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Abstract
We propose a new framework for imitation
learning—treating imitation as a two-player
ranking-based game between a policy and a re-
ward. In this game, the reward agent learns to sat-
isfy pairwise performance rankings between be-
haviors, while the policy agent learns to maximize
this reward. In imitation learning, near-optimal
expert data can be difficult to obtain, and even
in the limit of infinite data cannot imply a total
ordering over trajectories as preferences can. On
the other hand, learning from preferences alone is
challenging as a large number of preferences are
required to infer a high-dimensional reward func-
tion, though preference data is typically much eas-
ier to collect than expert demonstrations. The clas-
sical inverse reinforcement learning (IRL) formu-
lation learns from expert demonstrations but pro-
vides no mechanism to incorporate learning from
offline preferences and vice versa. We instanti-
ate the proposed ranking-game framework with
a novel ranking loss giving an algorithm that can
simultaneously learn from expert demonstrations
and preferences, gaining the advantages of both
modalities. Our experiments show that the pro-
posed method achieves state-of-the-art sample ef-
ficiency and can solve previously unsolvable tasks
in the Learning from Observation (LfO) setting.
Project video and code can be found at this URL.

1. Introduction
Reinforcement learning relies on environmental reward feed-
back to learn meaningful behaviors. Reward specification is
a hard problem (Krakovna, 2018), thus motivating imitation
learning (IL) as a technique to bypass reward specification
and learn from expert data, often via Inverse Reinforcement
Learning (IRL) techniques. Imitation learning typically
deals with the setting of Learning from Demonstrations
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(LfD), where expert states and actions are provided to the
learning agent. A more practical problem in imitation learn-
ing is Learning from Observations (LfO), where the learning
agent has access to only the expert observations. This setting
is common when access to expert actions are unavailable
such as when learning from accessible observation sources
like videos or learning to imitate across different agent mor-
phologies. We note that LfD and LfO settings differ from
the setting where the agent has access to the environment
reward function along with expert transitions, referred to as
Reinforcement Learning from Demonstrations (RLfD) (Jing
et al., 2020; Zhang et al., 2020; Brys et al., 2015).

Learning to imitate using expert observations alone can
require efficient exploration when the expert actions are
unavailable as in LfO (Kidambi et al., 2021). Incorporating
preferences over potentially suboptimal trajectories for
reward learning can help reduce the exploration burden by
regularizing the reward function and providing effective
guidance for policy optimization. Previous literature in
learning from preferences either assumes no environment
interaction (Brown et al., 2019; 2020a) or assumes an active
query framework with a restricted reward class (Palan
et al., 2019). The classical IRL formulation suffers from
two issues: (1) Learning from expert demonstrations and
learning from preferences/rankings provide complementary
advantages for increasing learning efficiency (Ibarz
et al., 2018; Palan et al., 2019); however, existing IRL
methods that learn from expert demonstrations provide
no mechanisms to incorporate offline preferences and vice
versa. (2) Optimization is difficult, making the learning
sample inefficient (Arenz and Neumann, 2020; Ho and
Ermon, 2016) due to the adversarial min-max game.

Our primary contribution is an algorithmic framework cast-
ing imitation learning as a ranking game which addresses
both of the above issues in IRL. This framework treats
imitation as a ranking game between two agents: a reward
agent and a policy agent—the reward agent learns to satisfy
pairwise performance rankings between different behaviors
represented as state-action or state visitations, while the
policy agent maximizes its performance under the learned
reward function. The ranking game is detailed in Figure 1
and is specified by three components: (1) The dataset of
pairwise behavior rankings, (2) A ranking loss function,
and (3) An optimization strategy. This game encompasses

https://hari-sikchi.github.io/rank-game/
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Figure 1: rank-game: The Policy agent maximizes the reward
function by interacting with the environment. The Reward agent
satisfies a set of behavior rankings obtained from various sources:
generated by the policy agent (vanilla), automatically generated
(auto), or offline annotated rankings obtained from a human or
offline dataset (pref). Treating this game in the Stackelberg frame-
work leads to either Policy being a leader and Reward being a
follower, or vice-versa.

a large subset of both inverse reinforcement learning (IRL)
methods and methods which learn from suboptimal offline
preferences. Popular IRL methods such as GAIL, AIRL,
f -MAX (Ho and Ermon, 2016; Ghasemipour et al., 2020;
Ke et al., 2021) are instantiations of this ranking game in
which rankings are given only between the learning agent
and the expert, and a gradient descent ascent (GDA) opti-
mization strategy is used with a ranking loss that maximizes
the performance gap between the behavior rankings.

The ranking loss used by the prior IRL approaches is specific
to the comparison of optimal (expert) vs. suboptimal (agent)
data, and precludes incorporation of comparisons among
suboptimal behaviors. In this work, we instantiate the rank-
ing game by proposing a new ranking loss (Lk) that facil-
itates incorporation of rankings over suboptimal trajectories
for reward learning. Our theoretical analysis reveals that
the proposed ranking loss results in a bounded performance
gap with the expert that depends on a controllable hyperpa-
rameter. Our ranking loss can also ease policy optimization
by supporting data augmentation to make the reward land-
scape smooth and allowing control over the learned reward
scale. Finally, viewing our ranking game in the Stackel-
berg game framework (see Section 3)—an efficient setup for
solving general-sum games—we obtain two algorithms with
complementary benefits in non-stationary environments de-
pending on which agent is set to be the leader.

In summary, this paper formulates a new framework
rank-game for imitation learning that allows us to view
learning from preferences and demonstrations under a
unified perspective. We instantiate the framework with
a principled ranking loss that can naturally incorporate
rankings provided by diverse sources. Finally, by incorpo-
rating additional rankings—auto-generated or offline—our
method: (a) outperforms state-of-the-art methods for
imitation learning in several MuJoCo simulated domains
by a significant margin and (b) solves complex tasks like
imitating to reorient a pen with dextrous manipulation using
only a few observation trajectories that none of the previous

LfO baselines can solve.

2. Related Work
Imitation learning methods are broadly divided into two cat-
egories: Behavioral cloning (Pomerleau, 1991; Ross et al.,
2011) and Inverse Reinforcement Learning (IRL) (Ng et al.,
2000; Abbeel and Ng, 2004; Ziebart et al., 2008; Finn et al.,
2016; Fu et al., 2017; Ho and Ermon, 2016; Ghasemipour
et al., 2020). Our work focuses on developing a new frame-
work in the setting of IRL through the lens of ranking. Ta-
ble 2 shows a comparison of the proposed rank-game
method to prior works.

Classical Imitation Game for IRL: The classical imitation
game for IRL aims to solve the adversarial min-max
problem of finding a policy that minimizes the worst-case
performance gap between the agent and the expert. A
number of previous works (Ghasemipour et al., 2020;
Swamy et al., 2021; Ke et al., 2021) have focused on
analyzing the properties of this min-max game and its
relation to divergence minimization. Under some additional
regularization, this min-max objective can be understood as
minimizing a certain f -divergence (Ho and Ermon, 2016;
Ghasemipour et al., 2020; Ke et al., 2021) between the agent
and expert state-action visitation. More recently, Swamy
et al. (2021) showed that all forms of imitation learning
(BC and IRL) can be understood as performing moment
matching under differing assumptions. In this work, we
present a new perspective on imitation in which the reward
function is learned using a dataset of behavior comparisons,
generalizing previous IRL methods that learn from expert
demonstrations and additionally giving the flexibility to
incorporate rankings over suboptimal behaviors.

Learning from Preferences and Suboptimal Data: Learn-
ing from preferences and suboptimal data is important when
expert data is limited or hard to obtain. Preferences (Akrour
et al., 2011; Wilson et al., 2012; Sadigh et al., 2017; Chris-
tiano et al., 2017; Palan et al., 2019; Cui et al., 2021) have
the advantage of providing guidance in situations expert
might not get into, and in the limit provides full ordering
over trajectories which expert data cannot. A previous line
of work (Brown et al., 2019; 2020b;a; Chen et al., 2020) has
studied this setting and demonstrated that offline rankings
over suboptimal behaviors can be effectively leveraged to
learn a reward function. (Christiano et al., 2017; Palan et al.,
2019; Ibarz et al., 2018) studied the question of learning
from preferences in the setting when a human is available
to provide online preferences1 (active queries), while (Palan
et al., 2019) additionally assumed the reward to be linear
in known features. Our work makes no such assumptions
and allows for integrating offline preferences and expert

1We will use preferences and ranking interchangebly
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demonstrations under a common framework.

3. Background
We consider a learning agent in a Markov Decision Process
(MDP) (Puterman, 2014; Sutton and Barto, 2018) which
can be defined as a tuple:M = (S,A, P,R, γ, ρ0), where
S and A are the state and action spaces; P is the state tran-
sition probability function, with P (s′|s, a) indicating the
probability of transitioning from s to s′ when taking action
a; R : S × A → R is the reward function bounded in
[0, Rmax]; We consider MDPs with infinite horizon, with
the discount factor γ ∈ [0, 1], though our results extend to
finite horizons as well; p0 is the initial state distribution. We
use Π andR to denote the space of policies and reward func-
tions respectively. A reinforcement learning agent aims to
find a policy π : S → A that maximizes its expected return,
J(R;π) = 1

1−γE(s,a)∼ρπ(s,a)[R(s, a)], where ρπ(s, a) is
the stationary state-action distribution induced by π. In
imitation learning, we are provided with samples from the
state-action visitation of the expert ρπE (s, a) but the reward
function of the expert, denoted by Rgt, is unknown. We will
use ρE(s, a) as a shorthand for ρπE (s, a).

Classical Imitation Learning: The goal of imitation learn-
ing is to close the imitation gap J(Rgt;π

E) − J(Rgt;π)
defined with respect to the unknown expert reward function
Rgt. Several prior works (Ho and Ermon, 2016; Swamy
et al., 2021; Kostrikov et al., 2019; Ni et al., 2020) tackle
this problem by minimizing the imitation gap on all possible
reward hypotheses. This leads to a zero-sum (min-max)
game formulation of imitation learning in which a policy is
optimized with respect to the reward function that induces
the largest imitation gap:

imit-game(π) =

argmin
π∈Π

sup
f∈R

EρE(s,a)[f(s, a)]− Eρπ(s,a)[f(s, a)]. (1)

Here, assuming realizability (Rgt ∈ R), the imitation gap
is upper bounded as follows (∀π):

J(Rgt;π
E)− J(Rgt;π) ≤

sup
f∈R

1

1− γ
[EρE(s,a)[f(s, a)]− Eρπ(s,a)[f(s, a)]]. (2)

Note that, when the performance gap is maximized be-
tween the expert πE and the agent π, we can observe
that the worst-case reward function fπ induces a rank-
ing between policy behaviors based on their performance:
ρE ⪰ ρπ := EρE(s,a)[fπ(s, a)] ≥ Eρπ(s,a)[fπ(s, a)], ∀π.
Therefore, we can regard the above loss function that maxi-
mizes the performance gap (Eq. 2) as an instantiation of the
ranking-loss. We will refer to the implicit ranking between
agent and the expert ρE ⪰ ρπ as vanilla rankings and this
variant of the ranking-loss function as the supremum-loss.

Stackelberg Games: A Stackelberg game (Başar and

Olsder, 1998) is a general-sum game between two agents
where one agent is set to be the leader and the other a
follower. The leader in this game optimizes its objective
under the assumption that the follower will choose the
best response for its own optimization objective. More
concretely, assume there are two players A and B with
parameters θA, θB and corresponding losses LA(θA, θB)
and LB(θA, θB). A Stackelberg game solves the following
bi-level optimization when A is the leader and B is
the follower: minθA LA(θA, θ

∗
B(θA)) s.t θ∗B(θA) =

argminθ LB(θA, θ). (Rajeswaran et al., 2020) showed
that casting model-based RL as an approximate Stack-
elberg game leads to performance benefits and reduces
training instability in comparison to the commonly used
GDA (Schäfer and Anandkumar, 2019) and Best Reponse
(BR) (Cesa-Bianchi and Lugosi, 2006) methods. Fiez
et al. (2019); Zheng et al. (2021) prove convergence of
Stackelberg games under smooth player cost functions
and show that they reduce the cycling behavior to find an
equilibrium and allow for better convergence.

4. A Ranking Game for Imitation Learning
In this section, we first formalize the notion of the proposed
two-player general-sum ranking game for imitation learn-
ing. We then propose a practical instantiation of the ranking
game through a novel ranking-loss (Lk). The proposed rank-
ing game gives us the flexibility to incorporate additional
rankings—both auto-generated (a form of data augmenta-
tion mentioned as ‘auto’ in Fig. 1) and offline (‘pref’ in
Fig. 1)—which improves learning efficiency. Finally, we
discuss the Stackelberg formulation for the two-player rank-
ing game and discuss two algorithms that naturally arise
depending on which player is designated as the leader.

4.1. The Two-Player Ranking Game Formulation

We present a new framework, rank-game, for imitation
learning which casts it as a general-sum ranking game be-
tween two players — a reward and a policy.

argmaxπ∈ΠJ(R;π)︸ ︷︷ ︸
Policy Agent

argminR∈RL(Dp;R)︸ ︷︷ ︸
Reward Agent

In this formulation, the policy agent maximizes the reward
by interacting with the environment, and the reward agent
attempts to find a reward function that satisfies a set of
pairwise behavior rankings in the given dataset Dp; a re-
ward function satisfies these rankings if Eρπi [R(s, a)] ≤
Eρπj [R(s, a)], ∀ρπi ⪯ ρπ

j ∈ Dp, where ρπ
i

, ρπ
j

can be
state-action or state vistitations.

The dataset of pairwise behavior rankings Dp can be com-
prised of the implicit ‘vanilla’ rankings between the learning
agent and the expert’s policy behaviors (ρπ ⪯ ρE), giv-
ing us the classical IRL methods when a specific ranking
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loss function – supremum-loss is used (Ho and Ermon,
2016; Ghasemipour et al., 2020; Ke et al., 2021). If rank-
ings are provided between trajectories, they can be reduced
to the equivalent ranking between the corresponding state-
action/state visitations. In the case when Dp comprises
purely of offline trajectory performance rankings then, un-
der a specific ranking loss function (Luce-shepard), the
ranking game reduces to prior reward inference methods
like T-REX (Brown et al., 2019; 2020b;a; Chen et al., 2020).
Thus, the ranking game affords us a broader perspective of
imitation learning, going beyond only using expert demon-
strations.

4.2. Ranking Loss Lk for the Reward Agent

We use a ranking-loss to train the reward function—an
objective that minimizes the distortion (Iyer and Bilmes,
2012) between the ground truth ranking for a pair of entities
{x, y} and rankings induced by a parameterized function
R : X → R for a pair of scalars {R(x), R(y)}. One type
of such a ranking-loss is the supremum-loss in the classical
imitation learning setup.

We propose a class of ranking-loss functions Lk that at-
tempts to induce a performance gap of k ∈ [0, Rmax] for all
behavior preferences in the dataset. Formally, this can be
implemented with the regression loss:

Lk(Dp;R) = E(ρπi ,ρπj
)∼Dp

[
Es,a∼ρπi

[
(R(s, a)− 0)2

]
+ Es,a∼ρπj

[
(R(s, a)− k)2

]]
. (3)

where Dp contains behavior pairs (ρπ
i

, ρπ
j

) with the pre-
specified ranking ρπ

i ⪯ ρπ
j

.

The proposed ranking loss allows for learning bounded re-
wards with user-defined scale k in the agent and the expert
visitations as opposed to prior works in Adversarial Im-
itation Learning (Ho and Ermon, 2016; Fu et al., 2017;
Ghasemipour et al., 2020). Reward scaling has been known
to improve learning efficiency in deep RL; a large reward
scale can make the optimization landscape less smooth (Hen-
derson et al., 2018; Glorot and Bengio, 2010) and a small
scale might make the action-gap small and increase suscep-
tibility to extrapolation errors (Bellemare et al., 2016). In
contrast to the supremum loss, Lk can also naturally incor-
porate rankings provided by additional sources by learning a
reward function satisfying all specified pairwise preferences.
The following theorem characterizes the equilibrium of the
rank-game for imitation learning when Lk is used as the
ranking-loss.

Theorem 4.1. (Performance of the rank-game equi-
librium pair) Consider an equilibrium of the imitation
rank-game (π̂, R̂), such that the ranking loss Lk gen-
eralization error is bounded by 2R2

maxϵr and the policy
is near-optimal with J(R̂; π̂) ≥ J(R̂;π) − ϵπ ∀π, then at

this equilibrium pair under the expert’s unknown reward
function Rgt bounded in [0, RE

max]:∣∣J(Rgt, π
E)− J(Rgt, π̂)

∣∣ ≤ 4RE
max

√
(1−γ)ϵπ+4Rmax

√
ϵr

k

1− γ
(4)

If reward is a state-only function and only expert obser-
vations are available, the same bound applies to the LfO
setting.

Proof. We defer the proof to Appendix A.

Comments on Theorem 4.1: The ranking loss trains the
reward function with finite samples using supervised learn-
ing. We can quantify ϵr, the finite sample generalization
error for the reward function, using standard concentration
bounds (Shalev-Shwartz and Ben-David, 2014; Hoeffding,
1994) with high probability. We use ϵπ to denote the policy
optimization error from solving the reinforcement learning
problem. In Deep Reinforcement Learning, this error can
stem as a result of function approximation, biases in value
function update, and finite samples. Accounting for this
error allows us to bring our analysis closer to the real setting.
Note that the performance gap between agent policy and
expert policy depends on the scale of the expert reward func-
tion RE

max. This behavior is expected as the performance
gap arising as a result of differences in behaviors/visitations
of agent policy and expert policy, can be amplified by the
expert’s unknown reward scale. We assume realizability i.e
the expert reward function lies in the agent reward function
class, which ensures that RE

max ≤ Rmax. The performance
bound in Theorem 4.1 is derived in Appendix A by first
proving an intermediate result that demonstrates ρπ̂ and
ρπ

E

are close in a specific f -divergence at the equilibrium,
a bound that does not depend on the unknown expert reward
scale RE

max.

Theoretical properties: We now discuss some theoretical
properties of Lk. Theorem 4.1 shows that rank-game
has an equilibrium with bounded performance gap with the
expert. Second, our derivation for Theorem 4.1 also shows
that — an optimization step by the policy player, under a re-
ward function optimized by the reward player, is equivalent
to minimizing an f -divergence with the expert. Equiva-
lently, at iteration t in Algorithm 3: maxπt Eρπt [R∗

t ] −
EρπE [R∗

t ] = minπt Df (ρ
πt∥ρπE

). We characterize and
elaborate on the regret of this idealized algorithm in Ap-
pendix A. Theorem 4.1 suggests that large values of k, upto
Rmax, can guarantee the agent’s performance is close to
the expert. In practice, we observe intermediate values of k
also preserve imitation equilibrium optimality with a benefit
of promoting sample efficient learning. We attribute this
observation to the effect of reward scaling described earlier.
We validate this observation further in Appendix D.9.
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rank-game naturally extends to the LfO regime under
a state-only reward function where Theorem 4.1 results
in a divergence bound between state-visitations of the
expert and the agent. A state-only reward function is also
a sufficient and necessary condition to ensure that we learn
a dynamics-disentangled reward function (Fu et al., 2017).

Lk can incorporate additional preferences that can help
learn a regularized/shaped reward function that provides
better guidance for policy optimization, reducing the explo-
ration burden and increasing sample efficiency for IRL. A
better-guided policy optimization is also expected to incur a
lower ϵπ . However, augmenting the ranking dataset can lead
to decrease in the intended performance gap (keff < k)
between the agent and the expert (Appendix A). This can
loosen the bound in Eq 4 and lead to sub-optimal imitation
learning. We hypothesize that given informative prefer-
ences, decreased ϵπ can compensate potentially decreased
intended performance gap keff to ensure near optimal imi-
tation. In our experiments, we observe this hypothesis holds
true; we enjoy sample efficiency benefits without losing
any asymptotic performance. To leverage these benefits,
we present two methods for augmenting the ranking dataset
below and defer the implementation details to Appendix B.

5. Experimental Results
We compare rank-game against state-of-the-art LfO and
LfD approaches on MuJoCo benchmarks having continuous
state and action spaces. The LfO setting is more challenging
since no actions are available, and is a crucial imitation
learning problem that can be used in cases where action
modalities differ between the expert and the agent, such
as in robot learning. We focus on the LfO setting in this
section and defer the LfD experiments to Appendix D.2.
We denote the imitation learning algorithms that use the
proposed ranking-loss Lk from Section 4.2 as RANK-{PAL,
RAL}. We refer to the rank-game variants which use
automatically generated rankings and offline preferences as
(auto) and (pref) respectively following Section 4.2. In all
our methods, we rely on an off-policy model-free algorithm,
Soft Actor-Critic (SAC) (Haarnoja et al., 2018), for updating
the policy agent (in step 5 of Algorithm 3).

We design experiments to answer the following questions:

1. Asymptotic Performance and Sample Efficiency: Is our
method able to achieve near-expert performance given
a limited number (one) of expert observations? Can our
method learn using fewer environment interactions than
prior state-of-the-art imitation learning (LfO) methods?

2. Utility of preferences for imitation learning: Current LfO
methods struggle to solve a number of complex manipu-
lation tasks with sparse success signals. Can we leverage

offline annotated preferences through rank-game in
such environments to achieve near-expert performance?

3. Choosing between PAL and RAL methods: Can we char-
acterize the benefits and pitfalls of each method, and
determine when one method is preferable over the other?

4. Ablations for the method components: Can we establish
the importance of hyperparameters and design decisions
in our experiments?

Baselines: We compare RANK-PAL and RANK-RAL
against 6 representative LfO approaches that covers a spec-
trum of on-policy and off-policy model-free methods from
prior work: GAIfO (Torabi et al., 2018b; Ho and Ermon,
2016), DACfO (Kostrikov et al., 2018), BCO (Torabi
et al., 2018a), f -IRL (Ni et al., 2020) and recently pro-
posed OPOLO (Zhu et al., 2020b) and IQLearn (Garg et al.,
2021). We do not assume access to expert actions in this
setting. Our LfD experiments compare to the IQLearn (Garg
et al., 2021), DAC (Kostrikov et al., 2018) and BC baselines.
Detailed description about the environments and baselines
can be found in Appendix C.

5.1. Asymptotic Performance and Sample Efficiency

In this section, we compare RANK-PAL(auto) and
RANK-RAL(auto) to baselines on a set of MuJoCo
locomotion tasks of varying complexities: Swimmer-v2,
Hopper-v2, HalfCheetah-v2, Walker2d-v2,
Ant-v2 and Humanoid-v2. In this experiment, we
provide one expert trajectory for all methods and do not
assume access to any offline annotated rankings.

5.2. Asymptotic Performance and Sample Efficiency

In this section, we compare RANK-PAL(auto) and
RANK-RAL(auto) to baselines on a set of MuJoCo
locomotion tasks of varying complexities: Swimmer-v2,
Hopper-v2, HalfCheetah-v2, Walker2d-v2,
Ant-v2 and Humanoid-v2. In this experiment, we
provide one expert trajectory for all methods and do not
assume access to any offline annotated rankings. We
used the raw state as the feature for feature interpolations
(i.e. ϕ = I) in rank-game methods with automatically
generated rankings (auto).

Asymptotic Performance: Table 1 shows that both
rank-game methods are able to reach near-expert asymp-
totic performance with a single expert trajectory. BCO
shows poor performance which can be attributed to the com-
pounding error problem arising from its behavior cloning
strategy. GAIfO and DACfO use GDA for optimization with
a supremum loss and show high variance in their asymp-
totic performance whereas rank-game methods are more
stable and low-variance.
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Env Hopper HalfCheetah Walker Ant Humanoid
BCO 20.10±2.15 5.12±3.82 4.00±1.25 12.80±1.26 3.90±1.24
GaIFO 81.13± 9.99 13.54±7.24 83.83±2.55 20.10±24.41 3.93±1.81
DACfO 94.73±3.63 85.03±5.09 54.70±44.64 86.45±1.67 19.31±32.19
f -IRL 97.45± 0.61 96.06±4.63 101.16±1.25 71.18±19.80 77.93±6.372
OPOLO 89.56±5.46 88.92±3.20 79.19±24.35 93.37± 3.78 24.87±17.04
RANK-PAL(ours) 87.14± 16.14 94.05±3.59 93.88±0.72 98.93±1.83 96.84±3.28
RANK-RAL(ours) 99.34±0.20 101.14±7.45 93.24±1.25 93.21±2.98 94.45±4.13
Expert 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0
(|S|, |A|) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 1: Asymptotic normalized performance of LfO methods at
2 million timesteps on MuJoCo locomotion tasks. The standard
deviation is calculated with 5 different runs each averaging over 10
trajectory returns. For unnormalized score and more details, check
Appendix D. We omit IQlearn due to poor performance.

Sample Efficiency: Figure 6 shows that RANK-RAL and
RANK-PAL are among the most sample efficient methods
for the LfO setting, outperforming the recent state-of-the-art
method OPOLO (Zhu et al., 2020b) by a significant margin.
We notice that IQLearn fails to learn in the LfO setting.
This experiment demonstrates the benefit of the combined
improvements of the proposed ranking-loss with automat-
ically generated rankings. Our method is also simpler to
implement than OPOLO, as we require fewer lines of code
changes on top of SAC and need to maintain fewer param-
eterized networks compared to OPOLO which requires an
additional inverse action model to regularize learning.

5.3. Utility of Preferences in Imitation

Our experiments on complex manipulation environments—
door opening with a parallel-jaw gripper (Zhu et al., 2020a)
and pen manipulation with a dexterous adroit hand (Ra-
jeswaran et al., 2017) – reveal that none of the prior LfO
methods are able to imitate the expert even under increasing
amounts of expert data. This failure of LfO methods can
be potentially attributed to the exploration requirements of
LfO compared to LfD (Kidambi et al., 2021), coupled with
the sparse successes encountered in these tasks, leading to
poorly guided policy gradients.

In these experiments, we show that rank-game can
incorporate additional information in the form of offline
annotated rankings to guide the agent in solving such tasks.
These offline rankings are obtained by uniformly sampling
a small set of trajectories (10) from the replay buffer of
SAC (Haarnoja et al., 2018) labeled with a ground truth
reward function. We use a weighted ranking loss (pref)
from Section 4.2.

Figure 2 shows that RANK-PAL/RAL(pref) method lever-
aging offline ranking is the only method that can solve
these tasks, whereas prior LfO methods and RANK-
PAL/RAL(auto) with automatically generated rankings
struggle even after a large amount of training. We also
point out that T-REX, an offline method that learns using
the preferences grounded by expert is unable to achieve
near-expert performance, thereby highlighting the benefits
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Figure 2: Offline annotated preferences can help solve LfO tasks in
the complex manipulation environments Pen-v0 and Door, whereas
prior LfO methods fail. Black dotted line shows asymptotic perfor-
mance of RANK-PAL (auto) method.

of learning online with expert demonstrations alongside a
set of offline preferences.

Ablation of Method Components: Appendix D contains
eight additional experiments to study the importance of hy-
perparameters and design decisions. Our ablations validate
the importance of using automatically generated rankings,
the benefit of ranking loss over supremum loss, and sensitiv-
ity to hyperparameters like the intended performance gap
k, policy iterations, and the reward regularizer. We find that
key improvements in learning efficiency are driven by us-
ing the proposed ranking loss, controlling the reward range,
and the reward/policy update frequency in the Stackelberg
framework. In Figure 16, we also analyze the performance
of rank-game with a varying number of expert trajecto-
ries and its robustness to noisy offline-annotated preferences.
We find rank-game to consistently outperform baselines
with a varying number of expert trajectories. On Door ma-
nipulation task rank-game is robust to 60 percent noise
in the offline-annotated preferences. Experiments on more
environments and additional details can be found in Ap-
pendix D.

6. Conclusion
In this work, we present a new framework for imitation
learning that treats imitation as a two-player ranking-game
between a policy and a reward function. Unlike prior works
in imitation learning, the ranking game allows incorporation
of rankings over suboptimal behaviors to aid policy learning.
We instantiate the ranking game by proposing a novel rank-
ing loss which guarantees agent’s performance to be close
to expert for imitation learning. Our experiments on simu-
lated MuJoCo tasks reveal that utilizing additional ranking
through our proposed ranking loss leads to improved sample
efficiency for imitation learning, outperforming prior meth-
ods by a significant margin and solving some tasks which
were unsolvable by previous LfO methods.
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A. Rényi. On measures of entropy and information. In Pro-
ceedings of the Fourth Berkeley Symposium on Mathemat-
ical Statistics and Probability, Volume 1: Contributions
to the Theory of Statistics, pages 547–561. University of
California Press, 1961.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages
627–635. JMLR Workshop and Conference Proceedings,
2011.

D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia. Active
preference-based learning of reward functions. 2017.
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A. Theory
We aim to show that rank-game has an equilibrium that bounds the f -divergence between the agent and the expert
(Theorem A.1) in the imitation learning setting. For imitation learning, we have the vanilla implicit ranking ρagent ⪯ ρE ,
between the behavior of agent and the expert. Later, we show that, the bounded f -divergence can be used to bound the
performance gap with the expert under the expert’s unknown reward function using a solution to Vajda’s tight lower bound
(Corollary A.2). Our proof proceeds by first showing that minimizing the empirical ranking loss produces a reward function
that is close to the reward function obtained by the true ranking loss. Then, we show that even under the presence of policy
optimization errors maximizing the obtained reward function will lead to a bounded f -divergence with the expert.

Theorem A.1. (Performance of the rank-game equilibrium pair) Consider an equilibrium of the imitation rank-game
(π̂, R̂), such that R̂ minimizes the empirical ranking-loss for dataset Dπ̂ = {(ρπ̂, ρE)} and the ranking-loss generalization
error is bounded by ϵ′r = 2R2

maxϵr, and the policy π̂ has bounded suboptimality with J(R̂; π̂) ≥ J(R̂;π′)− ϵπ ∀π
′
, then

we have that at this equilibrium pair:

Df

(
ρπ̂(s, a)||ρE(s, a)

)
≤ (1− γ)ϵπ + 4Rmax

√
2ϵr

k
(5)

where Df is an f -divergence with the generator function f(x) = 1−x
1+x (Rényi, 1961; Ali and Silvey, 1966; Csiszár, 1967;

Liese and Vajda, 2006).

Proof. Previous works (Xu et al., 2021; Swamy et al., 2021) characterize the equilibrium in imitation learning based on the
supremum ranking loss/min-max adversarial setting under no error assumption. In this section, we consider the ranking loss
function Lk and derive the equilibrium for the rank-game in presence of reward learning and policy optimization errors.
Lk attempts to explain the rankings between the agent and the expert using their state-action visitations Dπ = {ρπ(s, a),
ρE(s, a)} respectively, by attempting to induce a performance gap of k. With this dataset Dπ, Lk regresses the return of
state or state-action pairs in the expert’s visitation to a scalar k and the agent’s visitation to a value of 0. Thus, we have:

Lk(D;R) = EρE(s,a)

[
(R(s, a)− k)2

]
+ Eρπ(s,a)

[
(R(s, a)− 0)2

]
(6)

The above ranking loss is minimized (∇Lk = 0) pointwise when

R∗(s, a) =
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)
(7)

In practice, we have finite samples from both the expert visitation distribution and the agent distribution so we minimize the
following empirical ranking loss L̂k(D;R):

L̂k(D;R) =

∑
s,a∈ρ̂E [(R(s, a)− k)2]

|ρ̂E |
+

∑
s,a∈ρ̂π [(R(s, a)− 0)2]

|ρ̂π|
(8)

where ρ̂E and ρ̂π are empirical state-action visitations respectively.

From empirical loss function to reward optimality: Since the reward function is trained with supervised learning, we can
quantify the sample error in minimizing the empirical loss using concentration bounds (Shalev-Shwartz and Ben-David,
2014) up to a constant with high probability. Since 0 < R(s, a) < Rmax With high probability,

∀R, |Lk(D;R)− L̂k(D;R)|≤ 2R2
maxϵr (9)

where ϵr is the statistical estimation error that can be bounded using concentration bounds such as Hoeffding’s. Let R∗

belong to the optimal solution for Lk(D;R) and R̂∗ belong to the optimal minimizing solution for L̂k(D;R). Therefore,
we have that,

∀R, L̂k(D; R̂∗) ≤ L̂k(D;R) (10)

Using Eq 9 and Eq 10, we have

∀R, L̂k(D; R̂∗) ≤ L̂k(D;R) (11)

≤ Lk(D;R) + 2R2
maxϵr (12)

≤ Lk(D;R∗) + 2R2
maxϵr (13)
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and similarly

∀R, Lk(D;R∗) ≤ Lk(D;R) (14)

≤ L̂k(D;R) + 2R2
maxϵr (15)

≤ L̂k(D; R̂∗) + 2R2
maxϵr (16)

Eq 13 and Eq 16 implies that Lk(D;R∗) and L̂k(D; R̂∗) are bounded with high probability. i.e

|Lk(D;R∗)− L̂k(D; R̂∗)|≤ 2R2
maxϵr (17)

We will use Eq 17 to show that indeed R̂∗ has a bounded loss compared to R∗.

L̂k(D; R̂∗)− Lk(D;R∗) ≤ 2R2
maxϵr (18)

Lk(D; R̂∗)− 2R2
max − Lk(D;R∗)ϵr ≤ 2R2

maxϵr (19)

Lk(D; R̂∗)− Lk(D;R∗) ≤ 4R2
maxϵr (20)

We consider the tabular MDP setting and overload R to denote a vector of reward values for the entire state-action space of
size |S × A|. Using the Taylor series expansion for loss function Lk, we have:

Lk(D; R̂∗)− Lk(D;R∗) ≤ 4R2
maxϵr (21)

Lk(D;R∗) + ⟨∇R∗Lk(D;R∗), R̂∗ −R∗⟩
+0.5(R̂∗ −R∗)TH(R̂∗ −R∗)− Lk(D;R∗) ≤ 4R2

maxϵr (22)

(R̂∗ −R∗)TH(R̂∗ −R∗) ≤ 8R2
maxϵr (23)

where H denotes the hessian for the loss function w.r.t R and is given by H = P ρπ

+ P ρE

where P ρ is a matrix of size
|S × A|×|S × A| with ρ vector of visitations as its diagonal and zero elsewhere.

(R̂∗ −R∗)TH(R̂∗ −R∗) ≤ 8R2
maxϵr (24)

Es∼ρπ

[
(R̂∗(s, a)−R∗(s, a))2

]
+ Es∼ρE

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr (25)

Since both terms in the LHS are positive we have Es,a∼ρπ

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr

and Es,a∼ρE

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr. Applying Jensen’s inequality, we further have

(Es,a∼ρπ

[
R̂∗(s, a)−R∗(s, a)

]
)2 ≤ 8R2

maxϵr and (Es,a∼ρE

[
R̂∗(s, a)−R∗(s, a)

]
)2 ≤ 8R2

maxϵr. Hence,∣∣∣Es,a∼ρπ

[
R̂∗(s, a)−R∗(s, a)

]∣∣∣ ≤ Rmax

√
8ϵr , and (26)∣∣∣Es,a∼ρE

[
R̂∗(s, a)−R∗(s, a)

]∣∣∣ ≤ Rmax

√
8ϵr (27)

At this point we have bounded the expected difference between the reward functions obtained from the empirical ranking
loss and the true ranking loss. We will now characterize the equilibrium obtained by learning a policy on the reward function
R̂∗ that is optimal under the empirical ranking loss. Under a policy optimization error of ϵπ we have:

J(R̂∗; π̂) ≥ J(R̂∗;π′)− ϵπ ∀π
′
∈ Π (28)

where J(R;π) denotes the performance of policy π under reward function R.

Taking π
′
= πE , we can reduce the above expression as follows:

J(R̂∗, πE)− J(R̂∗, π̂) ≤ϵπ (29)

1

1− γ

[
EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]]
≤ ϵπ (30)
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Using Eq 26 and Eq 27 we can lower bound EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]
as follows:

EρE(s,a)

[
R̂∗(s, a)

]
≥ EρE(s,a)[R

∗(s, a)]−Rmax

√
8ϵr (31)

Eρπ(s,a)

[
R̂∗(s, a)

]
≤ Eρπ(s,a)[R

∗(s, a)] +Rmax

√
8ϵr (32)

where R∗(s, a) is given by Equation 7.

Subtracting Equation 32 from Equation 31, we have

EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]
≥ EρE(s,a)[R

∗(s, a)]− Eρπ(s,a)[R
∗(s, a)]− 2Rmax

√
8ϵr (33)

Plugging in the lower bound from Equation 33 in Equation 30 we have:

1

1− γ
[EρE(s,a)[R

∗(s, a)]− Eρπ(s,a)[R
∗(s, a)]− 2Rmax

√
8ϵr] ≤ ϵπ (34)

Replacing R∗ using Equation 7 we get,

1

1− γ

[
EρE(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− 2Rmax

√
8ϵr

]
≤ ϵπ (35)

EρE(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
≤ (1− γ)ϵπ + 2Rmax

√
8ϵr (36)

EρE(s,a)

[
(ρE(s, a)− ρπ(s, a))

ρE(s, a) + ρπ(s, a)

]
≤ (1− γ)ϵπ + 2Rmax

√
8ϵr

k
(37)

The convex function f(x) = 1−x
1+x in R+ defines an f -divergence. Under this generator function, the LHS of Equation 37

defines an f -divergence between the state-visitations of the agent ρπ(s, a) and the expert ρE(s, a). Hence, we have that

Df [ρ
π(s, a), ρE(s, a)] ≤ (1− γ)ϵπ + 4Rmax

√
2ϵr

k
(38)

This bound shows that the equilibrium of the ranking game is a near-optimal imitation learning solution when ranking
loss target k trades off effectively with the policy optimization error ϵπ and reward generalization error ϵr. We note
that, since k ≤ Rmax we can get the tightest bound when k = Rmax. Now, in imitation learning both k and Rmax are
tunable hyperparameters. We vary k while keeping k = Rmax and observe in appendix D.9 that this hyperparameter can
significantly affect learning performance.

Corollary A.2. (From f -divergence to performance gap) For the equilibrium of the rank-game (π̂, R̂) as described in
Theorem A.1, we have that the performance gap of the expert policy with π̂ is bounded under the unknown expert’s reward
function (rgt) bounded in [0, RE

max] as follows:

|J(πE , rgt)− J(π̂, rgt)|≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
2ϵr

k

1− γ
(39)

Proof. In Theorem A.1, we show that the equilibrium of rank-game ensures that.the f -divergence of expert visitation and
agent visitation is bounded with the generator function f = 1−x

1+x . First we attempt to find a tight lower bound of our
f -divergence in terms of the total variational distance between the two distributions. Such a bound has been discussed in
previous literature for the usual f -divergences like KL, Hellinger and χ2. This problem of finding a tight lower bound in
terms of variational distance for a general f -divergence was introduced in Vajda (1970) and referred to as Vajda’s tight
lower bound and a solution for arbitrary f -divergences was proposed in Gilardoni (2006). The f -divergence with generator
function f = 1−x

1+x satisfies that f(t) = tf( 1t ) + 2f ′(1)(t− 1) and hence the total variational bound for this f divergence
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takes the form Df ≥ 2−DTV

2 f( 2+DTV

2−DTV
)− f ′(1)DTV . Plugging in the function definition f = 1−x

1+x the inequality simplifies
to:

Df (ρ
π(s, a)∥ρE(s, a)) ≥ (DTV (ρ

π(s, a)∥ρE(s, a))2

4
(40)

We also note an upper bound for this f -divergence in TV distance, sandwiching this particular f -divergence with TV bounds:

Df (ρ
π(s, a)∥ρE(s, a)) = EρE(s,a)

[
ρE(s, a)

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
ρE(s, a)

ρE(s) + ρπ(s, a)

]
(41)

≤
∑

s,a∈S×A

∣∣ρE(s, a)− ρπ(s, a)
∣∣ ∣∣∣∣ ρE(s, a)

ρE(s, a) + ρπ(s, a)

∣∣∣∣ (42)

≤ DTV (ρ
π(s, a)∥ρE(s, a)) (43)

So,

DTV (ρ
π(s, a)∥ρE(s, a)) ≥ Df (ρ

π(s, a)∥ρE(s, a)) ≥ (DTV (ρ
π(s, a)∥ρE(s, a))2

4
(44)

Therefore from Eq 38 we have that,

DTV (ρ
π(s, a)||ρE(s, a)) ≤ 2

√
(1− γ)ϵπ + 4Rmax

√
2ϵr

k
(45)

For any policy π, and experts unknown reward function rgt, J(π, r) = 1
1−γ [Es,a∼ρπ [r(s, a)]]. Therefore,

|J(πE , rgt)− J(π, rgt)| =
∣∣∣∣ 1

1− γ
[Es,a∼ρE [rgt(s, a)]]−

1

1− γ
[Es,a∼ρπ [rgt(s, a)]]

∣∣∣∣ ∀π (46)

=
1

1− γ

∣∣∣∣∣∣
∑

s,a∈S×A
|(ρE − ρπ)rgt(s, a)

∣∣∣∣∣∣ (47)

≤ RE
max

1− γ

∑
s,a∈S×A

∣∣(ρE − ρπ)
∣∣ (48)

≤ 2RE
max

1− γ
DTV (ρE , ρπ) (49)

(50)

where RE
max is the upper bound for the expert’s reward function. Under a worst case expert reward function which assigns

finite reward values to the expert’s visitation and −∞ outside the visitation, even a small mistake (visiting any state outside
the expert’s visitation) by the policy can result in an infinite performance gap between expert and the agent. Thus, this
parameter is decided by the expert and is not in control of the learning agent.

From Eq 45 and Eq 49 we have

|J(πE , rgt)− J(π̂, rgt)|≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
2ϵr

k

1− γ
(51)

Lemma A.3. (Regret bound under finite data assumptions) Let M̂t denote the approximate transition model under the
collected dataset of transitions until iteration t. Assume that the ground truth model M and the reward function are
realizable. Under these assumptions the regret of rank-game at tth iteration:

V πE

M − V πt

M ≤ 2γϵπ
t

mRmax

(1− γ)2
+

4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
ϵr

k
(52)
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where V π
M denotes the performance of policy π under transition dynamics M , ϵπ

t

m is expected model error under policy πt’s
visitation, ρπM is the visitation of policy π in transition dynamics M and ϵstat is the statistical error due to finite expert
samples.

Proof. We use M to denote the ground truth model and M̂t to denote the approximate transition model with collected data
until the tth iteration of rank-game. We are interested in solving the following optimization problem under finite data
assumptions:

max
π

Es,a∼ρπ
M̂t

[
f̂∗
π(s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

π(s, a)]

|ρ̂E |
s.t f̂∗

π = argmin
f

(L̂k(f ;D
π
M̂t

)) (53)

where ρ̂E is the empirical distribution generated from finite expert samples and Dπ
M̂t

= {(ρ̂π
M̂t

, ρ̂EM )}. Using standard
concentration bounds such as Hoeffding’s (Hoeffding, 1994), we can bound the empirical estimate with true estimate ∀π
with high probability: ∣∣∣∣

∑
s,a∈ρ̂E [f∗

π(s, a)]

|ρ̂E |
− Es∼ρE

M
[f∗

π(s, a)]

∣∣∣∣ ≤ ϵstat (54)

Using the concentration bounds and the fact that πt is the solution that maximizes the optimization problem Eq 53 at
t-iteration,

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

πt(s, a)]

|ρ̂E |
≥E

s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

πE (s, a)]

|ρ̂E |
(55)

≥ E
s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
− Es,a∼ρE

M

[
f̂∗
πE (s, a)

]
− ϵstat (56)

f̂∗
πt is the reward function that minimizes the empirical ranking loss L̂k. Let f∗

πt be the solution to the true ranking loss Lk.
As shown previously in Eq 26 and Eq 27, we can bound the expected values of these two quantities with high probability
under agent or expert distribution.

We also have from concentration bound:

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

πt(s, a)]

|ρ̂E |
≤ E

s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
− Es,a∼ρE

M

[
f̂∗
πt(s, a)

]
+ ϵstat (57)

Therefore, combining Eq 57 and Eq 55:

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
− Es,a∼ρE

M

[
f̂∗
πt(s, a)

]
≥ E

s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
− Es,a∼ρE

M

[
f̂∗
πE (s, a)

]
− 2ϵstat (58)

The LHS of the Eq. 58 can be further upper bounded as follows:

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
− Es,a∼ρE

M

[
f̂∗
πt(s, a)

]
≤ E

s,a∼ρπt

M̂t

[f∗
πt(s, a)]− Es,a∼ρE

M
[f∗

πt(s, a)] + 2Rmax

√
8ϵr (59)

= E
s,a∼ρπt

M̂t

[
kρπ

E

M (s, a)

ρπ
E

M (s, a) + ρπ
t

M̂t
(s, a)

]

− Es,a∼ρE
M

[
kρπ

E

M (s, a)

ρπ
E

M (s, a) + ρπ
t

M̂t
(s, a)

]
+ 2Rmax

√
8ϵr (60)

= kE
s,a∼ρπE

M

ρπ
t

M̂t
(s, a)− ρπ

E

M (s, a)

ρπ
t

M̂t
(s, a) + ρπ

E

M (s, a)

+ 2Rmax

√
8ϵr (61)

= −kDf (ρ
πt

M̂t
∥ρπ

E

M ) + 2Rmax

√
8ϵr (62)



A Ranking Game for Imitation Learning

Similarly the RHS of Eq 58 can be further lower bounded as follows:

E
s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
− Es,a∼ρE

M

[
f̂∗
π(s, a)

]
− 2ϵstat (63)

≥ E
s,a∼ρπE

M̂t

[f∗
πE (s, a)]− Es∼ρE

M
[f∗

π(s, a)]− 2ϵstat − 2Rmax

√
8ϵr (64)

= kE
s,a∼ρπE

M

ρπ
E

M̂t
(s, a)− ρπ

E

M (s, a)

ρπ
E

M̂t
(s, a) + ρπ

E

M (s, a)

− 2ϵstat − 2Rmax

√
8ϵr (65)

= −kDf (ρ
E
M̂t
∥ρEM )− 2ϵstat − 2Rmax

√
8ϵr (66)

Plugging the relations obtained (Eq 66 and 62) back in Eq 58, we see that the f -divergence between the agent visitation in
the learned MDP and the expert visitation in the ground truth MDP is bounded by the f -divergence of the expert policy’s
visitation on the learned vs. ground truth environment. We expect this term to be low if the dynamics are accurately learned
at the transitions encountered in visitation of expert.

Df (ρ
πt

M̂t
∥ρπ

E

M ) ≤ Df (ρ
πE

M̂t
∥ρπ

E

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(67)

We can use the total-variation lower bound for this f -divergence to later obtain a performance bound between the policy in
learned MDP and expert in ground-truth MDP.

DTV (ρ
πt

M̂t
∥ρπ

E

M ) ≤ 2
√
Df (ρπ

t

M̂t
∥ρπE

M ) ≤ 2

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(68)

Similar to Corollary A.2, we can further get a performance bound:

|V πE

M − V πt

M̂
|≤ 2Rmax

1− γ
DTV (ρ

πt

M̂t
∥ρπ

E

M ) ≤ 4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(69)

Let the local model error in the visitation of πt be bounded by ϵπ
t

m , i.e Es,a∼ρπt

[
DTV (PM (.|s, a)∥PM̂ (.|s, a))

]
≤ ϵπ

t

m .
Using simulation lemma for local models (Kearns and Singh, 1998; Kakade and Langford, 2002), we have:

|V πt

M − V πt

M̂
|≤ 2γϵπ

t

mRmax

(1− γ)2
(70)

We are interested in bounding the performance of the policy πt in ground-truth MDP rather than the learned MDP.

V πE

M − V πt

M ≤ V πE

M − V πt

M̂
+

4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(71)

≤ 2γϵπ
t

mRmax

(1− γ)2
+

4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(72)

The regret of an algorithm with ranking-loss depends on the accuracy of the approximate transition model at the visitation of
the output policy πt and the expected accuracy of the approximate transition model at the transitions encountered in the
visitation of expert. Using an exploratory policy optimization procedure, the regret grows sublinearly as shown in (Kidambi
et al., 2021). Kidambi et al. (2021) uses an exploration bonus and shows that the RHS in the above regret simplifies to be
information gain and for a number of MDP families the growth rate of information gain is mild.
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Figure 3: Figure shows learned reward function when agent and expert has a visitation shown by pink and black markers respectively.
rank-game (auto) results in smooth reward functions more amenable to gradient-based policy optimization compared to GAIL.

Potential imitation suboptimality with additional rankings

In this section, we consider how additional rankings can affect the intended performance gap as discussed in 4.2. Consider
a tabular MDP setting in which we are given a set of rankings ρπ ⪯ ρ1 ⪯ .. ⪯ ρn ⪯ ρE . In such a case, we regress the
state-action pairs from their respective visitations to [0, k1, k2, ..kn, k] where 0 < k1 < k2.. < kn < k. We will discuss in
Appendix B.1.1 how this regression generalizes Lk and make it computationally more efficient. For this regression, the
optimal reward function that minimizes the ranking loss pointwise is given by:

R∗(s, a) =

∑n
i=1 kiρ

πi

(s, a) + ρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + ρE(s, a)

(73)

We consider a surrogate ranking loss with regression target keff that achieves the same optimal reward when only ρ ⪯ ρE

ranking is given. Therefore: ∑n
i=1 kiρ

i(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
i(s, a) + ρE(s, a)

=
keffρ

E(s, a)

ρE(s, a) + ρπ(s, a)
(74)

keff can be upper bounded as follows:

keff =
ρE(s, a) + ρπ(s, a)

ρE(s, a)

∑n
i=1 kiρ

πi

(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + kρE(s, a)

(75)

≤ ρE(s, a) + ρπ(s, a)

ρE(s, a)

∑n
i=1 kiρ

πi

(s, a) + kρE(s, a)

ρπ(s, a) + ρE(s, a)
(76)

= k +

n∑
i=1

ki
ρπ

i

(s, a)

ρE(s, a)
(77)

keff can be lower bounded by:

keff =
ρE(s, a) + ρπ(s, a)

ρE(s, a)

∑n
i=1 kiρ

πi

(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + ρE(s, a)

(78)

≥ ρE(s, a) + ρπ(s, a)

ρE(s, a)

kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + ρE(s, a)

(79)

=
k

1 +
∑n

i=1 ρπi (s,a)

ρπ(s,a)+ρE(s,a)

(80)

Thus, keff can increase or decrease compared to k after augmenting the ranking dataset. We discuss the consequences of a
decreased k in Section 4.2.
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IL Method Offline Expert Ranking Reward Active Human
Preferences Data Loss Function Query

MaxEntIRL, AdRIL,GAN-GCL,
✗ LfD supremum non-linear ✗GAIL,f -MAX, AIRL

BCO,GAIfO, DACfO,
✗ LfO supremum non-linear ✗OPOLO,f -IRL

TREX, DREX ✓ ✗ Bradley-Terry non-linear ✗
BREX ✓ ✗ Bradley-Terry linear ✗

DemPref ✓ LfO/LfD Bradley-Terry linear ✓
(Ibarz et al., 2018) ✓ LfD Bradley-Terry non-linear ✓
rank-game ✓ LfO/LfD Lk non-linear ✗

Table 2: A summary of IL methods demonstrating the data modalities they can handle (expert data and/or preferences), the ranking-loss
functions they use, the assumptions they make on reward function, and whether they require availability of an external agent to provide
preferences during training. We highlight whether a method enables LfD, LfO, or both when it is able to incorporate expert data.

B. Algorithm Details
B.0.1. GENERATING THE RANKING DATASET

Reward loss w/ automatically generated rankings (auto): In this method, we assume access to the behavior-generating
trajectories in the ranking dataset. A trajectory τ is a sequence of states (LfO) given by [s0, s1, ..sH ] or state-action
pairs (LfD) given by [s0, a0, s1, a1..sH , aH ]. For each pairwise comparison ρi ⪯ ρj present in the dataset, Lk sets the
regression targets for states in ρi to be 0 and for states visited by ρj to be k. Equivalently, we can rewrite minimizing
Lk as regressing an input of trajectory τi to vector 0, and τj to vector k1 where τi, τj are trajectories that generate the
behavior ρi, ρj respectively. We use the comparison ρi ⪯ ρj to generate additional behavior rankings ρi = ρλ0,ij ⪯
ρλ1,ij ⪯ ρλ2,ij .. ⪯ ρλP ,ij ⪯ ρj = ρλP+1,ij where 0 = λ0 < λ1 < λ2 < ... < λP < 1 = λP+1. The behavior ρλp,ij is
obtained by independently sampling the trajectories that generate the behaviors ρi, ρj and taking convex combinations i.e.
τλp,ij = λpτi + (1− λp)τj and their corresponding reward regressions targets are given by kp = λp0 + (1− λp)k1. The
loss function takes the following form:

SLk(D;R) = Eρi,ρj∼D

[
1

P + 2

P+1∑
p=0

Es,a∼ρλp,ij(s,a)

[
(R(s, a)− kp)

2
]]

(81)

This form of data augmentation can be interpreted as mixup (Zhang et al., 2017) regularization in the trajectory space.
Mixup has been shown to improve generalization and adversarial robustness (Guo et al., 2019; Zhang et al., 2017) by
regularizing the first and second order gradients of the parameterized function. Following the general principle of using
a smoothed objective with respect to inputs to obtain effective gradient signals, explicit smoothing in the trajectory-space
can also help reduce the policy optimization error ϵπ. A didactic example showing rewards learned using this method is
shown in Figure 3. In a special case when the expert’s unknown reward function is linear in observations, these rankings
reflect the true underlying rankings of behaviors.

Reward loss w/ offline annotated rankings (pref): Another way of increasing learning efficiency is augmenting the
ranking dataset containing the vanilla ranking ({ρπ ⪯ ρE} := Dπ) with offline annotated rankings (Doffline). These
rankings may be provided by a human observer or obtained using an offline dataset of behaviors with annotated reward
information, similar to the datasets used in offline RL (Fu et al., 2020; Levine et al., 2020). We combine offline rankings by
using a weighted loss between Lk for satisfying vanilla rankings (ρπ ⪯ ρE) and offline rankings, grounded by an expert.
Providing offline rankings alone that are sufficient to explain the reward function of the expert (Brown et al., 2019) is often a
difficult task and the number of offline preferences required depends on the complexity of the environment. In the LfO
setting, learning from an expert’s state visitation alone can be a hard problem due to exploration requirements (Kidambi
et al., 2021). This ranking-loss combines the benefits of using preferences to shape the reward function and guide policy
improvement while using the expert to guarantee near-optimal performance. The weighted loss function for this setting
takes the following form:

Lk(Dπ,Doffline;R) = αLk(Dπ;R) + (1− α) ∗ Lk(Doffline;R) (82)

B.1. Ranking Loss for the Reward Agent

Consider a dataset of behavior rankings D = {(ρ11 ⪯ ρ21), (ρ
1
2 ⪯ ρ22), ...(ρ

1
n ⪯ ρ2n)}, wherein for ρij — i denotes the

comparison index within a pair of policies, j denotes the pair number, and ρ11 ⪯ ρ21 denotes that ρ21 is preferable in
comparison to ρ11 and in turn implies that ρ21 has a higher return. Each pair of behavior comparisons in the dataset are
between the state-action or state visitations. We will restrict our attention to a specific instantiation of the ranking loss (a
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regression loss) that attempts to explain the rankings between each pair of policies present in the dataset by a performance
gap of at least k, i.e. Eρ1 [R(s, a)] ≤ Eρ2 [R(s, a)]− k. Formally, the ranking loss is defined as follows:

min
R

Lk(D;R) = min
R

E(ρ1,ρ2)∼D
[
Es∼ρ1(s,a)

[
(R(s, a)− 0)2

]
+ Es∼ρ2(s,a)

[
(R(s, a)− k)2

]]
(83)

When k is set to 1 (k = 1), this loss function resembles the loss function used for SQIL (Reddy et al., 2019) if fixed rewards
were used instead of learned. Thus, SQIL can be understood as a special case. We also note that a similar ranking loss
function has been previously used for training generative adversarial networks in LS-GAN (Mao et al., 2017).

Our work explores the setting of imitation learning given samples from state or state-action visitation ρE of the expert πE .
We will use πagent

m to denote the mth update of the agent in Algorithm 3. The updated agent generates a new visitation in
the environment which is stored in an empty dataset Donline

m given by Donline
m = {ρπagent

m ⪯ ρπ
E}

B.1.1. REWARD LOSS WITH AUTOMATICALLY GENERATED RANKINGS (AUTO)

The ranking dataset Dp contains pairwise comparison between behaviors ρi ⪯ ρj . First, we assume access to the trajectories
that generate the behaviors, i.e ρi = {τ i1, τ i2...τ in} and ρj = {τ j1 , τ

j
2 ...τ

j
m} In this method we propose to automatically

generate additional rankings using the following procedure: (a) Sample trajectory τ i ∼ ρi and τ j ∼ ρj . Both trajectories are
equal length because of our use of absorbing states (see Appendix C). (b) Generate an interpolation τ ijλp

between trajectories
depending on a parameter λp. A trajectory is a matrix of dimensions H × (|S|+|A|), where H is the horizon length of all
the trajectories.

τ ijλp
= λpτi + (1− λp)τj (84)

These intermediate interpolated trajectories lead to a ranking that matches the ranking under the expert reward function if
the reward function is indeed linear in state features. We further note that τ can also be a trajectory of features rather than
state-action pairs.

Next, we generate regression targets for the interpolated trajectories. For a trajectory τ ijλp
the regression target is given by a

vector λp0 + (1− λp)k1, where vectors 0, 1 are given by [0,0,..0] and [1,1,...,1] of length H respectively. This procedure
can be regarded as a form of mixup (Zhang et al., 2017) in trajectory space. The set of obtained τ ijλp

after expending the

sampling budget forms our behavior ρijλp
.

A generalized and computationally efficient interpolation strategy for rank-game

Once we have generated P interpolated rankings, we effectively have O(P 2) rankings that we can use to augment our
ranking dataset. Using them all naively would incur a high memory burden. Thus, we present another method for achieving
the same objective of using automatically generated rankings in a more efficient and generalized way. For each pairwise
ranking ρi ⪯ ρj in the dataset Dp, we have the following new set of rankings ρi ⪯ ρijλ1

⪯ .. ⪯ ρijλP
⪯ ρj . Using the O(P 2)

rankings in the ranking loss Lk, the ranking loss can be simplified to the following using basic algebraic manipulation:

(P + 1)E(s,a)∼ρj

[
(R(s, a)− k)2

]
+ (P )E(s,a)∼ρij

λP

[
(R(s, a)− k)2

]
+ ..+ (1)E(s,a)∼ρij

λ1

[
(R(s, a)− k)2

]
+(P + 1)E(s,a)∼ρi

[
(R(s, a)− 0)2

]
+ (P )E(s,a)∼ρij

λ1

[
(R(s, a)− 0)2

]
+ ..+ (1)E(s,a)∼ρij

λP

[
(R(s, a)− 0)2

] (85)

The reward function that minimizes the above loss pointwise is given by:

R∗(s, a) =
k[(P + 1)ρj + PρijλP

+ (P − 1)ρijλP−1
+ ..+ ρijλ1

]

(P + 1)(ρj + ρijλP
+ ..+ ρijλ1

+ ρi)
(86)

=
k[ρj + P

P+1ρ
ij
λP

+ P−1
P+1ρ

ij
λP−1

+ ..+ 1
P+1ρ

ij
λ1
]

(ρj + ρijλP
+ ..+ ρijλ1

+ ρi)
(87)

We consider a modification to the ranking loss objective (Equation 83) that increases flexibility in regression targets for
ranking as well as reducing the computational burden from dealing with O(P 2) rankings pairs to O(P ). In this modification
we regress the current agent, the expert, and each of the intermediate interpolants (ρi, ρijλ1

, ..., ρijλP
, ρE) to a fixed scalar
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return (k0, k1, ..., kP+1) where k0 ≤ k1 ≤ ... ≤ kP+1 = k. The optimal reward function for this loss function is given by:

R∗(s, a) =
kp+1ρ

E(s, a) + kpρ
ij
λP

(s, a) + kp−1ρ
ij
λP−1

(s, a) + ..+ k1ρ
ij
λ1
(s, a) + k0ρ

π(s, a)

(ρE(s, a) + ρijλP
(s, a) + ..+ ρijλ1

(s, a) + ρπ)(s, a)
(88)

This modified loss function generalizes Eq 86 and recovers it exactly when [k0, k1.., kP+1] is set to be [0, k 1
P+1 , .., k

P
P+1 , k].

We will call this reward loss function a generalized ranking loss.

Shaping the ranking loss: The generalized ranking loss contains a set of regression targets (k0, k1, ..., kP+1) which
needs to be decided apriori. We propose two strategies for deciding these regression targets.We consider two families of
parameterized mappings: (1) linear in α (kα = α ∗ k) and (2) rate of increase in return exponential in α (dkα

dα ∝ eβα), where
β is the temperature parameter and denote this family by exp-β. We also set kα=0 = 0 (in agent’s visitation) and kα=1 = k
(in expert’s visitation) under the reward function that is bounded in [0, Rmax]. The shaped ranking regression loss, denoted
by SLk(D;R), that induces a performance gap between p+ 2 consecutive rankings (ρi = ρijλ0

, ρijλ1
, ..., ρijλP

, ρj = ρijλP+1
) is

given by:

SLk(D;R) =
1

p+ 2

p+1∑
i=0

Es∼ρij
λi

(s,a)

[
(R(s, a)− ki)

2
]

(89)
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Figure 4: This figure shows the assignment of value kα (intended return value) corresponding to values of α (degree of time-conditional
interpolation between the visitation distribution of the agent and the expert). When the rate of increase is exponential with positive slope,
we have a higher performance gap over comparisons closer to the expert and when the rate of increase is negative, the performance gap is
higher for comparisons closer to the agent.

Figure 4 above shows the flexibility in reward shaping afforded by the two families of parameterized functions. The
temperature parameter β > 0 encourages the initial preferences to have a smaller performance gap than the latter preferences.
Conversely, β < 0 encourages the initial preferences to have a larger performance gap compared to the latter preferences.
We ablate these choices of parameteric functions in Appendix D.5.

B.1.2. REWARD LOSS WITH OFFLINE ANNOTATED RANKINGS (PREF)

Automatically generated rankings are generated without any additional supervision and can be understood as a form of
data augmentation. By contrast, with offline annotated rankings, we are given a fixed dataset of comparisons which is a
form of additional supervision for the reward function. Automatically generated rankings can only help by making the
reward landscape easier to optimize, but offline rankings can help reduce the exploration burden by informing the agent
about counterfactuals that it had no information about. This can, for instance, help the agent avoid unnecessary exploration
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by providing a dense improvement signal. The offline rankings are either provided by a human or extracted from a set of
trajectories for which ground truth reward is known. In our work, we extract offline preferences by uniformly sampling p
trajectories from an offline dataset obtained from a training run of an RL method (SAC) (Haarnoja et al., 2018) with ground
truth reward.

For imitation learning with offline annotated rankings, at every iteration m of Algorithm 3 we have a new dataset of
rankings given by Donline

m = {ρagentm ⪯ ρE} along with a fixed offline dataset containing rankings of the form (Doffline =
{ρ1 ⪯ ρ2... ⪯ ρp}). We always ground the offline preferences by expert’s visitation in our experiments, i.e ρp ⪯ ρE . We
incorporate the offline rankings as a soft constraint in reward learning by combining the ranking loss Lk between the policy
agent and the expert, with a ranking loss Lk or a shaped ranking loss SLk (Equation 89) over offline trajectories:

Loffline
k (Donline,Doffline;R) = αLk(Donline;R) + (1− α) ∗ Lk(Doffline;R) (90)

Here, instead of the consecutive rankings being interpolants, they are offline rankings. The videos attached in the
supplementary show the benefit of using preferences in imitation learning. The policy learned without preferences in the
pen environment drops the pen frequently and in the door environment is unable to successfully open the door.

B.2. Stackelberg Game Instantiation

A Stackelberg game view of optimizing the two-player game with a dataset of behavior rankings leads to two methods: PAL
(Policy as Leader) and RAL (Reward as Leader) (refer Section ??). PAL uses a fast reward update step and we simulate this
step by training the reward function until convergence (using a validation set) on the dataset of rankings. We simulate a slow
update step of the policy by using a few iterations of the SAC (Haarnoja et al., 2018) update for the policy. RAL uses a slow
reward update which we approximate by dataset aggregation — aggregating all the datasets of rankings generated by the
agent in each previous iteration enforces the reward function to update slowly. A fast policy update is simulated by using
more iterations of SAC. Since SAC does not perform well with a high update to environment step ratio, more iterations of
SAC would imply more environment steps under a fixed reward function. This was observed to lead to reduced learning
efficiency, and an intermediate value of SAC updates was observed to perform best (Table 5).

B.2.1. POLICY AS LEADER

Algorithm 1 presents psuedocode for a practical instantiation of the PAL methods - RANK-PAL (vanilla), RANK-PAL
(auto) and RANK-PAL (pref) that we use in our work. Recall that (vanilla) variant uses no additional rankings, whereas
(auto) uses automatically generated rankings and (pref) uses offline annotated ranking.

Algorithm 1 Policy As Leader (PAL) practical instantiation

1: Initialize: Policy network πθ, reward network Rϕ, replay bufferR
2: Hyperparameters: Common: Policy update steps npol, Reward update steps nrew, Performance gap k, empty ranking

dataset Donline, RANK-PAL (auto): number of interpolations P , RANK-PAL(pref): Offline annotated rankings Doffline.
3: for m = 0, 1, 2, . . . do
4: Collect transitions in the environment and add to replay buffer R. Run policy update step: πm

θ = Soft Actor-
Critic(Rm−1

ϕ ;πm−1
θ ) with transitions relabelled with reward obtained from Rm−1

ϕ . // call npol times
5: Add absorbing state/state-actions to all early-terminated trajectories collected in the current npol policy update steps

to make them full horizon and collect in Donline
m . Donline = Donline

m (discard old data).
6: (for RANK-PAL(auto)) Generate interpolations for rankings in the dataset Donline and collect in Donline

auto

7: Reward Update step: // call nrew times

Rm
ϕ =


minLk(Donline;Rm−1

ϕ ), RANK-PAL (vanilla) (Equation 83)
minSLk(Donline

auto ;Rm−1
ϕ ), RANK-PAL (auto) (Equation 89)

minLoffline
k (Donline,Doffline;R), RANK-PAL (pref) (Equation 90)

8: end for
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B.2.2. REWARD AS LEADER

Algorithm 2 presents psuedocode for a practical instantiation of the RAL methods - RANK-RAL (vanilla), RANK-RAL
(auto).

Algorithm 2 Reward As Leader (RAL) practical instantiation

1: Initialize: Policy network πθ, reward network Rϕ, replay bufferR, trajectory buffer D
2: Hyperparameters: Common: Policy update steps npol, Reward update steps nrew, Performance gap k, empty ranking

datasetDonline, RANK-PAL (auto): number of interpolations P , RANK-PAL (pref): Offline annotated rankingsDoffline.
3: for m = 0, 1, 2, . . . do
4: Collect transitions in the environment and add to replay buffer R. Run policy update step: πm

θ = Soft Actor-
Critic(Rm−1

ϕ ;πm−1
θ ) with transitions relabelled with reward obtained from Rm−1

ϕ . // call npol times
5: Add absorbing state/state-actions to all early-terminated trajectories collected in the current npol policy update steps

to make them full horizon and collect in Donline
m . Aggregate data in Donline = Donline

m ∪ Donline.
6: (for RANK-RAL(auto)) Generate interpolations for rankings in the dataset Donline and collect in Donline

auto

7: Reward Update step: // call nrew times

Rm
ϕ =

{
minLk(Donline;Rm−1

ϕ ), RANK-RAL (vanilla) (Equation 83)
minSLk(Donline

auto , Rm−1
ϕ ), RANK-RAL(auto) (Equation 89)

8: end for

Env Swimmer Hopper HalfCheetah Walker Ant Humanoid
BCO 102.76±0.90 20.10±2.15 5.12±3.82 4.00±1.25 12.80±1.26 3.90±1.24
GaiFO 99.04±1.61 81.13± 9.99 13.54±7.24 83.83±2.55 20.10±24.41 3.93±1.81
DACfO 95.09±6.14 94.73±3.63 85.03±5.09 54.70±44.64 86.45±1.67 19.31±32.19
f -IRL 103.89±2.37 97.45± 0.61 96.06±4.63 101.16±1.25 71.18±19.80 77.93±6.372
OPOLO 98.64±0.14 89.56±5.46 88.92±3.20 79.19±24.35 93.37± 3.78 24.87±17.04
IMIT-PAL
(ours)

105.93±3.12 86.47± 7.66 90.65±15.17 75.60±1.90 82.40±9.05 94.49±3.21

IMIT-RAL
(ours)

100.35±3.6 92.34±8.63 96.80±2.45 94.41±2.94 78.06±4.24 91.27±9.33

RANK-
PAL (ours)

98.83±0.09 87.14± 16.14 94.05±3.59 93.88±0.72 98.93±1.83 96.84±3.28

RANK-
RAL (ours)

99.31±1.50 99.34±0.20 101.14±7.45 93.24±1.25 93.21±2.98 94.45±4.13

Expert 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0
(|S|, |A|) (8, 2) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 3: Asymptotic normalized performance of LfO methods at 2 million timesteps on MuJoCo locomotion tasks. The results in this
Table also include evaluations for the IMIT-{PAL, RAL} methods.

C. Implementation and Experiment Details
Environments: Figure 5 shows some of the environments we use in this work. For benchmarking we use 6 MuJoCo
(licensed under CC BY 4.0) locomotion environments. We also test our method on manipulation environments - Door
opening environment from Robosuite (Zhu et al., 2020a) (licensed under MIT License) and the Pen-v0 environment from
mjrl (Rajeswaran et al., 2017) (licensed under Apache License 2.0).

Expert data: For all environments, we obtain expert data by a policy trained until convergence using SAC (Haarnoja et al.,
2018) with ground truth rewards.

Baselines: We compare our proposed methods against 6 representative LfO approaches that cover a spectrum of on-policy
and off-policy, model-free methods from prior work: GAIfO (Torabi et al., 2018b; Ho and Ermon, 2016), DACfO (Kostrikov
et al., 2018), BCO (Torabi et al., 2018a), f -IRL (Ni et al., 2020), OPOLO (Zhu et al., 2020b) and IQ-Learn (Garg et al.,
2021). GAIfO (Torabi et al., 2018b) is a modification of the adversarial GAIL method (Ho and Ermon, 2016), in which the

https://github.com/deepmind/mujoco/blob/main/LICENSE
https://github.com/ARISE-Initiative/robosuite/blob/master/LICENSE
https://github.com/aravindr93/mjrl/blob/master/LICENSE
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Env Swimmer Hopper HalfCheetah Walker Ant Humanoid
BCO 210.22±3.43 721.92±89.89 410.83±238.02 224.58±71.42 704.88±13.49 324.94±44.39

GAIfO 202.66±4.87 2871.47±365.73 1532.57±693.72 4666.31±143.75 1141.66±1400.11 326.69±13.26
DACfO 194.65±14.08 3350.55±141.69 11057.54±407.26 3045.21±2485.33 5112.15±38.01 1165.40±1867.61
f -IRL 212.50±6.43 3446.33±35.66 12527.24±344.95 5630.32±71.35 4200.48±1124.17 4362.46±459.72

OPOLO 210.84±1.31 3168.35±206.26 11576.12±155.09 4407.70±1356.39 5529.44±164.94 1468.90± 1041.853
IMIT-PAL (ours) 216.64±7.95 3059.43±283.85 11806.47± 1750.24 4208.17±107.41 4872.39±480.23 5265.60±287.44
IMIT-RAL (ours) 205.33±8.92 3266.28±318.03 12626.18±54.71 5254.54±165.19 4612.8±192.06 5089.88±621.07

RANK-PAL (ours) 202.24±1.80 3082.98±582.59 12259.06± 206.82 5225.49±42.02 5862.42±47.68 5393.45±291.16
RANK-RAL (ours) 203.20±4.65 3512.67±21.09 13204.49±721.77 5189.51±71.27 5520.14±116.77 5262.96±337.44

Expert 204.6 ± 0 3535.88 ± 0 13051.46 ± 0 5456.91 ± 0 5926.17 ± 0 5565.53 ± 0
(|S|, |A|) (8, 2) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 4: Asymptotic performance of LfO methods at 2 million timesteps on MuJoCo locomotion tasks. The results in this Table also
include evaluations for the IMIT-{PAL, RAL} methods.

Algorithm 3 Meta algorithm: rank-game (vanilla) for imitation
linenosize=

1: Initialize policy π0
θ , reward funtion Rϕ, empty dataset Dπ . empirical expert data ρ̂E

2: for t = 1..T iterations do
3: Collect empirical visitation data ρ̂π

t
θ with πt

θ in the environment. Set Dπ = {(ρ̂π ⪯ ρ̂E)}
4: Train reward Rϕ to satisfy rankings in Dπ using ranking loss Lk in equation 3.
5: Optimize policy under the reward function: πt+1

θ ← argmaxπ′J(Rϕ;π
′)

6: end for

discriminator is trained to distinguish between state-distributions rather than state-action distributions. DAC-fO (Kostrikov
et al., 2018) is an off-policy modification of GAIfO (Torabi et al., 2018b), in which the discriminator distinguishes the expert
states with respect to the entire replay buffer of the agent’s previously visited states, with additional implementation details
such as added absorbing states to early-terminated trajectories. BCO (Torabi et al., 2018a) learns an inverse dynamics model,
iteratively using the state-action-next state visitation in the environment and using it to predict the actions that generate the
expert state trajectory. OPOLO (Zhu et al., 2020b) is a recent method which presents a principled off-policy approach for
imitation learning by minimizing an upper-bound of the state marginal matching objective. IQ-Learn (Garg et al., 2021)
proposes to make imitation learning non-adversarial by directly optimizing the Q-function and removing the need to learn a
reward as a subproblem. All the approaches only have access to expert state-trajectories.

We use the author’s open-source implementations of baselines OPOLO, DACfO, GAIfO, BCO available at https:
//github.com/illidanlab/opolo-code. We use the author-provided hyperparameters (similar to those used
in (Zhu et al., 2020b)) for all MuJoCo locomotion environments. For f -IRL, we use the author implementation available at
https://github.com/twni2016/f-IRL and use the author provided hyperparameters. IQ-Learn was tested on
our expert dataset by following authors implementation found here: https://github.com/Div99/IQ-Learn. We
tested two IQ-Learn loss variants: ’v0’ and ’value’ as found in their hyperparameter configurations and took the best out of
the two runs.

Figure 5: We evaluate rank-game over environments including Hopper-v2, Ant-v2, Humanoid-v2, Door, and Pen-v0.

Policy Optimization: We implement RANK-PAL and RANK-RAL with policy learning using SAC (Haarnoja et al., 2018).
We build upon the SAC code (Achiam, 2018) (https://github.com/openai/spinningup) without changing any hyperparameters.

https://github.com/illidanlab/opolo-code
https://github.com/illidanlab/opolo-code
https://github.com/twni2016/f-IRL
https://github.com/Div99/IQ-Learn
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Reward Learning: For reward learning, we use an MLP parameterized by two hidden layers of 64 dimensions each.
Furthermore, we clip the outputs of the reward network between [−10, 10] range to keep the range of rewards bounded while
also adding an L2 regularization of 0.01. We add absorbing states to early terminated agent trajectories following Kostrikov
et al. (2019). For training the ranking loss until convergence in both update strategies (PAL and RAL), we used evaluation
on a holdout set that is 0.1 the total dataset size as a proxy for convergence.

Data sharing between players: We rely on data sharing between players to utilize the same collected transitions for both
players’ gradient updates. The reward learning objective in RANK-PAL and RANK-RAL requires rolling out the current
policy. This makes using an off-policy routine for training the policy player quite inefficient, since off-policy model-free
algorithms update a policy frequently even when executing a trajectory. To remedy this, we reuse the data collected with a
mixture of policies obtained during the previous off-policy policy learning step for training the reward player. This allows us
to reuse the same data for policy learning as well as reward learning at each iteration.

Ranking loss for reward shaping via offline annotated rankings: In practice for the (pref) setting (Section 4.2), to
increase supervision and prevent overfitting, we augment the offline dataset by regressing the snippets (length l) of each
offline trajectory τ i for behavior ρi to k ∗ l, in addition to regressing the rewards for each state to k. The snippets are
generated as contiguous subsequence from the trajectory, similar to Brown et al. (2019).

C.1. Hyperparameters

Hyperparameters for RANK-{PAL,RAL} (vanilla,auto and pref) methods are shown in Table 5. For RANK-PAL, we
found the following hyperparameters to give best results: npol = H and nrew = (’validation’ or H/b), where H is the
environment horizon (usually set to 1000 for MuJoCo locomotion tasks) and b is the batch size used for the reward update.
For RANK-RAL, we found npol = H and nrew = (’validation’ or |D|/b), where |D| indicates the cumulative size of the
ranking dataset. We found that scaling reward updates proportionally to the size of the dataset also performs well and is a
computationally effective alternative to training the reward until convergence (see Section D.7).

Hyperparameter Value

Policy updates npol H
Reward batch size(b) 1024
Reward gradient updates nrew val or —D—/1024
Reward learning rate 1e-3
Reward clamp range [-10,10]
Reward l2 weight decay 0.0001
Number of interpolations [auto] 5
Reward shaping parameterization [auto] exp-[-1]
Offline rankings loss weight (λ) [pref] 0.3
Snippet length l [pref] 10

Table 5: Common hyperparameters for the RANK-GAME algorithms. Square brackets in the left column indicate which hyperparameters
that are specific to ‘auto’ and ‘pref’ methods.

D. Additional Experiments
D.1. Complete evaluation of LfO with rank-game(auto)

Figure 6 shows a comparison of RANK-PAL(auto) and RANK-RAL(auto) for the LfO setting on the Mujoco benchmark
tasks: Swimmer-v2, Hopper-v2, HalfCheetah-v2, Walker2d-v2, Ant-v2 and Humanoid-v2. This
section provides complete results for Section 5.2 in the main paper.

D.2. Evaluation of LfD with rank-game(auto)

rank-game is a general framework for both LfD(with expert states and actions) and LfO (with only expert
states/observations). We compare performance of rank-game compared to LfD baselines: IQ-Learn (Garg et al., 2021),
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Figure 6: Comparison of performance on OpenAI gym benchmark tasks. The shaded region represents standard deviation across 5 random
runs. RANK-PAL and RANK-RAL substantially outperform the baselines in sample efficiency. Dotted blue line shows the expert’s
performance.

DAC (Kostrikov et al., 2018) and BC (Pomerleau, 1991).

In figure 7, we observe that rank-game is among the most sample efficient methods for learning from demonstrations.
IQlearn shows poor learning performance on some tasks which we suspect is due to the low number of expert trajectories
we use in our experiments compared to the original work. DAC was tuned using the guidelines from Orsini et al. (2021) to
ensure fair comparison.

D.3. Utility of automatically generated rankings in rank-game(auto)

We investigate the question of how much the automatically generated rankings actually help in this experiment. To do that,
we keep all the hyperparameters same and compare RANK-GAME (vanilla) with RANK-GAME (auto). RANK-GAME
(vanilla) uses no additional ranking information and Lk is used as the reward loss.
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Figure 8: RANK-PAL(vanilla) has high variance learning curves with lower sample efficiency compared to RANK-PAL(auto).

Figure 8 shows that in RANK-PAL (auto) has lower variance throughout training (more stable) and is more sample efficient
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Figure 7: Comparison of rank-game methods with baselines in the LfD setting (expert actions are available). RANK-{PAL,RAL} are
competitive to state of the art methods.

compared to RANK-PAL(vanilla).

D.4. Comparison of imit-game and rank-game methods

Imitation learning algorithms, particularly adversarial methods, have a number of implementation components that can
affect learning performance. In this experiment, we aim to further reduce any implementation/hyperparameter gap between
adversarial imitation learning (AIL) methods that are based on the supremum-loss (described in section 3) function and
rank-game to bring out the obtained algorithmic improvements. To achieve this, we swap out the ranking loss Lk based
on regression with a supremum-loss and call this method IMIT-{PAL,RAL}. This results in all the other hyperparameters
such as batch size, reward clipping, policy and reward learning iterations, and optimizer iterations to be held constant across
experiments.

We present a comparison of RANK-{PAL, RAL} and IMIT-{PAL, RAL} in terms of asymptotic performance in Table 3 and
their sample efficiency in Figure 9. Note that Table 3 shows normalized returns that are mean-shifted and scaled between
[0-100] using the performance of a uniform random policy and the expert policy. The expert returns are given in Table 4
and we use the following performance values from random policies for normalization: { Hopper= 13.828, HalfCheetah=
−271.93, Walker= 1.53, Ant= −62.01, Humanoid= 112.19}. Table 4 shows unnormalized asymptotic performance of the
different methods.

In terms of sample efficiency, we notice IMIT-{PAL, RAL} methods compare favorably to other regularized supremum-loss
counterparts like GAIL and DAC but are outperformed by RANK-{PAL, RAL} (auto) methods. We hypothesize that better
learning efficiency in Lk compared to supremum-loss is due to regression to fixed targets being a simpler optimization than
maximizing the expected performance gap under two distributions.

D.5. Effect of parameterized reward shaping in rank-game (auto)

We experiment with different ways of shaping the regression targets (Appendix B) for automatically generated interpolations
in RANK-GAME (auto) in Figure 10. In the two left-most plots for RANK-PAL (auto), we see that reward shaping
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Figure 9: Comparison of performance on OpenAI gym benchmark tasks. Specifically, we seek to compare RANK-{PAL, RAL} methods
to IMIT-{PAL, RAL} methods and IMIT-{PAL, RAL} methods to their non-Stackelberg counterparts GAIfO and DACfO. The shaded
region represents standard deviation across 5 random runs. RANK-PAL and RANK-RAL substantially outperform the baselines in sample
efficiency and IMIT-{PAL, RAL} is competitive to the strongest prior baseline OPOLO.

instantiations (exponential with negative temperature) which learns a higher performance gap for pairs of interpolants closer
to the agent lead to higher sample efficiency. We note that decreasing the temperature too much leads to a fall in sample
efficiency. The same behavior is observed in RANK-RAL (two right-most plots) methods but we find them to be more robust
to parameterized shaping than PAL methods. We use the following interpolation scheme: exponential with temperature=−1
for our experiments in the main paper.
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Figure 10: The two left-most plots show the effect of reward shaping in RANK-PAL (auto) methods using linear and exponential shaping
functions. The two right-most plots show the same effect of reward shaping in RANK-RAL (auto) methods. Reward shaping instantiations
which induce a higher performance gap between pairs of interpolants closer to the agent perform better and RAL is more robust to reward
shaping variants than PAL.
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D.6. On the rank preserving nature of SLk

Figure 11: Increasing the state size of the domain increases the rank consistency afforded by SLk and increasing the number of rankings
decreases the rank consistency.

The ranking loss SLk (Appendix B, Eq 89) regresses the ρi, ρj and each of the intermediate interpolants (ρi =
ρijλ0

, ρijλ1
, ..., ρijλP

, ρj = ρijλP+1
) to fixed scalar returns (k0, k1, ..., kP+1) where k0 ≤ k1 ≤ ... ≤ kp+1 = k. The rank-

ing loss SLk is given by:

SLk(D;R) =
1

p+ 2

P+1∑
i=0

Es∼ρij
λi

(s,a)

[
(R(s, a)− ki)

2
]

(91)

SLk provides a dense reward assignment for the reward agent but does not guarantee that minimizing SLk would lead to
the performance ordering between rankings, i.e Eρ1 [f(s)] < Eρ2 [f(s)] < Eρ3 [f(s)] < .. < EρP+1 [f(s)]. An ideal loss
function for this task regresses the expected return under each behavior to scalar values indicative of ranking, but needs to
solve a complex credit assignment problem. Formally, we can write the ideal loss function for reward agent as follows

SLideal
k (D;R) =

1

p+ 2

P+1∑
i=0

[Es∼ρij
λi

(s,a)[R(s, a)]− ki]
2 (92)

We note that the SLk upper bounds SLideal
k using Jensen’s inequality and thus is a reasonable target for optimization.

In this section we wish to further understand if SLk has a rank-preserving policy. SLk is a family of loss function for
ranking that assigns a scalar reward value for each states of a particular state visitation corresponding to its ranking.
Ideally, given a ranking between behaviors ρ0 ⪯ ρ1 ⪯ ρ2... ⪯ ρP+1 we aim to learn a reward function f that satisfies
Eρ0 [f(s)] < Eρ1 [f(s)] < Eρ2 [f(s)] < .. < EρP+1 [f(s)]. We empirically test the ability of the ranking loss function SLk

to facilitate the desired behavior in performance ranking. We consider a finite state space S and number of rankings P .
We uniformly sample P + 1 possible state visitations and the intermediate regression targets {ki}ni=1 s.t ki ≤ ki+1. To
evaluate the rank-preserving ability of our proposed loss function we study the fraction of comparisons the optimization
solution that minimizes SLk is able to get correct. Note that P + 1 sequential ranking induces P (P + 1)/2 comparisons.

Figure 11 shows that with large state spaces SLk is almost rank preserving and the rank preserving ability degrades with
increasing number of rankings to be satisfied.

D.7. Stackelberg game design

We consider the sensitivity of the two-player game with respect to policy update iterations and reward update iterations.
Our results (Figure 12) draw analogous conclusions to Rajeswaran et al. (2020) where we find that using a validation
loss for training reward function on on-policy and aggregate dataset in PAL and RAL respectively works best. Despite its
good performance, validation loss based training can be wall-clock inefficient. We found a substitute method to perform
similarly while giving improvements in wall-clock time - make number of iterations of reward learning scale proportionally
to the dataset set size. A proportionality constant of (1/batch-size) worked as well as validation loss in practice. Contrary
to Rajeswaran et al. (2020) where the policy is updated by obtaining policy visitation samples from the learned model, our
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ability to increase the policy update is hindered due to unavailability of a learned model and requires costly real-environment
interactions. We tune the policy iteration parameter (Figure 13) and observe the increasing the number of policy updates can
hinder learning performance.
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Figure 12: The left two plots use PAL strategy and the right two plots use RAL strategy. Reward learning using a validation loss on a
holdout set leads to improved learning performance compared to hand designed reward learning iterations.
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Figure 13: Small number of policy updates are useful for good learning performance in the PAL setting here.

D.8. Sensitivity of reward range for the ranking loss Lk

In Section 4.2, we discussed how the scale of learned reward function can have an effect on learning performance. We
validate the hypothesis here, where we set Rmax = k and test the learning performance of RANK-PAL (auto) on various
different values of k. Our results in figure D.9 show that the hyperparameter k has a large effect on learning performance
and intermediate values of k works well with k = 10 performing the best.
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Figure 14: Intermediate values of k work best in practice.
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D.9. Effect of regularizer for rank-game

rank-game(auto) incorporates automatically generated rankings which can be understood as a form of regularization,
particularly mixup Zhang et al. (2017) in trajectory space. In this experiment, we work in the PAL setting with ranking loss
Lk and compare the performances of other regularizers: Weight-decay (wd), Spectral normalization (sn), state-based mixup
to (auto). Contrary to trajectory based mixup (auto) where we interpolate trajectories, in state-based mixup we sample states
randomly from the behaviors which are pairwise ranked and interpolate between them.
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Figure 15: (auto) regularization outperforms other forms of regularization in rank-game

Figure 15 shows learning with (auto) regularizer is more efficient and stable compared to other regularizers.

D.10. Ablation analysis summary
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Figure 16: (a) RANK-PAL outperforms other methods with varying number of expert trajectories. Error bars denote standard deviation.
(b) On Door-v0 environment, RANK-PAL(pref) is robust to at least 60 percent noisy preferences.

We have ablated the following components for our method: Automatically-generated rankings D.3, Ranking loss D.4,
Parameterized reward shaping D.5, Stackelberg game design D.7 and range of the bounded reward D.9. Our analysis above
(Figure 9,14 and 12) shows quantitatively that the key improvements over baselines are driven by using the proposed ranking
loss, controlling the reward range and the reward/policy update frequency in the Stackelberg framework. Parameterized
reward shaping (best hyperparameter : exp -1 compare to unshaped/linear shaping) and automatically-generated rankings
contribute to relatively small improvements. We note that a single hyperparameter combination (Table 5) works well across
all tasks demonstrating robustness of the method to environment changes.
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D.11. Varying number of expert trajectories for imitation learning

r0.4

0 1 2 3

Timesteps 1e5

0

200

400

A
ve

ra
ge

 R
ew

ar
d

Door-v0

noise=0.0 noise=0.2 noise=0.4 noise=0.6 noise=0.8

In the main text, we considered experiment settings where the agent is provided with only 1 expert trajectory. In this
section, we test how our methods performs compared to baselines as we increase the number of available expert observation
trajectories. We note that these experiments are in the LfO setting. Figure 17 shows that RANK-GAME compares favorably
to other methods for varying number of expert demonstrations/observations trajectories.

D.12. Robustness to noisy preferences

In this section, we investigate the effect of noisy preferences on imitation learning. We consider the setting of Section 5.3
where we attempt to solve hard exploration problems for LfO setting by leveraging trajectory snippet comparisons. In this
experiment, we consider a setting similar to (Brown et al., 2019) where we inject varying level of noise, i.e flip x% of
trajectory snippet at random. Figure D.9 shows that RANK-PAL(pref) is robust in learning near-expert behavior upto 60
percent noise in the Door environment. We hypothesize that this robustness to noise is possible because the preferences are
only used to shape reward functions and does not change the optimality of expert.

D.13. Learning purely from offline rankings in manipulation environments
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Figure 18: Testing with 10, 20 and 50 suboptimal preferences uniformly sampled from a replay buffer of SAC trained from pre-specified
reward we see that TREX is not able to solve these tasks. The black dotted line shows asymptotic performance of RANK-PAL (auto)
method.

In section 5.3, we saw that offline annotated preferences can help solve complex manipulation tasks via imitation. Now, we
compare with the ability of a prior method—TREX (Brown et al., 2019) that learns purely from suboptimal preferences—
under increasing numbers of preferences. We test on two manipulation tasks: Pen-v0 and Door-v0 given varying number of
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suboptimal preferences: 10, 20, 50. These preferences are uniformly sampled from a replay buffer of SAC trained until
convergence under a pre-specified reward, obtained via D4RL (licensed under CC BY) .We observe in Figure 18 that T-REX
is unable to solve these tasks under any selected number of suboptimal preferences.

https://github.com/rail-berkeley/d4rl/blob/master/LICENSE
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Figure 17: Performance analysis of different algorithms in the LfO setting with varying number of expert trajectories. RANK-PAL (auto)
compares favorably to other methods


