Figures 12a, 13a, 12c, 12b, 13a, 12d, 12e,
and 12f show confusion plots of statistical signif-



Hindi — English — Spanish — Thai — French — German H German — French — Thai — Spanish — English — Hindi
Model Test Intent Accuracy On

Fl Tt T 1 FP ¢ || Fl Tt T4 FP 1

Shared {Trans, Task} Baselines
Naive Seq FT 3.254+0.03 0.68 +£0.02 45.124+0.03  90.13 £0.02 2.44 £0.02  0.62 £0.02 52.18 £0.03 90.53 +0.02
Lang-Spec FT 93.20 +0.08 93.20 +0.08
Lang-Spec FT + Ada(T) 93.26 +0.08 93.26 +0.08
Lang-Spec FT + Ada(F) 88.81 £0.13 88.81 £0.13
Inc Joint 0.20 £0.01  0.99 £0.01 48.41 +0.03  94.42 £0.01 -0.02 £0.01  0.69 £0.02 51.47 £0.02 94.26 £0.01
Multilingual 94.25 +£0.07 94.25 £0.07
Model Expansion Baselines
Lang-Spec Trans 0.40 £0.02 0.25£0.02 -0.58 £0.00  93.40 £0.01 0.52+£0.01  0.41 £0.02 -0.11+£0.00 93.36 £0.01
Lang-Spec Enc[0-8] 0.81 £0.02 0.99 £0.01 23.17 £0.02  93.33 £0.01 0.76 £0.02  1.10 £0.02  26.12 +0.02 93.42 +£0.01
Lang-Spec Task 2.77 £0.03  0.92 +£0.01 -0.20 £0.00  91.16 £0.02 2.32+0.02 0.85+0.01 0.36 +0.00 91.70 +0.02
Lang-Spec Ada(T) 2.31+0.03 0.824+0.02 46.13£0.03 91.42 £0.02 1.96 £0.02  0.74 £0.01  52.26 +0.02  91.43 +£0.02
Lang-Spec Ada(F) 0.88 +£0.03 2.58 £0.02 7.15 +0.01 90.50 +0.02 1.41 +£0.04  2.84 £0.02 9.45+0.01 90.35 +0.02
Other continual Learning Algorithms
EWC-Online | 297 £0.03 0.77 £0.02 45.63+£0.03  89.98 +0.02 || 2.5+0.02 0.95+0.02 51.51+£0.02 91.55 £0.02
ER | 1.25+0.02 0.99£0.02 46.63£0.03 93.08 £0.01 || 0.99 £0.02 0.82+0.02 52.69 +£0.02 92.93 +0.01
KD-Logit 2.78 £0.03  0.89 +£0.01 46.61 £0.03  91.11 £0.02 2.58 £0.03  0.84 £0.02  52.03 +£0.02 91.41 £0.02
KD-Rep 2.274+0.03 0.80 £0.01 45.64 £0.03  91.59 £0.02 2.20 +£0.02  0.66 £0.02 51.35+0.03 91.43 £0.02
Test Slot Filling On
Fl Tt TO 4 FP 1 || Fl Tt TO 4 FP 1
Shared {Trans, Task} Baselines
Naive Seq FT 6.78 £0.25 1.94+0.14 33.81 £0.04  69.51 £0.13 591+0.24 1.64+£0.17 38.58 +0.06 69.64 £0.14
Lang-Spec FT 73.59 +£0.81 73.59 +£0.81
Lang-Spec FT + Ada(T) 73.01 +£0.86 73.01 £0.86
Lang-Spec FT + Ada(F) 65.79 +£0.90 65.79 +£0.90
Inc Joint 0.89 +0.13 1.29£0.16 32.924+0.03  74.51 £0.15 1.53 +£0.14  0.75 £0.18  39.67 +0.05 74.29 £0.14
Multilingual 76.34 +0.82 76.34 +0.82
Model Expansion Baselines
Lang-Spec Trans 1.58 £0.16  1.21 £0.16  0.37 £0.00 74.47 £0.14 1.154+0.14 148 £0.19 0.47 £0.00 74.95 +0.13
Lang-Spec Enc[0-8] 1.54 £0.12 228 £0.15 10.64 £0.01  74.94 +0.13 2.71 £0.2 227 £0.17 13.25+0.02 73.70 £0.15
Lang-Spec Task 5.874+0.22 2.63+£0.17  0.06 =0.00 70.07 £0.16 4.82+0.23 0.66 £0.17  0.06 +0.00 69.68 +0.14
Lang-Spec Ada(T) 5.2140.22 2.55+0.14 33.77 £0.04  71.64 £0.13 4.01 +0.24 0.95=+0.17 37.43+0.04 70.99 £0.15
Lang-Spec Ada(F) 2.25+0.17 4.67 £0.17  2.54 +0.00 68.68 +0.17 2.90 +£0.2 5.20 +£0.18  4.15 £0.00 67.96 +£0.14
Other continual Learning Algorithms

EWC-Online | 637+£0.26 1.72+£0.16 33.5340.04 704940.15 || 544 +0.24 1.83+0.17 38.39+£0.05 70.61+0.15
ER | 3.60 £0.18 2.76 £0.16 34.09 £0.04  73.96 +0.14 || 2.89 £0.21  2.20+0.16 38.62 £0.05 74.56 +£0.14
KD-Logit 6.42 +£0.29 2.53+0.17 33.85+0.04 71.26 £0.14 5.54+0.26 1.59 £0.18 38.57 £0.05 69.45 £0.13
KD-Rep 5.624+0.24 2.29+0.17 33.70 £0.04  71.54 £0.15 5.58+0.26  1.51 £0.18 38.78 £0.05 69.5 £0.14

Table 12: Per language permutation view: a pairwise comparison between Order S(Hindi — English — Spanish
— Thai — French — German) and Order 6 (German — French — Thai — Spanish — English — Hindi). We
highlight the best forgetting (lowest), transfer (highest), zero-shot transfer (highest), and final performance (high-

est) of accuracy and f1 scores among those two orders

for each approach in bold, whereas the best scores across

approaches for the two orders separately are underlined.

Fl Tt FP 1

Model | xcc Fl Acc F1 | Acc Fl

Order 1 | 1.25+0.02 3.60+£0.18 | 0.89 £0.02 1.76 £0.17 | 89.33 £0.02  65.59 £0.13
Order2 | 5.81£0.05 7.89+0.28 | 0.754+0.02 0.11 £0.17 | 85.81 £0.02 64.18 +0.14
Order3 | 1.68+0.02 4.43+0.21 | 0.77£0.02 220 £0.17 | 89.57 £0.02 68.88 £0.14
Order4 | 270 £0.04 4624023 | 0.71 4£0.02 122 40.17 | 88.59 £0.02 68.07 +0.14
Order5 | 1.83+0.01 574+0.24 | 6.64 £0.01 4.89 £0.15 | 96.00 £0.01 71.75 £0.13
Order6 | 1.08 £0.01 444 £0.20 | 7.09 £0.01 4.86 £0.15 | 96.40 £0.01 71.81 +0.13

Table 13: Impact of language order across the balanced dataset for Naive Seq FT. Best and second best scores for
each language for intent classification and slot filling independently across approaches are highlighted in bold and

underlined, respectively.

icance p-values for different metrics (forgetting,
transfer, and final performance) for intent classi-
fication and slot filling, respectively. For exam-
ple, for forgetting, we notice that improvements

or losses from approaches are statistically signifi-
cant with 95% confidence more than 49% and 61%
of the time for intent classification and slot filling.
For zero-shot transfer, we notice 60% and 56% of
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Test Intent Accuracy On

Model German English French Spanish Hindi Thai
Shared {Trans, Task} Baselines

Naive Seq FT 1.52 +£0.14 1.13+0.10 1.75+0.16 1.71 £0.13 3.26 £0.50 5.09 £1.24

Inc Joint 0.32 +0.05 0.13+£0.04 0.25+0.05 0.18+0.04 0.15=£0.07 0.30 £0.07

Model Expansion Baselines

Lang-Spec Trans 0.33 £0.06 0.30 £0.04 0.43 £0.07 0.34 +£0.06 0.41 £0.08 0.47 £0.09
Lang-Spec Enc[0-8] | 0.54 £0.07 0.46 £0.05 0.50 £0.08 0.57 £0.06  0.65 £0.10 0.91 £0.15
Lang-Spec Task 122 +£0.12 093 £0.09 1.47+0.14 1.39+0.12 3.17+£0.38 5.44 £1.62
Lang-Spec Ada(T) 1.11 £0.10 0.74 £0.07 1.10 £0.12 094 £0.09 1.88 £0.23 5.00 £1.35
Lang-Spec Ada(F) 0.66 £0.12 0.51 £0.07 0.81 £0.14 0.63 £0.09 1.00 £0.14 1.49 £0.19

Other continual Learning Algorithms

EWC-Online 1.49 £0.14 1.134+0.09 1.70£0.17 1.83+0.14 3.31+0.42 5.89+£1.95
ER 0.84 £0.07 0.56 £0.06 0.69 £0.09 0.70 £0.06 1.00 £0.11 2.37 £0.25
KD-Logit 146 £0.14 0.89 £0.08 1.77 £0.16 1.65+0.13 2.47 £0.28 4.75 +0.84
KD-Rep 149 £0.13 1.14+£0.09 1.524+0.13 1.75+0.16 2.52+0.24 4.10£0.53
Test Slot Filling On
German English French Spanish Hindi Thai
Shared {Trans, Task} Baselines
Naive Seq FT 393+1.38 4.11+1.18 339+£1.00 2.9 40.92 6.124+1.91 9.00 £3.47
Inc Joint 1.19 £0.88 1.15+0.69 0.70 £0.68 0.60 £0.66 1.75 £0.73  0.74 £0.56

Model Expansion Baselines

Lang-Spec Trans 0.84 £0.70 0.94 £0.60 1.09+0.67 1.21+0.71 1.28£0.72 1.07 £0.68
Lang-Spec Enc[0-8] | 1.91 £0.97 192 40.82 0.97 +0.72 1.26£0.65 1.84 +0.76 2.01 +£0.78
Lang-Spec Task 330£1.38 3.05+0.94 2.80+£0.95 2.69=+0.87 691 +2.03 8.01+£3.01
Lang-Spec Ada(T) 269 £1.03 347 +£1.02 240£0.81 2724099 5.06£1.32 7.08+2.50
Lang-Spec Ada(F) 146 £0.82 2.12+0.81 1.63£0.81 1.63+0.96 2.55+1.00 4.5+£1.47

Other continual Learning Algorithms

EWC-Online 4.12+1.38 4.11+£1.28 3.01 £0.97 3.71+1.05 6.31+£1.73 858 +3.39
ER 236 +1.00 2.68£0.79 1.45+0.98 1.58+0.73 3.52+£1.03 3.69+1.20
KD-Logit 3.68 £1.27 4.20+1.08 2.80+1.04 3.41+1.03 5.67+£1.56 8.81 £2.88
KD-Rep 393+1.31 3974124 3.05+0.97 3.124+0.97 549+1.53 8.40+£2.66

Table 14: CLL per language analysis of forgetting. Best and second best scores for each language are highlighted
in bold and underlined respectively.

pairwise comparisons are statistically significant
for intent classification and slot filling. For final
performance, we notice 47% and 49% of pairwise
comparisons are statistically significant for intent
classification and slot filling. For transfer, we no-
tice that improvements or degradation over transfer
of intent classification are not statistically signifi-
cant with the exceptions of Lang-Spec Trans which
the lowest in terms of transfer Lang-Spec Ada(F)
which exhibit high transfer. The same can be said
for Lang-Spec Ada(F) in slot filling. Overall, model
expansion approaches exhibit the highest statistical
significance, whereas EWC-Online and knowledge
distillation are among the lowest.
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Test Intent Accuracy On

Model German English French Hindi Spanish Thai
Shared {Trans, Task} Baselines

Naive Seq FT 0.8 £0.07 0.52+0.06  1.3540.09 0.83£0.07 0.57 £0.09  0.46 +0.11

Inc Joint 1.01 £0.07  0.68 £0.06 ~ 1.48 £0.08 0.94 +0.07 0.49 £0.10 0.5 £0.11

Model Expansion Baselines

Lang-Spec Trans 0.25 £0.08  0.56 £0.06  0.85 £0.09 0.57 £0.08  0.09 £0.10  0.23 £0.10
Lang-Spec Enc[0-8] | 1.04 £0.07  0.93 £0.06  1.54 +£0.07 0.76 £0.07  0.70 £0.11 1.01 £0.10
Lang-Spec Task -0.25 £0.12 039 £0.01  0.63 £0.06 -0.66 £0.02 0.60 £0.03  -0.10 +0.01
Lang-Spec Ada(T) 0.86 £0.08  0.61 £0.05  1.16 £0.08 0.12+0.08  0.56 +0.11 1.44 £0.12
Lang-Spec Ada(F) 112 £0.12  1.72£0.09  3.37 £0.11 220 £0.11  2.77 £0.18  4.68 £0.32

Other continual Learning Algorithms

EWC-Online 0.79 £0.07  0.72 +£0.06  1.42 +£0.10 0.82+£0.07  0.64 £0.09  0.36 £0.10
ER 0.88 £0.07  0.63 £0.06  1.46 £0.08 0.78 £0.08  0.59 £0.12  0.55 4+0.10
KD-Logit 0.64 £0.08  0.56 £0.06  1.36 £0.08 0.76 £0.07  0.75 £0.09  0.48 £0.10
KD-Rep 0.72 £0.07  0.754+0.05  1.23 +£0.08 0.81 £0.07  0.67 £0.10  0.38 £0.10
Test Slot Filling On
German English French Hindi Spanish Thai
Shared {Trans, Task} Baselines
Naive Seq FT 1.18 £0.92  1.51 £0.87 036 £0.93 2.18 £0.95 -0.19 £0.9 3.48 +0.83
Inc Joint 0.68 £0.95 0.7 £0.87 0.03 £0.91 2.25+0.95 091 +1.06 3.44 +0.79

Model Expansion Baselines

Lang-Spec Trans 0.79 £0.92 2.0 £0.77 0.63 £0.87 1.35+0.97 0.4 +0.87 2.36 £0.76
Lang-Spec Enc[0-8] | 0.88 £0.87 133 +£1.04 0.79+£0.81 2.16+£0.94 1.57+0.87 3.71 £0.87
Lang-Spec Task 0.07 £0.00  0.15+0.00  0.07 £0.00 0.04 £0.00  -0.02 £0.00  0.09 £0.00
Lang-Spec Ada(T) 3.00 +0.86 -0.08 £0.76 2.00£1.01 1.21 +1.03  2.06 £0.93 3.0 £0.78

Lang-Spec Ada(F) 296 £1.04 455+0.89 438+£1.02 434+1.13 4144098 8.07£1.01

Other continual Learning Algorithms

EWC-Online 093+0.93 140+0.83 093 +0.83 2954094 0.16+0.93 2.89 £0.82
ER 1.61 £0.96 194 +£0.78  1.11 £0.86 3.09+£0.95 0.77 £0.97  2.97 £0.85
KD-Logit 098 £0.95 1.324+0.81 039 £0.88 2.9 +1.04 1.09 £0.87  3.04 £0.86
KD-Rep 1.36 £0.95 1.64 £0.77 0.87 £0.97 298 +1.04 -0.15+0.91 3.32 £0.79

Table 15: CLL per language analysis of transfer. Best and second best scores for each language are highlighted in
bold and underlined respectively.
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Test Intent Accuracy On
Model German English French Hindi Spanish Thai
Shared {Trans, Task} Baselines
Naive Seq FT 56.68 +1.55 67.54 £16.07 60.56 £3.11  59.15 £23.1 33.24 +1.2 18.07 +0.29
Inc Joint 57.50 £1.75 70.07 £12.61 61.55+£2.89 61.23 £19.88 32.62 £2.67 17.73 £0.29
Model Expansion Baselines
Lang-Spec Trans -1.43 £0.00 0.44 +0.01 -0.01 £0.01  -0.95 £0.01 -0.15 £0.00  -0.46 £0.00
Lang-Spec Enc[0-8] | 26.14 £7.42 33.21 £10.85 25.51 £7.04 27.18 £18.12 21.82+2.33 11.51 £0.76
Lang-Spec Task 0.88 +0.07 0.72 £0.06 1.55 £0.08 0.76 £0.07 0.64 +0.09 0.59 +0.09
Lang-Spec Ada(T) 56.76 £1.41 67.41 £13.26  60.15 £4.27 59.04 +£24.16 35.03 +£4.41 15.83 £0.59
Lang-Spec Ada(F) 6.39 +0.09 9.86 +£1.38 9.72 £0.5 13.41 £1.18 8.86 +0.57 1.90 +0.39
Other continual Learning Algorithms
EWC-Online 56.99 £1.76 67.02 £15.33 60.43 £2.99 58.6 +22.11 32.70 £1.04  18.39 £0.18
ER 57.54 £1.05 68.01 £17.34 60.97 £3.17 60.05 +23.77 33.37 £1.47 18.19 +0.61
KD-Logit 57.26 £1.62 68.06 +16.59 60.56 +£3.49 59.81 £23.36 31.31 +£1.12 18.91 £0.22
KD-Rep 56.14 £1.35 67.53 £16.01 60.22 £3.17 59.10 +£22.14 31.82 £1.26 18.01 +0.55
Test Slot Filling On
German English Hindi Spanish Thai
Shared {Trans, Task} Baselines
Naive Seq FT 4423 £1.99 47.92 £9.98 47.13 £2.32 4640 £15.52 19.10 £0.31 11.84 £0.18
Inc Joint 4449 +1.53 48.66 +10.86 47.85 £2.25 46.58 £17.42 18.36 +0.4 12.09 +0.24
Model Expansion Baselines
Lang-Spec Trans 0.45 +0.00 0.76 £0.01 0.33 +0.00 0.83 +£0.01 0.00 +0.00 0.15 £0.00
Lang-Spec Enc[0-8] | 14.86 £3.81 1548 £6.11 16.09 +4.06 16.13 +8.9 6.63 £1.29 4.82 +0.34
Lang-Spec Task 1.41 +1.13 0.62 +0.81 0.46 +1.05 2.13 +£1.25 1.58 £0.97 2.84 £0.82
Lang-Spec Ada(T) 4396 +1.77 46.73 £8.95 4732 4+2.83 4497 +£17.98 21.23 +1.24 10.62 +0.17
Lang-Spec Ada(F) 4.31 £0.08 4.14 £0.30 4.44 +0.29 5.53 £1.14 2.65 £0.10 0.73 £0.03
Other continual Learning Algorithms

EWC-Online 44.01 £2.02  47.75 £9.49 47.10 £2.47 4591 £14.96  19.17 £0.32  12.45 £0.14
ER 44.81 +£1.53 48.70 £10.39 47.82 £2.17 46.70 +£16.27 19.37 £0.32 12.08 +0.20
KD-Logit 44.4 £2.33 48.13 £10.07 47.38 £2.65 46.22 £15.32 18.93 £0.50 12.13 £0.17
KD-Rep 4414 +£1.86 48.29 +£10.07 47.43 £2.53 46.06 £15.25 18.80 +£0.38 12.21 +0.16

Table 16: CLL per language zero-shot forward transfer. Best and second best scores for each language for intent
classification and slot filling independently across approaches are highlighted in bold and underlined respectively.
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Figure 9: Comparing cross-lingual generalization of Naive Seq FT across many hops and different languages for
intent classification and slot filling.
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Figure 10: Measuring cross-lingual generalization to new languages across many hops for intent classification and
slot filling. This is both in terms of zero-shot transfer metric and plain accuracy and f1 scores.
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Figure 11: Comparison between different metrics using two-hop (crossed boxplots) and multi-hop analysis (dotted
boxplots), on the left and right respectively for each approach.
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Figure 12: P-values for different pairwise comparison of different continual learning approaches using Tukey’s
honestly significant difference (HSD) test.
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Figure 13: P-values for different pairwise comparison of different continual learning approaches using Tukey’s
honestly significant difference (HSD) test (Cont.).
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