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Abstract
This paper introduces GeoChain, a large-scale
benchmark for evaluating step-by-step geographic
reasoning in multimodal large language models
(MLLMs). Leveraging 1.46 million Mapillary
street-level images, GeoChain pairs each image
with a 21-step chain-of-thought (CoT) question
sequence (over 30 million Q&A pairs). These
sequences guide models from coarse attributes
to fine-grained localization across four reasoning
categories - visual, spatial, cultural, and precise
geolocation - annotated by difficulty. Images
are also enriched with semantic segmentation
(150 classes) and a visual locatability score. Our
benchmarking of contemporary MLLMs (GPT-4.1
variants, Claude 3.7, Gemini 2.5 variants) on
a diverse 2,088-image subset reveals consistent
challenges: models frequently exhibit weaknesses
in visual grounding, display erratic reasoning, and
struggle to achieve accurate localization, especially
as the reasoning complexity escalates. GeoChain
offers a robust diagnostic methodology, critical
for fostering significant advancements in complex
geographic reasoning within MLLMs.
Code: https://github.com/sahitiy/geochain
Dataset: https://huggingface.co/datasets/
sahitiy51/geochain

1 Introduction
As large vision-language models (VLMs) continue to make
rapid progress on general visual question answering and
captioning tasks [Team et al., 2024; OpenAI et al., 2024;
Wang et al., 2024; Dai et al., 2023], their capacity for struc-
tured geographic reasoning remains underexplored. The abil-
ity to infer a location from visual cues -such as terrain, sig-
nage, vehicles, or architecture - considered alongside spatial
and cultural knowledge, is crucial for real-world applications
like remote sensing, disaster response, and autonomous nav-
igation. More broadly, geographic localization serves as a
testbed for grounded intelligence, requiring models to reason
over subtle visual features, incorporate world knowledge, and
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disambiguate locations that may be visually similar. Despite
this, existing benchmarks rarely probe the kind of step-by-
step reasoning that such tasks demand.

We introduce GeoChain, a novel multimodal benchmark
for evaluating structured geographic reasoning in large lan-
guage models (MLLMs). As depicted in Figure 1, each
GeoChain sample features a street-level image from the Map-
illary dataset [Warburg et al., 2020] paired with a 21-step
chain-of-thought (CoT) question sequence. These sequences
progressively guide models from coarse inferences, such as
hemisphere or continent, to fine-grained predictions like city,
latitude, and longitude. The complete GeoChain frame-
work comprises 1.46 million images, each with this 21-
question CoT structure, yielding over 30 million question-
answer pairs. Questions span four core reasoning categories:
visual cues, spatial localization, cultural inference, and pre-
cise geolocation, all annotated with difficulty levels for gran-
ular evaluation. This curriculum-style structure offers vital
diagnostic insights into where and why models fail across
reasoning stages, moving beyond sole reliance on final pre-
dictions.

To facilitate focused evaluations, we curated GeoChain
Test-Mini, a diverse and challenging subset. This curation
process leverages a locatability score, adapted from GeoRe-
asoner [Li et al., 2024] and computed using features from
a pretrained MaskFormer model [Cheng et al., 2021]. This
score quantifies the visual identifiability of a location from a
single image, allowing us to stratify GeoChain Test-Mini into
Easy, Medium, and Hard tiers based on thresholds in the 0.12-
0.6 range. The resulting GeoChain Test-Mini contains 2,088
carefully selected images, designed to offer a representative
yet manageable scale for robust MLLM assessment.

Our main contributions are as follows:

• GeoChain Benchmark Framework: A novel benchmark
for evaluating step-by-step MLLM geographic reasoning,
derived from 1.46 million Mapillary street-level images
and generating over 30 million Q&A pairs through 21-step
chain-of-thought questions, all structured across diverse rea-
soning categories and difficulty levels.

• Rich Augmentation & Curated Evaluation Set: A
methodology for enhancing images with semantic labels
(150 classes) and a human-inspired locatability score for
difficulty stratification, culminating in the GeoChain Test-
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Figure 1: Components of a GeoChain instance: (Top-Left) Easy Mapillary Street-Level Sequences (MSLS) image with locatability score
of 0.45. (Top-Right) Example chain-of-thought questions with difficulty indicators. (Bottom-Left) Derived semantic segmentation map.
(Bottom-Right) Extracted key semantic labels. Together, these elements enable step-by-step diagnostic evaluation of geographic reasoning.

Mini: a quality-controlled 2088-image evaluation set; the
resulting rich semantic metadata also offers a valuable re-
source for broader community research and future investi-
gations.

• Comprehensive MLLM Benchmarking & Analysis:
Evaluation of leading MLLMs on GeoChain Test-Mini,
providing detailed insights into their geographic reasoning
capabilities, performance variations, and common failure
modes.

2 Related Work
2.1 Image-Based Geolocation
Early work in visual geolocation predominantly focused on
matching query images to large, geotagged image databases,
often aiming for direct coordinate prediction. For instance,
Im2GPS [Hays and Efros, 2008] pioneered retrieving loca-
tions by comparing against a massive photograph dataset.
Later, deep learning significantly advanced the field; PlaNet
[Weyand et al., 2016] utilized convolutional neural networks
(CNNs) for global location prediction, and architectures like
NetVLAD [Arandjelovic et al., 2016] learned robust im-
age representations for effective place recognition, improv-
ing upon earlier retrieval methods. Other approaches, such
as those focusing on urban or cross-view settings [Tian et
al., 2017], further specialized these techniques. GeoChain di-
verges from these paradigms, which primarily target endpoint
localization accuracy or image retrieval. Instead, it introduces

a structured multimodal reasoning benchmark where models
must articulate a 21-step chain-of-thought (CoT) sequence
of answers to geographically relevant questions, thereby en-
abling finer-grained diagnostic insight into their internal rea-
soning processes.

2.2 Multimodal Geographic Reasoning and
Benchmarks

More recent efforts have begun to integrate visual understand-
ing with language-based reasoning for complex geographic
tasks. GeoReasoner [Li et al., 2024], for example, intro-
duced a fine-tuning strategy for MLLMs using human game-
play traces, primarily to improve final location prediction by
modeling human-like inference. Similarly, other recent stud-
ies [Pramanik et al., 2024; Yang et al., 2024] also concen-
trate on predicting precise latitude and longitude. GeoComp
[Song et al., 2025] presents a large-scale dataset of geoloca-
tion gameplay data, emphasizing step-wise reasoning rooted
in real human gameplay that often involves external meta-
data, active exploration, and dynamic information gathering.
While these approaches offer valuable insights into human-
like inference and gameplay dynamics, GeoChain’s contribu-
tion is complementary. It does not involve model fine-tuning
or rely on gameplay trajectories. Instead, GeoChain employs
a fully static, image-grounded evaluation framework: each
sample consists of a single image paired with its fixed CoT
question sequence, standardized across the entire benchmark.
This design facilitates direct and controlled benchmarking of



different models’ inherent reasoning capabilities under uni-
form conditions, distinct from evaluating exploratory strate-
gies or the ability to process dynamic data.

Other benchmarks, such as GAEA [Campos et al., 2025],
generate diverse conversational questions from detailed,
place-specific metadata like OpenStreetMap attributes. While
this can create rich contextual queries, it introduces chal-
lenges related to the temporal stability of dynamic data (e.g.,
changes in urban landscape) and complicates fair, apples-
to-apples model comparisons due to non-uniform question
sets. Consequently, disentangling model reasoning failures
from idiosyncratic question characteristics becomes difficult.
GeoChain mitigates these issues by grounding its standard-
ized questions in more enduring visual semantics such as the
presence of characteristic vegetation, architectural styles, or
road infrastructure, often identifiable through image segmen-
tation and stable general geographic facts. This focus ensures
the evaluation centers on the consistency of the reasoning pro-
cess itself.

Furthermore, existing geospatial benchmarks like GEO-
Bench [Lacoste et al., 2023] primarily target remote sens-
ing applications, offering valuable tools for Earth mon-
itoring with satellite imagery and tasks such as classifi-
cation or segmentation. In contrast, GeoChain specif-
ically addresses agent-level geographic reasoning from
high-resolution, ground-level imagery, emphasizing natural-
language understanding of spatial, cultural, and visual cues
directly perceivable in such environments.

2.3 Mapillary Street-Level Sequences Dataset

GeoChain is built upon the Mapillary Street-Level Sequences
(MSLS) dataset [Warburg et al., 2020], a large-scale, crowd-
sourced collection of diverse, geo-tagged street-level images.
MSLS’s global coverage, with data from numerous cities
worldwide reflecting the breadth of the MSLS ecosystem, and
its varied capture conditions (diverse cameras, viewpoints,
seasons, times of day) make it an ideal foundation for a
benchmark aiming to evaluate generalizable geographic rea-
soning.

3 GeoChain Benchmark Construction

The GeoChain benchmark is constructed by augmenting the
Mapillary Street-Level Sequences (MSLS) dataset [Warburg
et al., 2020]. MSLS provides a diverse collection of geo-
tagged street-level imagery (approximately 1.4 million im-
ages in its full extent, with a geographical distribution across
numerous cities as illustrated in Figure 2), crucial for devel-
oping and evaluating geographic localization models. How-
ever, to facilitate fine-grained, step-by-step reasoning, we in-
troduce several layers of annotation and metadata. Our con-
tributions enhance the MSLS dataset in three primary ways:
semantic class labeling, locatability score computation, and
the design of a structured chain-of-thought question battery.
These augmentations, followed by a careful test set curation
process, collectively enable a more nuanced evaluation of
multimodal models’ geographic reasoning capabilities.

3.1 Semantic Class Labeling
To ground visual reasoning in explicit semantic content, each
image in our benchmark is augmented with a semantic seg-
mentation map. This map provides a detailed understanding
of the scene’s composition by identifying various objects and
environmental features. We employed MaskFormer [Cheng
et al., 2021], a state-of-the-art transformer-based architecture
for semantic segmentation. Specifically, we utilized a Mask-
Former model pre-trained on the ADE20K dataset [Zhou et
al., 2017], which offers a rich label set of 150 distinct classes,
encompassing a wide array of objects, environmental ele-
ments (e.g., “tree”, “sky”, “road”), and architectural features
(e.g., “building”, “window”, “door”).

From the segmentation map, we calculate how much of the
image is covered by each category. We do this by working out
the percentage of the image’s total area that each specific cat-
egory takes up. For example, we might find that ‘sky’ covers
30% of an image, and ‘road’ covers 15%. This measurement
of what’s in the scene, and how much of it there is, then helps
us create the correct answers for many of the visual questions
in our benchmark.

3.2 Locatability Score Computation
To systematically assess model performance across varying
levels of visual ambiguity, we compute a locatability score for
every image considered for the GeoChain benchmark. This
score, ranging from 0 to 1, quantifies how visually identifi-
able a location is likely to be, with higher scores indicating
more distinct and easily locatable scenes. Our methodology
for calculating this score is adopted from [Li et al., 2024].
The distribution of these computed locatability scores across
the considered images is shown in Figure 3.

The core idea behind this score is to leverage common
visual cues that humans, particularly proficient GeoGuessr
players [GeoGuessr, 2013], rely on for geolocalization. The
process involves several steps:

1. Identification of Cues: A set of cues frequently used by
GeoGuessr players (e.g., “houses in central Chile are more
likely to have terracotta tiled roofs”) is established.

2. Cue-to-Class Similarity: The semantic similarity be-
tween these cues and the 150 class labels produced by the
MaskFormer model (as described in Section 3.1) is com-
puted. This typically involves using text embeddings to
represent both the cues and the class labels, followed by a
similarity measure (e.g., cosine similarity).

3. Class Weight Derivation: The similarities are aggregated
across all cues for each class and then subjected to min-
max normalization to derive a set of weights wc for each
class c. These weights reflect the importance of each visual
class for geolocalization.

4. Weighted Score Aggregation: The final locatability score
for an image is computed as a weighted sum of the percent-
age areas of the classes present in the image.

This locatability score is then used to stratify the images
within the GeoChain test set into three distinct tiers: Easy,
Medium, and Hard. This stratification, based purely on vi-
sual cues inherent in the imagery, allows for a more granu-
lar analysis of model performance and helps identify specific



Figure 2: Count of images per city, illustrating the city distribution within the GeoChain dataset.

Figure 3: Distribution of Locatability Scores in GeoChain

weaknesses in reasoning about visually challenging environ-
ments.

3.3 Chain-of-Thought Question Design
A central component of GeoChain is a carefully designed se-
quence of 21 questions that guide the model through a step-
by-step reasoning process, from coarse-grained observations
to fine-grained localization. This chain-of-thought (CoT) ap-
proach aims to mimic a structured human-like deduction pro-
cess. The questions are ordered such that earlier questions
elicit information or focus attention on attributes that can be
instrumental in answering subsequent, more complex ques-
tions.

The full list of 21 questions, along with their rank, as-
signed difficulty (Easy, Medium, Hard), question type (Bi-
nary, Multiclass, Free-text), and question category (e.g., Cul-

ture/Infrastructure, Geo Localization, Terrain/Environment),
is provided in Appendix A.1. The difficulty annotation (Easy,
Medium, Hard) for each question reflects the anticipated chal-
lenge of answering that specific question in isolation, based
on the type of information required.

The question set is designed to be static across all data
points in the benchmark. This uniformity ensures a consistent
evaluation framework, allowing for direct, apples-to-apples
comparisons of different models’ reasoning capabilities. The
questions cover diverse aspects:
• Visual Object/Attribute Presence: Some questions di-

rectly query the presence of specific objects or attributes
identifiable from the image (e.g., ”Do you see any boats
or ships?”). Ground truth for these questions is primar-
ily derived from the semantic class labels extracted via the
MaskFormer model (Section 3.1). For instance, if the class
”boat” occupies a non-zero percentage of the image, the
answer would be affirmative.

• Inferential and Contextual Knowledge: Other questions
require more derivative reasoning or contextual knowledge
beyond direct object identification (e.g., ”Is this place near
a coast?”, ”What side of the road do vehicles drive on
here?”). The MSLS dataset encompasses images from 24
distinct cities globally. For images originating from these
locations, we manually curated ground truth answers for
city-level attributes or environmental characteristics (e.g.,
predominant architectural styles, typical climate indica-
tors) that apply broadly to the image’s geographic area.

• Progressive Localization: The sequence progresses from
general observations (e.g., hemisphere, continent) to spe-
cific details (e.g., country, city, precise latitude and longi-
tude coordinates).



The question types include binary (Yes/No), multiclass (se-
lection from a predefined set of options), and free-text (open-
ended answers, such as country name or coordinates). This
variety tests different aspects of a model’s understanding and
generation capabilities.

The semantic segmentation labels generated in Section 3.1
were instrumental in constructing several questions that di-
rectly probe the visual understanding capabilities of the mod-
els. Beyond their use in the current benchmark, this rich se-
mantic metadata, now part of GeoChain, offers a valuable
resource for the community. It can be leveraged to design
new questions aimed at further investigating specific aspects
of model behavior, such as tendencies towards visual hal-
lucination [Li et al., 2023] [Rohrbach et al., 2018] or the
fine-grained ability to identify a wider array of objects. The
insights derived from such extended evaluations can subse-
quently guide targeted improvements in model development.

By analyzing model performance across this structured
chain of questions, GeoChain aims to provide deeper insights
into the strengths and weaknesses of multimodal geographic
reasoning systems.

3.4 Test Set Curation and Sampling Strategy
To create the ”GeoChain Test-Mini” subset for focused eval-
uation, we prioritized stratification, visual quality, and di-
versity. We initially targeted 2100 images, stratified by lo-
catability scores into 700 Easy, 700 Medium, and 700 Hard
examples. A tiered, unique-sequence sampling strategy was
employed: unique image sequences were randomly sampled
first for the Hard tier, then for the Medium tier (from remain-
ing unique sequences), and finally for the Easy tier, ensuring
no sequence was reused across tiers. The underlying MSLS
dataset exhibits a notable skew in its per-city image distribu-
tion (as highlighted by the overall dataset statistics in Figure
2). Consequently, to avoid introducing new biases that could
arise from attempting to manually balance city representation
or ’carefully’ over/under-sample from specific locations, our
approach was to randomly sample unique image sequences
across all available cities within each defined locatability tier.
These 2100 candidates underwent manual visual inspection,
where 12 images with critical quality issues (e.g., excessive
blur, poor exposure) were removed. This rigorous curation
yielded a final Test-Mini set of 2088 high-quality, diverse,
and appropriately challenging images.

4 Analysis
In this section, we evaluate the performance of frontier
vision-language models: GPT-4.1, GPT-4.1-mini [OpenAI et
al., 2024], Claude 3.7 Sonnet [Sonnet, 2025], Gemini 2.5
Flash [Google, 2025a] and Gemini 2.5 Pro [Google, 2025b]
on the GeoChain ”Test-Mini” benchmark, focusing on their
ability to reason accurately and consistently across a struc-
tured 21-step geographic reasoning chain.

4.1 Evaluation Metrics
Haversine Distance
The final question in each GeoChain sequence (Question 21)
requires the model to predict the geographic coordinates (lat-

itude, longitude) of the depicted scene. To evaluate the accu-
racy of these specific predictions, we compute the Haversine
distance: the shortest distance over the Earth’s surface be-
tween the predicted and ground-truth coordinates, assuming
a spherical Earth. A detailed explanation of the Haversine
distance calculation is provided in Section A.2.

Pass Score
The Pass Score is computed as the average fraction of ques-
tions correctly answered across the full 21-step reasoning
chain for each image. A prediction for any question is con-
sidered correct if it matches the ground-truth answer for that
specific question, accounting for its type (e.g., exact match for
free-text, class match for multiclass, or binary match). Cru-
cially, for the final latitude and longitude prediction (Ques-
tion 21), a response is deemed correct contributing to the
Pass Score if its Haversine distance (as defined in Section 4.1)
from the ground truth is less than 50km.

4.2 Overall Model Performance
Overall model performance (Table 1) offers nuanced insights
into current MLLM geographic reasoning. The leading Gem-
ini models exhibit specialized strengths: Gemini-2.5-pro ex-
cels in complex multi-step reasoning (pass score 81.84%),
whereas Gemini-2.5-Flash achieves superior localization pre-
cision (445.24 km mean error), hinting at differing archi-
tectural or training optimizations. This divergence under-
scores that broad inferential ability and precise geolocaliza-
tion are distinct skills, likely requiring separate optimization
pathways rather than being monolithic capabilities. GPT-4.1
maintains a competitive position; however, the substantial lo-
calization inaccuracies of Claude 3.7 Sonnet (1289.04 km er-
ror) and GPT-4.1 Mini (1194.77 km error) underscore that ro-
bust geospatial grounding is a significant developmental hur-
dle, indicating a key area for advancement in MLLM capabil-
ities.

The introduction of threshold-based localization accuracies
- at City (< 25 km), Region (< 200 km), and Country (<
750 km) levels further refines this performance landscape.
Gemini-2.5-pro’s superior performance is reinforced by its
top-tier City-level precision (59.38%). Complementing this,
Gemini-2.5-Flash excels in broader accuracy, leading at both
Region-level (70.02%) and Country-level (90.31%). GPT-4.1
also demonstrates notable strength in City-level performance
(57.84%), surpassing Gemini-2.5-Flash in this specific high-
precision context. Conversely, Claude 3.7 Sonnet’s previ-
ously noted localization challenges are starkly emphasized by
its profound difficulties at these finer scales (e.g., 40.34% at
City-level), performing below GPT-4.1 Mini (48.61% at City-
level) here. These granular metrics effectively highlight that
achieving reliable, high-confidence City-level precision is a
primary differentiator and a significant challenge across the
evaluated MLLMs.

4.3 Breakdown by Image Difficulty
Analyzing model performance by image difficulty (Table
2) reveals critical operational characteristics. As expected,
’Hard’ images significantly challenge all models, leading to
substantial increases in mean localization errors often exceed-
ing 1000-2000 km for several models. The Gemini models



Table 1: Overall model-level accuracy and localization metrics.

Model Pass Score (%) Mean Dist (km) < 25 km (%) < 200 km (%) < 750 km (%)
Gemini-2.5-pro 81.84 489.51 59.38 69.95 88.51
Gemini-2.5-Flash 79.77 445.24 55.71 70.02 90.31
GPT-4.1 79.25 611.89 57.84 67.36 86.24
Claude 3.7 Sonnet 76.23 1289.04 40.34 47.07 73.31
GPT-4.1 Mini 70.42 1194.77 48.61 52.87 72.77

Table 2: Performance by image difficulty. Accuracy (%) and Haver-
sine distance (km) for each difficulty level.

Model Diff Pass Score M. Dist.
Claude 3.7 Easy 77.2 885.86
Sonnet Medium 78.3 989.13

Hard 73.2 2000.14

GPT-4.1 Easy 70.8 863.19
Mini Medium 73.2 827.78

Hard 67.3 1910.44

GPT-4.1 Easy 79.3 357.36
Medium 81.6 428.46
Hard 76.8 1052.13

Gemini-2.5 Easy 80.5 287.61
Flash Medium 82.5 188.45

Hard 76.3 873.78

Gemini-2.5 Easy 83.3 300.29
Pro Medium 84.2 304.32

Hard 78.0 866.62

consistently lead: Gemini-2.5-pro achieves top Pass Scores
across all difficulties (e.g., 78.0% on Hard), while Gemini-
2.5-Flash generally provides superior localization on ’Easy’
and ’Medium’ images (e.g., 188.45 km on Medium). No-
tably, Gemini-2.5-pro performs the best for localization pre-
cision on ’Hard’ images (866.62 km), possibly where its
stronger inferential capacity becomes decisive. An intrigu-
ing anomaly is the better localization by some models, like
Gemini-2.5-Flash, on ’Medium’ versus ’Easy’ images, poten-
tially due to bias towards certain cities in pre-training data.
Furthermore, Claude 3.7 Sonnet’s performance is particu-
larly interesting: despite reasonable Pass Scores (e.g., 73.2%
on Hard), its poor localization (2000.14 km on Hard) high-
lights a profound disconnect between understanding cues and
grounding them spatially.

4.4 Breakdown by Question Category
Analyzing Pass Scores by question category (Table 3), in-
formed by the benchmark’s diverse question structures (e.g.,
visual queries versus free-text specific knowledge), reveals
distinct performance strata. Foundational ”Visual” questions,
focusing on direct object presence (e.g., ”Do you see any
boats?”), yield universally high scores (all models >91.8%),
suggesting robust basic visual grounding and low immedi-
ate hallucination, with Claude 3.7 Sonnet leading (92.8%).

Similarly, ”Terrain” identification is generally strong. In con-
trast, categories like ”Geo Localization” and ”Cultural” show
mixed results; models likely handle simpler, coarse queries
(e.g., continent identification) better than challenging free-
text questions requiring specific knowledge (e.g., city/state
names, language identification). Unsurprisingly, ”Exact Loc”
demanding precise latitude/longitude output—is definitively
the most challenging category across all models. Within this
landscape, Gemini-2.5-pro consistently excels, particularly
in the more demanding categories like ”Terrain” (87.4%),
”Cultural” (77.9%), and ”Exact Loc.” (63.5%). GPT-4.1 also
demonstrates strong performance, notably in ”Geo Localiza-
tion” (76.9%) and ”Exact Loc.” (61.5%). Claude 3.7 Sonnet’s
profile, with its excellent ”Visual” scores but significantly
weaker ”Exact Loc.” performance (51.0%), starkly illustrates
a common theme: a disconnect between initial cue process-
ing and final, precise geospatial grounding, which remains
the primary MLLM hurdle.

4.5 Breakdown by City
A city-level view (Fig. 4) shows that performance is far from
uniform:

Gemini-2.5-pro is the most stable, topping the leaderboard
in 20 / 24 cities and exceeding 85% accuracy in visually dis-
tinctive urban centres such as Tokyo, Zurich and Toronto.
Gemini-2.5-Flash and GPT-4.1 follow closely, maintaining
more than 75% accuracy in most regions. Performance
on Claude 3.7 Sonnet and GPT 4.1 Mini fluctuate sharply:
they perform competitively in cue-rich European cities (Paris,
Berlin) but collapse in visually ambiguous locales (Nairobi,
São Paulo, Amman). Mean Haversine error (Fig. 6) confirms
the pattern: Gemini-2.5-pro keeps errors below 300 km in
nearly every city, whereas Claude and GPT 4.1 Mini exceed
1000 km in several cases (Helsinki, Melbourne, São Paulo).

These results highlight how regional factors such as vege-
tation, signage language, traffic orientation and architectural
style strongly modulate geolocation accuracy.

5 Conclusion
This paper introduced GeoChain, a large-scale, chain-of-
thought benchmark designed to dissect multimodal geo-
graphic reasoning in MLLMs using street-level imagery and a
21-step diagnostic framework. Our evaluations on the curated
GeoChain Test-Mini subset reveal that even leading MLLMs
exhibit significant deficiencies in visual grounding, reason-
ing consistency, and localization accuracy, particularly as task
and visual complexity escalate. By enabling a granular, step-
by-step analysis, GeoChain moves beyond simple end-task



Figure 4: Pass score (%) by city, highlighting the influence of geographical location on model accuracy.

Table 3: Pass score (%) by question category.

Model Visual Terrain Geo Localization Cultural Exact Loc.
Claude 3.7 Sonnet 92.8 84.7 69.4 67.4 51.0
GPT-4.1 Mini 92.3 78.7 64.1 56.8 40.7
GPT-4.1 91.8 84.8 76.9 68.3 61.5
Gemini-2.5-Flash 92.4 86.0 73.5 75.3 59.8
Gemini-2.5-pro 92.1 87.4 76.8 77.9 63.5

accuracy to pinpoint these critical failure modes, thereby pro-
viding an essential diagnostic resource and methodology. We
anticipate that GeoChain will steer future research towards
developing more robust, geographically aware, and reliable
AI systems capable of nuanced real-world understanding.

6 Limitations
While GeoChain offers a novel diagnostic approach, we
acknowledge several limitations. GeoChain is built upon
the Mapillary Street-Level Sequences training split; conse-
quently, while our chain-of-thought reasoning framework and
the overall task are novel, there is a potential that MLLMs
have encountered these specific visual scenes or highly sim-
ilar ones during their extensive pre-training. Evaluating per-
formance on truly ”unseen” street-level imagery is an inher-
ent challenge for the field, given the ubiquity of data from
sources like Google Street View [Anguelov et al., 2010] and
OpenStreetMap [Haklay and Weber, 2008], meaning that per-
formance assessments may partly reflect familiarity with cer-
tain visual data rather than solely generalization to entirely
new scenes. Additonally, the underlying geographical dis-
tribution of the images, though diverse, retains some skew,

potentially affecting the generalizability of the findings in all
urban contexts. Furthermore, our locatability score’s preci-
sion is contingent upon the accuracy of an upstream seman-
tic segmentation model, which could introduce noise into the
difficulty stratification.

7 Usage of Generative AI tools
We utilized Generative AI tools to help improve the language,
phrasing, and readability of this manuscript.
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A Appendix
A.1 Implementation Details
Questions
This section details the complete 21-question sequence (Table
4) that forms the core of the GeoChain benchmark, designed
to evaluate the step-by-step geographic reasoning capabili-
ties of Multimodal Large Language Models (MLLMs). Each

question in the sequence is characterized by its rank, desig-
nated difficulty level (Easy, Medium, or Hard), expected re-
sponse format (Binary, Multiclass, or Free-text), and its pri-
mary Question Category (Visual Cues, Geographical local-
ization, Culture/Infrastructure, Terrain/Environment, or Ex-
act Location). This comprehensive listing provides a trans-
parent foundation for understanding the specific tasks un-
derpinning the performance evaluations discussed throughout
this paper.

System Prompt
To guide the Multimodal Large Language Models (MLLMs)
and standardize their responses for the GeoChain benchmark
tasks, the following system prompt was consistently em-
ployed:

System Prompt

You are an accurate geolocation model. Given the im-
age, answer the following questions in order. Please
provide your best guess. Each question is also pro-
vided with question type. For Binary questions, an-
swer Yes/No only. For Multiclass questions, answer
as one of the provided options in brackets. Final ques-
tion type is a free text question, answer it as a free
string text. If you are not sure about the answer, give
your best guess. Answer format should be a json dict
with question indices as keys (0 indexed) and values
as Answer: <answer>, Reasoning: <reasoning>.

Tools and Infrastructure
The execution of model inference was managed by Prompt-
foo1, a platform that ensures reproducibility in benchmarking
by offering versatile prompt configuration and effective API
linkage. We used the transformers library in Hugging Face2;
to run the MaskFormer model for computing segmentation
masks. These calculations were performed on an NVIDIA
GeForce RTX 3060 graphics processing unit.

A.2 Haversine Distance
Haversine Distance the shortest distance over the Earth’s sur-
face between the predicted and ground-truth coordinates, as-
suming a spherical Earth.

The Haversine formula is given by:

∆ϕ = ϕ2 − ϕ1

∆λ = λ2 − λ1

a = sin2
(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
∆λ

2

)
d = 2R · arcsin

(√
a
)

Here, d is the Haversine distance between two points
(ϕ1, λ1) and (ϕ2, λ2). This metric provides an interpretable
and robust way to measure geographic prediction error.



Table 4: The GeoChain 21-Step Benchmark Question Set.

Rank Difficulty Question Question Type Question Category

1 Easy Do you see any boats or ships? Binary Visual Cues
2 Easy Do you see one or more of the following

vehicles: Bus, Truck, Car, Van, Motorbike,
Minibike, Bicycle?

Binary Visual Cues

3 Easy Can you see any traffic lights? Binary Visual Cues
4 Easy Can you see any flag? Binary Visual Cues
5 Easy Would you say this location is near the

Equator?
Binary Geographical localiza-

tion
6 Easy Does this location seem to be close to the

Poles?
Binary Geographical localiza-

tion
7 Easy Is this place located in the Northern Hemi-

sphere?
Binary Geographical localiza-

tion
8 Easy Which continent best describes

where this location is? (7 conti-
nents: North America/South Amer-
ica/Europe/Africa/Asia/Oceania/Antarctica)

Multiclass Geographical localiza-
tion

9 Medium What side of the road do vehicles drive on
here? (Left/Right)

Multiclass Culture/Infrastructure

10 Medium What country is this place located in? Free-text Geographical localiza-
tion

11 Medium Is this place near coast? Binary Terrain/Environment
12 Medium Does this location appear to be an island? Binary Terrain/Environment
13 Easy Is this place located in a desert region? Binary Terrain/Environment
14 Easy Does this location seem to be in a moun-

tainous or hilly region?
Binary Terrain/Environment

15 Medium What is the most likely climate type for this
location? (5 main climate types: Tropi-
cal/Dry/Temperate/Continental/Polar)

Multiclass Terrain/Environment

16 Easy Does this place look like a big city? Binary Culture/Infrastructure
17 Medium Would you classify this place as a small

town?
Binary Culture/Infrastructure

18 Hard What language(s) are most likely spoken at
this place?

Free-text Culture/Infrastructure

19 Hard Can you name the state or province this
place belongs to?

Free-text Geographical localiza-
tion

20 Hard What is the name of the city, town, or vil-
lage seen here?

Free-text Geographical localiza-
tion

21 Hard Based on everything observed, what are the
latitude and longitude coordinates of this
place? Please give a tuple of float coordi-
nates (lat, lon)

Free-text Exact Location



Table 5: Pass score (%) across question difficulty and image difficulty. Each row shows performance on a given question difficulty across
images of increasing ambiguity.

Model Question Difficulty Easy Images Medium Images Hard Images
Claude 3.7 Sonnet Easy 89.3 89.1 87.7

Medium 76.0 75.7 72.0
Hard 45.8 52.7 34.8

GPT 4.1 Mini Easy 86.7 86.7 84.2
Medium 66.1 67.3 62.1
Hard 37.4 44.6 27.9

GPT-4.1 Easy 87.9 87.5 84.3
Medium 75.5 76.5 71.8
Hard 51.8 60.0 43.3

Gemini-2.5-Flash Easy 90.7 91.0 89.4
Medium 76.7 77.8 74.2
Hard 47.3 54.9 38.4

Gemini-2.5-pro Easy 91.6 91.3 89.8
Medium 78.2 79.9 75.7
Hard 52.4 61.6 45.9

A.3 Additional Analysis
Image Difficulty vs Question Difficulty Interaction
To analyze how visual and reasoning difficulty interact, we
compute a two-dimensional pass rate matrix over question
difficulty (Easy, Medium, Hard) and image difficulty (Easy,
Medium, Hard). Table 5 presents this breakdown for each
model.
We observe a consistent trend across all models: accuracy
declines with both increasing image difficulty and question
difficulty. Importantly, hard questions on hard images repre-
sent the most challenging setting, with pass rates often below
40%—even for state-of-the-art models.

Gemini-2.5-pro shows the strongest resilience across the
board, maintaining high scores even on hard questions in am-
biguous scenes. In contrast, Claude 3.7 Sonnet and GPT 4.1
Mini exhibit large drops in performance under compounding
difficulty, confirming their brittleness in multi-factor reason-
ing.

This matrix allows us to quantify model sensitivity to vi-
sual ambiguity and pinpoint failure modes. For example, a
model that performs well on hard questions from easy images
but poorly on the same questions from hard images may lack
robustness in interpreting noisy visual cues. Conversely, a
model that fails uniformly on hard questions indicates weak-
nesses in logical chaining or symbolic inference. Together,
this analysis emphasizes the need for benchmarks that probe
cross-modal interactions, rather than evaluating visual or lin-
guistic difficulty in isolation.

Breakdown by Question Difficulty
To better understand how models handle increasing reasoning
complexity, we group questions by their annotated difficulty
levels: Easy, Medium, and Hard. These difficulty tags were

1https://www.promptfoo.dev
2https://huggingface.co/docs/transformers/en/index

assigned manually based on the subtlety, required external
knowledge, and ambiguity of each question.

Table 6: Pass score (%) by question difficulty.

Model Easy Medium Hard
Claude 3.7 Sonnet 88.7 74.6 44.5
GPT 4.1 Mini 85.9 65.2 33.4
GPT-4.1 87.3 75.8 54.7
Gemini-2.5-Flash 90.8 76.2 51.3
Gemini-2.5-pro 91.1 78.4 55.1

Across all models, accuracy decreases consistently with
question difficulty. Gemini-2.5-pro achieves the highest pass
rates at all levels, followed closely by Gemini-2.5-Flash and
GPT-4.1. Interestingly, Claude 3.7 Sonnet and GPT 4.1 Mini
both exhibit sharp drops on hard questions, with performance
falling below 45% and 35%, respectively.

These findings suggest that while many models can answer
surface-level geographic questions accurately, their reasoning
falters as complexity increases especially when fine-grained
localization or symbolic inference is required. The relatively
better performance of Gemini-2.5-pro on hard questions in-
dicates more stable multi-hop reasoning or greater robustness
to subtle visual signals.

Accuracy vs. Reasoning Depth
Figure 5 reveals a typical degradation pattern: All models per-
form well in the initial questions (1–9), which ask about vi-
sual or global cues such as vehicles, hemisphere, or continent.
These are relatively easy to infer on the basis of surface-level
features.

As the questions become more complex and semantically
demanding, the accuracy drops sharply, especially at ques-
tions 10 and 17. These questions requiring nuanced interpre-

https://www.promptfoo.dev
https://huggingface.co/docs/transformers/en/index


Figure 5: Average pass score across the 21-step Geochain reasoning
chain. Accuracy decreases as questions progress from coarse global
inference to fine-grained localization.

tation of environmental and infrastructure signals.
In particular, we observe a performance bump around

questions 12–14. Despite appearing later in the sequence,
these questions ask about relatively easy visual features (e.g.,
desert, hills, or city size). This reinforces the value of struc-
turing questions not just by logical sequence but also by mea-
sured difficulty, allowing finer-grained diagnostics of model
capability.

The final steps of the chain (questions 18–21) see the steep-
est drop in performance, as models are asked to predict lan-
guage, administrative region, city name, and exact coordi-
nates - tasks that require multi-modal reasoning, robust world
knowledge, and low-level visual grounding.

This progressive breakdown highlights GeoChain’s utility
as a diagnostic benchmark. By tracking model accuracy at
each reasoning step, researchers can isolate failure modes
(e.g. visual hallucination vs. failure to capture cultural cues)
and understand how performance degrades under deeper spa-
tial inference chains.

Breakdown by Question Type
To assess how models handle varying degrees of response
constraint, we analyzed Pass Scores across three fundamental
question types: Binary, Multiclass, and Free-text, with results
presented in Table 7 and Figure 7. This breakdown reveals
a distinct performance hierarchy directly correlated with the
open-endedness of the required answer.

Across all evaluated MLLMs, a clear difficulty gradient
was observed: Binary questions yielded the highest success
rates, followed by Multiclass questions, with Free-text ques-
tions proving to be the most challenging by a substantial mar-
gin. For instance, Gemini-2.5-pro achieved 88.9% on Bi-
nary and an exceptional 92.9% on Multiclass questions, but
its score dropped to 56.7% for Free-text tasks. This pat-
tern of significantly lower performance on Free-text questions
was universal, underscoring the inherent difficulty in precise,
open-ended generation and factual recall compared to select-
ing from constrained options.

In the structured formats, Gemini-2.5-pro consistently led,
achieving the top scores for both Binary (88.9%) and Mul-
ticlass (92.9%) questions, with Gemini-2.5-Flash also per-

forming strongly. Notably, for the more demanding Free-
text questions, GPT-4.1 emerged as the top performer with
a Pass Score of 57.8%, slightly ahead of Gemini-2.5-pro
(56.7%). This suggests a particular strength in GPT-4.1’s
generative capabilities for unconstrained answers. Claude 3.7
Sonnet demonstrated robust performance on Binary (86.2%)
and Multiclass (84.5%) questions, often comparable to GPT-
4.1, but its accuracy significantly declined on Free-text ques-
tions (45.5%), reaffirming its challenges with precise, un-
prompted generation. As anticipated, GPT-4.1 Mini gener-
ally recorded the lowest scores across all types. This anal-
ysis by question type effectively highlights that while cur-
rent MLLMs are largely proficient with constrained-choice
tasks, open-ended free-text responses remain a key area for
improvement.

Table 7: Pass score (%) by question type.

Model Binary Multiclass Free-text
Claude 3.7 Sonnet 86.2 84.5 45.5
GPT-4.1 Mini 82.3 73.8 37.5
GPT-4.1 85.9 85.8 57.8
Gemini-2.5-Flash 88.5 90.9 50.5
Gemini-2.5-pro 88.9 92.9 56.7



Figure 6: Mean Haversine distance (km) by city and model. Larger values indicate poor localization precision.

Figure 7: Model vs Question Type
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