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Abstract001

Large Language Model (LLM) agents have002
demonstrated impressive capabilities in han-003
dling complex interactive problems. Existing004
LLM agents mainly generate natural language005
plans to guide reasoning, which is verbose and006
inefficient. NL plans are also tailored to spe-007
cific tasks and restrict agents’ ability to general-008
ize across similar tasks. To this end, we explore009
pseudocode-style plans (P-code Plan) to cap-010
ture the structural logic of reasoning. We find011
that P-code Plan empowers LLM agents with012
stronger generalization ability and more effi-013
ciency. Inspired by this finding, we propose a014
pseudocode-style Planning Guided Preference015
Optimization method called PGPO for effective016
agent learning. With two planning-oriented re-017
wards, PGPO further enhances LLM agents’018
ability to generate high-quality p-code plans019
and subsequent reasoning. Experiments show020
that PGPO achieves superior performance on021
representative agent benchmarks and outper-022
forms the current leading baselines. Analyses023
reveal the advantage of PGPO in reducing ac-024
tion errors and omissions during reasoning.025

1 Introduction026

Recent advances in large language models have027

promoted the development of LLM agents (Wang028

et al., 2024a; Xi et al., 2025). Planning serves as a029

critical component of agent reasoning (Huang et al.,030

2024), allowing them to break down complex prob-031

lems into manageable sub-tasks. By prompting032

strategies (Wang et al., 2023; Prasad et al., 2024;033

Roy et al., 2024), task-specific fine-tuning (Qiao034

et al., 2024a,b) or external classical planners (Liu035

et al., 2023a; Arora et al., 2024), LLM agents are036

equipped with basic planning abilities. Due to037

the dominance of natural language (NL) in agent038

reasoning (Wei et al., 2022; Yao et al., 2023), ex-039

isting researches mainly focus on generating NL040

plans. However, semantic ambiguities and unde-041

sired verbosity in NL may not be beneficial to agent042

To complete the task, first check 
nearby tables for the tissue box, 
then locate desklamp to view 
tissue box under it.

Thought: First, I need to locate 
the book. I will start by
checking the nearby location … 
Action: go to drawer 1 

Thought: First, I should go to 
the nearest table to find one 
tissue box ... 
Action: go sidetable 1

examine the book 
with the desklamp 

examine the tissuebox 
with the desklamp 

I should go to each drawer and 
desk to find the book first, then 
go to the receptacle with the
desklamp to examine the book.

1. object_name, location_name = locate_object(candidate_locations_1);
2. take(object_name, location_name);
3. desklamp_name = find_desklamp(candidate_locations_2);
4. examine(desklamp_name, object_name).

similar tasks
examine <object>

Reasoning and Acting (native: w/o plan)

w/ Natural Language Plan

w/ Pseudocode Style Plan

unchanged

: task-specific entity

Figure 1: An example demonstrating why p-code plan
helps LLM agents generalize well. When faced with
similar tasks (e.g., examine object with desklamp), the
thought process can be recycled through p-code plans.

planning, leading to low precision and inefficiency. 043

Meanwhile, NL plans are too specific to help LLM 044

agents generalize to other unseen yet similar tasks. 045

Therefore, it still remains underexplored whether 046

alternative plan formats could elicit more efficient 047

and generalized LLM agents. 048

Prior work (Wang et al., 2024c) demonstrates 049

the advantage of executable code as agent’s ac- 050

tion over text or JSON format. Inspired by this, 051

we explore using pseudocode to represent plan, 052

given that plans can be considered as high-level 053

abstraction of actions while pseudocode outlines 054

code. Our work starts by distilling pseudocode- 055

style plans (denoted as P-code Plan) from existing 056

ReAct-style (Yao et al., 2023) datasets, adhering to 057

predefined format requirements. We observe that 058

through fine-tuning with P-code Plan incorporated, 059

LLM agents exhibit improved out-of-distribution 060

generalization. As shown in Figure 1, abstract plan- 061

ning steps in P-code Plan can capture generalizable 062

task knowledge while NL plans focus on specific 063

knowledge and may suffer from overfitting. More- 064

over, agent’s planning ability learned from concise 065

P-code Plan facilitates a more efficient reasoning 066

process with fewer interactions. 067
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ReAct-style Dataset 𝓓

Task 

Instruction: examine the book 
with the desk lamp…
Thought: First, I need to locate 
the book. … 
Action: go to drawer 1 
Observation: On the drawer 1, 
you see a CD 1, and … 

Reasoning and Acting
locate 
book

Location

take Object
find 
desk lamp

examine
Execute

(a) Thought Extraction (b) Plan Distillation

➕
task instruction

+ agent thoughts

Summarize 

Formatting

NL planpseudocode-style plan

(c) Plan Verification

Thought: First, I devise a 
plan for solving the task:
1. A, B = locate_object(entity1);
2. take(A, B);
3. C = find_desklamp(entity2);
4. examine(C, A).
Now, I need to ... Action: …

Pseudocode-style Plan

Figure 2: Overview of P-code Plan generation pipeline. We first extract the thought part from existing ReAct-style
datasets. Then, we prompt GPT-4o to summarize the thought process into high-level plans. Pseudocode-style plans
are finally structured with predefined formats, followed by manual verification to ensure accuracy.

Building upon these insights, we further propose068

a pseudocode-style Planning Guided Preference069

Optimization method named PGPO for agent ca-070

pability enhancement. Specifically, we first utilize071

supervised fine-tuning to build a base agent. Then,072

PGPO contains two iterative phases: (1) the base073

agent performs exploration on expert trajectories074

to construct contrastive trajectory datasets based075

on two designed planning-oriented rewards; (2) di-076

rect preference optimization is employed to refine077

the base agent’s pseudocode-style planning abil-078

ity for task guidance. Through experiments with079

four LLMs, PGPO outperforms various strong base-080

lines by relative 11.6% performance gain averaged081

across three representative agent benchmarks. In082

summary, our contributions are as follows:083

• We investigate the effectiveness of pseudocode-084

style plans in agent reasoning, which are more085

concise and structured than NL plans. P-code086

Plan demonstrates its superiority in boosting the087

generalization ability of LLM agents.088

• We further introduce PGPO, a preference op-089

timization method that empowers LLM agents090

with enhanced reasoning capabilities under the091

guidance of pseudocode-style plans.092

• Experimental results reveal that our PGPO093

achieves state-of-the-art performance on repre-094

sentative agent benchmarks, especially when095

dealing with more complex agent tasks.096

2 Pseudocode-style Plan is Beneficial097

In this section, we first define the structural rep-098

resentation of P-code Plan and then introduce a099

plan generation pipeline, followed by preliminary100

experiments to show the advantage of P-code Plan.101

2.1 Definition of P-code Plan102

In this paper, we mainly focus on LLM agents’103

multi-step reasoning usage: LLM agents interact104

with the environment to accomplish complex tasks, 105

which can be represented as a set of Thought- 106

Action-Observation tuples {(t, a, o)}n. At each 107

interaction, the LLM agent gives the inner thoughts 108

t and takes an action a based on the observation 109

o from the environment. n denotes the number of 110

interaction turns. Following this task formalization, 111

we define the format of our pseudocode-style plans. 112

Planning Step. Ps = (id, name, [parameter], 113

[return value], [control flow]) structures each 114

step in the plan, uniquely identified by id. Similar 115

to function in programming languages, one plan- 116

ning step usually corresponds to a subset of actions 117

oriented to one subtask. name abstracts a function 118

identifier to describe the reasoning process of this 119

subtask, with parameters enclosed in parentheses. 120

[] mean optional attributes. return values are in- 121

dicated when observed information. control flow 122

signifies standard programming structures such as 123

if-else and for, which can be omitted when planning 124

steps are performed sequentially. 125

Planning Entity. E = {e1, e2, ..., em} refs to 126

the prior knowledge entities used to specify some 127

parameters in the planning step. These entities 128

serve as guidance for generating valid actions and 129

avoiding aimless exploration. 130

P-code Plan. Denoted as (Ps, E), pseudocode- 131

style plans are the combination of abstract planning 132

steps and task-specific planning entities. Different 133

from NL plans, P-code Plans are more structured 134

and concise. This format helps agent better general- 135

ize to unseen tasks, where unseen tasks may share 136

similar planning steps with seen tasks but initialize 137

different planning entities. 138

2.2 Plan Generation Pipeline 139

Initially, we have ReAct-style dataset D where 140

each instance d consists of one task instruction u 141

with its collected expert trajectory τ = (t1, a1, o1, 142

..., on−1, tn, an, on). Then, with LLM and human 143
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Figure 3: Comparison between w/ P-code Plan and w/o Plan, w/ NL Plan during the SFT process for LLM agents.
Here w/o Plan symbolizes training on the original ReAct-style datasets, w/ NL Plan indicates incorporating natural
language plans into training data and w/ NL Plan represents the incorporation of pseudocode-style plans.

participation, as illustrated in Figure 2, our P-code144

Plan generation pipeline is outlined as follows:145

• Thought Extraction. We first extract agent146

thoughts {t}n from expert trajectories, which147

involves task-specific knowledge for planning.148

The relationship between agent thoughts and149

task plans can be viewed as one of abstraction.150

The plan distills the essentials of thoughts while151

omitting specifics, as an abstract summary does.152

• Plan Distillation. Subsequently, to improve the153

quality of distilled plans and obtain more accu-154

rate abstract knowledge, we employ a powerful155

model (e.g., GPT-4o) for generation. Given the156

task instruction u with agent thoughts {t}n, we157

instruct the LLM to summarize the step-by-step158

plan in natural language. Next, due to the effec-159

tiveness of few-shot prompting strategy for struc-160

tural generation (Valmeekam et al., 2024; Liu161

et al., 2023a), demonstrations of pseudocode-162

style plans paired with corresponding tasks are163

taken as input, converting natural language plans164

into P-code Plans. See Appendix B.2 for the165

prompt we used to guide plan distillation.166

• Plan Verification. Last, we choose human to167

verify the LLM-generated P-code Plans whether168

follow the format requirements described in Sec-169

tion 2.1. In order to guarantee accuracy and170

knowledge consistency, minor manual refine-171

ment are also needed.172

2.3 P-code Plan Improves Generalization173

We adopt supervised fine-tuning (SFT) to equip174

base LLMs with agent abilities and then investigate175

whether LLM agents can benefit from our designed176

pseudocode-style plans. Our experiments are based177

on four popular LLMs: Llama-2-7B/13B (Touvron178

et al., 2023), Llama-3-8B (Dubey et al., 2024) and179

Setting Llama-2
-7B

Llama-2
-13B

Llama-3
-8B

Mistral
-7B

ALFWorld-Seen
w/o Plan 12.04 11.38 11.49 11.45
w/ NL Plan 11.34 11.36 11.41 12.14
w/ P-code Plan 11.33 11.21 11.29 10.99

ALFWorld-Unseen
w/o Plan 12.93 12.22 12.59 12.84
w/ NL Plan 12.13 12.27 11.88 12.33
w/ P-code Plan 12.04 11.87 11.78 11.57

Table 1: Average interaction turns required on ALF-
World. Bold indicates the best results of each model.

Mistral-7B-v0.3 (Jiang et al., 2023). For the agent 180

tasks, we choose two representative datasets: ALF- 181

World (Shridhar et al., 2021) and WebShop (Yao 182

et al., 2022). We employ the average reward as met- 183

ric to reflect the agent performance. Please ref to 184

Appendix B.1 and B.4 for detailed training settings. 185

We first collect ReAct-style training expert tra- 186

jectories following Xiong et al. (2024) and then use 187

the above plan generation pipeline (Section 2.2) to 188

obtain P-code Plans, along with natural language 189

plans. These two type generated plans are finally in- 190

corporated into the first step of original trajectories 191

to construct new training datasets, respectively. In 192

Appendix B.4, we present more details of dataset 193

construction procedure with some examples. 194

As shown in Figure 3, with the help of P-code 195

Plan, LLM agents generally have higher average 196

reward (10 out of 12 scenarios). Compared to naive 197

expert trajectories (w/o Plan), integrating plans into 198

training data (regardless of format) empowers LLM 199

agents with basic planning ability, which is bene- 200

ficial to the following agent reasoning. Regarding 201

planning format, although w/ P-code Plan brings 202

weaker performance than w/ NL Plan for Llama-2- 203

7B and Llama-3-8B on the seen ALFWorld tasks (2 204
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Expert Dataset
with P-code Plan

𝓓𝒔

➕

SFT 

base agent 𝝅𝜽
Thought+Action

Observation

Expert
Trajectory

Explore

Explore

…

…

…
Plan-following 

Reward

Plan-driven
Reward

Contrastive Trajectory Datasets

≻ ≻

Preference 
Optimization

DPO Loss 𝓛𝒑 + DPO Loss 𝓛𝒇
           + SFT Loss 𝓛% 

(a) Supervised 
Fine Tuning Stage (b) Exploration Stage for Planning-oriented Trajectory Collection (c) Planning-guided Agent 

Learning Stage

Figure 4: The overview of PGPO. Our algorithm starts by build a SFT-based agent. Then, the base agent iteratively
performs exploration on expert trajectories to construct contrastive trajectory datasets based on two designed
planning-oriented rewards and updates itself via preference optimization to enhance agent capabilities.

out of 12 scenarios), it consistently achieves better205

generalization to unseen ALFWorld tasks for all206

four models. We consider this can be attributed that207

abstract planning steps in P-code Plan capture gen-208

eralizable meta-knowledge guiding task solution209

but natural language plans are prone to overfitting.210

We also analyze whether executable code format211

could lead to higher performance (in Appendix C.2)212

and find verbose plans pose a greater challenge for213

generation, thereby negatively affect reasoning.214

Moreover, we further calculate the average num-215

ber of interaction turns on all evaluated instances.216

In Table 1, LLM agents w/ P-code Plan surpris-217

ingly reduce the average interaction turns compared218

to the other two settings. This underscores the219

superiority of P-code Plan in preventing blind ex-220

ploration when dealing with agent tasks. Another221

interesting finding is handling unseen tasks requires222

more interactions than seen tasks, but the increase223

from LLM agents w/ P-code Plan is relatively low.224

This phenomenon also demonstrates our designed225

P-code Plan is suitable for agent generalization.226

3 P-code Plan-Guided Agent Learning227

Despite widespread use in open LLM agents (Chen228

et al., 2023; Zeng et al., 2024; Yin et al., 2024),229

supervised fine-tuning approach has its drawback,230

that is, the limited generalization ability due to over-231

reliance on expert trajectories (Song et al., 2024;232

Fu et al., 2025). Recent works focus on Direct Pref-233

erence Optimization (DPO) (Rafailov et al., 2024)234

and its variants to develop LLM agents with con-235

trastive trajectory dataset (Yang et al., 2024b; Song236

et al., 2024; Xiong et al., 2024; Shi et al., 2024).237

Inspired by our findings in Section 2.3, we pro-238

pose a method for improving agents’ pseudocode-239

style planning ability, called PGPO, standing for240

Planning Guided Preference Optimization. The241

overview of our method is depicted in Figure 4.242

3.1 Planning-oriented Trajectory Collection 243

We start off training the base agent πθ via SFT on 244

the expert dataset Ds = {(u, p, τ)(i)}|Ds|
i=1 with P- 245

code Plans p generated in Section 2.2. We denote 246

new plan-incorporated trajectory as τ
′
= (p, t1, a1, 247

o1, ..., on−1, tn, an, on) and the loss function can 248

be formulated as: 249

LSFT (θ) = −E(u,τ ′ )∼Ds
{

n∑
j=1

[log πθ(tj |u, p, τj−1) 250

+ log πθ(aj |u, p, τj−1, tj)] + log πθ(p|u)}, (1) 251

where τj−1 = (t1, a1, o1, ..., aj−1, oj−1) repre- 252

sents the interaction history of previous j−1 rounds. 253

The obtained base agent πθbase is used for explo- 254

ration on the expert trajectory to collect contrastive 255

action pairs. Oriented towards planning, we design 256

two rewards for contrastive trajectory construction: 257

1) plan-driven reward; 2) plan-following reward. 258

Plan-driven Reward rd evaluates the influence 259

of p-code plans on the entire trajectory. Given each 260

task instruction u, we use base agent to generate 261

the p-code plan p̂ ∼ πθbase(·|u) and subsequent 262

reasoning steps τ̂ ∼ πθbase(·|u, p̂). In our experi- 263

ments, agent stops exploration when task completes 264

or the maximum number of interaction rounds is 265

exceeded. Then, the environment will give the out- 266

come reward ro, which is positively correlated with 267

the quality of exploration trajectory. For simplicity, 268

we use this outcome reward as rd. By comparing 269

rd(p, τ) and rd(p̂, τ̂) for expert trajectory and ex- 270

ploration trajectory, we get our first contrastive tra- 271

jectory dataset Dp =
{
(u, pw, τw, pl, τ l)(i)

}|Dp|
i=1

. 272

We use (pw, τw) ≻ (pl, τ l) | u to represent the 273

situation where (pw, τw) with higher reward is pre- 274

ferred over (pl, τ l) with lower reward. 275

Plan-following Reward rf assesses the extent 276

to which agents comprehend the structured inten- 277

tions behind p-code plans and their proficiency in 278
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following these plans during task execution. Given279

the first expert interaction round (u, p, τ1) as his-280

torical trajectory, we query base agent to continue281

exploration τ̂2:m ∼ πθbase(·|u, p, τ1). m denotes282

the total interaction rounds. Here, we select the283

first two interaction rounds τ̂2 as representative to284

analyze the alignment between plans and executed285

actions. Inspired by Monto Carlo Tree Search (Koc-286

sis and Szepesvári, 2006), we quantify it as the po-287

tential to complete task successfully. It is intuitive288

that when the quality of p-code plan is guaranteed,289

subsequent reasoning steps that closely adhere to290

the plan are likely to yield higher outcome rewards.291

Therefore, we use one scorer agent to generate new292

subsequent trajectory τ s3:m′ ∼ πθscorer(·|u, p, τ̂2).293

By sampling N new trajectories, the average out-294

come reward ro from the environment estimates295

the plan-following reward:296

rf (u, p, τ̂2) =

∑N
i=1 ro(τ

s
3:m′ |u, p, τ̂2)(i)

N
(2)297

In our approach, we use πθbase as πθscorer . Then,298

similar to the construction of Dp, we contrast299

subsequent trajectory τw2:n ≻ τ l2:m | (u, p, τ1)300

based on rf (u, p, τ2) and rf (u, p, τ̂2), establishing301

our second contrastive trajectory dataset Df =302 {
(u, p, τ1, τ

w
2:n, τ

l
2:m)(i)

}|Df |
i=1

.303

3.2 Planning-guided Agent Learning304

After collecting preference data, DPO method is305

utilized to optimize our base agent. First, based on306

dataset Dp, agent learns to generate high-quality307

p-code plans along with subsequent reasoning by308

minimizing the following loss:309

Lp=− E(u,pw,τw,pl,τ l)
∼Dp

[
log σ

(
β log

πθ(p
w, τw|u)

πref (pw, τw|u)
310

−β log
πθ(p

l, τ l|u)
πref (pl, τ l|u)

)]
(3)311

where σ denotes the logistic function, β controls312

the weight of the preference for the reference model313

πref . Meanwhile, agent refines its parameters to314

develop the plan-following ability gathered from315

dataset Df , which can be formulated as:316

Lf =−E(u,p,τ1,τ
w
2:n,τ

l
2:m)

∼Df

[
log σ

(
β log

πθ(τ
w
2:n|u, p, τ1)

πref (τw2:n|u, p, τ1)
317

−β log
πθ(τ

l
2:m|u, p, τ1)

πref (τ l2:m|u, p, τ1)

)]
(4)318

One issue of standard DPO is that log probability319

of chosen trajectories may decrease over training320

steps, leading to sub-optimal performance. Follow- 321

ing previous works (Pang et al., 2024; Xiong et al., 322

2024), we add SFT loss to mitigate this issue: 323

Ls=−E(u,pw,τw,pl,τ l)∼Dp
[log πθ(p

w, τw|u)] (5) 324

Finally, the optimization objective of PGPO is: 325

min
πθ

(Lp + Lf + Ls) (6) 326

The updated agent will be used as new base agent 327

for exploration and iterate the above learning pro- 328

cess until exceeding the maximum iterations. The 329

overall procedure of PGPO is summarized in Ap- 330

pendix A Algorithm 1. 331

4 Experiments 332

4.1 Experimental Settings 333

Datasets ans Metrics. Besides ALFWorld for 334

embodied household tasks and WebShop for on- 335

line shopping (as described in Section 2.3), we also 336

include one game benchmark TextCraft (Prasad 337

et al., 2023) for crafting Minecraft items. For all 338

datasets, we choose the average reward as evalua- 339

tion metric. More details are in Appendix B.1. 340

Baselines. We compare PGPO with naive SFT 341

and other two leading agent learning methods: (1) 342

ETO (Song et al., 2024) applies DPO loss to im- 343

prove the agent from its exploration failures; (2) 344

IPR (Xiong et al., 2024) introduces step-wise pro- 345

cess supervision into LLM agent training. For 346

fair comparison, we also select Llama-2-7B/13B, 347

Llama-3-8B and Mistral-7B-v0.1 as backbone mod- 348

els. Additionally, we include two strong closed- 349

source LLMs: GPT-3.5-Turbo and GPT-4, utilizing 350

two prompt-based methods ReAct (Yao et al., 2023) 351

and ADaPT (Prasad et al., 2023) for comparison. 352

Implementation Details. During the SFT phase, 353

we set the learning rate as 2e-5 and the batch size 354

as 48 across 3 training epoches. The cosine sched- 355

uler is employed with a 3% warm-up ratio. In 356

the trajectory collection stage, the base agent ex- 357

plores the environment using a temperature of 0. To 358

construct contrastive pairs, we sample N=5 times 359

with temperature=1 to calculate the plan-following 360

reward. During the following preference optimiza- 361

tion phase, we tune the learning rate from 5e-7 to 362

5e-6 and test two values for β in the DPO loss: 0.01 363

and 0.1. The maximum number of iterations is set 364

to 4. All training experiments are conducted on 8 365

NVIDIA A100 80 GB GPUs. See Appendix B.4- 366

B.6 for more details. 367
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Method
Llama-2-7B Llama-2-13B

ALFWorld WebShop TextCraft Avg. ALFWorld WebShop TextCraft Avg.
Seen UnSeen Seen UnSeen

SFT 60.0 67.2 60.2 28.0 53.9 67.1 67.9 62.2 29.0 56.6
ETO 68.6 72.4 67.4 35.0 60.9 75.0 69.4 68.9 42.0 63.8
IPR 70.3 74.7 71.3 34.0 62.6 75.0 76.9 72.2 39.0 65.8

PGPO 76.4 76.9 72.2 43.0 67.1 77.1 77.6 73.7 48.0 69.1

Method
Llama-3-8B Mistral-7B

ALFWorld WebShop TextCraft Avg. ALFWorld WebShop TextCraft Avg.
Seen UnSeen Seen UnSeen

SFT 67.1 72.4 61.2 20.0 55.2 72.1 68.7 61.8 31.0 58.4
ETO 72.1 73.1 66.2 36.0 61.9 75.0 72.4 66.2 38.0 62.9
IPR 72.9 73.9 72.0 38.0 64.2 73.6 73.1 69.6 36.0 63.1

PGPO 75.0 76.9 72.3 46.0 67.6 75.0 77.6 69.0 45.0 66.7

Table 2: Main results of PGPO compared to training-based baselines on ALFWorld, WebShop and TextCraft. Bold
and underline indicate the best and the second-best results of each model. For all methods (except SFT), we report
the best performance across all iterations following Xiong et al. (2024). Our PGPO is evaluated in zero-shot setting.

Method ALFWorld WebShop TextCraft
Seen UnSeen

ReAct+GPT-4 42.9 38.1 63.2 28.0
ReAct+GPT-3.5 7.9 10.5 62.4 20.0
ADaPT+GPT-4 75.0 69.4 64.8 48.0
ADaPT+GPT-3.5 70.3 71.6 62.7 26.0

PGPO+Llama-2-7B 76.4 76.9 72.2 43.0
PGPO+Llama-3-8B 75.0 76.9 72.3 46.0

Table 3: Comparative experiments on PGPO vs. prompt-
based baselines. The best and second-best results are
marked in bold and underline.

4.2 Main Results368

Table 2 and 3 show the evaluation results of PGPO369

and baselines on three agent benchmarks. First,370

compared with training-based baselines, PGPO sig-371

nificantly increases the average reward across all372

the datasets. Specifically, PGPO with Llama-2-373

7B surpasses the state-of-the-art method IPR by an374

improvement of 7.2% on average reward. This indi-375

cates the incorporation of p-code plans into training376

data can provide the model with enhanced reason-377

ing abilities in accomplishing the agent tasks.378

Second, for prompt-based baselines, traditional379

ReAct paradigm using GPT-3.5-Turbo exposes380

poor performance on all agent datasets. Although381

ADaPT+GPT-3.5 gains a performance boost via re-382

cursive task decomposition, it still underperforms383

our method. In particular, PGPO+Llama-2-7B sur-384

passes ADaPT+GPT-3.5 by relative margins of385

9.5% and 17% points on WebShop and TextCraft.386

ALFWorld WebShop TextCraft
Seen UnSeen

PGPO 76.4 76.9 72.2 43.0
- P-code 75.7↓ 0.7 71.6↓ 5.3 69.6↓ 2.6 40.0↓ 3.0

- Lf 74.3↓ 2.1 75.4↓ 1.5 70.4↓ 1.8 41.0↓ 2.0

- Ls 69.3↓ 7.1 68.7↓ 8.2 64.8↓ 7.4 35.0↓ 8.0

Table 4: Approach ablations of PGPO. Experiments are
based on Llama-2-7B. - P-code represents using NL
plans to replace P-code plans. - Lf denotes leaving out
the estimation of plan-following reward rf , followed by
the removal of Lf . - Ls means the removal of SFT loss.

While prompting methods with GPT-4 improve the 387

agent performance, PGPO+Llama-3-8B alleviates 388

the need for few-shot context and achieves com- 389

parable or even better results. This demonstrates 390

smaller open-source models can be effective agents 391

through iterative training, rivaling or exceeding the 392

agent capabilities of strong closed-source models. 393

Finally, we focus on the effectiveness of PGPO 394

across different base models on various datasets. 395

(1) Generalization on different models: Besides 396

the LLaMA family of models, we also include 397

Mistral-7B in Table 2 and Qwen2.5 series in Ap- 398

pendix C.3. Regardless of model sizes and families, 399

our method consistently exhibit the advantage of 400

p-code plans guiding agent reasoning. (2) Gener- 401

alization on diverse unseen tasks: To comprehen- 402

sively assess its capability in out-of-distribution 403

scenarios, we conduct additional experiments on 404

ScienceWorld (Wang et al., 2022) in Appendix C.4 405

Table 13. PGPO outperforms the ETO and IPR 406
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Figure 5: Ablation study on optimization iterations. (a)
provides a comparison of the performance of PGPO
against ETO and IPR across varying iterations. (b)
shows the influence of increasing iterations on PGPO
across different base models. iter=0 is the SFT stage.
Shaded regions indicate standard error across 5 trails.

baselines in generalizing to unseen tasks, where407

the performance gap is larger when dealing with408

more complex interactive tasks.409

4.3 Ablation Study410

411 Approach Ablations. Table 4 illustrates that the412

performance of PGPO obviously declines after re-413

moving certain key components. We observe that414

the most significant performance drop comes from415

the removal of SFT loss (- Ls), which is consis-416

tent with previous findings (Pang et al., 2024). To417

demonstrate the advantage of p-code plans over NL418

plans, we specifically replace p-code plans with NL419

plans (generation pipeline is same with Section 2.3)420

in training data and then employ PGPO. As ex-421

pected, the results indicate even with subsequent422

iterative preference optimization, the performance423

upper bound brought by p-code plans is still supe-424

rior to that of NL plans. Additionally, the effect425

of using plan-following reward to include Lf in426

optimization loss is better than - Lf , indicating the427

necessity of plan-following rewards.428

Ablation on Optimization Iterations. Figure 5429

shows the iteration ablation results from two as-430

pects: (a) With the increase of optimization iter-431

ations, all methods first exhibit performance im-432

provements and then deteriorates due to exces-433

sive iterations. Among them, PGPO consistently434

achieves the highest peak performance. We con-435

Method ALFWorld
Seen UnSeen

ETO 34.28% 32.83%
IPR 30.71% 28.35%

PGPO 23.57% 26.86%

Table 5: Invalid action rate
on ALFWorld.

Method Webshop

ETO 37.5
IPR 40.5

PGPO 41.0

Table 6: Success rate
on WebShop.

sider that this can be attributed to the excellent 436

starting point (i.e., iter=0) in PGPO since the incor- 437

poration of p-code plans into SFT data effectively 438

enhances the agent reasoning capability. (b) De- 439

spite different base models, the peak performance 440

of PGPO can be achieved within 4 iterations. How- 441

ever, the performance variation trend across them 442

is quite different, which reflects the distinct extent 443

of each model grasping the meta-knowledge inher- 444

ent in structured p-code plans. Furthermore, as 445

depicted in Figure 8 (in Appendix), agent achieves 446

optimal performance during iterative optimization 447

when the number of its exploration trajectory sur- 448

passing expert trajectory reaches a peak. 449

4.4 Analysis 450

Analysis on training time efficiency. We com- 451

pare the time consumption of PGPO with two 452

training-based baselines on WebShop. Under the 453

same resource constraints, ETO, IPR and PGPO 454

first undergo a 1-hour SFT phase and additionally 455

require 1.5h, 4.5h and 3.2h per optimization itera- 456

tion, respectively. Therefore, PGPO delivers a 9% 457

performance improvement while maintains reason- 458

able training efficiency, requiring less than twice 459

time cost of ETO. 460

P-code plan guidance can reduce the incidence 461

of action errors and omissions in reasoning. 462

Taking ALFWorld as an example, we calculate the 463

proportion of trajectories containing invalid actions 464

for each method on Llama-2-7B in Table 5. The 465

results demonstrate PGPO decreases action errors 466

with the help of p-code plans. Then we analyze the 467

action omissions of agents via the task success rate. 468

Since WebShop provides dense rewards, the trajec- 469

tory is considered success only when final reward 470

is 1.0, i.e., agent has selected all necessary product 471

attributes without any omissions. From Table 6, it 472

can be observed that PGPO achieves the highest 473

success rate, indicating guidance from p-code plans 474

indeed reduces the agent’s action omissions. 475

Step-wise reward does not necessarily elicit bet- 476

ter LLM agents. Regarding the design of plan- 477
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Figure 6: Comparison between PGPO+ and PGPO.

following reward in PGPO, we only consider the478

alignment between the first step (containing the479

generated plans) and the second step to construct480

contrastive trajectory pairs. Since step-level pro-481

cess supervision has been effectively utilized in482

reasoning tasks (Lightman et al., 2024), we eval-483

uate whether introducing step-wise reward to our484

PGPO could further facilitate agent reasoning. Fol-485

lowing IPR (Xiong et al., 2024), we add step-level486

rewards into our method (denoted PGPO+). It can487

be observed from Figure 6 that step-wise reward488

negatively impacts the PGPO performance. To489

speculate on the reason behind, we manually check490

the quality of training data collected by PGPO+ and491

find that although step-level process supervision in-492

creases the data scale, some constructed preference493

pairs may be ambiguous, which poses a potential494

risk of reward hacking (Gao et al., 2023). There-495

fore, it is still challenging to accurately determine496

the contribution of the intermediate step, thus intro-497

ducing step-wise reward instead plays a negative498

role in agent reasoning (Guo et al., 2025).499

5 Related Works500

LLM Agents. The remarkable capabilities of501

LLMs have spurred research into developing AI502

agents. These LLM agents are generally equipped503

with reasoning and acting capabilities, enabling504

them to handle a wide range of tasks (Richards,505

2023; Nakajima, 2023; Liu et al., 2024). Prompt-506

based methods like ReAct (Yao et al., 2023), Re-507

flexion (Shinn et al., 2024) and ADaPT (Prasad508

et al., 2024) utilize strong closed-source LLMs to509

build powerful agents. However, prompting strate-510

gies are heavily dependent on those enhanced but511

expensive LLMs, resulting in high usage costs. Re-512

cent studies explore the fine-tuning methods based513

on open-source LLMs to improve agent intelli-514

gence (Chen et al., 2023; Zeng et al., 2024).515

Agent Planning. Planning plays a crucial role in 516

agent reasoning, with different planning paradigms, 517

such as Plan&Solve (Wang et al., 2023) and Plan- 518

Act (Liu et al., 2023b), offering diverse approaches 519

to agent tasks. Few works have explored the poten- 520

tial of alternative plan formats beyond natural lan- 521

guage. To utilize the precision of formal language, 522

Li et al. (2024) constructs a context-free grammar 523

to control the NL plan generation. Zhang et al. 524

(2024) rely on translating NL tasks into Planning 525

Domain Definition Language (PDDL) and then 526

solve problems with PDDL planners. However, the 527

above studies just use such structured language to 528

assist agent planning rather than empower LLMs to 529

generate structured plans for enhanced reasoning. 530

Concurrently with our work, Wen et al. (2025) 531

introduce code-form plans to do reasoning tasks 532

under the few-shot setting without fine-tuning. 533

Agent Learning. Previous works focus on learn- 534

ing from expert trajectory data to align agent behav- 535

ior with expert (Chen et al., 2024; Yin et al., 2024). 536

Recently, learning from preference has shown 537

promise for developing LLM agents. NAT (Wang 538

et al., 2024b) teaches the model to differentiate 539

between correct and incorrect interactions during 540

fine-tuning. ETO (Song et al., 2024) leverages it- 541

erative explored trajectories for training via DPO 542

loss. IPR (Xiong et al., 2024) constructs step-wise 543

contrastive action pairs using estimated step-level 544

rewards to guide the agent optimization process. 545

These efforts highlight iterative preference learning 546

techniques unlock sophisticated agent capabilities. 547

6 Conclusion 548

In this paper, we propose PGPO, which empowers 549

LLM agents with enhanced reasoning capabilities 550

under the guidance of pseudocode-style plans. Our 551

motivation is based on that abstract P-code Plan 552

can capture efficient structural logic of reasoning 553

compared with NL plans, suitable for LLM agent’s 554

generalization to analogous agent tasks. After in- 555

corporating automatically generated p-code plans 556

into existing ReAct-style datasets, PGPO starts by 557

a competent base agent through SFT. Then, PGPO 558

iteratively refines the base agent via preference op- 559

timization based on two planning-oriented rewards. 560

Experimental results demonstrate PGPO effectively 561

achieves new SOTA performance across three agent 562

benchmarks. Further analysis shows that P-code 563

Plan exhibits robust potential in mitigating action 564

errors and critical step omissions during reasoning. 565
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Limitations566

This paper focuses on incorporating pseudocode-567

style plans to guide agent preference optimization.568

Despite its new SOTA performance, we acknowl-569

edge the following limitations of our work: 1) Our570

method deploys Monte Carlo sampling to estimate571

plan-following reward, incurring additional infer-572

ence costs compared to the ETO baseline. How-573

ever, sampling only needs to be conducted for one574

step per iteration, which is more efficient than the575

design of step-wise reward in IPR baseline. And576

ablation studies in Section 4.3 demonstrates the ne-577

cessity of plan-following rewards. 2) Our method578

designs structured P-code Plan to enhance agent579

reasoning. Although powerful GPT-4o guarantees580

the plan quality to a certain extent, it is still neces-581

sary to research how to verify plans automatically582

beyond human verification.583

In the future, we plan to conduct research on584

rule-based rewards (Guo et al., 2025) since the585

structured nature of our P-code Plan provides an586

interpretable scaffold for automating rule-based587

reward design. Furthermore, we explore extending588

our method to a multi-task training scenario, which589

can contribute to more generalized LLM agents.590
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A PGPO Algorithm 848

We summarize the workflow of PGPO in Algo- 849

rithm 1. Our algorithm starts by a Supervised Fine 850

Tuning (SFT) stage. In this stage, expert dataset 851

with p-code plans generated in Section 2.2 is uti- 852

lized to equip the base LLM with agent capabilities. 853

Next, the algorithm proceeds with the data prepa- 854

ration stage. For each expert trajectory, the plan- 855

following reward is calculated via Monte Carlo 856

sampling method. Then, the base agent explores 857

on expert trajectories to collect new trajectory data. 858

Based on two planning-oriented rewards, two con- 859

trastive trajectory datasets are constructed. Finally, 860

in the preference optimization stage, the base agent 861

refines its parameters to improve its reasoning ca- 862

pability. The above data preparation and preference 863

optimization stage will be repeated until exceeding 864

the maximum iterations. 865

B Implementation Details 866

B.1 For Datasets 867

Table 7 summarizes the statistics information of the 868

three agent datasets. ALFWorld provides binary 869

rewards to indicate task success while WebShop 870

provides dense rewards from 0 to 1 to measure 871

the task completion level. Similar to ALFWorld, 872

the reward of TexCraft is binary 0 or 1 indicating 873

task success. Note that ALFWorld comprises both 874

seen and unseen test sets in order to evaluate the in- 875

distribution and out-of-distribution generalization 876

of the agents. For ALFWorld and WebShop, we 877

choose the ReAct-style expert trajectories collected 878

by Xiong et al. (2024). For TextCraft, we primarily 879

use the train set from AgentTraj-L (Xi et al., 2024). 880

Dataset #Train #Test #Turns

ALFWorld 2851 274 (140-Seen, 134-Unseen) 7.97
WebShop 1624 200 (200-Seen) 3.64
TexrtCraft 373 100 (100-Unseen) 7.86

Table 7: Statistics information of ALFWorld, WebShop
and TextCraft. "#Turns" denotes the average number of
iteraction turns for the expert trajectories.
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Algorithm 1: Workflow of PGPO
Input: Base LLM πθ, Expert Dataset Ds = {(u, p, τ)(i)}|Ds|

i=1 : τ = (t1, a1, o1, ..., tn, an, on),
Training Epoch T1 for Supervised Fine Tuning, Training Epoch T2 for Preference Optimization, Sampling
Number N for Reward Estimation, Maximum Number of Iterations I
Output: The Enhanced LLM agent πθ

// Supervised Fine Tuning Stage
1 for epoch = 1 to T1 do

2 πθ ← argmin
πθ

−E(u,p,τ)
∼Ds

{
n∑

j=1

[log πθ(tj |u, p, τj−1) + log πθ(aj |u, p, τj−1, tj)] + log πθ(p|u)};

3 πscorer = πθ;
4 for (u, p, τ) ∈ Ds do
5 Given the first two expert interaction rounds τ2 = (t1, a1, o1, t2, a2, o2) as historical trajectory, use

scorer agent to sample N subsequent trajectories: τs3:m′ ∼ πθscorer (·|u, p, τ2);
6 Compute plan-following reward rf (u, p, τ2) =

1
N

∑N
i=1 ro(τ

s
3:m′ |u, p, τ2)(i) of expert trajectory;

7 for iter = 1 to I do
8 πbase = πθ; πref = πθ

// Exploration Stage for Planning-oriented Trajectory Collection
9 for u ∈ Ds do

10 Get the p-code plan and subsequent reasoning steps from base agent: p̂ ∼ πθbase
(·|u),

τ̂ ∼ πθbase
(·|u, p̂);

11 Compare plan-driven rewards rd of (p̂, τ̂) with expert trajectory (p, τ) to get (pw, τw) ≻ (pl, τ l) | u;
12 Given the first expert interaction round (u, p, τ1) as historical trajectory, get subsequent trajectory

from base agent: τ̂2:m ∼ πθbase
(·|u, p, τ1);

13 Similar to line 5-6, compute plan-following reward rf (p, u, τ̂2) of agent-generated trajectory;
14 Compare rf (p, u, τ̂2) and rf (u, p, τ2) to get τw2:n ≻ τ l2:m | (u, p, τ1);

15 Construct two contrastive trajectory datasets: Dp =
{
(u, pw, τw, pl, τ l)(i)

}|Dp|
i=1

,

Df =
{
(u, p, τ1, τ

w
2:n, τ

l
2:m)(i)

}|Df |
i=1

;
// Planning-guided Agent Learning Stage

16 for epoch = 1 to T2 do
17 πθ ← argmin

πθ

(Lp + Lf + Ls) using Eq. 3, Eq. 3 and Eq. 5;

18 return the enhanced LLM agent πθ.

B.2 For P-code Plan Generation882

We illustrate the plan generation pipeline in Fig-883

ure 2. Based on existing ReAct-style datasets (see884

Appendix B.1 for data source), we first extract the885

agent thoughts part for preparation. Then, we use886

GPT-4o to summarize the step-by-step plan follow-887

ing our predefined P-code Plan format via few-shot888

prompting strategy. One example prompt for plan889

distillation is shown below:890

Example Prompt for Plan Distillation

Given the [Task Description], [Task] and
[Solution Trajectory], you should sum-
marize the step-by-step [Plan] in natural
language for solving the task. Please note
that the generated [Plan] should be global
and do not contain the information from

891

"Observation" part of [Solution Trajectory].
Then, you should format the generated
[Plan] to strictly follow the pseudocode
format and output in this format:
Step 1. ...
Step 2. ...
Step 3. ...
....
Here is one example.
<one-shot demonstration>

Now is your turn.
[Task Description]: <task_description>
[Task]: <task>
[Solution Trajectory]: <agent_thoughts>
[NL Plan]:
[P-code Plan]:

892
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B.3 For Human Verification893

To guarantee the quality of generated p-code plans,894

we ask three NLP researchers to check the plan895

formats and their consistency with original trajecto-896

ries. According to statistic, only nearly 15% of the897

generated data need to be refined by human, while898

85% are well structured. This demonstrates the899

reliability of our automatic p-code plan generation900

pipeline, enabling scalable and quality-controlled901

data synthesis.902

B.4 For SFT Stage903

First, after distilling p-code plans from agent904

thoughts, we need to incorporate these plans into905

original ReAct-style datasets. As described in Sec-906

tion 2.3, they are added into the first step of original907

trajectories. We prefix the plans with "First, I de-908

vise a plan for solving the task:" for incorporation909

and list one example of new constructed training910

data as below:911

SFT Data Example

{
"from": "human",
"value": "<task_description>"
},{
"from": "gpt",
"value": "OK"
},{
"from": "human",
"value": "<task>"
},{
"from": "gpt",
"value": "Thought: First, I devise a plan for
solving the task: <distilled p-code plan>
Now, I need to first check ...
Action: go to toiletpaperhanger 1"
},{
"from": "human",
"value": "Observation: On the toiletpaper-
hanger 1, you see ..."
}, ...

912

Next, we choose full-parameter fine-tuning for913

all models using FastChat framework. We detail914

the hyperparameters for SFT stage in Table 8.915

B.5 For Baselines916

In this section, we provide a detailed introduction917

to the baselines, as well as our reproduction details.918

Name Value

num_train_epochs 3
train_batch_size 48

per_device_train_batch_size 4
per_device_eval_batch_size 4
gradient_accumulation_steps 2

learning_rate 2e-5
weight_decay 0.
warmup_ratio 0.03

lr_scheduler_type "cosine"
model_max_length 4096

Table 8: Detailed hyperparameters used in SFT stage.

• ETO (Song et al., 2024): This framework com- 919

prises two training phases: (1) behavior cloning 920

stage, wherein the agent undergoes fine-tuning 921

on expert trajectory data, followed by (2) learn- 922

ing from failures, which employs DPO (Rafailov 923

et al., 2024) for subsequent policy refinement. 924

• IPR (Xiong et al., 2024): The iterative step- 925

level process refinement framework enhances 926

agent learning through step-by-step guidance. 927

Via step-level reward estimation, IPR identifies 928

discrepancies between agent-generated trajecto- 929

ries and the expert trajectories, thereby boosting 930

the agent performance. 931

To reproduce experimental results, we maintain all 932

the default hyperparameters in their public code 1 933

and carefully extend them to TextCraft dataset. 934

• ReAct (Yao et al., 2023): ReAct first inte- 935

grates Chain-of-Thought (CoT) into LLM agent 936

systems through a structured Thought-Action- 937

Observation reasoning format. For the ReAct 938

implementation, we adopt one-shot prompting 939

for agent reasoning. 940

• ADaPT (Prasad et al., 2024): ADaPT dynami- 941

cally decomposes complex tasks through recur- 942

sive planning, automatically adjusting decompo- 943

sition depth based on real-time feedback to align 944

LLM competencies with evolving task demands. 945

In our paper, we constrain the maximum inter- 946

action turns for fair comparison and directly use 947

the open-source code for reproduction 2. 948

Regarding other traditional prompting methods 949

like Plan&Solve (Wang et al., 2023) and Reflex- 950

ion (Shinn et al., 2024), we do not include them for 951

1ETO: https://github.com/Yifan-Song793/ETO,
IPR: https://github.com/WeiminXiong/IPR

2https://github.com/archiki/ADaPT
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Method ALFWorld WebShop TextCraft
Seen UnSeen

Plan&Solve+GPT-3.5 46.4 43.3 61.8 22.0
Reflexison+GPT-3.5 56.4 57.5 62.4 25.0
ADaPT+GPT-3.5 70.3 71.6 62.7 26.0

PGPO+Llama-2-7B 76.4 76.9 72.2 43.0

Table 9: Comparative experiments on PGPO with more
prompt-based baselines. The best and second-best re-
sults are marked in bold and underline.

Method ALFWorld WebShop
Seen UnSeen

w/o Plan 72.1 68.7 61.8
w/ NL Plan 70.7 69.4 63.0

w/ P-code Plan 75.0 72.4 63.6

Table 10: Comparative experiments using p-code plans
generated by the model itself.

comparison in Table 3 because our chosen ADaPT952

baseline is enough strong and substantially outper-953

forms them (see Table 9 for reference).954

B.6 For Benchmark Evaluation955

Our evaluation framework follows previous956

works (Song et al., 2024; Xiong et al., 2024) and957

extends it to TextCraft benchmark. The maxi-958

mum number of steps for ALFWorld, WebShop959

and TextCraft is set to 20, 10 and 20, respectively.960

C Additional Experimental Results961

C.1 Using Self-generated P-code Plan962

As described in Section 2.2, we use one powerful963

closed-source LLM (i.e., GPT-4o) to generate P-964

code Plans from existing ReAct-style datasets for965

good quality control. To further demonstrate the966

format advantage of P-code Plan in agent reason-967

ing, not knowledge distillation from other strong968

models, we conduct supplementary experiments969

that uses the plans generated by the model itself970

to construct new SFT data. Taking Mistral-7B971

as an example, Table 10 shows SFT w/ P-code972

Plan maintains its advantage over w/o Plan and w/973

NL Plan, even when utilizing self-generated plans.974

This proves that the enhanced agent reasoning capa-975

bilities should be attributed to the structured nature976

of P-code Plan, rather than knowledge distillation977

from other models.978

Setting Llama-2
-7B

Llama-2
-13B

Llama-3
-8B

Mistral
-7B

ALFWorld-Seen
w/o Plan 60.0 67.1 67.1 72.1
w/ Execode Plan 62.1 60.0 67.1 61.4
w/ P-code Plan 65.0 72.9 68.6 75.0

ALFWorld-Unseen
w/o Plan 67.2 67.9 72.4 68.7
w/ Execode Plan 68.7 63.4 64.9 64.2
w/ P-code Plan 70.1 70.9 75.4 72.4

Table 11: Comparison between w/ P-code Plan and w/o
Plan, w/ Execode Plan on ALFWorld. Bold indicates
the best results of each model.

Method Qwen2.5-7B Qwen2.5-14B

SFT 62.6 64.8
PGPOSFT 65.3 65.9

ETO 67.7 68.8
PGPO 70.7 72.3

Table 12: Average reward on WebShop.

C.2 Compared with Executable Code Format 979

Similar to the generation of P-code Plan, we first 980

meticulously curate few Execode Plan (standing for 981

plans in executable code format) demonstrations 982

and then utilize GPT-4o to synthesize the plan data 983

via few-shot prompting. Taking ALFWorld as an 984

example, we report the average reward of SFT w/ 985

P-code Plan, w/ Execode Plan and w/o Plan across 986

four open-source LLMs in Table 11. The results 987

show that SFT w/ P-code Plan maintains better per- 988

formance than SFT w/ Execode Plan. Sometimes 989

SFT w/ Execode Plan even falls behind SFT w/ 990

Plan. Through error analysis, we attribute this to 991

two reasons: 1) executable code generation is more 992

challenging than natural language or pseudocode 993

generation; 2) Execode Plan is more verbose than 994

P-code Plan, which may introduce some noise in- 995

formation into subsequent reasoning. 996

C.3 Results on Qwen Series 997

To further validate the generalization of our method 998

on more models, we test PGPO on Qwen2.5-7B 999

and Qwen2.5-14B model (Yang et al., 2024a). Tak- 1000

ing WebShop as an example, Table 12 shows that 1001

when applying to Qwen2.5 series, our method still 1002

achieves the best performance. PGPOSFT repre- 1003

sents the SFT model in our pipeline, which still has 1004

an advantage over the naive SFT baseline due to the 1005

incorporation of our designed p-code plans. Since 1006
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for location in ["fridge 1", "drawer 1", "drawer 2", 
"cabinet 1", "cabinet 2", "cabinet 3", 
"cabinet 4", "cabinet 5", "cabinet 6", 
"cabinet 7", "cabinet 8", "cabinet 9", 
"cabinet 10 ", "a countertop 1"]: 

res = goto(location) 
if "apple" in res: 

apple_location = location 
break 

take_from(res, apple_location) 
goto("microwave 1") 
heat(res, "microwave 1") 
goto("diningtable 1") 
put(res, "diningtable 1")

You are in the middle of a room. Looking quickly around you, you see a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a 
cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 1, a diningtable 1, a 
drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a 
stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: heat some apple and put it in diningtable.

Task Instruction:

NL Plan: Execode Plan (Python format):

Step 1. look for the apple in the environment;
Step 2. take the apple;
Step 3. go to a microwave or other suitable appliance;
Step 4. heat the apple using microwave or other suitable appliance;
Step 5. go to the diningtable;
Step 6. put the heated apple in/on the diningtable.

P-code Plan:

Abstract planning steps:
Step 1. object_name, location = locate_object(candidate_locations);
Step 2. take(object_name, location);
Step 3. go_to(microwave);
Step 4. heat(object_name, microwave);
Step 5. go_to(diningtable);
Step 6. put(object_name, diningtable).

Task-specific entities:
object = apple
candidate_locations
= fridge 1, cabinets

Figure 7: Case study for our p-code plan compared with other formats.

Method
ScienceWorld

Seen Unseen
AR SR(%) AR SR(%)

SFT 67.7 70.1 52.4 57.8
ETO 69.0 70.7 56.8 66.8
IPR 70.2 70.6 54.4 61.6

PGPO 75.5 75.8 66.2 76.8

Table 13: Evaluation results of PGPO and baselines on
ScienceWorld. Experiments are based on Llama-2-7B.
The evaluation metrics are the average reward (AR) and
success rate (SR).

IPR baseline requires enormous inference costs for1007

step-wise reward estimation, we are unable to re-1008

produce them due to limited time constraints. We1009

leave comprehensive comparisons as future work.1010

C.4 Evaluation on ScienceWorld1011

ScienceWorld (Wang et al., 2022) is one agent1012

benchmark for testing scientific reasoning abili-1013

ties, which provides dense rewards from 0 to 1.1014

We mainly use the expert trajectories collected1015

from Song et al. (2024), comprising 1483 instances.1016

It also includes 194 seen and 211 unseen tasks for1017

test. Since its evaluation pipeline runs relatively1018

slowly, we only conduct comparative experiments1019

on the Llama2-7B model. Table 13 shows the aver-1020

age reward and success rate of PGPO and baselines1021

on ScienceWorld. We can observe that PGPO main-1022
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Figure 8: The correlation between collected contrastive
trajectory dataset distribution and agent performance
during iterative optimization. Here, "win" means agent-
generated trajectory surpassing expert trajectory while
"loss" represents falling short.

tains better performance than ETO and IPR, further 1023

indicating the advantage of p-code plan guidance. 1024

Moreover, IPR baseline even falls short compared 1025

to the ETO baseline on ScienceWorld-Unseen, 1026

which once again confirms that step-wise reward 1027

does not necessarily elicit better LLM agents. 1028

C.5 Collected Contrastive Trajectory Dataset 1029

Distribution over Iterations 1030

Figure 8 illustrates a connection between the trajec- 1031

tories collected and the performance of the agent 1032
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over optimization iterations. It indicates that for the1033

agent, maintaining an increasingly number of win-1034

ning trajectories leads to improved average rewards1035

during the optimization process. Thus, we can uti-1036

lize this finding to select our optimal optimization1037

iterations.1038

D Case Study1039

D.1 Plan Example in Different Formats1040

In Figure 7, we show the generated P-code Plan1041

compared with other two plan formats within the1042

same task in ALFWorld. First, NL plans are less1043

structured than plans in pseudocode or executable1044

code format. In natural language, elements such1045

as articles and conjunctions may have no role in1046

complex reasoning logic. Second, as described in1047

Appendix C.2, Execode Plan is more verbose than1048

P-code Plan. In this case, the Execode Plan lists al-1049

most all of locations in the environment for agent to1050

explore, guaranteeing the solvability of this agent1051

task. However, this may introduce unnecessary1052

context and lead to blind trial-and-error, resulting1053

in task failure due to exceeding the maximum inter-1054

action turns. By contrast, our P-code Plan strikes1055

a balance between structural rigor and concision,1056

thereby facilitating agent reasoning.1057

D.2 Cases for Trajectories1058

We present one trajectory example for each agent1059

benchmark compared with the current leading base-1060

line IPR in Figure 9, 10, 11 and 12, respectively.1061

• In the WebShop example, we find IPR baseline1062

tends to select the product item located in the1063

first position of one page, which is sub-optimal.1064

In contrast, our PGPO agent carefully browses1065

through the whole page and successfully selects1066

the optimal product located in the middle posi-1067

tion of the page.1068

• In the ALFWorld example, our PGPO agent1069

quickly locates the pencil with the guidance of1070

generated p-code plan, thus completing the task1071

with the minimum interaction turns. Neverthe-1072

less, IPR agent blindly searches for the pencil1073

in the shelves and drawers and fails to find the1074

desired pencil due to exceeding the maximum1075

interaction turns.1076

• In the TextCraft example, we observe IPR agent1077

made a mistake in the thinking process, thereby1078

ending in a collapse. On the contrary, guided1079

by the generated p-code plan, PGPO agent effi-1080

ciently complete the crafting task.1081
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Task Instruction: I need a clear glass wall mounting 
lamp for my bath room. and I would prefer 2-light size, 
and price lower than 120.00 dollars 
Thought: I need to find a clear glass wall mounting lamp 
with 2 lights for my bathroom that is under $120. I‘ll start 
by searching for these specific criteria.
Action: search[wall mounting lamp glass clear 2-light 
bathroom]
Observation: Page 1 (Total results: 50) [SEP] Next > 
[SEP] B097BFLS8Q [SEP] MOTINI 2 Light Bathroom 
Vanity Light Modern Wall Sconce Metal Wall Mount 
Lamp Fixture with 5 Inches Round Glass Canopy Black 
[SEP] $49.99 [SEP] B09KMCGTR1 [SEP] YAOHONG 
Industrial Wall Sconce 2-Lights Modern Vanity/Bathroom 
Lamp in Black with Clear Glass Globe Shades Wall 
Mount Light Fixtures for Hallway Kitchen Living Room 
[SEP] $59.99 [SEP] B095JTF9KC [SEP] Bathroom 
Vanity Light Fixtures, 2-Light Black Wall Sconce 
Lighting Wall Lamp with Clear Glass Shade, Vintage Wall 
Mounted Lights Bathroom Lights for Mirror, Living 
Room, Bedroom, Hallway, Porch [SEP] $39.99 … 
Thought: There are several options available, but I'm 
interested in the MOTINI 2 Light Bathroom Vanity Light 
because it fits the description and is well within my 
budget at $49.99. I'll click on this one for more details.
Action: click[B097BFLS8Q]
Observation: <product details>
Thought: The product details for the MOTINI lamp show 
that it comes in two sizes. Since I prefer a larger size, I'll 
select the 22"*10" option to ensure it fits the space I have 
in mind.
Action: click[22"*10"]
Observation: <product details>
Thought: The price is still within my budget, and the 
lamp fits the size and light requirements I have. ..., so I'll 
go ahead and make the purchase by clicking the 'Buy 
Now' button.
Action: click[buy now]
Reward: 0.66

Case Study of WebShop

IPR Agent PGPO Agent

Task Instruction: I need a clear glass wall mounting 
lamp for my bath room. and I would prefer 2-light size, 
and price lower than 120.00 dollars
Thought: First, I devise a plan for solving the task:
Step 1. selected_item = search_item(\“wall mounting 
lamp with clear glass shade for bathroom 2-light size 
price lower than 120.00 dollars\”);
Step 2. click(selected_item);
Step 3. select_size(\“2-light\”);
Step 4. buy().
I think I should use the search bar to look for the wall 
mounting lamp with clear glass shade for the bathroom 
that meets my criteria.
Action: search[wall mounting lamp clear glass 
bathroom 2-light size price < 120.00]
Observation: Page 1 (Total results: 50) [SEP] Next > 
[SEP] B07786JG8X [SEP] Aspen Creative 62104, Four-
Light Metal Bathroom Vanity Wall Light Fixture, 
32\“ Wide, Transitional Design in Satin Nickel with 
Clear Glass Shade [SEP] $121.73 … [SEP] 
B095JTF9KC [SEP] Bathroom Vanity Light Fixtures, 2-
Light Black Wall Sconce Lighting Wall Lamp with 
Clear Glass Shade, Vintage Wall Mounted Lights 
Bathroom Lights for Mirror, Living Room, Bedroom, 
Hallway, Porch [SEP] $39.99 … 
Thought: I think I should click on the option that meets 
my criteria, which is B095JTF9KC - Bathroom Vanity 
Light Fixtures, 2-Light Black Wall Sconce Lighting 
Wall Lamp with Clear Glass Shade. 
Action: click[B095JTF9KC]
Observation: <product details>
Thought: I think I should click on the '2-light' option to 
select the size I prefer for the wall mounting lamp.
Action: click[2-light]
Observation: <product details>
Thought: I think I should click on the 'Buy Now' button 
to purchase the wall mounting lamp.
Action: click[Buy Now]
Reward: 1.0

Figure 9: Case study for WebShop based on Llama-2-7B.
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Task Instruction: You are in the middle of a room. 
Looking quickly around you, you see a bed 1, a desk 2, a 
desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a 
drawer 2, a drawer 1, a garbagecan 1, a laundryhamper 1, 
a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, 
and a shelf 1.
Your task is to: put a pencil in shelf. 
Thought: I need to locate a pencil and place it on a shelf. 
I'll start by checking the nearest shelf to see if there's 
already a pencil there.
Action: go to shelf 1 
Observation: On the shelf 1, you see nothing
Thought: Shelf 1 is empty, so I need to check the next 
shelf for a pencil.
Action: go to shelf 2
Observation: On the shelf 2, you see a mug 1.
Thought: Shelf 2 has a mug, but no pencil. I'll continue 
searching the next shelf.
Action: go to shelf 3
Observation: On the shelf 3, you see a desklamp 1.
Thought: Shelf 3 has a desklamp, but still no pencil. I 
must keep looking.
Action: go to shelf 4 # Blind trail-and-error
Observation: On the shelf 4, you see a alarmclock 1.
…
Thought: Drawer 5 has a credit card and a keychain, but 
no pencil. I'll check drawer 6 next.
Action: go to drawer 6
Observation: The drawer 6 is closed
Thought: Drawer 6 is closed. I need to open it to see if 
the pencil is inside.
Action: open drawer 6
Observation: You open the drawer 6. The drawer 6 is 
open. In it, you see nothing
Thought: The drawer is empty. Drawer 7 is my last 
option to find a pencil in this room.
Action: go to drawer 7 # Invalid action
Observation: Nothing happens.
Reward: 0.0 # Task failure due to not finding the pencil

Case Study of ALFWorld

IPR Agent PGPO Agent

Task Instruction: You are in the middle of a room. 
Looking quickly around you, you see a bed 1, a desk 2, 
a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, 
a drawer 2, a drawer 1, a garbagecan 1, a laundryhamper 
1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a 
shelf 2, and a shelf 1.
Your task is to: put a pencil in shelf. 
Thought: First, I devise a plan for solving the task:
Step 1. pencil_name, location_name = 
locate_a_pencil(candidate_locations);
Step 2. take_pencil(pencil_name, location_name);
Step 3. go_to_a_shelf();
Step 4. put_pencil_on_shelf().
The task is to put a pencil in a shelf. I need to locate a 
pencil first. The desk is a common place where pencils 
are kept, so I should check there.
Action: go to desk 1 # With the p-code plan guidance, 
the agent quickly locates the mostly likely place. 
Observation: On the desk 1, you see a desklamp 1, and 
a pencil 1.
Thought: I see a pencil on desk 1. I need to pick it up to 
complete the task.
Action: take pencil 1 from desk 1
Observation: You pick up the pencil 1 from the desk 1.
Thought: Shelf 1 is the closest and most accessible 
shelf. I should go there to place the pencil.
Action: go to shelf 1
Observation: On the shelf 1, you see nothing.”
Thought: The shelf is empty, which is perfect for 
placing the pencil without causing any clutter. I will put 
the pencil here to complete the task.
Action: put pencil 1 in/on shelf 1
Observation: You put the pencil 1 in/on the shelf 1.
Reward: 1.0 # Task success with only 4 interactions

Figure 10: Case study for ALFWorld based on Llama-2-7B.
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Task Instruction: Crafting commands:
craft 8 cyan stained glass using 8 glass, 1 cyan dye\ncraft 
8 black stained glass pane using 8 glass pane, 1 black 
dye\ncraft 8 gray stained glass using 8 glass, 1 gray 
dye\ncraft 2 gray dye using 1 black dye, 1 white 
dye\ncraft 1 black dye using 1 ink sac\ncraft 1 black dye 
using 1 wither rose\ncraft 8 yellow stained glass using 8 
glass, 1 yellow dye\ncraft 8 pink stained glass using 8 
glass, 1 pink dye\ncraft 8 black concrete powder using 1 
black dye, 4 sand, 4 gravel\ncraft 3 light gray dye using 1 
black dye, 2 white dye\ncraft 8 black stained glass using 8 
glass, 1 black dye\ncraft 8 black terracotta using 8 
terracotta, 1 black dye\ncraft 8 orange stained glass using 
8 glass, 1 orange dye
Goal: craft black stained glass
Thought: I should check if I can get black stained glass 
directly from the environment or the inventory.
Action: inventory
Observation: Inventory: You are not carrying anything
Thought: I need to get black stained glass from the 
environment.
Action: get black stained glass
Observation: Could not execute get black stained glass
Thought: I cannot get black stained glass directly, I need 
to craft it. From the crafting commands, I can use: craft 8 
black stained glass using 8 glass, 1 black dye. Ingredients 
needed: 8 glass, 1 black dye. Input assumption: I have the 
ingredients needed in my inventory. Let me verify this 
first.
Action: inventory
Observation: Inventory: You are not carrying anything.
Thought: I need to get the ingredients: 8 glass and 1 
black dye.
Action: get 8 glass
Observation: Got 8 glass
Thought: I have obtained the ingredients: 8 glass. Now, I 
need to get 1 black dye.
Action: get 1 black dye
Observation: Could not find black dye
Thought: I cannot get black dye directly, I need to craft it. 
From the crafting commands, I can use: craft 1 black dye 
using 1 ink sac, craft 1 black dye using 1 wither rose, craft 
1 black dye using 1 black dye, craft 1 black dye using 1 
white dye, craft 1 black dye using 1 black concrete 
powder. Input assumption: I have the ingredients needed 
in my inventory. Let me verify this first.
Action: inventory
Observation: Inventory: [glass] (8)
Thought: I don't have any ingredients in my inventory. I 
need to get the ingredients: 1 ink sac, 1 wither rose, 1 
black dye, 1 white dye, 1 black concrete powder.
Action: get 1 ink sac
Observation: Got 1 ink sac
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Task Instruction: Crafting commands:
craft 8 black stained glass pane using 8 glass pane, 1 
black dye\ncraft 2 gray dye using 1 black dye, 1 white 
dye\ncraft 8 lime stained glass using 8 glass, 1 lime 
dye\ncraft 16 glass pane using 6 glass\ncraft 1 black dye 
using 1 wither rose\ncraft 8 black stained glass using 8 
glass, 1 black dye\ncraft 8 orange stained glass using 8 
glass, 1 orange dye\ncraft 1 beacon using 1 nether star, 5 
glass, 3 obsidian\ncraft 8 cyan stained glass using 8 
glass, 1 cyan dye\ncraft 1 black bed using 1 white bed, 1 
black dye\ncraft 1 black dye using 1 ink sac\ncraft 1 
writable book using 1 book, 1 ink sac, 1 feather\ncraft 8 
gray stained glass using 8 glass, 1 gray dye
Goal: craft black stained glass.
Thought: First, I devise a plan for solving the task:
Step 1. had_objects = inventory();
Step 2. if \"black stained glass\" not in had_objects: 
find_flag = get(\"black stained glass\");
Step 3. if find_flag == False: \"craft 8 black stained 
glass using 8 glass, 1 black dye\" = 
choose_crafting_commands(\"black stained glass\"), 
needed_ingredients = [\"8 glass\", \"1 black dye\"], 
get(\"8 glass\");
Step 4. find_dye_flag = get(\"1 black dye\");
Step 5. if find_dye_flag == False: \"craft 1 black dye 
using 1 wither rose\" = choose_crafting_commands(\"1 
black dye\"), needed_ingredients = \"1 wither rose\", 
get(\"1 wither rose\");
Step 6. craft 1 black dye using 1 wither rose;
Step 7. craft 8 black stained glass using 8 glass, 1 black 
dye
I should check if I can get black stained glass directly 
from the environment or the inventory.
Action: inventory
Observation: Inventory: You are not carrying anything.
Thought: There is no black stained glass in my 
inventory. I should try to get it from the environment.
Action: get black stained glass
Observation: Could not execute get black stained glass
Thought: I cannot get black stained glass directly, I 
need to craft it. From the crafting commands, I can use: 
craft 8 black stained glass using 8 glass, 1 black dye. 
Ingredients needed: 8 glass, 1 black dye. I should check 
if I have these ingredients in my inventory.
Action: inventory
Observation: Inventory: You are not carrying anything
Thought: My inventory is empty. I need to get the 
ingredients: 8 glass and 1 black dye first.
Action: get 8 glass
Observation: Got 8 glass
Thought: I have got the glass. Now, I need to get 1 
black dye.
Action: get 1 black dye

Figure 11: Case study for TextCraft based on Llama-2-7B.
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Thought: I have obtained the ingredient: 1 ink sac. Now, 
I need to get 1 wither rose.
Action: get 1 wither rose
Observation: Got 1 wither rose
Thought: I have obtained the ingredient: 1 wither rose. 
Now, I need to get 1 black dye.
Action: get 1 black dye # Wrong action 
Observation: Could not find black dye
Thought: I cannot get black dye directly, I need to craft it. 
From the crafting commands, I can use: craft 1 black dye 
using 1 ink sac, craft 1 black dye using 1 wither rose, craft 
1 black dye using 1 black dye, craft 1 black dye using 1 
white dye, craft 1 black dye using 1 black concrete 
powder. Input assumption: I have the ingredients needed 
in my inventory. Let me verify this first.
Action: inventory
Observation: Inventory: [glass] (8) [ink sac] (1) [wither 
rose] (1)
Thought: I don‘t have any ingredients in my inventory. I 
need to get the ingredients: 1 ink sac, 1 wither rose, 1 
black dye, 1 white dye, 1 black concrete powder. # Wrong
thoughts leads to repeated wrong actions
Action: get 1 ink sac
…
Thought: I don't have any ingredients in my inventory. I 
need to get the ingredients: 1 ink sac, 1 wither rose, 1 
black dye, 1 white dye, 1 black concrete powder.
Action: get 1 ink sac 
Observation: Got 1 ink sac
Thought: I have obtained the ingredient: 1 ink sac. Now, 
I need to get 1 wither rose.
Action: get 1 wither rose
Observation: Got 1 wither rose
Reward: 0.0 # Task failure due to exceeding the
maximum interaction turns
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Observation: Could not find black dye
Thought: I cannot get black dye directly, I need to craft 
it. From the crafting commands, I can craft 1 black dye 
using 1 wither rose or 1 ink sac. I should check if I have 
these ingredients in my inventory.
Action: inventory
Observation: Inventory: [glass] (8)
Thought: My inventory only has glass. I need to get 
either a wither rose or an ink sac to craft black dye.
Action: get 1 wither rose
Observation: Got 1 wither rose
Thought: I have got the wither rose. Now, I can craft 
the black dye.
Action: craft 1 black dye using 1 wither rose
Observation: Crafted 1 minecraft:black_dye
Thought: I have crafted the black dye. Now, I have all 
the ingredients needed to craft the black stained glass: 8 
glass, 1 black dye.
Action: craft 8 black stained glass using 8 glass, 1 black 
dye
Observation: Crafted 8 minecraft:black_stained_glass
Reward: 1.0

Figure 12: Case study for TextCraft based on Llama-2-7B (Continuations in Figure 11).
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