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ABSTRACT

The article proposes a method for assessing the neutron energy spectrum and ef-
fective dose rate of personnel based on the readings of a Bonner spectrometer
(BSS) for high-energy neutron fields. Neutron flux density can be obtained from
BSS measurements by solving the system of Fredholm integral equations of the
first kind. In our paper the spectra were unfolded using supervised machine learn-
ing algorithm ”random forest” with optimization of the model hyperparameters.
The model was trained and tested on a database of 251 spectra for various power
facilities (80% of data was used for training the model, while 20% was used for
testing it). The input features of the model were the spectrometer readings for
BSS moderator spheres and the categorical feature ”spectrum type” describing
the facility and conditions under which the spectrum was obtained. The output
parameters of the model were the spectrum description in the form of a histogram
for 60 energy values, as well as the dose rate calculated from the spectrum for
the corresponding conversion factor. Since the dataset of real spectra is small,
database of 104 synthetic data generated using the Frascati Unfolding Interactive
Tool method was developed. Second model for this synthetic dataset was trainted
and compared with the first one. The effect of the error in the initial data on the
spectrum and the dose rate obtained from it was estimated by the Monte Carlo
method using random samples. The test dataset showed that the unfolded spectra
are close in nature to the original ones and have a high correlation with them. The
paper proposes a method for selecting the optimal number of moderator spheres
based on the explainable artificial intelligence method ”Shapley additive explana-
tion” (SHAP). The SHAP method was used to demonstrate the degree of influence
of measurements with moderator spheres of different diameters on the spectrum
prediction. It was shown that resulting spectrum is most influenced by measure-
ments with moderator sphere of 10”. Optimization of the choice of spheres leads
to a decrease in the personnel doses during measurements. The model was trained
and calculations were performed on the JINR Multifunctional Information and
Computing Complex.

1 INTRODUCTION

High-energy neutron fields are a significant concern in nuclear power facilities, particle accelerators,
and space environments due to their potential health risks to personnel. Accurate estimation of
neutron energy spectra and effective dose rates is crucial for radiation protection (Aleinikov et al.,
1994). However, direct measurement of the neutron spectrum, especially with energies greater than
20 MeV, is a complex experimental task, which led to the development of indirect spectrometry
methods, among which the Bonner multi-sphere spectrometer (BSS) is most used (Bramblett et al.).
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Figure 1: Response functions of Bonner multi-sphere spectrometer (Martinkovic & Timoshenko,
2005) in linear interpolation, Emin = 10−8.

But the process of unfolding neutron spectra from BSS measurements involves solving the system
of ill-posed Fredholm integral equations of the first kind (Chizhov et al., 2024).

The Bonner spectrometer is based on the use of a set of polyethylene spherical moderators of dif-
ferent diameters. Neutrons interact with the moderator material and lose energy. Then, thermal
neutrons are captured by a counter in the center of the sphere. Response of the BSS for each sphere
has a maximum at a certain neutron energy value depending on moderator size. As a result the
combination of different moderating spheres has a sensitivity to neutrons over a broad energy range.

1.1 FORMULATION OF THE PROBLEM

Neutron spectrum φ(E) can be obtained from Bonner spectrometer measurements using an unfold-
ing algorithm that solves a problem described by the system of M Fredholm integral equations of
the first kind (Chizhov et al., a;b):∫ Emax

Emin

Kj(E)φ(E) dE = Qj , j = 1, . . . ,M, (1)

where Qj is the Bonner spectrometer reading for the j-th sphere, Kj(E) is the kernel of the j-th
equation, which is a response function (RF) of the detector to neutrons of various energies, M is the
number of spheres used in measurements. The integration limits Emin and Emax are specified by
neutron energies (E) and the set of detectors used. The values of Kj(E) are calculated in modeling
software or obtained in experiments (Martinkovic & Timoshenko, 2005). Continuous values of
Kj(E) are obtained by interpolation, Fig. 1.

The constraints for the problem are in the physical sense of used quantities. Qj ≥ 0, φ(E) and
Kj(E) are smooth non-negative functions. Measurements always have errors, in this work we will
assume that the detector readings contain an error within ζQ = 5%, and the calculation of the matrix
of response functions is sufficiently accurate and the error for it can be neglected.

Fredholm integral equation of the 1st kind (eq.1) usually is solved numerically, reducing it to a
system of linear algebraic equations (SLAE).We discretize eq. (1) on the grid along the energy axis
(N steps) and the moderator sphere diameters (M steps). Matrix representation eq. (1) of after
discretization:

Aφ = q (2)
where A ∈ RM×N – kernel matrix, φ ∈ RN – spectre, q ∈ RM – measurements.

However, the high correlation between the components of the kernel matrix and measurement errors
leads to the instability of the solution, therefore regularization methods are used, fig. 1.1. But regu-
larization methods require the selection of a regularization parameter, and if the choice is incorrect,
the resulting spectrum may be too smooth or contain non-physically caused noise (Chizhov et al.,
c). Methods for selecting the optimal regularizing parameter and solution with weights for each
moderator sphere in the regularizing functional are described in (Chizhov & Chizhov, a;b).

Other methods for spectrum unfolding include iterative algorithms, e.g., MAXED, GRAVEL, (Bar-
ros & et al, 2014), machine learning (ML) and neural networks (Vega-Carrillo et al., 2006). Machine
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Figure 2: Correlation matrix for BSS readings.

supervised learning, has been successfully applied to the problem of neutron spectrum unfolding.
These methods leverage large datasets of simulated(Bouhadida et al.), augmented (McGreivy et al.)
and experimental neutron spectra with corresponding BSS responses to train models that can predict
φ(E) from Qi. But not all described in literature datasets include high-energy neutron fields, which
limits the applicability of those models. The results of the algorithms often are evaluated by the
minimum average error or by the minimum discrepancy between the measured and reconstructed
detector readings, but are not interpreted by the methods of explainable artificial intelligence (XAI).
Fine-tuning of hyperparameters is sometimes also not described.

In this study, we propose a machine learning-based approach using Random Forest (RF) Regression
to unfold the neutron spectra. In the context of neutron spectrum unfolding, RF offers an alternative
to iterative algorithms or matrix inversion. Its ability to handle non-linear relationships and provide
feature importance makes it particularly suitable for spectrum unfolding. RF was used to find N
values of the spectrum for M input features (measurements), and to find the effective dose rate from
M input features.

RF is an ensemble learning method that combines multiple decision trees to improve predictive ac-
curacy and reduce overfitting. Despite its popularity, the ”black-box” nature of RF models poses
significant challenges to the interpretability of the method for dosimetry purposes. XAI techniques
aim to bridge this gap by providing insights into how RF models make predictions. Among the
most widely used XAI methods are SHAP (SHapley Additive exPlanations) and LIME (Local Inter-
pretable Model-agnostic Explanations) (Garreau & Luxburg, 2020). In this study SHAP was used
for the evaluation of moderator spheres selection for reducing personnel exposure during measure-
ments.

SHAP is a game-theoretic approach based on Shapley values, which originate from cooperative
game theory. It assigns each feature an importance value for a specific prediction by considering
all possible feature combinations. For RF models, SHAP provides consistent and locally accurate
explanations, ensuring that the sum of the feature contributions equals the difference between the
model’s prediction and the baseline expectation (Lundberg & Lee, 2017). SHAP values are partic-
ularly useful for understanding global model behavior, as they can be aggregated across multiple
instances to identify overall feature importance. However, SHAP can be computationally expensive,
especially for large datasets and complex models (Molnar et al.).

2 METHODOLOGY

2.1 DATA COLLECTION AND PREPROCESSING

A database of 251 neutron spectra from various power facilities was compiled from the IAEA com-
pendium (Com, 2001). Each spectrum was associated with readings from eight moderator spheres
and a categorical feature describing the facility and measurement conditions. The data were split
into training (80%) and testing (20%) sets. The database includes spectra for various power plants,
which were obtained by various methods of spectrum reconstruction, as well as measured and cal-
culated using Monte Carlo simulation software. All spectra in database were normalized to unity.
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To improve algorithm’s performance, a synthetic sample was also created and tested on data from
the compendium. 104 spectra were generated according to the FRUIT method (Bedogni et al.). In
the FRUIT method, the neutron spectrum is modelled as a superposition of four component spectra
described by the fission, evaporation, Gaussian, and high-energy neutron models, expr. (3).

φ(E) = Pthφth(E) + Peφe(E) + Pfφf (E) + Phiφhi(E), (3)

where φth(E) = ( E
T 2
0
)e−E/T0 is the Maxwell thermal component, φe(E) = [1 −

e−(E/Ed)
2

]Eb−1e−E/β′
is epithermal, φf (E) is fast and φhi(E) = ( E

T 2
hi
)E−E/Thi – high-energy

component, Pth, Pe, Pf , Phi – fraction of each component in the full spectrum (Pth + Pe + Pf +
Phi = 1), T0 = 2.53 · 10−8 MeV, Ed = 7.07 · 10−8 MeV. Expression 3 allows to obtain a set of
spectra simulating the energy distribution of neutron flux density at most power plants, including
fission sources, radionuclide sources, medical cyclotrons and hadron accelerators. Fast neutrons are
described by eq. (4) for the fission model, by eq. (5) – evaporation and by eq. (6) for Gaussian
distribution.

φff (E) = Eαe−E/β (4)

φfe(E) = (
E

T 2
ev

)e−E/Tev (5)

φfg(E) = e
−(E−Em)2

2(σEm)2 (6)

Each of these component spectra contains adjustable parameters 0 < α < 1, 1 < β < 2, 0 < β′ <
1,−0.5 < b < 0.5, b, σ, Tev, Thi, Em, which were drawn randomly during spectra generation.

Each of the 251 spectra of IAEA Compendium and 104 generated spectra are represented by points
on the scattering diagram (Fig. 2.1), where the ordinate axis shows the Shannon information entropy
of the spectrum (Bragin et al.), and the abscissa axis shows the logarithm of the average neutron en-
ergy in the spectrum. Such a presentation of data allows us to characterize the spectra and determine
the features for each type of facility.

BSS may have different sensitivity functions, since the density of polyethylene and the counter itself
may differ. Therefore, it is necessary to prepare a training dataset specifically for the BSS with its
response functions. According to eq. (1) for the Bonner spectrometer with the LiI(Eu) detector, the
effective readings were calculated for the set of moderator spheres, with a radius of 2, 3, 5, 8, 10, 12
inch, without moderator with cadmium foil (Cd0”) and without a moderator (0”) using the spectra
and sensitivity functions of the detector (Martinkovic & Timoshenko, 2005).

2.2 RANDOM FOREST REGRESSION

The RF algorithm was used to unfold the neutron spectra. The input features were the spectrometer
readings and the categorical feature, while the output parameters were the neutron energy spectrum
(represented as a histogram for 60 energy values with equal grid step in logarithmic scale).

2.3 DOSE RATE ASSESSMENT

In accordance with radiation safety standards (NRB, 2009), There are limits on personnel exposure
to neutrons that must not be exceeded. Therefore, the effective dose rate for the isotropic (ISO)
irradiation type was chosen as the criterion for comparing the unfolded spectra, eq. (7).

Ḣ = ×
∫ Emax

Emin

φ(E) · h(E)dE, (7)

where Ḣ is the effective dose rate, h(u) is the corresponding dose conversion coefficient (Petoussi-
Henss & et al, 2010), for monoenergetic particles in a certain irradiation geometry (ISO) (Com,
2001). For each unfolded spectrum the Ḣ was calculated and the Ḣ was used as the output to train
and test the model. Hyperparameter optimization was performed to improve model accuracy using
optuna (Akiba et al., 2019).

4



Published as a conference paper at MathAI 2025

2 4 6 8 10
Decimal Logarithm of the mean neutron energy in spectrum, log10(E/Emin), Emin = 10 9 MeV

0

1

2

3

4

5

6

Sh
an

no
n 

en
tro

py
, H

Generated spectrum
Cosmc Ray Spectra (5)
High Energy  Accelerations (37)
Isotopic Sources (65)
MS: Boron Therapy Spectra (13)
MS: Industrial Sources (9)
MS: Reactor Fuel Treatment  (26)
Power Reactions (73)
Reference Fields (23)

Figure 3: Scatter plot, the ordinate axis shows Shannon’s information entropy, the abscissa axis
shows the logarithm of neutron mean energy. The color (symbol) indicates the type of facility.

2.4 SHAP METHOD

The SHAP method was used to evaluate the influence of each moderator sphere on the predicted
dose rate. The machine learning algorithm was used for spectrum unfolding, then the dose was
estimated from the spectrum, and the contribution of each measurement to the dose was estimated
using the SHAP method.

2.5 ERROR ESTIMATION

The Monte Carlo method was used to estimate the impact of initial data errors on the unfolded
spectra and dose rates. A total of 104 random samples of BSS measurements were generated to
assess the robustness of the model. The detector readings were presented as an array of random
numbers distributed uniformly within ζQ = 5% of the true value. The dose rate obtained for all
samples constitute the uncertainty region of the unfolded Ḣ .

3 RESULTS

3.1 SPECTRUM UNFOLDING WITH RANDOM FOREST

The algorithm was implemented in Python using the Scikit-learn library. The calculations
were performed on the Multifunctional Information and Computing Complex of the JINR Labora-
tory of Information Technologies (HybriLIT). The Random Forest algorithm was optimized over
1000 iterations using the optuna library, with the mean absolute error (MAE) as the optimization
metric (objective value).

From input features BSS readings for moderator spheres of 2” and 12” were excluded because of
high correlation with spheres of 3” and 10” respectively.

Four hyperparameters were tuned:

• the number of trees in the forest (n estimators = 169),

• the maximum tree depth (max depth = 39),

• the minimum number of samples required to split an internal node (min samples split =
2),

• the minimum number of samples required to be at a leaf node (min samples leaf = 1).
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Figure 4: Optimization of the Random Forest Algorithm, 103 trials.

Optimization showed that the parameter min samples leaf has the main importance 94% for the
algorithm’s performance, followed by min samples split with 6%. The optimization results are
presented in Fig. 3.1.

The model has the R2score = 0.57, mean squared error MSE = 1.3 ·10−3 and MAE = 1.9 ·10−2

for the test dataset, and R2score = 0.95, MSE = 1.84 · 10−4 and MAE = 6.5 · 10−3 for the
training data. Unfolded spectres are presented in fig. 3.1. Despite the differences unfolded spectres
have strong correlation with actual data Rc = 0.84.
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Figure 5: Comparison of unfolded and actual spectres from the test dataset. φpred−synthetic

– unfolded spectra for RF trained on synthetic dataset (transparent area shows the uncertainty),
φpred−comp – unfolded spectra for RF trained on IAEA compendium dataset,φactual – actual spec-
tre from IAEA compendium.
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Figure 6: Comparison of predicted and actual Ḣ for the test data.

3.2 SPECTRUM UNFOLDING WITH RANDOM FOREST ON SYNTHETIC DATA

Second model was trained on 104 synthetic spectres, obtained by FRUIT method, eq. (3). The same
hyperparameters were chosen for the RF model, but as features only the measurements are taken
without the categorical parameters. This model has better R2score = 0.67 for the test dataset than
previous model, MSE = 1.6 · 10−3 and MAE = 1.4 · 10−2. For the training dataset metrics are:
R2score = 0.95, MSE = 2.8 · 10−4 and MAE = 5.4 · 10−3. For each spectra the uncertainty for
the 5% noise was calculated. Unfolded spectres are shown in figure 3.1. The uncertainty region is
narrow, the solution is sufficiently robust to measurement errors. The correlation with real spectra
for the spectra obtained using this model is Rc = 0.79.

3.3 EFFECTIVE DOSE RATE ASSESSMENT

Effective ISO dose rate (Ḣ) uncertainty was calculated for 5% noise in BSS measurements. Ḣ was
assessed for 104 random samples of BSS measurements with RF algorithm. As a result a mean
dose rate was calculated and the standard deviation was chosen as the dose rate estimation error.
Results are shown in figure 3.3. For the test data of 51 spectres from IAEA compendium both
models showed good results. For most spectra, the assessed effective dose rate coincided within a
few percent with the value for the original spectrum. Detailed comparison is the figure 3.3.

3.4 SHAP ANALYSIS

The SHAP method implemented as a Python library was applied to the random RF to interpret its
work for the unfolded Ḣ . RF model for BSS measurements as features and Ḣ as the target was de-
veloped. For each measurements the local interpretation is original. According to the Petoussi-Henss
& et al (2010) high energy neutrons give the most contribution to the dose. The local interpretation
confirms this, showing that measurements with the 10” diameter moderator sphere measurements
make the major contribution to the dose rate prediction, fig. 3.4. Due to the correlation of response
functions, if sphere 10” is replaced by sphere 12” then the assessed Ḣ will be almost the same.

By summing up the coefficients for the entire sample, we obtain a global interpretation of the in-
fluence of all the model features on the final result. The global interpretation confirms that for all
test subdataset the greatest weight in the Ḣ was contributed by measurements with a 10” moderator
sphere. Other spheres are responsible for sensitivity to neutrons of lower energies that contribute
less to the dose rate. The type of facility also has a weak affect the final result. This could be seen in
the scattering diagram where there were no separated clusters to divide the spectra by facility type,
2.1. Extended view of how the top features in a dataset impact the model’s output is shown in the
beeswarn plot, fig. 3.4.
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Figure 7: Local interpretation with SHAP for one spectre from test dataset.

Figure 8: Global interpretation with SHAP.

The SHAP analysis revealed that measurements with 10” moderator spheres had the most significant
impact on spectrum prediction. This finding allowed for the optimization of the measurement setup,
reducing the number of required spheres and minimizing personnel exposure.

4 DISCUSSION

The proposed method demonstrates the potential of machine learning for neutron spectrum unfold-
ing and dose rate estimation. The use of Random Forest Regression provides a robust and com-
putationally efficient alternative to traditional methods. The SHAP analysis further enhances the
practicality of the approach by optimizing the measurement setup. However, the method’s perfor-
mance may be limited by the quality and diversity of the training data.

The advantages of RF for spectrum unfolding are as follows: due to the ensemble nature of RF,
it is less prone to overfitting compared to single decision trees or other machine learning models,
especially when dealing with small datasets. RF can capture complex, non-linear relationships be-
tween the input features (Bonner sphere readings) and the output (neutron spectrum or dose rate),
making it suitable for solving ill-posed problems like spectrum unfolding. RF provides intrinsic
feature importance scores, which can be used to identify the most influential moderator spheres or
measurement conditions. RF does not require input features to be normalized or scaled, simplifying
the preprocessing pipeline. RF can handle missing values in the input data, which is beneficial when
dealing with incomplete experimental data.

The disadvantages of RF for spectrum unfolding with small Datasets is known well. RF performs
poorly when predicting outside the range of the training data. For spectrum unfolding, this can be
problematic if the test data contains energy ranges or conditions not represented in the training set.
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Figure 9: Beeswarn plot for the global interpretation with SHAP.

Although RF is robust to overfitting, its performance can still degrade with very small datasets. The
model may struggle to learn the underlying patterns if the training data is insufficiently diverse or
representative. The performance of RF depends on hyperparameters such as the number of trees,
maximum depth, and the number of features considered at each split. Optimizing these hyperpa-
rameters can be challenging with limited data.

The proposed method could be used for unfolding neutron spectra in stationary fields. However, the
accuracy of the reconstructed spectra heavily depends on the quality of the response functions. If
the spectra in the training dataset were obtained by solving the inverse problem using regularization
methods, the reliability of the unfolded spectra may be compromised. Additionally, the method’s
performance is constrained by the specific set of moderator spheres used in the BSS. For instance,
due to the nature of the response functions, measurements from moderator spheres with close diam-
eters are highly correlated, which can negatively impact the method’s results.

To improve the algorithm’s performance, it is essential to expand the training dataset. This can be
achieved through data augmentation techniques as well as by incorporating real spectra unfolded
using alternative methods. Furthermore, spectra calculated using Monte Carlo simulation software
can be added to the dataset to enhance its diversity and representativeness.

When comparing the results of spectrum unfolding methods, it is possible to use alternative metrics
of the discrepancy between the true and unfolded distributions: the Kolmogorov-Smirnov statistic
(Bogomolov et al., 2024) or maximum mean discrepancy (Gretton et al., 2012; Nguyen et al., 2020).

As a future work automated ML could be used to find the best set of ML algorithms, like LightAu-
toML (Vakhrushev et al., 2021).

5 CONCLUSION

This study presents a machine learning-based approach for neutron spectrum unfolding and effec-
tive dose rate estimation using Bonner spectrometer measurements. Comparison of two Random
Forest Regression models trained on a small real spectres dataset and on a large synthetic dataset is
presented. Both models showed strong correlation between actual and unfolded spectra and in dose
rate assessment. The SHAP method enabled the optimization of BSS moderator sphere selection, it
is showed that measurements with the 10” moderator sphere make are the most important to the dose
assessment. The proposed method could be used for improving radiation protection in high-energy
neutron fields.
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