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ABSTRACT

Molecular design inherently involves the optimization of multiple conflicting ob-
jectives, such as enhancing bio-activity and ensuring synthesizability. Evaluating
these objectives often requires resource-intensive computations or physical experi-
ments. Current molecular design methodologies typically approximate the Pareto
set using a limited number of molecules. In this paper, we present an innova-
tive approach, called Multi-Objective Molecular Design through Learning Latent
Pareto Set (MLPS). MLPS initially utilizes an encoder-decoder model to seam-
lessly transform the discrete chemical space into a continuous latent space. We
then employ local Bayesian optimization models to efficiently search for local
optimal solutions (i.e., molecules) within predefined trust regions. Using surro-
gate objective values derived from these local models, we train a global Pareto
set learning model to understand the mapping between direction vectors (called
“preferences”) in the objective space and the entire Pareto set in the continuous
latent space. Both the global Pareto set learning model and local Bayesian opti-
mization models collaborate to discover high-quality solutions and adapt the trust
regions dynamically. Our work represents a novel approach to learning the map-
ping between preferences and the Pareto set in the latent space, specifically tai-
lored for multi-objective molecular design, providing decision-makers with the
capability to fine-tune their preferences and explore the Pareto set. Experimental
results demonstrate that MLPS achieves state-of-the-art performance across vari-
ous multi-objective scenarios, encompassing diverse objective types and varying
numbers of objectives.

1 INTRODUCTION

Molecular design plays a pivotal role in a multitude of applications, including drug discovery (Mey-
ers et al. (2021)), material science (Butler et al. (2018)), and catalyst development (Wan et al.
(2020)). In this context, multi-objective molecular design (MMD) is a challenging endeavor. It
aims to discover the Pareto set of molecules, where improving one objective inevitably entails com-
promising others.

Traditional approaches to MMD often involve simplifying multi-objective problems by converting
them into single-objective ones using specific weightings (Abels et al. (2019); SV et al. (2022)).
While effective to some extent, these methods rely on human experts for weighting. In general,
weighting of multiple objectives is difficult, and inappropriate weighting leads to inappropriate so-
lutions. Other techniques focus on identifying the Pareto set through a two-stage process: molecule
sampling and non-dominated sorting (Yasonik (2020); Verhellen (2022)). However, this approach
can become prohibitively expensive and time-consuming, especially in cases with multiple objec-
tives and a large pool of molecules to consider. To improve sampling efficiency in MMD, Bayesian
optimization has emerged as a powerful and efficient method (Xie et al. (2021); Gao et al. (2022)).
Nevertheless, Bayesian optimization faces limitations when dealing with high-dimensional spaces
and high computational complexity associated with Gaussian process inference. These challenges
make it less suited for complex MMD tasks.

Conventional MMD approaches often yield a limited Pareto set (i.e., a small number of trade-off
solutions), which may not align well with decision-makers’ preferences. MMD problems may have
a complicated Pareto set with various trade-offs. Accessing this entire set can provide significant ad-
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vantages, enabling decision-makers to select the most preferred solution and accelerating the molec-
ular design process. Recent advancements in this field, particularly Pareto set learning methods,
aim to approximate the entire Pareto set using learning models (Lin et al. (2021; 2022)). However,
most existing methods focus on low-dimensional Pareto sets, which are not suitable for addressing
the complexity of high-dimensional and discrete MMD problems. These limitations underscore the
need for a novel approach that can efficiently handle MMD scenarios while learning the comprehen-
sive Pareto set.

In this paper, we introduce a groundbreaking approach to MMD, termed as Multi-Objective Molec-
ular Design through Latent Pareto Set Learning (MLPS). The core of MLPS begins with the uti-
lization of an encoder-decoder model, which effectively maps the discrete chemical space into a
continuous latent space. This transformation process lays the foundation for subsequent operations.
MLPS partitions the latent space into multiple trust regions and uses a local Bayesian optimization
model for efficient sampling within each region. Notably, MLPS incorporates a global Pareto set
learning model, which establishes a crucial link between direction vectors (i.e., preferences) in the
objective space and the comprehensive Pareto set in the continuous latent space. It is capable of
aggregating and disseminating valuable information from each trust region, thereby enhancing both
global and local optimization processes. Our paper makes several significant contributions to the
field of MMD: (The code of MLPS will be publicly accessible upon acceptance.)

• We introduce a novel approach that learns a mapping from a preference to the correspond-
ing Pareto optimal solution in MMD. It provides a vast array of solutions for decision-
makers to choose from, enabling them to select molecules that best align with their pref-
erences and specific requirements. This is clearly different from existing MMD methods
where preferences are often predefined. Our approach offers a fresh perspective on solving
the problem.

• We develop an efficient information-sharing mechanism wherein local Bayesian models
communicate with each other through a global neural network. This combination of local
and global optimization enhances the search capability for the Pareto set, allowing for
quicker convergence to better solutions.

• Our approach outperforms existing state-of-the-art methods across a wide range of multi-
objective scenarios. This includes scenarios involving diverse types of objectives and vary-
ing numbers of objectives, showcasing its effectiveness and versatility.

2 RELATED WORKS

Molecular Design. Molecular design aims to improve specific molecular properties. Recent ad-
vances have seen the emergence of various artificial intelligence-based approaches. These ap-
proaches can be broadly categorized into two groups: 1) Generative Models: This category includes
methods such as variational autoencoders (Lim et al. (2018); Liu et al. (2018); Jin et al. (2018a;b)),
generative adversarial networks (Guimaraes et al. (2017); Kadurin et al. (2017); Prykhodko et al.
(2019)), and diffusion models (Ho et al. (2020); Xu et al. (2021); Hoogeboom et al. (2022)). They
work with continuous latent representations and require substantial data for training. 2) Combina-
torial Optimization Methods: These methods involve combinatorial search in a discrete chemical
space. They include evolutionary algorithms (A Nicolaou & Kannas (2012); Nigam et al. (2020);
Ahn et al. (2020)), reinforcement learning (You et al. (2018); Jin et al. (2020); Fu et al. (2021a)),
and Monte Carlo methods (Jensen (2019); Xie et al. (2021); Fu et al. (2021b); Sun et al. (2022)).
While they do not require as much training data as generative models, they often rely on domain
knowledge and can be expensive due to the evaluation of a large number of molecules. However,
none of these existing methods can learn the mapping from preferences to the Pareto set for MMD.
This limitation motivates the development of our MLPS, which aims to address this gap.

Multi-Objective Bayesian Optimization. Multi-objective Bayesian optimization has gained sig-
nificant attention in recent years. Some techniques (Knowles (2006); Paria et al. (2020)) involve
transforming a multi-objective problem into a set of single-objective ones by using scalarizing
functions, allowing single-objective Bayesian optimization to be applied. Other approaches em-
ploy a Pareto domination method (Bradford et al. (2018)) or the hypervolume indicator (Daulton
et al. (2020); Zhao et al. (2021)) to guide the optimization process. Bayesian optimization has
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found applications in molecular design, which often involves learning a latent space from molec-
ular data using generative models and then searching for molecules with desired properties in the
latent space (Gómez-Bombarelli et al. (2018); Jin et al. (2018a); Tripp et al. (2020); Siivola et al.
(2021)). However, existing Bayesian optimization methods in molecular design often face limita-
tions. For example, transforming multi-objective problems into single-objective ones using weighted
sums may not capture the full spectrum of solutions (i.e., multi-objective trade-offs). Addition-
ally, representing complex chemical spaces in high-dimensional latent spaces can be challenging,
and traditional multi-objective Bayesian optimization methods have limitations in handling high-
dimensional spaces (Frazier (2018)). Our MLPS represents a pioneering effort in multi-objective
molecular design with Bayesian optimization. It provides a novel framework to learn the mapping
from preferences to the Pareto set while efficiently navigating the search in high-dimensional spaces.

Trust Region. Trust region methods (Conn et al. (2000); Powell et al. (2009)) aim to efficiently han-
dle high-dimensional spaces by iteratively exploring trust regions. These methods simultaneously
optimize multiple subspaces or regions in the search space. The key idea is to evaluate the improve-
ment in objective functions within these trust regions and adjust the regions accordingly. Turbo
(Eriksson et al. (2019)) is a recent work that combines the trust region methodology with Bayesian
optimization. It introduces hyperrectangular trust regions, where each trust region has a center point
and an edge length. The edge length can grow or shrink based on the performance of the trust region.
If a trust region is deemed promising, its edge length is increased. Otherwise, the edge length is de-
creased. When the edge length becomes too small, the trust region is reinitialized. One limitation of
Turbo is that it lacks communication among trust regions. Each trust region operates independently,
which can lead to suboptimal exploration of the search space. This is where our MLPS differs. It
incorporates a global model to facilitate information sharing among trust regions, which improves
the overall search efficiency. Furthermore, we propose the use of the hypervolume indicator for the
center setting and reinitialization strategy for trust regions, making our MLPS well-suited for MMD.

Pareto Set Learning. In the field of multi-objective optimization, there has been a growing interest
in developing methods that learn to approximate the Pareto set, such as a reinforcement learning-
based approach (Parisi et al. (2016)) and an incremental learning-based approach (Liu et al. (2021)).
A prevalent trend in multi-objective optimization involves integrating preference information into
neural networks. This approach has demonstrated success in various domains, including multi-task
learning (Sener & Koltun (2018); Navon et al. (2020)) and reinforcement learning (Abdolmaleki
et al. (2020; 2021)). By incorporating preferences, neural networks can adapt to specific preferences
of decision-makers. Some notable works have aimed to learn and model the entire Pareto set. For
instance, P-MOCO (Lin et al. (2021)) introduces an end-to-end reinforcement learning algorithm
designed to train models capable of accommodating different preferences in multi-objective combi-
natorial optimization problems. In the context of expensive multi-objective optimization problems,
PSL (Lin et al. (2022)) has been developed. However, it is primarily designed for low-dimensional
problems. Moreover, PSL rely on a single global model, which may not be well-suited for captur-
ing highly complicated Pareto sets encountered in molecular design. P-MOCO might have similar
issues. In contrast, our MLPS takes a hybrid approach that combines several local models with a
global model. This hybrid architecture is specifically designed to address the challenges posed by
complicated high-dimensional Pareto sets in molecular design.

3 METHOD

In our study, we treat the multi-objective molecular design problem as a multi-objective maximiza-
tion problem, formulated as follows:

max
x∈χ

F(x) = [f1(x), f2(x), · · · , fM (x)], (1)

Here, x denotes a solution (i.e., molecule) in theN -dimensional latent spaceχ ∈ RN ,M represents
the number of objectives, and evaluating these objective functions can be expensive.

In this section, we first provide an overview of our MLPS framework in Subsection 3.1. Then,
we delve into the specifics of the local and global models within our MLPS in Subsection 3.2 and
Subsection 3.3, respectively. To provide readers with a solid foundation in multi-objective optimiza-
tion, Appendix A offers explanations on fundamental concepts such as Pareto dominance, Pareto
set/front, the hypervolume (HV) indicator (fHV ), the hypervolume contribution (fHV C), and the
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hypervolume improvement (fHV I ). For those seeking more in-depth information, Appendix B sup-
plies additional details about our work.

3.1 FRAMEWORK

The framework of our MLPS is illustrated in Fig 1. MLPS operates as a guided search model,
where guidance and feedback from current candidates continuously inform and improve the search
strategy in each iteration. This search is conducted within a continuous latent space established by
a pre-trained encoder-decoder model. We use the SELFIES variational autoencoder with a latent
space dimensionality of 256 (Maus et al. (2022)) for all molecular design tasks in this work. Details
about the molecular representations and the encoder-decoder model are found in Appendix B.1.

The first step in the search process involves setting the initial molecular embeddings. MLPS offers
two methods for accomplishing this: 1) One method samples a set of molecules from a database,
and their embeddings are obtained using the encoder. 2) The other method directly samples initial
embeddings from the latent space. In our work, we employ the Sobol sampler (Renardy et al.
(2021)), which enables uniform sampling in the high-dimensional latent space.

Once the initial molecular embeddings are in place, we proceed to initialize multiple trust regions
within the latent space. Within each trust region, we build a local surrogate model. Subsequently,
based on these local surrogate models, we train a global Pareto set learning model, which is imple-
mented as a neural network. The global Pareto set learning model is designed to establish a mapping
between direction vectors (i.e., preferences) in the objective space and the entire Pareto set across
the latent space. To train the global Pareto set learning model, we randomly sample a set of prefer-
ences and utilize it to predict Pareto optimal solutions. The predicted solutions are then evaluated
by the local surrogate models within their respective trust regions to generate loss values. The loss
is utilized as the training signal for the global model, enabling it to improve its mapping accuracy.

After training the global model in the current iteration, we employ it to generate predicted Pareto
optimal solutions by randomly inputting preferences into the model. Subsequently, we select the
best global batch of solutions Xg based on their hypervolume improvement values. Additionally,
we sample a set of solutions within the trust regions, and we select the best local batch of solutions
Xl according to their hypervolume improvement values. The details of the global and local batch
selection can be found in Appendix B.2.

The selected solutions X = Xg ∪Xl are then decoded to obtain their molecular representations.
These molecules are subsequently evaluated for their true objective vectors Y . The pair {X,Y }
is used to update the trust regions, and the current iteration is over. The next iteration starts with
the updated trust regions, allowing the optimization process to iteratively improve and refine the
Pareto set. This approach combines both global and local information, leveraging the strength of

Global Model

Trained Pareto Set Learning Model  Random Sample Preferences Λ  

Latent Space

Trust region
Trust region

Trust region

Local Surrgate Models in different Trust Regions 

Surrogate modelSurrogate modelSurrogate model

Local Models
Pre-trained Encoder and Decoder

Encoder Decoder

Sample from latent space

Latent space

Sample from database

EncoderMolecule Database

Initial Embeddings

Initialization

Decoder

Evaluate molcular true property score

∙ Objective 1
∙ Objective 2
∙ Objective 3
∙ . . .

Observe {X,Y} pairs 

Train

t = 0

Global Batch Xg

Local Batch Xl

Update Trust regions

t = t+1

Figure 1: Illustration of the framework of the proposed MLPS
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each to enhance the efficiency and effectiveness of the multi-objective molecular design process.
We summarize the core components of MLPS in Algorithm 1.

Algorithm 1 The framework of MLPS
Input: Pre-trained encoder and decoder, initial embeddings and their objective vectors
{Xinit,Yinit}, the number of trust regions ntr, the minimum edge length of trust regions Lmin

1: Initialize ntr trust regions T = {T1, T2, · · · , Tntr} with {Xinit,Yinit};
2: Build a local surrogate model in each trust region;
3: while budget not exhausted do
4: Train the global Pareto set learning model hθ based on the local surrogate models (Alg.3);
5: Generate solutions from random preferences by hθ to form the global batchXg (Alg.5);
6: Sample solutions in T to form the local batchXl (Alg.4);
7: X ←Xg ∪Xl;
8: DecodeX and obtain their true objective vectors Y ;
9: for j = 1, 2, · · · , ntr do

10: Update the edge length of Tj based on {X,Y };
11: if the edge length of Tj is less than Lmin then
12: Reinitialize Tj (Alg.2);
13: end if
14: Update the center of Tj based on fHV C (Subsection 3.2);
15: end for
16: Update the local surrogate model in each trust region;
17: end while
Output: global Pareto set learning model hθ

3.2 LOCAL MODELS

In our MLPS, each trust region is equipped with a local surrogate model, which makes MLPS differ-
ent from other global Bayesian optimization methods. Specifically, each local surrogate model is a
Gaussian process implemented using BoTorch (Balandat et al. (2020)) and GPyTorch (Gardner et al.
(2018)). Our approach focuses on maintaining the accuracy of each local surrogate model within its
respective trust region. Similar to Turbo (Eriksson et al. (2019)), a trust region is a hypercube region
defined within the latent space in this work. There are two key issues for each trust region in our
work: the setting of its center and the reinitialization strategy, which we discuss below:

Center Setting. In single-objective optimization, existing approaches often place the center of a
trust region at the best observed point. However, this approach is no longer suitable for multi-
objective optimization since there exists no single best solution. In MLPS, we select the point with
the maximum hypervolume contribution as the trust region center. Given a non-dominated solution
set within the current trust region, we calculate the hypervolume contribution for each solution and
choose the point with the highest hypervolume contribution to be the center of the trust region, while
excluding points that have already been selected as the centers of other trust regions. Placing the
center of the trust region at the point with the highest hypervolume contribution enhances diversity.
This is because more crowded solutions tend to have smaller hypervolume contributions.

Reinitialization Strategy. As mentioned in Section 2, an unpromising trust region is penalized by
halving the edge length. This reduction in edge length is not unlimited. If the length of an edge
becomes smaller than a predefined threshold Lmin, the current trust region is terminated, and a
new trust region is generated. For generating a new trust region, we determine the position of the
new center and build a new local surrogate model. Let Dp = (Xp,Yp) be the set of previously
reinitialized center points Xp and their corresponding observations Yp. f̂r is the surrogate model
corresponding to the trust region to be reinitialized Tr. Then, we build a new local surrogate model
toDp: f̂new ∼ P (f̂r |Dp). Based on f̂new, we identify the center point xc of the new trust region
by maximizing a scalarizing function specified by a random preference. The reinitialization strategy
is outlined in Algorithm 2. This approach ensures that trust regions can be reinitialized in promising
parts of the overall space.
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Algorithm 2 Reinitialization Strategy for Trust Regions

Input: the trust region to be reinitialized Tr, the corresponding local surrogate model f̂r, previ-
ously reinitialized center points Xp, their observations Yp, initial edge length of trust region
Linit

1: Build a local surrogate model to the reinitialized center pointsDp = (Xp,Yp): f̂new ∼ P (f̂r |
Dp);

2: Randomly sample a preference λ ∼ Λ = {λ ∈ RM |
∑
λi = 1}; (·i denotes the i-th element)

3: xc = argmaxx∈χ sλ[f̂new(x)], where sλ[y] = min(max( yiλi
, 0)); (·i denotes the i-th element)

4: Obtain the true objective vector of xc, denoted as yc;
5: Reinitialize Tr with the center xc and the edge length Linit;
6: Xp ←Xp ∪ xc;
7: Yp ← Yp ∪ yc;
Output: reinitialized trust region Tr

3.3 GLOBAL PARETO SET LEARNING MODEL

As previously highlighted, the Pareto set of a multi-objective problem may contain an infinite or
large number of solutions, each offering a different trade-off among the objectives. In contrast to
traditional MMD approaches, MLPS employs a global Pareto set learning model to map a user
defined trade-off preference to the corresponding Pareto optimal solution. To achieve this, we em-
ploy scalarizing functions to calculate gradients using local surrogate models, and these gradients
are utilized to update the global Pareto set learning model. The global Pareto set learning model
serves as a bridge connecting different trust regions. It can generate improved global optimal so-
lutions, encouraging local search within trust regions to explore and discover even better solutions.
Conversely, The enhanced local solutions found in trust regions can provide guidance to update the
global model. This feedback loop ensures that the global model continuously improves its under-
standing of the Pareto set and adapts to changing preferences.

Model Formulation. The function of the global Pareto set learning model is expressed as follows:

x = hθ(λ). (2)

Here, λ represents any valid preference selected from Λ = {λ ∈ RM |
∑
λi = 1}, with i =

1, 2, . . . ,M . x is the corresponding solution to the preference λ in the N -dimensional latent space.
Typically, N is much larger than M in MMD. hθ denotes a neural network with parameters θ,
which we employ to model the complex mapping from a preference to a solution. We choose a
multi-layered perceptron with attention mechanisms to enhance the learning process. Specifically,
four attention layers are incorporated to capture the subtle distinctions among different preferences
effectively. These distinctions play a pivotal role in providing diverse and accurate solutions. To
ensure that the model learns these distinctions effectively, we introduce residual connections within
the network. These connections help preserve the original preference information throughout the
transformation process. By combining preference data with its features, our model can generate
corresponding solutions that are more distinguishable and faithful to the preferences.

Once the global Pareto set learning model is adequately trained, it empowers decision-makers to
fine-tune their preferences, facilitating exploration across the entire Pareto set. This flexibility al-
lows decision-makers to select solutions that align precisely with their specific needs and trade-off
preferences, making our approach adaptable to a wide range of multi-objective molecular design
scenarios.

Model Training. The training process aims to update the model’s parameters θ such that the gen-
erated solutions align with the optimal solutions by minimizing the augmented Tchebycheff scalar-
ization. This can be expressed as:

x∗ = hθ∗(λ) = argmin
x∈χ

gtch aug(x | λ). (3)

The detaild of the augmented Tchebycheff scalarization gtch aug can be found in Appendix B.3. This
function establishes a connection between a set of preferences Λ = {λ ∈ RM |

∑
λi = 1} and

their corresponding solutions within the Pareto set. It guides the global Pareto set learning model to
generate solutions that are close to the Pareto front.
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To find the optimal parameter θ∗, we propose an efficient algorithm. Since the optimal solution
of the augmented Tchebycheff scalarizing function is unknown, we need to optimize all solutions
generated by our model with the corresponding augmented Tchebycheff scalarizing functions for all
valid preferences:

θ∗ = argmin
θ
Eθ∼Λgtch aug(x = hθ(λ) | λ) (4)

Solving Eq. (4) directly is challenging due to the expectation over an infinite set of preferences.
Therefore, we employ a Monte Carlo sampling and gradient descent approach to iteratively update
the model with different surrogate models in different trust regions. The update equation is as
follows:

θt+1 = θt − η
K∑
k=1

∇θ ĝtch aug(x = hθ(λk) | λk). (5)

Here, ĝtchaug(·) is the augmented Tchebycheff scalarizing function with objective vectors predicted
by local surrogate models (Please refer to Eq. (12) in Appendix B.3). To account for the uncertainty
of the surrogate model, we use the lower confidence bound to obtain the surrogate objective vector:

f̂(x) = µ̂(x)− βσ̂(x), (6)

where µ̂ is the mean value, σ̂ is the variance value, and β is a parameter that balances the weight
between the mean and variance. In this work, we set β to 0.1.

Algorithm 3 describes the training of the global Pareto set learning model. This process iteratively
updates the global Pareto set learning model, allowing it to learn the mapping from preferences to
corresponding solutions in the Pareto set.

Algorithm 3 Global Pareto Set Learning Model Training
Input: global Pareto set learning model hθ, the number of iterations for training the global

model Tg , trust regions T = {T1, T2, · · · , Tntr
}, corresponding local surrogate models

{f̂1, f̂2, · · · , f̂ntr}, the number of sampled preference n
1: for tg = 1, 2, · · · , Tg do
2: Randomly sample n preferences {λ1,λ2, . . . ,λn};
3: Use the current model hθ to generate solutionsXθ = {x | xi = hθ(λi), i = 1, 2, · · · , n};
4: Initialize an empty set loss;
5: for i = 1, 2, · · · , n do
6: Find the closest trust region to xi, denoted as Tj ;
7: Calculate the scalarizing function ĝtch aug(xi) based on the surrogate model f̂j

(App. B.3);
8: Calculate∇θ ĝtch aug(xi) and add it to the loss set;
9: end for

10: Update θ with loss;
11: tg = tg + 1;
12: end for
Output: updated Pareto set learning model hθ

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Multi-Objective Molecular Design Scenarios. In our experiments, we aim to explore the effec-
tiveness of the proposed MLPS in various multi-objective molecular design scenarios. To do so,
we consider seven objectives related to molecular properties, following Jin et al. (2020); Xie et al.
(2021); Sun et al. (2022); Gao et al. (2022). These objectives consist of two biological objectives,
namely GSK3β and JNK3, which measure the inhibition scores against glycogen synthase kinase-
3β and c-Jun N-terminal kinase-3 (associated with Alzheimer’s disease) target proteins, respectively.
We incorporate two non-biological objectives, druglikeness (QED) (Bickerton et al. (2012)) and syn-
thetic accessibility (SA) (Ertl & Schuffenhauer (2009)), which assess the drug-likeness and synthe-
sizability of molecules, respectively. We also consider three multi-property objectives (MPO) from
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the PMO benchmark (Gao et al. (2022)) that are widely acknowledged as challenging: Perindopril-
MPO, Ranolazine-MPO, and Zaleplon-MPO. Each of these tasks focuses on designing molecules
with high fingerprint similarity to a known target drug, while also differing in specific target ways.
To comprehensively evaluate the performance of our approach across different types and numbers of
objectives, we consider several objective combinations within our experiments: Two-objective sce-
narios: We investigate scenarios where we optimize for pairs of objectives, which include QED+SA
(non-biological objectives) and GSK3β+JNK3 (biological objectives). These scenarios help us as-
sess the effectiveness of our approach when considering only biological or non-biological objec-
tives. Three-objective scenarios: Within this category, we extended our optimization approach
to include three objectives, specifically QED+SA combined with each of the remaining objectives.
These scenarios aimed to strike a balance between optimizing drug-likeness, synthesizability, and
one complex objective simultaneously. Four-objective scenario: In this scenario, we simultane-
ously optimized all four objectives, namely QED+SA+GSK3β+JNK3. This setup rigorously as-
sessed our approach’s capability to handle a diverse set of objectives, covering both biological and
non-biological aspects.

Baseline. We compare the performance of MLPS against six state-of-the-art methods for molecular
design. Here is a brief description of each baseline method: 1) GA+D (Nigam et al. (2020)) com-
bines a genetic algorithm with a machine learning-based generative model to enhance the diversity
of generated molecules. 2) JT-VAE(Jin et al. (2018a)) generates molecules by constructing a tree-
structured scaffold over chemical substructures and then assembling them into complete molecules,
leveraging variational autoencoders. 3) GCPN (You et al. (2018)) employs reinforcement learning
to generate molecules atom by atom, utilizing a graph neural network (GNN) as the basis. 4) Ratio-
naleRL (Jin et al. (2020)) extends molecule rationales into complete molecules using reinforcement
learning. 5) MARS (Xie et al. (2021)) utilizes Markov sampling to generate molecules using a
combination of GNNs and molecule fragments. 6) MolSearch (Sun et al. (2022)) employs a Monte
Carlo tree search algorithm to discover molecular design moves and generate molecules. 7) Ret-
Mol (Wang et al. (2023)) is introduces a search-based framework that guides controlled molecule
generation using a small set of example molecules, iteratively refining the process to meet desired
properties. Please refer to Appendix C.2 for more details of these baseline methods.

Evaluation Metrics. We generate 5000 molecules by each method and use hypervolume (HV) to
compare these methods. HV assesses how well the generated molecules cover the Pareto front in
the objective space. It indicates how closely the generated molecules approximate the entire Pareto
set and provides insights into their distribution in the objective space across different objectives
(see details in Appendix A). To calculate HV, we normalize the range of each objective into [0, 1]
and set the reference point be (0, . . . , 0) in the normalized objective space. Therefore, the range of
HV is [0, 1]. In addition to HV, we consider several traditional metrics that are commonly used in
molecular design. Please refer to Appendix C for details.

4.2 RESULTS AND ANALYSIS

Table 1 presents the average HV values over 10 runs obtained by the compared methods. From
the results, we can observe that: 1) MLPS consistently stands out as the top-performing method,
achieving the highest HV scores in six out of the eight tasks and the second highest in the remaining
two. This underscores MLPS’s exceptional ability to approximate the entire Pareto set effectively.
It excels in delivering diverse and high-quality solutions across a wide range of multi-objective
scenarios. 2) While MLPS leads the pack, other methods like MARS, RationaleRL, and RetMol
also demonstrate commendable performance in terms of HV scores. These methods exhibit strong
capabilities in multi-objective molecular design. However, MLPS outperforms them in most scenar-
ios, highlighting its superiority. 3) Several methods, such as GA+D, JT-VAE, and GCPN, perform
acceptably in the two-objective scenarios. However, their performance degrades when faced with
problems involving three or four objectives. 4) MolSearch performs relatively better in the four-
objective scenario compared to the three-objective scenarios. This behavior might be attributed to
the optimization strategy that MolSearch employs: it starts with a specialized molecule set tailored
for the four-objective scenario. Note that MolSearch is not applicable to the QED+SA scenario due
to its two-stage nature, where the optimization of biological objectives is prioritized in the first stage.

Ablation Study. In the ablation study, we aim to assess the contributions of the designed global
and local models in MLPS. We compare MLPS with two variants: one that lacks the global model
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Table 1: Comparison of different methods on HV
Method QED

+SA
GSK3β
+JNK3

QED+SA
+GSK3β

QED+SA
+JNK3

QED+SA+
Perindopril-MPO

QED+SA+
Ranolazine-MPO

QED+SA+
Zaleplon-MPO

QED+SA+
GSK3β+JNK3

GA+D 0.598 0.350 0.243 0.251 0.176 0.583 0.242 0.137
JT-VAE 0.832 0.460 0.276 0.287 0.213 0.460 0.030 0.254
GCPN 0.850 0.830 0.186 0.191 0.152 0.461 0.070 0.100

RationaleRL 0.750 0.762 0.722 0.567 0.490 0.506 0.080 0.539
MARS 0.916 0.898 0.763 0.778 0.638 0.687 0.258 0.679

MolSearch / 0.723 0.183 0.217 0.461 0.398 0.090 0.571
RetMol 0.847 0.910 0.771 0.781 0.578 0.590 0.316 0.701
MLPS 0.922 0.902 0.781 0.788 0.661 0.633 0.351 0.714

and another that lacks the local models. In the context of MLPS without local models, our approach
does not employ trust regions for partitioning and local searching within the latent space. Instead,
a single Gaussian process surrogate model is utilized to fit all observed solutions across the entire
latent space. The results are presented in Fig. 2, which illustrates the Hypervolume (HV) values
as a function of the number of solutions that are evaluated by their true objective vectors during
the MLPS learning process for these three methods in the context of the QED+SA+GSK3β+JNK3
task. Notably, the HV values are calculated based on the non-dominated solutions found during the
optimization process. We have two key observations from this figure: 1) MLPS generally demon-
strates quicker convergence compared to its variants that lack either the global or local models. This
indicates that the inclusion of both global and local models accelerates the optimization process, al-
lowing MLPS to approximate the Pareto set more efficiently. 2) Among the variants, MLPS without
the global model (but with the local models) consistently outperforms MLPS without the local mod-
els (but with the global model). This suggests that leveraging multiple local optimizations is more
effective than relying solely on a single global optimization in the high-dimensional latent space.
Similar observations to Fig. 2 are observed for the other tasks.
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Figure 2: Performance comparison among MLPS and its variants on QED+SA+GSK3β+JNK3.

We invite readers to examine Appendix C for more detailed experimental analysis and discussions.

5 CONCLUSION

This paper proposed an innovative algorithm called Multi-Objective Molecular Design through
Learning Latent Pareto Set (MLPS) to address various challenges of multi-objective molecular de-
sign (MMD). MLPS leverages a combination of global and local optimization models while learning
the mapping from preferences to the Pareto set. This unique approach empowers decision-makers
to efficiently explore the Pareto Set. Our extensive experiments across diverse MMD scenarios have
consistently demonstrated the superiority of MLPS over state-of-the-art methods. In future studies,
we will try to further enhance the scalability and efficiency of MLPS to tackle MMD problems with
a higher number of objectives. Moreover, we aspire to extend the application of MLPS to practical
domains, such as real-world drug discovery and materials science projects. Since MLPS is designed
as an end-to-end optimization framework, combining it with various encoder-decoder architectures
and continuous latent representations is also an interesting work.
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Appendix
A BASIC CONCEPTS IN MULTI-OBJECTIVE OPTIMIZATION

In multi-objective optimization, the goal is to identify a set of solutions that can either maximize or
minimize a vector-valued objective function. As mentioned in Section 3, we treat the multi-objective
molecular design problem as a maximization problem. Generally, there exists no single solution that
can maximize each objective function simultaneously. Therefore, a trade-off among these objectives
becomes necessary. These objective vectors are typically compared using Pareto dominance.

Definition 1 (Pareto Dominance): Let xa,xb ∈ χ. An objective vector f(xa) dominates f(xb),
denoted as f(xa) � f(xb), if fi(xa) ≥ fi(xb) for all i = 1, 2, . . . ,M , and there exists a j ∈
1, 2, . . . ,M such that fj(xa) > fj(xb). A solution that is not dominated by any other solution is
referred to as a Pareto optimal solution.

Definition 2 (Pareto Set/Front): The set comprising all Pareto optimal solutions is termed the
Pareto Set, denoted as Ups = {x∗ | @ x � x∗,x ∈ χ}, and the corresponding Pareto Front is
f(Ups) = {f(x∗) | x∗ ∈ Ups}.
Definition 3 (Hypervolume): The hypervolume (HV) indicator is employed to quantify how effec-
tively a solution approximates the Pareto Front. As illustrated in Fig 3(a), r∗ denotes a pre-defined
reference point ((0, 0) in this case), and X represents a set of solutions in the objective space. The
hypervolume indicator, denoted as fHV (X), measures the volume of S (the dark blue region) dom-
inated byX:

fHV (X) = S = {r ∈ RM | ∃x ∈X,f(x) � r � r∗}. (7)
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Figure 3: Illustration of the hypervolume indicator.

For a given solution set X , we utilize the hypervolume contribution (HVC) to assess the perfor-
mance of each solution within X . A solution’s hypervolume contribution represents the difference
in hypervolume betweenX andX when the solution is excluded:

fHV C(x |X) = fHV (X)− fHV (X/x). (8)

As shown in Fig 3(b), the hypervolume contribution of solution A corresponds to the volume of the
light blue region.

When introducing a new solution xnew intoX , we employ the hypervolume improvement (HVI) to
quantify the difference in hypervolume betweenX andX with the inclusion of the new solution:

fHV I(xnew |X) = fHV (X ∪ x)− fHV (X). (9)
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As demonstrated in Fig 3(c), the hypervolume improvement of solution B represents the volume of
the light blue region.

B MORE DETAILS ON THE PROPOSED METHOD

B.1 MOLECULAR REPRESENTATIONS AND ENCODER-DECODER

There are two common types of molecular representations. One approach represents a molecule as
a discrete string of chemical characters, such as SMILES and SELFIES (Krenn et al. (2020)). The
other employs graphs or motifs to represent molecules. For guided search molecular optimization,
ensuring the validity of the latent space learning through the encoder-decoder is crucial. Invalid
solutions can lead to excessive evaluation costs and produce meaningless results.

In the first strategy, SELFIES is a string-based representation of molecules that boasts 100% robust-
ness. In contrast to SMILES, SELFIES can consistently represent valid molecules and encompass
all possible molecules. This ensures that every point in the latent space can be successfully decoded
as a valid molecule.

The second strategy involves methods that establish a coherent grammar to represent the entire
molecular graph or break down the graph into distinct motifs. As atoms and bonds intuitively cor-
respond to nodes and edges, these methods, based on molecular construction, can also represent all
molecules while guaranteeing the validity of decoded molecules.

In our MLPS framework, we employ SELFIES to represent molecules, thereby ensuring their va-
lidity. Additionally, using string-based representations can help circumvent the computational ex-
penses associated with graph structures. A recent study by Maus et al. (2022) introduced a novel
Variational Autoencoder (VAE) architecture based on the SELFIES string representation. This VAE
model comprises six transformer encoder and transformer decoder layers, with a latent space di-
mensionality of 256. We utilize this SELFIES VAE model for all molecular design tasks in our
work.

B.2 BATCH SELECTION

In each iteration, the global and local models generate two sets of solutions, respectively. The best
batch of solutions in each set is selected using the hypervolume improvement to update trust regions
and guide future generations.

B.2.1 LOCAL BATCH SELECTION

For the local batch selection strategy (Algorithm 4), we employ the following approach. The local
batch size is denoted as Nl, and the local batch selection set, denoted as Xl, is initially empty. The
subsequent steps are iterated Nl times:
1) In each trust region, we utilize Thompson sampling (Russo et al. (2018)) to generate nl points,
represented asXj

l = {x1,x2, ...,xnl
}.

2) We predict the objective vectors corresponding to these generated points using the respective
surrogate model.
3) Within our MLPS, we maintain a set Und, which contains non-dominated solutions found thus
far. Only solutions evaluated with their true objective vectors are eligible to enter this set. We select
the solution with the largest value of fHV I(xi | Und)(xi ∈ {X1

l ,X
2
l , . . . ,X

ntr

l }) to be included
inXl. It is worth noting that the predicted objective vectors are utilized in the calculation of fHV I .

B.2.2 GLOBAL BATCH SELECTION

The global batch selection strategy is outlined in Algorithm 5. This strategy employs a global batch
size denoted as Ng and a global sample size of ng . Initially, we sample ng valid preferences, repre-
sented as Λg = {λ1,λ2, . . . ,λng

}.These preferences are used to generate corresponding solutions,
forming the set Xs = {x | xi = hθ(λi),λi ∈ Λg}. It is important to note that not all generated
points fall within trust regions. Therefore, we utilize the surrogate model associated with the clos-
est trust region to each point to obtain the surrogate objective vector. We then select the best Ng
solutions inXs based on fHV I(xi | Und) in a sequential greedy manner.
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Algorithm 4 Local Batch Selection
Input: local batch size Nl, sample size for each trust region nl, trust regions T =

{T1, T2, · · · , Tntr}, corresponding local surrogate models {f̂1, f̂2, . . . , f̂ntr}, non-dominated
solution set found so far Und

1: Xl = ∅;
2: for k = 1, 2, · · · , Nl do
3: for j = 1, 2, . . . , ntr do
4: Sample nl pointsXj

l = {x1,x2, . . . ,xnl
} in Tj ;

5: for i = 1, 2, · · · , nl do
6: Predict the objective vector yi = f̂j(xi);
7: end for
8: end for
9: xmax = argmaxxi∈{X1

l ,X
2
l ,...,X

ntr
l } fHV I(xi | Und) (yi is used to calculate hypervol-

ume);
10: Xl =Xl ∪ xmax;
11: end for
Output: local batch solution setXl

Algorithm 5 Global Batch Selection
Input: Pareto set learning model hθ, global batch sizeNg , global sample size ng , trust regions T =

{T1, T2, · · · , Tntr}, corresponding local surrogate models {f̂1, f̂2, . . . , f̂ntr
}, non-dominated

solution set found so far Und
1: Randomly sample ng preferences Λg = {λ1,λ2, . . . ,λng};
2: Xs = {x | xi = hθ(λi),λi ∈ Λg};
3: for i = 1, 2, . . . , ng do
4: Find the closest trust region to xi, denoted as Tj ;
5: Predict the objective vector yi = f̂j(xi);
6: end for
7: Xg = ∅;
8: for i = 1, 2, . . . , Ng do
9: xmax = argmaxxi∈Xs

fHV I(xi | Und) (yi is used to calculate hypervolume);
10: Xg ←Xg ∪ xmax;
11: Xs ←Xs/xmax;
12: end for
Output: global batch solution setXg
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B.3 SCALARIZATION

In MLPS, we employ the scalarization method to train the global Pareto set learning model, es-
tablishing a connection between preferences Λ = {λ ∈ RM |

∑
λi = 1} and their corresponding

solutions within the Pareto set. The scalarization method guides the global Pareto set learning model
to generate solutions that are close to the Pareto front. In MLPS, we utilize the weighted Tcheby-
cheff approach:

gtch(x | λ) = max
1≤i≤M

{λi((z∗i + ε)− fi(x))}, (10)

Here, Z∗ = [z∗1 , z
∗
2 , · · · , z∗M ] represents the ideal vector for the objective vector f(x), which serves

as the upper bound for maximization problems. ε is a small positive scalar. ui = z∗i + ε is called
unachievable utopia value for the i-th objective fi(x). In this work, we set ε = 0.1|Z∗|.
In common form of Tchebycheff scalarization approach, the solutions found are in a weakly Pareto
optimal set actually. There are some solutions in this set which is not desirable for decision-makers.
Thus, we choose an augmented Tchebycheff approach to avoid the issue. The augmented approach
is as following:

gtch aug(x | λ) = max
1≤i≤M

{λi((z∗i + ε)− fi(x))}+ ρ

M∑
i=1

λifi(x), (11)

where ρ is a small positive scalar. In this work, we set ρ = 0.01, which is consistent with the setting
in ParEGO (Knowles (2006)). With the augmentation term, the weak Pareto optimal solutions are
assigned smaller scalarized values than the strong Pareto optimal solutions in Equation 11. This
modification ensures that the scalarization approach selects more desirable solutions for decision-
makers.

When we use predicted objective vectors by local surrogate models, the augmented Tchebycheff
scalarizing function ĝtchaug(·) is defined as:

ĝtch aug(x | λ) = max
1≤i≤M

{λi((z∗i + ε)− f̂i(x))}+ ρ

M∑
i=1

λif̂i(x), (12)

where f̂i(·) is the surrogate function for i-th objective.

C MORE DETAILS ON EXPERIMENTS

C.1 IMPLEMENTATION DETAILS OF MLPS

To ensure the robustness of the results, we conduct each algorithm independently 10 times with dif-
ferent random seeds. For the compared methods, we followed the parameter configurations outlined
in their respective original studies to ensure well-tuned performance.

As for our MLPS, we allocated a total budget of 5000 expensive evaluations. This budget represents
the maximum number of molecules that can be evaluated with true objective vectors. The initial
embeddings consist of 500 molecules, and the approach to obtain these initial embeddings varies
depending on the specific task. For tasks that involve at least one biological objective, we sample
positive molecules from the database to serve as the initial embeddings. On the other hand, for tasks
that solely consist of non-biological objectives, we directly sample results from the latent space to
form the initial embeddings.

The global Pareto set learning model is trained for a total of 2000 iterations (Tg), with each training
iteration involving 1000 sampled preferences (n). During the global batch selection phase, 1000
preferences and their corresponding solutions are randomly sampled using the trained global model
(ng), and subsequently, 20 solutions are selected (Ng). The number of trust regions is set to 5 (ntr).
In the case of local batch selection, 4096 solutions are sampled from each trust region (nl), resulting
in a total of 50 solutions being selected across all trust regions (Nl).

C.2 MORE DETAILS OF BASELINE METHODS

Our approach to utilizing the baseline methods, including GA+D, JT-VAE, GCPN, RationaleRL,
MARS, MolSearch, and RetMol, is detailed as follows:
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(1) The final 5000 molecules for comparison: For generative models like GCPN, RationaleRL,
MARS, and our MLPS, we obtained 5000 molecules through random sampling from each trained
model. GA+D, a genetic algorithm, provided its final population of 5000 for comparison. JT-VAE
uses Bayesian optimization to search iteratively. The best 5000 molecules during the search process
are collected. MolSearch and RetMol maintain an archive of 5000 molecules, where molecules
meeting predefined thresholds for each objective are retained.

(2) Handling multi-objective scenarios: Methods such as GA+D, JT-VAE, GCPN, RationaleRL, and
MARS employ scalarization based on specific preference vectors, guided by domain knowledge, to
address multi-objective scenarios. These specific preference vectors were set in accordance with
the original studies’ recommendations. MolSearch employs Pareto dominance, while RetMol uses
predefined thresholds for each objective to identify desirable molecules.

(3) Use of multi-objective Bayesian optimization: Among the compared methods, JT-VAE is the
only one, aside from MLPS, that utilizes Bayesian optimization. JT-VAE employs single-objective
Bayesian optimization to optimize its scalarization function, whereas MLPS uses multi-objective
Bayesian optimization in the latent space.

C.3 COMPLEXITY AND RUNNING TIME ANALYSIS

Our MLPS, involving the division of the latent space and the use of local models for exploration,
significantly reduces computational costs, especially in high-dimensional and large data scenarios.
Each local model is responsible for a specific trust region, fitting only the data points within that
region, which effectively manages computational complexity.

Considering a total of Ntotal data points distributed across ntr trust regions, with η representing the
average overlap of data points among trust regions, each region handles approximately ηNtotal/ntr
points. Given the cubic time complexity (O(N3

total)) for model fitting, the total complexity for
all trust regions is O(ntr(ηNtotal/ntr)

3) = O(η3N3
total/n

2
tr), yielding an asymptotic speedup of

O(n2tr/η
3). As trust regions shrink over time, η decreases, further enhancing efficiency.

Regarding scalability with increasing objectives, our method remains robust. The surrogate model’s
complexity and the number of oracles are the primary factors affecting time. Our use of independent
Gaussian processes, with a linear increase in a cubic time complexity for each additional objective,
ensures manageable scalability.

We evaluated MLPS’s running time on various tasks. The results are shown in the following table.

Table 2: Running time of MLPS on various tasks
Task Running Time
QED+SA 2.83 hours
JNK3 + GSK3β 2.97 hours
JNK3+QED+SA 4.21 hours
GSK3β+QED+SA 4.18 hours
JNK3+GSK3β+QED+SA 6.6 hours

For comparison, the JNK3+GSK3β+QED+SA task’s running times for other methods are shown in
the following table.

Table 3: Running time of different methods on JNK3+GSK3β+QED+SA
Method Running Time
RationaleRL 5.8 hours
GA+D 4 hours
MARS 10 hours
Molsearch 7.2 hours
MLPS 6.6 hours
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These times, measured in hours, are relatively negligible compared to the months or years typically
required in the conventional drug discovery process.

C.4 COMPARISON USING TRADITIONAL EVALUATION METRICS

We consider several traditional metrics that are commonly used in molecular design (Jin et al.
(2020); Xie et al. (2021); Sun et al. (2022)), even though they were not explicitly designed for
multi-objective molecular design:
Success rate (SR) represents the percentage of generated molecules that meet the specified criteria
for chosen objectives. The criteria include QED≥0.6, SA≥0.67, GSK3β≥0.5, and JNK3≥0.5. SR
indicates how well the generated molecules align with the desired properties.
Novelty (Nov) quantifies the percentage of generated molecules that are dissimilar (similarity less
than 0.4) to the nearest neighbor in the training set (Olivecrona et al. (2017)). This metric assesses
the uniqueness of the generated molecules.
Diversity (Div) quantifies the dissimilarity between pairs of generated molecules. It is calculated
using pairwise Tanimoto similarity over Morgan fingerprints. Div reflects the structural diversity of
the generated molecules.
Product Metric (PM) is a composite metric that combines SR, Nov, and Div into a single value. It
provides a holistic evaluation of the generated molecules, considering their effectiveness, diversity,
and novelty simultaneously.

Results. Tables 4, 5, and 6 give the average SR, Nov, Div, and PM values over 10 runs obtained
by the compared methods. These results reveal several key insights into the performance of MLPS
compared to the baseline methods:
1) Across all tasks, MLPS consistently outperforms all baseline methods in terms of the PM. This
highlights MLPS’s ability to deliver a well-rounded set of molecules that excels in effectiveness,
diversity, and novelty.
2) MLPS does not achieve a 100% SR value in these cases, as it aims to provide the entire Pareto
set, which may include molecules that do not meet specific criteria (e.g., QED≥0.6, SA≥0.67,
GSK3β≥0.5, and JNK3≥0.5). SR alone may not fully capture the quality of the generated
molecules, and other metrics should be considered in conjunction.
3) MLPS does not consistently attain the highest Nov and Div values. This can be attributed to the
nature of these metrics. High diversity (higher Div) may encompass molecules scattered across the
entire chemical space, while an optimal set may concentrate on a specific region of interest. Addi-
tionally, molecules in the database (i.e., the training set) may already be close to this optimal region.
Thus, evaluating Nov and Div should involve considering other metrics to gain a comprehensive
understanding of the generated molecule set.

Table 4: Comparison of different methods on SR, Nov, Div, and PM on the two-objective scenarios
Objective QED+SA GSK3β+JNK3
Method SR Nov Div PM SR Nov Div PM
GA+D 0.910 1.000 0.470 0.428 0.850 1.000 0.420 0.360
JT-VAE 0.034 0.078 0.893 0.002 0.033 0.079 0.883 0.002
GCPN 0.036 0.089 0.887 0.003 0.035 0.080 0.874 0.002

RationaleRL 0.876 0.971 0.842 0.716 0.842 0.981 0.831 0.686
MARS 0.996 0.793 0.681 0.538 0.995 0.753 0.691 0.518

MolSearch / / / / 1.000 0.787 0.826 0.650
RetMol 0.857 0.748 0.721 0.462 0.847 0.736 0.700 0.436
MLPS 0.876 0.931 0.967 0.789 0.834 0.914 0.963 0.734
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Table 5: Comparison of different methods on SR, Nov, Div, and PM on the three-objective scenarios
Objective QED+SA+GSK3β QED+SA+JNK3
Method SR Nov Div PM SR Nov Div PM
GA+D 0.890 1.000 0.680 0.610 0.860 1.000 0.500 0.430
JT-VAE 0.096 0.958 0.680 0.063 0.218 1.000 0.600 0.131
GCPN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RationaleRL 0.891 0.341 0.891 0.270 0.787 0.190 0.874 0.131
MARS 0.995 0.950 0.719 0.680 0.913 0.948 0.779 0.674

MolSearch 1.000 0.821 0.856 0.702 1.000 0.783 0.831 0.651
RetMol 0.913 0.813 0.702 0.521 0.951 0.842 0.722 0.578
MLPS 0.875 0.960 0.873 0.737 0.882 0.951 0.861 0.722

Table 6: Comparison of different methods on SR, Nov, Div, and PM on the four-objective scenario
Objective QED+SA+GSK3β+JNK3
Method SR Nov Div PM
GA+D 0.860 1.000 0.360 0.310
JT-VAE 0.054 1.000 0.277 0.015
GCPN 0.000 0.000 0.000 0.000

RationaleRL 0.750 0.555 0.706 0.294
MARS 0.923 0.824 0.719 0.547

MolSearch 1.000 0.818 0.811 0.664
RetMol 0.969 0.862 0.732 0.611
MLPS 0.861 0.912 0.852 0.669

C.5 COMPARISON USING INDIVIDUAL PERFORMANCE METRICS

Tables 7 and 8 show the results of individual performance metrics, such as average property score
and average property score of top molecules on the QED+SA and JNK3+GSK3β tasks.

Table 7: The results of individual performance metrics on QED+SA
Top-10 Avg QED Top-10 Avg SA Top-50 Avg QED Top-50 Avg SA Avg QED Avg SA Avg Rank

GA+D 0.7628 0.9385 0.6874 0.7917 0.6567 0.7712 6
JT-VAE 0.9192 0.8699 0.8893 0.8336 0.7496 0.7206 3
GCPN 0.9114 0.8958 0.8828 0.8519 0.6098 0.5954 5
RationaleRL 0.8224 0.8995 0.7697 0.8861 0.6636 0.7488 4
MARS 0.9369 0.9998 0.9076 0.9799 0.5997 0.8058 2
MLPS 0.9424 0.9924 0.9307 0.9811 0.6974 0.8159 1

Table 8: The results of individual performance metrics on JNK3+GSK3β
Top-10 Avg JNK3 Top-10 Avg GSK3β Top-50 Avg JNK3 Top-50 Avg GSK3β Avg JNK3 Avg GSK3β Avg Rank

GA+D 0.8453 0.8682 0.8072 0.8572 0.5671 0.6182 6
JT-VAE 0.8483 0.8782 0.8058 0.8782 0.5793 0.5988 5
GCPN 0.8584 0.8947 0.8061 0.8609 0.5887 0.5665 4
RationaleRL 0.7670 0.9620 0.7408 0.9448 0.5883 0.7455 3
MARS 0.8910 0.9310 0.8118 0.8888 0.5919 0.6630 2
MLPS 0.9015 0.9573 0.8282 0.9582 0.6083 0.7382 1

Our MLPS model demonstrated superior performance in most metrics, achieving the highest average
ranking.

C.6 VISUALIZATION IN THE OBJECTIVE SPACE

In Figures 4 and 5, the non-dominated solution set in the objective space obtained by each compared
method on QED+SA and QED+SA+GSK3β+JNK3 are visualized, respectively. Figure 5 employs
a polar coordinate system (He & Yen (2015)) to represent the distribution in the four-dimensional
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objective space. This system is based on uniformly distributed direction vectors defined in the four-
dimensional objective space. Solutions are then mapped to the nearest vectors, and the resulting
polar graph reveals their distribution. Points in this polar graph that are more diverse and closer to
the edge indicate a better solution set. It’s evident from these figures that the solution set acquired
through our MLPS is generally more diverse and well-converged compared to those obtained by the
other methods.

However, it is worth noting that even MLPS obtains a limited number of non-domiated solutions on
these tasks. We hypothesize two primary reasons for this observation:

(1) Given the discrete nature of multi-objective molecular design tasks, the actual number of true
Pareto optimal solutions is inherently limited. Consequently, even an accurate method for identi-
fying the true Pareto front will yield only a finite set of solutions. This limitation is particularly
pronounced in real-world problems like multi-objective molecular design, where the true Pareto
front is often unknown. Despite this, our MLPS consistently demonstrates superior performance in
approximating the Pareto front, as evidenced by both quantitative metrics such as the hypervolume
and visualization results.

(2) The global model within our MLPS framework might not be optimally trained or architecturally
perfect. We observed that increasing the evaluation budget (beyond the 5000 used in our current
experiments) enhances the HV values achieved by MLPS, suggesting potential for further improve-
ment. Thus, enhancing MLPS’s performance through fine-tuning and architectural improvements
will be a focus of our future work.
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Figure 4: The non-dominated solution set in the objective space obtained by each compared method
on QED+SA.

Figure 5: The non-dominated solution set in the objective space (using a polar coordinate system)
obtained by each compared method on QED+SA+GSK3β+JNK3.
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C.7 VISUALIZATION IN THE SOLUTION SPACE

In Figure 6, we utilize t-SNE (Van der Maaten & Hinton (2008)) to visually represent the distribution
of generated molecules on the QED+SA+GSK3β+JNK3 task. We employ the ECFP6 fingerprints,
following the methodology from Li et al. (2018). Several notable observations can be made from
Figure 6: The generated molecules from GA+D tend to cluster together in two closely located
groups, indicating a relatively low diversity. GCPN, JT-VAE, and MolSearch mainly concentrate
on a compact region. Molecules generated by RationaleRL and RetMol exhibit a tendency to form
distinct groups. Notably, the groups produced by RationaleRL showcase higher diversity compared
to those generated by RetMol. Both MLPS and MARS produce molecules with a well-dispersed dis-
tribution in the space, suggesting their ability to generate molecules with high novelty and diversity.
Notably, the distribution of MLPS covers a larger area compared to that of MARS.

Figure 6: t-SNE visualization of generated molecules on QED+SA+GSK3β+JNK3.

C.8 COMPARISON WITH PSL

PSL (Lin et al. (2022)) operates in a continuous space and is applicable to our molecular optimization
tasks. We integrated PSL with the same encoder-decoder framework as our MLPS and compared
their performance on various tasks. The results are shown in Table 9, indicating that MLPS outper-
forms PSL in terms of hypervolume. These findings underscore MLPS’s superior performance over
PSL across the evaluated tasks.

22



Under review as a conference paper at ICLR 2024

Table 9: The results of HV obtained by MLPS and PSL on various tasks
Tasks PSL MLPS
QED+SA 0.763 0.922
QED+SA+JNK3+GSK3β 0.432 0.714
QED+SA+Ranolazine-MPO 0.579 0.701

C.9 COMPARISON WITH NAS METHODS

Our work in molecular optimization and existing approaches in neural architecture search (NAS)
(Li et al. (2020); Lu et al. (2020); Shi et al. (2020); Dudziak et al. (2020)) share similar ideas. Both
domains share the common strategy of mapping discrete data to a continuous space for optimization,
followed by decoding to obtain optimized solutions. We have adapted the methods from references
Li et al. (2020); Lu et al. (2020); Shi et al. (2020) for molecular optimization by substituting their
encoder-decoder components. This modification aligns these NAS approaches with the structural
requirements of molecular optimization.

To demonstrate the efficacy of our MLPS in comparison to adapted NAS methods, we conducted
experiments on two tasks, QED+SA and JNK3+GSK3β. The hypervolume results are shown in
Table 10. These results clearly demonstrate MLPS’s superior performance compared to the adapted
NAS methods.

Table 10: The results of HV obtained by MLPS and adapted NAS methods on various tasks
Methods QED+SA JNK3+GSK3β
NGAE (Li et al. (2020)) 0.302 0.182
MSuNAS (Lu et al. (2020)) 0.744 0.353
BONAS (Shi et al. (2020)) 0.631 0.367
MLPS 0.922 0.902

C.10 SENSITIVITY ANALYSIS TO HYPERPARAMETERS

This subsection gives the experimental results that systematically evaluate MLPS’s sensitivity to
hyperparameter variations, accompanied by a detailed discussion of their impacts. We chose the
QED+SA task as a representative case study, with similar trends observed in other tasks. Our hyper-
parameter settings are summarized in the table below. While investigating specific hyperparameters,
all others were held constant as per these values:

Hyperparameter Value
The number of trust regions (ntr) 5
The maximum edge length of trust regions (Lmax) 1.6
The minimum edge length of trust regions (Lmin) 0.01
The number of preferences sampled for training the global model(n) 1000
The number of iterations for training the global model (Tg) 2000

(1) The effect of the number of trust regions:

The number of trust regions crucially dictates the latent space’s segmentation. A deficient count
leads to inadequate exploration and potential high-quality solution omissions. Excessively many re-
gions cause overlapping and redundant searches. We varied the trust regions from 1 to 15, assessing
the hypervolume (HV) metric. Results are as follows:
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Table 11: Results of HV with different number of trust regions
The number of trust regions HV
1 0.793
3 0.881
5 0.922
10 0.922
15 0.922

The data indicates that too few regions (1 or 3) lead to insufficient exploration and lower HV values,
suggesting inadequate global model training. However, a moderate number (5 and above) maintains
consistent HV values (0.922), suggesting efficient exploration without further gains beyond this
point.

(2) The effect of the maximum and minimum edge lengths of trust regions:

These parameters constrain the trust region size. Excessively large maximum lengths may cause
overlapping, while too small lengths limit exploration. Conversely, large minimum lengths can
trigger frequent reinitialization, missing potential solutions, whereas too small minimum lengths
lead to over-exploitation and low efficiency.

We experimented with various maximum and minimum lengths, seeking a robust setting. Initial
edge length was set at 0.8. Table 12 shows the results.

Table 12: Results of HV with different settings of edge length
Max edge length Min edge length Initial edge length HV
1.6 0.01 0.8 0.922
1.6 0.2 0.8 0.879
1.6 0.4 0.8 0.841
3.2 0.01 0.8 0.922

We can observe that optimal results were achieved with max and min lengths of 1.6 and 0.01. In-
creasing the max length (e.g,. 3.2) didn’t enhance HV, while larger min lengths (e.g,. 0.2 or 0.4)
decreased HV, indicating low search efficiency.

(3) The effect of the number of iterations for training the global model

More iterations generally enhance the global model, yielding a more accurate Pareto set. We varied
the iterations and observed the HV:

Table 13: Results of HV with different number of iterations for training the global model
The number of iterations for training the global model HV
500 0.832
1000 0.872
2000 0.922
5000 0.922

The HV increases with more iterations, peaking at 2000. Further increase (e.g., to 5000) doesn’t
change the HV value, indicating an optimal training length.

(4) The effect of the number of preferences sampled for training the global model

In each round of training the global model, we sample a batch of preferences (i.e., direction vectors
in the objective space), and then use these vectors to generate solutions and calculate gradients.
Sampling sufficient preferences is crucial for adequately covering the Pareto front. We experimented
with varying numbers of sampled preferences:
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Table 14: Results of HV with different number of preferences sampled for training the global model
The number of preferences sampled for training the global model HV
10 0.641
100 0.793
500 0.871
1000 0.922
2000 0.922

Increasing the number of preferences enhances HV results. However, beyond 1000, HV remains
constant, suggesting an optimal sampling rate.

C.11 MORE DISCUSSIONS AND ANALYSIS ON TRUST REGIONS

In this subsection, we give a more detailed discussion and empirical analysis on trust region man-
agement. We address two crucial aspects:

(1) Frequency of Trust Region Intersection and Collapse

The right balance in the number of trust regions is vital to avoid excessive intersection or collapse.
A few intersecting trust regions can be beneficial, creating an informative interplay that might lead
to better solutions than isolated exploration. To investigate the degree of overlap, we performed
experiments on the QED+SA task, focusing on the degree of overlap between trust regions. We
measured the distance in each dimension between the centers of trust regions, calculating the average
minimum distance among all dimensions (davg−min) and the average length of trust region edges
(davg−edge). When the values of davg−min and davg−edge are close, trust regions may overlap
slightly. However, as the value of davg−edge becomes larger than davg−min, trust regions are more
likely to exhibit increased overlap. Our settings were as follows: 5 trust regions, a budget of 5000,
and a batch size of 70 (20 for global and 50 for local), resulting in 71 iterations. The results are:

Table 15: davg−min and davg−edge during the search process
Iterations davg−min davg−edge
0 0.98 0.8
15 0.80 0.8
30 0.38 0.4
45 0.32 0.32
60 0.20 0.22
71 0.19 0.145

These findings indicate slight overlap during most of the search process, suggesting effective com-
munication and exploration among trust regions. Towards the end, the focus shifts to exploitation,
as indicated by the smaller davg−edge compared to davg−min

(2) Frequency of Trust Region Reinitialization

Trust region reinitialization is critical for ensuring sufficient exploration. Our goal is to avoid fre-
quent reinitializations, which could indicate a lack of thorough exploitation within each region. The
following table illustrates the reinitialization frequency in relation to the budget on the QED+SA
task:

Table 16: Reinitialization frequency in relation to the budget
Budget HV Number of reinitializations
2500 0.901 1
5000 0.922 2
8000 0.926 5
15000 0.928 7
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This moderate frequency of reinitialization under our settings indicates a balanced approach between
exploration and exploitation.

C.12 CHOICE OF SCALARIZATION

We have two reasons for selecting Tchebycheff scalarization in our MLPS framework.

(1) Tchebycheff scalarization has a distinctive advantage in its tendency to explore all Pareto opti-
mal solutions. By focusing on the worst-case deviations for each objective, it inherently promotes
a thorough understanding of the trade-offs involved among objectives. In contrast, linear scalariza-
tion theoretically struggles to identify all Pareto optimal solutions due to its inherent limitations in
handling certain trade-offs.

(2) Our empirical results further substantiate the effectiveness of Tchebycheff scalarization in multi-
objective molecular design tasks. We conducted comparative experiments between MLPS imple-
mentations using Tchebycheff and linear scalarizations across various tasks. The results, as pre-
sented below, clearly demonstrate the superior performance of Tchebycheff scalarization in terms of
hypervolume (HV):

Table 17: Results of HV obtained by MLPS with different scalarizations
QED+SA JNK3 + GSK3β QED+SA+JNK3 + GSK3β

MLPS (Tchebycheff scalarization) 0.922 0.902 0.714
MLPS (linear scalarization) 0.876 0.782 0.581

These findings affirm our choice of Tchebycheff scalarization for its robustness, comprehensive
exploration capabilities, and empirically validated performance.

C.13 VISUALIZATION OF GENERATED MOLECULES

Figure 7 showcases the non-dominated molecules generated by MLPS for the
GSK3β+JNK3+QED+SA task. Beneath each molecular graph, we have provided the corre-
sponding scores for GSK3β, JNK3, QED, and SA. This visualization aims to offer a clear
representation of the molecular structures generated by our model, along with their respective
multi-objective optimization scores.
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Figure 7: Non-dominated molecules generated by MLPS on QED+SA+GSK3β+JNK3. (next four
pages)
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