
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VISCOT-PRO: ADVANCING VISUAL REASONING WITH
A LARGE-SCALE COMPREHENSIVE VISUAL CHAIN-OF-
THOUGHT DATASET

Anonymous authors
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Does the bird in the 

picture have white and 

solid belly?

Round 1: <Think> The image shows a 

bird standing on a bird net. I need to 

zoom in on the region containing the 

bird’s belly. I find the region of 

interest specified by the bounding box 

[0.510, 0.424, 0.650, 0.615]. <\Think>
Round 2: <Think> From the zoomed-in

figure, I can clearly see the bird has a 

white and solid belly. <Think>

 <Answer> Yes. <\Answer>

Round 1: <Think> The image shows a financial statement 
table. I need to zoom in on the area containing “Segment 

Revenue” and next to the “31st March 2011”. I find the 
region of interest specified by bounding box: [0.050, 
0.125, 0.820, 0.320]. </Think> 
Round 2: <Think> The zoomed-in figure clearly shows 
“Segment Revenue” now. I need to further zoom in on 
the area below it. I find the region of interest specified 
by bounding box:  [0.050, 0.100, 0.520, 0.350]. </Think>
Round 3: <Think> From the zoomed-in figure, I can
clearly see the answer is Tabacco Products. </Think> 
<Answer> Tobacco Products. </Answer> 

Fine-Grained

What object is on the coffee table, to the right of the lamp and beneath the photo?

VisCoT-Pro:

Round 1: <Think> The image shows a curtain room with a coffee table ([0.092, 0.562, 0.430, 0.835], 0.72). There is a 
lamp ([0.103, 0.238, 0.235,0.572], 0.84) positioned on the table. I need to zoom in  on the area containing the table。

I find the area of interest specified by the bounding box [0.091, 0.214, 0.438, 0.836].</Think> 
Round 2: <Think> From the zoomed-in figure , I can clearly see the coffee table but the items on it are not fully 
recognizable.  I need to zoom in again on the area containing the photo and the right corner of the lamp. I find the 
area of interest specified by the bounding box:  [0.519, 0.347, 0.826, 0.679]. </Think>

Round 3: <Think> From the zoomed-in figure, I can see an object beneath the photo that looks like a phone.  However, 
the resolution is too low to be certain. Thus, I call a super-resolution tool to enhance the clarity. </Think>
Round 4: <Think> From the current figure, the object becomes clear. I can now confirm with high confidence that the 

object is indeed a phone. </Think> <Answer> Phone </Answer> 

VisCoT-Pro：

User： User：

What is the first line item 

shown under “Segment 

Revenue”, adjacent to the 

column for “31st March 2011”?

VisCoT-Pro：
Text/ Doc

Spatial-Aware Relation Reasoning

User：

Super Resolution

Figure 1: An MLLM trained on our VisCoT-Pro benchmark emulates a human-like visual reasoning process to
solve a complex query. Instead of naively processing the full image, the model learns a dynamic global-to-local
workflow: it first assesses the entire scene, then iteratively identifies and zooms in on relevant regions to gather
fine-grained evidence. This multi-step, spatially-aware visual Chain-of-Thought enables the model to ground its
reasoning in specific details and solve complex spatial problems that challenge conventional models.

ABSTRACT

Chain-of-Thought (CoT) prompting has emerged as a powerful technique for
eliciting complex reasoning in Large Language Models (LLMs). However, its
potential within multimodal large language models (MLLMs) remains largely
unrealized. A primary bottleneck is the lack of suitable datasets and benchmarks:
existing visual-CoT resources are often limited in scale and diversity, or fail to
capture the human-like, spatially-aware reasoning required for genuine visual
understanding. To address these limitations, we introduce VisCoT-Pro, a large-
scale and comprehensive benchmark designed to advance visual CoT reasoning.
Our benchmark comprises two key components: (1) the main VisCoT-Pro dataset
with 506k examples covering four domains, featuring multi-round, human-like
step-by-step supervision that is substantially larger and more detailed than prior
resources, and (2) VisCoT-Pro-Max, a 165k subset with richer step rationales and
3D grounding via depth-informed annotations, produced with stronger GPT-4.1-
series guidance. We conduct extensive experiments on the state-of-the-art Qwen2.5-
VL model. Training on VisCoT-Pro not only yields substantial improvements in the
model’s intrinsic step-by-step visual reasoning capabilities but also demonstrates
remarkable generalization, significantly boosting performance on existing academic
benchmarks. This highlights our dataset’s ability to equip VLMs with robust,
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transferable reasoning skills, enabling them to better understand and think about
the visual world. We release VisCoT-Pro as a foundational resource, providing the
community with both a high-quality training corpus and a reliable benchmark to
catalyze future research in visual CoT.

1 INTRODUCTION

Recent Multimodal Large Language Models (MLLMs) have achieved remarkable progress in practical
visual understanding, largely by pairing high-capacity language models with powerful visual encoders
through sophisticated alignment pipelines (OpenAI, 2023; Zhu et al., 2023; Yin et al., 2023; Bai
et al., 2023). Foundational models such as LLaVA (Liu et al., 2023b) and its successors, including
InternVL (Chen et al., 2024a), Qwen2.5-VL (Yang et al., 2024), and MiniCPM-V (Yao et al., 2024),
demonstrate state-of-the-art performance across a diverse spectrum of tasks. They excel at visual
question answering (Li et al., 2024a), fine-grained visual grounding (Peng et al., 2024), and optical
character recognition (Zhang et al., 2023), establishing them as powerful and versatile tools for
real-world knowledge access, assistance, and creative work.

However, while MLLM architectures have advanced, their underlying reasoning paradigm often
remains rudimentary. In the unimodal text domain, complex reasoning has been revolutionized
by techniques like Chain-of-Thought (CoT) prompting, which trains models to articulate step-
by-step rationales before arriving at an answer (Wei et al., 2022). This deliberative process has
unlocked dramatic gains in arithmetic, commonsense, and symbolic reasoning by making the model’s
inferential pathway an explicit object of supervision. In stark contrast, the multimodal domain has yet
to experience a similar paradigm shift (Liu et al., 2024b; Shao et al., 2024; Man et al., 2025). Most
MLLMs are still optimized via a direct input-to-answer format, which provides no supervision on
intermediate cognitive steps. This approach encourages models to learn superficial shortcuts, fosters
an over-reliance on spurious linguistic priors, and ultimately limits their potential, leaving them prone
to hallucination when faced with complex, multi-step visual queries (Ke et al., 2025).

We posit that this stagnation is rooted in a fundamental misalignment between the dominant training
paradigms and the process of human cognition. Humans approach detail-oriented visual problems by
first scanning the global scene to form a coarse hypothesis, then iteratively narrowing their attention
to candidate regions for closer inspection. This global-to-local process often involves targeted
manipulations—such as cropping or zooming—to inspect fine details and inter-object spatial relations
until the query is resolved (Qi et al., 2024). While most VLMs acquire the necessary intrinsic skills
for this process (e.g., object grounding, OCR) during pre-training, teaching them to execute this
human-like cognitive workflow is stymied by a foundational bottleneck: the inadequacy of existing
visual reasoning benchmarks. These resources suffer from three critical shortcomings: (1) they
offer insufficient scale and domain coverage, limiting the ability to learn generalizable reasoning
patterns (Zhang et al., 2025b; Man et al., 2025; Sarch et al., 2025); (2) they provide inadequate
supervision for multi-round reasoning, often reducing the complex process to a single static crop
without the necessary stepwise rationales (Li et al., 2024b; Ye et al., 2024; Qi et al., 2024); and
(3) their grounding and QA annotations remain overwhelmingly two-dimensional, neglecting the
depth-aware spatial reasoning essential for understanding the physical world (Shao et al., 2024; Sarch
et al., 2025; Wu et al., 2025). This scarcity of data that faithfully represents the human cognitive
workflow has become a significant barrier, impeding the development of MLLMs that can move
beyond simple perception towards genuine visual cognition.

To address these fundamental challenges, we introduce VisCoT-Pro, a large-scale, comprehensive
benchmark designed to instill human-like, spatially-aware reasoning in MLLMs. Our benchmark
is composed of a broad 506k-example primary dataset and a high-quality 165k-example subset,
VisCoT-Pro-Max, which features richer annotations and more complex reasoning. Our unified data
construction process begins by enriching each image with pseudo-3D signals, combining monocular
depth estimates and semantic segmentation with existing 2D ground-truth boxes. Using these 3D-
aware scene representations, we then prompt powerful MLLMs to generate a multi-round visual CoT
that emulates the human reasoning workflow. For the subset, we leverage stronger GPT-4.1-series
guidance to produce more detailed rationales. Across the entire benchmark, each step provides
a brief scene description, identifies a region of interest for closer inspection, and concludes with
a justifying rationale. This fine-grained supervision is designed to discourage shortcut learning,
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promote a global-to-local "zoom-and-verify" behavior, and enhance model generalization. Crucially,
we introduce explicit 3D grounding—a feature most prominent in our subset, by training the model
to exploit ordinal depth and spatial relations directly from a single image, thereby strengthening its
depth-aware reasoning capabilities.

In summary, this paper makes the following key contributions:

• We construct and release VisCoT-Pro, a new large-scale dataset of 506k examples across four
diverse domains. Each example features multi-round, human-like step-by-step supervision,
making it substantially larger and more detailed than prior resources.

• We curate VisCoT-Pro-Max, a 165k high-quality subset produced with stronger GPT-4.1-
series guidance. This subset features richer step rationales and explicit 3D grounding via
depth-informed annotations, specifically targeting advanced spatial reasoning.

• We design a novel training and inference pipeline that effectively leverages our annotations
to instill sophisticated spatial CoT reasoning in MLLMs. Using this pipeline, our models
achieve state-of-the-art results across a range of metrics, demonstrating improved fidelity
and robustness in multi-domain visual reasoning.

2 RELATED WORKS

2.1 MULTIMODAL LARGE LANGUAGE MODELS

The development of powerful Multimodal Large Language Models (MLLMs) is a central pursuit
in multimodal learning (Liu et al., 2024a). Modern systems typically pair a visual encoder (e.g.,
a ViT (Dosovitskiy et al., 2020)) with a projection module (e.g., an MLP or Q-Former (Li et al.,
2023a)) to map image features into the language embedding space of an LLM for autoregressive
decoding (Yang et al., 2024). Leading model families—including LLaVA-OneVision (Li et al., 2024a),
InternVL (Chen et al., 2024a), Qwen-VL (Bai et al., 2023), LLaVA-UHD (Xu et al., 2024), InternVL-
3 (Zhu et al., 2025), Qwen-2.5-VL (Bai et al., 2025), and Gemini-2.5-Pro (Comanici & Team,
2025)—demonstrate increasingly sophisticated multimodal reasoning and high-resolution perception.
Nevertheless, a fundamental challenge persists: when targets are diminutive or spatial relationships
are intricate, these models can still falter. The prevailing paradigm of processing an entire high-
resolution image naively makes it difficult to allocate computation effectively, encouraging models
to expend resources on irrelevant regions or rely on spurious textual priors rather than performing
deliberate spatial verification. This reveals a critical gap between a model’s raw perceptual capacity
and its ability to apply that capacity strategically, motivating a shift away from monolithic image
processing towards more efficient and human-like reasoning workflows, which our work aims to
facilitate.

2.2 MULTIMODAL REASONING

Inspired by the success of Chain-of-Thought (CoT) in improving the interpretability and reliability of
LLMs (Wei et al., 2022; Zhang et al., 2022; Gao et al., 2025), several lines of research have attempted
to instill similar deliberative reasoning in Multimodal Large Language Models (MLLMs). Model-
centric approaches aim to elicit this behavior through methods like in-context learning (Zhang et al.,
2024; Mitra et al., 2024; Gupta & Kembhavi, 2023; Gao et al., 2024; Chen et al., 2024b) or targeted
supervised fine-tuning and reinforcement learning (Liu et al., 2025b; Yang et al., 2025; Zhou et al.,
2025; Zhang et al., 2025a; Liu et al., 2025a). A more fundamental, data-centric line of work seeks to
supervise the reasoning process explicitly, but existing efforts have notable limitations. A significant
body of work simplifies the complex human workflow into a single intermediate localization step.
Datasets like V ⋆, CogCom, VPD, Visual CoT, DualFocus, and Chain-of-Spot fall into this category,
but this under-specification risks encouraging models to learn shortcuts and spurious correlations (Wu
& Xie, 2024; Qi et al., 2024; Hu et al., 2024; Shao et al., 2024; Cao et al., 2024; Liu et al., 2024b).
While other datasets do generate multi-round chains, which is a step in the right direction (Zhang
et al., 2025b; Dong et al., 2025; Man et al., 2025), they are often constrained by limited scale and
narrow domain coverage. Furthermore, nearly all prior data-centric efforts focus exclusively on
2D grounding, neglecting the explicit depth reasoning essential for understanding physical spatial
relations (Shao et al., 2024; Sarch et al., 2025; Wu et al., 2025). Our work directly addresses these
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gaps by providing a large-scale, multi-domain benchmark with explicit supervision for multi-round,
3D-aware spatial reasoning.

3 VISCOT-PRO

tree

tree

bus
mancar

truck

Street light

Question: What is the object to the right of the truck and behind the bus? 
Answer: police car 
GT RoI: [0.494, 0.456, 0.654, 0.610]
Multi-round Answer: {
Round 1 Answer: {
Description: The scene depicts a city street with multiple vehicles and trees lining the road. In the foreground, there is a white 
car ([0.494, 0.456, 0.654, 0.61], 35.0) stopped near the curb …
RoI: [0.450, 0.350, 0.660, 0.610]
Reasoning: This area covers the truck ([0.26, 0.356, 0.444, 0.58], 29.0), the bus ([0.45, 0.404, 0.726, 0.548], 19.0) behind it…}
Round 2 Answer: {Description: …}
Round 3 Answer: {Description: …}
Final Reasoning: By observing the cropped image, the car is clearly visible to the right of the truck and behind the bus, matching 
the ground truth bounding box [0, 0.154, 1.0, 1.0]; thus, the answer is: The police car.}
Single-round Answer: <think> Initially, I observe the city street scene containing multiple vehicles, including a truck, a bus, and a 
white car near the curb. To identify the object to the right of the truck and behind the bus, I focus on the area covering these 
vehicles. Next, I expand the view to a larger bounding box <|box_start|>[0.21, 0.3, 0.971, 1.0]<|box_end|> to include the truck 
([0.45, 0.35, 0.66, 0.61], 35.0) on the left, the bus behind it, and the space to the right where the car is located behind the bus. 
This <|image_zoomin|><image> zoom-in excludes unrelated parts of the scene while ensuring all pertinent vehicles are visible 
<|image_zoomin|><image>. Finally, by examining the fully cropped image within the bounding box <|box_start|>[0, 0.154, 1.0, 
1.0]<|box_end|>, the police car ([0, 0.154, 1.0, 1.0]) to the right of the truck and behind the bus is clearly visible. This final zoom 
confirms that the object in question is indeed a police car. </think> <answer> police car </answer> 

Figure 2: Overview of one data sample. For each image–question pair, we provide a gold region of interest
(bounding box) and a compact multi-round visual chain-of-thought: each round offers a scene sketch, an optional
zoom to a predicted RoI, and a brief rationale. When available, depth cues indicate ordinal ordering. The
annotations are concise and process-oriented, enabling spatially grounded reasoning on fine details and complex
relations.

As detailed in section 1, existing visual reasoning datasets suffer from three persistent limita-
tions—insufficient scale and domain coverage, lack of multi-round stepwise supervision, and minimal
depth-aware grounding—necessitating a resource that trains MLLMs to follow human-like visual
reasoning. We address these gaps by curating VisCoT-Pro—a large, spatially aware visual chain-of-
thought (CoT) corpus that explicitly supervises the process of visual reasoning rather than only final
answers. As illustrated in fig. 2, each sample consists of a question, an answer, and a multi-round
CoT that mirrors human global-to-local problem solving: every round provides (i) a brief scene
description, (ii) a predicted region of interest (RoI, via bounding box) when zoom is warranted,
and (iii) a short rationale explaining why that RoI suffices. Beyond 2D cues, we attach pseudo-3D
signals—monocular depth and semantic segmentation—so that the chain can reference ordinal depth
and part/region evidence when needed. This unified annotation format encourages models to localize,
zoom, and verify iteratively, reducing shortcut learning and promoting depth-aware spatial reasoning.

To ensure broad coverage while keeping the focus on process supervision, VisCoT-Pro spans
four domains—text/doc understanding, fine-grained recognition, general VQA, and spatial-aware
relational reasoning—continuing and extending prior category choices (table 1). In total, the primary
set contains 506k examples, and we further release a 165k high-fidelity subset, VisCoT-Pro-Max,
with richer rationales and stronger depth-informed grounding. Together, these resources offer detailed,
stepwise supervision (see fig. 2) designed to cultivate global-to-local “zoom–and–verify” behaviors
and robust reasoning over small objects and complex 2D/3D relations.

3.1 DATASET GENERATION

VisCoT-Pro

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

SegmentAnythingV2 DepthAnythingV2 GPT

You are given an image and its 
detected objects (with IDs, 
categories, bounding boxes, and 
depth values). Create ONE 3D-aware 
QA pair and ground truth bbox that
includes the answer. All relations 
and the answer must strictly match 
the given bboxes and depths.

Question: What is the color of the
car that is behind the tree and to
the right of the man?
Answer: White
GT BBox: [0.68, 0.45, 1.00, 0.91]

GPT

Describe the scene based on the
given image and semantic
segmentations, mark the smallest 
region needed to answer the 
question, and add detailed reasoning 
steps on why that region suffices.
Output:
Scene Description: {}
RoI: {}
Reasoning: {}

Scene Description: There
are two people…
RoI: [0.45, 0.36, 1.00, 1.00]
Reasoning: To answer the
question…

Final Answer:
From the cropped
images, it is clear
to see that the
car is White.

Verify and Fix
RoI&Answer

Multi-round
Zoom-in&Reasoning

Figure 3: Pipeline for VisCoT-Pro and VisCoT-Pro-Max data generation and supervision. Given an input
image, we derive semantic segments and monocular depth to form an object list with categories, bounding
boxes, and ordinal depth; a generator then produces a 3D-aware QA pair and target box. A second stage emits a
compact, multi-round visual CoT—scene sketch, predicted RoI, and rationale—while iteratively zooming and
verifying (with RoI/answer fix) until the final answer and finalized annotations are obtained.

Building on the Visual-CoT seed, we expand each image–question–answer triple with process-level
supervision. For every example, the model (GPT-4.1-Nano(Achiam et al., 2023)) is prompted to
produce a concise scene description, a normalized region of interest (RoI; [x1, y1, x2, y2] ∈ [0, 1]4,
and a brief rationale. We enforce coverage by adjusting the RoI to tightly contain the ground-truth box
and iteratively refining via global-to-local zoom. The refinement terminates when the RoI area is no
more than twice the GT area or when a small round budget (≤ 3) is reached. This yields multi-round
chains that are compact yet faithful, providing stepwise evidence aligned with the final answer while
discouraging shortcut learning.

VisCoT-Pro-Max

As illustrated in fig. 3, VisCoT-Pro-Max augments the above pipeline with explicit spatial priors
to elicit depth-aware reasoning. We first derive pseudo-3D cues per image—monocular depth and
semantic segmentation (object IDs, categories, pixel boxes, and ordinal depths)—and feed these
structured signals, together with the image, to a stronger generator (GPT-4.1-Mini (Achiam et al.,
2023)). The model is instructed to create 3D-aware questions whose relations jointly involve 2D
layout (left of, above) and depth (in front of, behind), outputting a consistent GT box for the target.
We then apply the same verify-and-fix routine with multi-round zoom (round≤ 4) to obtain concise
descriptions, RoIs, and rationales at each step. In addition to these multi-round traces, we provide a
single-round distilled variant that compacts the multi-step chain into one rationale and a final RoI. As
shown in Single-round Answer in fig. 2, our VisCoT-Pro-Max also enables single-pass answering
while preserving explicit process supervision. The result is a depth-informed visual CoT corpus
tailored for small-object queries and complex 2D/3D relations. More details of the prompt design
and algorithms are provided in appendix B.

3.2 DATASET ANALYSIS

We visualize corpus statistics in fig. 4 and summarize coverage in table 1. RoIs skew heavily toward
small regions—most notably in text/doc sources—showing that answer-critical evidence occupies
only a tiny fraction of the image; on average, the annotated box is compact (≈ 247.8 pixels, 13.2% of
the image), reinforcing the need to localize, zoom, and verify rather than process full frames blindly.
Most examples resolve in 2–3 rounds, with harder spatial/3D cases extending to 4; meanwhile, the
average per-round response length remains concise and grows with task difficulty, which provides
much more detailed reasoning steps than existing datasets (Shao et al., 2024; Zhang et al., 2025b; Qi
et al., 2024), indicating efficient yet expressive supervision. Compared with prior datasets, VisCoT-
Pro offers markedly larger scale (506k), richer and explicit multi-round reasoning, broader domain
diversity, and a substantial depth-aware subset (VisCoT-Pro-Max, 165k) that equips models for
spatially grounded 2D/3D reasoning.
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Table 1: Overview of the VisCoT-Pro dataset. It spans four distinct domains and aggregates diverse source
datasets, providing broad coverage of visual data styles.

Domain Source Dataset Train/Val Size GPT Model Dataset Description

Text/Doc

TextVQA (Singh et al., 2019) 16k 526 4.1-nano Images with text
TextCaps (Sidorov et al., 2020) 32k 846 4.1-nano Images with text
DocVQA (Mathew et al., 2021) 50k 846 4.1-nano Doc Images

DUDE (Van Landeghem et al., 2023) 11k 559 4.1-nano Doc Images
SROIE (Huang et al., 2019) 2k 685 4.1-nano Invoice Images

Fine-Grained
Understanding Birds-200-2011 (Wah et al., 2011) 10k 491 4.1-nano Images of birds

General VQA Flickr30k (Plummer et al., 2015) 126k 1455 4.1-nano Images
Visual7W (Zhu et al., 2016) 30k 994 4.1-nano Images

Spatial Relatio Reasoning

VSR (Liu et al., 2023a) 3k 404 4.1-nano Images

GQA (Hudson & Manning, 2019) 165k 978 4.1-mini Images (with spatial-aware
detailed reasoning steps)

Open images (Kuznetsova et al., 2020) 43k 944 4.1-nano Images

13.41%

86.59%

126.52

Text/Doc

DocVQA

269.12

TextCap

90.20%

9.80%

317.28

99.32

80.34%

TextVQA

19.66%

308.01

103.52

DUDE

1.52%

98.48%

290.85

341.92

82.87%

SROIE

17.13%

241.87

480.42

Flickr30k

39.18%

60.82% 233.12

157.42

Visual7W

41.32%

58.68% 226.72

221.82

VSR

323.92

OpenImages

49.65%
50.35%

296.16 247.56

410.12

GQA

46.76%

21.77%

31.47%

541.76

189.72

CUB

89.49%

10.51%

249.01

249.02

60.49%

39.51%

Average

37.22%

52.48%

10.30%

358.35

247.82

General VQA Spatial Relation Reasoning

Fine-Grained

2 Rounds

3 Rounds

4 Rounds

Avg. BBox Size

Avg. Response Length (Single Round)

Average

Figure 4: Statistics of the proposed VisCoT-Pro dataset. We visualize the CoT bbox distribution, average bbox
size, and average length of response in each round for each source dataset.

4 ENHANCING MLLMS WITH COT REASONING CAPABILITIES

Formulation and Training

Given an image I and textual query Q, our model generates a multi-step reasoning process Y =
(a0, a1, . . . , aT ) to derive the final answer (fig. 5). At step t, the action at = (rt, bt+1) consists of
a textual reasoning snippet rt and a bounding box bt+1 for the next region of interest. Generation
is conditioned on prior actions and their visual inputs: the visual context at step t is obtained by
cropping I with bt from the previous step, and we denote features by V(crop(I, bt)). The process is
initialized with b0 as the full image. The model auto-regressively outputs the tokens of each at—both
the rationale and the serialized box coordinates—based on the initial query and the full history of
preceding visual and textual data:

at ∼ Pθ(·|Q, a0, . . . , at−1,V(crop(I, b0)), . . . ,V(crop(I, bt))). (1)
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Multimodal Large Language Model

Question: What is the 

person carrying after the 

man with a bounding box 

[0.750,0.410,0.780,0.610]

 in the waiting line?

The man specified by the bounding box has a depth 

value of 0.78. The person directly after the man has 

a slightly smaller depth value of 0.74 and a bounding 

box <bbox> [0.710,0.440,0.790,0.630] </bbox>.

The cropped image shows a man carrying 

something in his right hand. 

I find the critical area specified by the bounding 

box: <bbox> [0.583,0.650,0.900,0.794] <bbox>.

Region of Interest: 
[0.710,0.440,0.790,0.630] Region of Interest: 

[0.583,0.650,0.900,0.794]

The man is carrying 

a black handbag.

</Answer> Black

Handbag</Answer>

Tokenizer

Visual
Encoder

Round 1

Visual
Encoder

Visual
Encoder

Round 2 Round 3

Figure 5: Overview of VisCoT-Pro paradigm. The model iteratively processes the query by first generating
a textual rationale and a bounding box for the next region of interest. It then crops the original image to this
region, extracts new visual features, and appends them to the context to inform the next reasoning step, creating
a zoom-and-verify sequence.

We fine-tune this model on VisCoT-Pro via Supervised Fine-Tuning (SFT) using Qwen2.5-VL-
7B (Bai et al., 2025) as the base. During fine-tuning, we apply LoRA (Hu et al., 2022) for efficient
adaptation. The objective maximizes the likelihood of the ground-truth sequence Y given (I,Q) in a
standard autoregressive manner, predicting the next token at each step. Concretely, we minimize the
negative log-likelihood:

L(θ) = −
∑

(I,Q)∈D

|Y |∑
t=1

logPθ(Yt|I,Q, Y<t), (2)

where D is the training set, θ the trainable parameters, and Yt the t-th token of Y . The sequence Y is
formed by serializing the multi-step CoT output, converting each bi into discrete tokens, so the model
is trained end-to-end to produce both textual reasoning steps and precise coordinates for focusing
visual attention.

5 EXPERIMENT

Training Details. We apply VisCoT-Pro and VisCoT-Pro-Max to the Qwen2.5-VL-7B (Bai et al.,
2025) model. We train 2 epochs for the baseline model using VisCoT-Pro with the VisCoT-Pro-Max
excluded and one additional epoch with all dataset. The learning rate is 2e−5 for the LLM backbone
and projector, 2e−6 for ViT. The batch size is 12 per device. More details can be found in appendix A.

Benckmarks. We follow the Visual-CoT protocol (Shao et al., 2024) and use its 11 source test
sets (fig. 4). As motivated in section 1, we group tasks into four domains—text/doc understanding,
fine-grained recognition, general VQA, and spatial relational reasoning—to stress both perception and
multi-step spatial inference. To assess zero-shot generalization beyond our domains, we further report
results on MME (Fu et al., 2023), a comprehensive LVLM evaluation suite, and on V*Bench (Wu
et al., 2024), which targets high-resolution detail following and visual search. For automatic scoring,
we follow prior MLLM work (Li et al., 2023b; Luo et al., 2023; Shao et al., 2024) and use an
LLM-based judge to assign a scalar score in [0,1] per example; higher is better. The judging prompt
and calibration details are provided in the appendix.

5.1 COMPARISON WITH STATE-OF-THE-ART MLLMS

Comparison on Visual-CoT-Benchmark. Against strong open-source baselines, our models deliver
the best overall performance as shown in table 2. VisCoT-Pro-Max–7B attains the highest average
(0.781), edging Qwen-VL-2.5-7B (0.770) and clearly surpassing InternVL-2.5-8B (0.738), LLaVA-
NeXT-8B (0.705), and VisCoT-7B (0.580). Relative to the original Visual-CoT system—which
supervises only a single RoI step—our multi-round, spatially grounded CoT yields large gains across
most datasets (e.g.., +0.23 average vs VisCoT-7B), supporting the view that stepwise localization
and verification reduce shortcutting. By domain, we are strongest on fine-grained recognition (Birds-
200-2011: 0.809) and general VQA (Flickr30k: 0.779; Visual7W: 0.711), and competitive on spatial
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Table 2: Comparison with state-of-the-art MLLMs on Visual CoT benchmark.

MLLM Doc/Text Fine-grained

DocVQA TextCaps TextVQA DUDE SROIE Birds-200-2011

VisCoT-7B (Shao et al., 2024) 0.476 0.675 0.775 0.386 0.470 0.559
LLaVA-NeXT-8B (Chen & Xing, 2024) 0.728 0.775 0.850 0.581 0.666 0.715
InternVL-2.5-8B (Zhu et al., 2025) 0.846 0.829 0.907 0.716 0.907 0.747
CoF-SFT-7B (Zhang et al., 2025b) 0.955 0.867 0.934 0.813 0.979 0.641
Qwen-VL-2.5-7B (Bai et al., 2025) 0.964 0.871 0.952 0.817 0.987 0.681

VisCoT-Pro-7B 0.889 0.847 0.905 0.745 0.914 0.798
VisCoT-Pro-Max-7B 0.887 0.815 0.901 0.733 0.924 0.809

MLLM General VQA Spatial Relation Reasoning Average
Flickr30k Visual7W GQA Open images VSR

VisCoT-7B (Shao et al., 2024) 0.668 0.558 0.631 0.822 0.614 0.580
LLaVA-NeXT-8B (Chen & Xing, 2024) 0.755 0.703 0.736 0.559 0.647 0.705
InternVL-2.5-8B (Zhu et al., 2025) 0.713 0.681 0.689 0.502 0.737 0.738
CoF-SFT-7B (Zhang et al., 2025b) 0.606 0.686 0.674 0.503 0.657 0.748
Qwen-VL-2.5-7B (Bai et al., 2025) 0.772 0.690 0.651 0.498 0.705 0.770

VisCoT-Pro-7B 0.765 0.711 0.642 0.723 0.645 0.779
VisCoT-Pro-Max-7B 0.779 0.707 0.669 0.732 0.653 0.781

relation reasoning (notably OpenImages: 0.732). On doc/text OCR, Qwen-VL-2.5-7B remains at
the top, while our scores are slightly lower, which is consistent with extremely small RoIs where
multi-round zoom may incur minor drift. Nevertheless, our cross-domain balance lifts the overall
average beyond all baselines, indicating stronger comprehensive capability. Although a few single
datasets favor specialized systems (e.g., Qwen on OCR, InternVL on VSR), our models exhibit
no pronounced weaknesses and deliver the best overall averages, validating that large-scale, multi-
round, and depth-aware visual CoT supervision improves both in-domain effectiveness and zero-shot
robustness.

Zero-shot generalization. On external suites, VisCoT-Pro–7B achieves the best V* score (0.603)
among compared methods and competitive MME (0.695) as shown in table 3. VisCoT-Pro-Max–7B
further improves MME to 0.751 (still below InternVL-2.5-8B at 0.848) while remaining comparable
on V* (0.590). These results—obtained without exposure to those benchmarks—suggest that scaling
diverse, spatially grounded CoT (especially with depth-aware traces) enhances transfer to fine-detail
following and broad multimodal skills.

5.2 ABLATION STUDY

Table 5 disentangles the effects of our two datasets and an inference-time super-resolution (SR)
heuristic. Relative to the vanilla Qwen baseline (Avg 0.770, strong on Doc/Text 0.920), training
on VisCoT-Pro yields clear gains on General VQA (+0.005) and especially Relation (+0.080) and
Fine-grained (+0.117), lifting the average to 0.779. Adding VisCoT-Pro-Max further improves
General VQA (0.750), Relation (0.693), and Fine-grained (0.809), reaching the best overall average
(0.781). Applying SR with Real-ESRGAN (Wang et al., 2021) to very small RoIs (128 × 128)
offers negligible net benefit (Avg 0.778) and slightly hurts Doc/Text. We attribute this to: (i) high
redundancy in text pixels—SR adds little beyond legible character shapes; (ii) no SR seen during
training, limiting exploitation of added details; and (iii) SR triggers rarely because most RoIs exceed
the threshold (cf. dataset statistics). Overall, the ablation confirms that our large-scale, multi-round,
depth-aware supervision—not post-hoc SR—is the primary driver of the model’s strong, balanced
improvements in complex visual reasoning.

5.3 USER STUDY

In a blinded study with 30 raters on 20 randomly sampled items per setting, we scored four crite-
ria—Answer Accuracy (AA), Grounded Faithfulness (GF), Stepwise Clarity & Sufficiency (SCS),
and Efficiency & Brevity (EB). The results in table 4 show that training on VisCoT-Pro markedly
improves GF and SCS (tighter RoIs, clearer global to local chains), yielding a corresponding rise
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Table 3: Comparison with state-of-the-art MLLMs
on additional benchmarks.

Method Visual CoT MME V*

VisCoT-7B (Shao et al., 2024) 0.580 0.701 0.445
LLaVA-NeXT-8B (Chen & Xing, 2024) 0.705 0.666 0.597
InternVL-2.5-8B (Zhu et al., 2025) 0.738 0.848 0.597

VisCoT-Pro-7B 0.798 0.695 0.603
VisCoT-Pro-Max-7B 0.809 0.751 0.590

Table 4: Human evaluation (1–5). AA = An-
swer Accuracy; GF = Grounded Faithfulness; SCS =
Stepwise Clarity & Sufficiency; EB = Efficiency &
Brevity. Mean is an unweighted average.

Method AA GF SCS EB Mean

VisCoT-7B (Shao et al., 2024) 3.24 2.78 2.82 3.66 3.18
LLaVA-NeXT-8B (Chen & Xing, 2024) 3.6 3.0 3.0 3.83 3.41
InternVL-2.5-8B (Zhu et al., 2025) 3.84 3.32 3.26 3.73 3.52

VisCoT-Pro-7B 4.03 4.20 4.13 3.67 4.00
VisCoT-Pro-Max-7B 4.12 4.45 4.34 3.77 4.11

Table 5: Ablation study on dataset selection and Super Resolution.

VisCoT-Pro VisCoT-Pro-Max Super Res Doc/ Text General VQA Relation Reasoning Fine-grained Average

0.920 0.739 0.598 0.681 0.770
✓ 0.864 0.744 0.678 0.798 0.779
✓ ✓ 0.856 0.750 0.693 0.809 0.781
✓ ✓ ✓ 0.838 0.748 0.694 0.811 0.778

in AA, with EB roughly unchanged. Adding VisCoT-Pro-Max brings the most significant gains in
GF/SCS—raters highlighted better depth use and fewer reasoning leaps—translating to the highest
AA while maintaining competitive EB. Overall, the human study confirms that our multi-round,
depth-aware supervision is the primary driver of quality improvements.

5.4 VISUALIZATION

Question: What is the person doing? Question: What is the person doing?

Question: What is the hair color of the person sitting 
next to the man wearing a hat?

GT Answer: Blond

Answer w/ CoT: The person sitting next to the man 
wearing a hat has blond hair.

Answer w/o CoT: The person sitting next to the man 
wearing a hat appears to have dark hair.

Question: What is the total price before discount
according to the invoice?

GT Answer: 277.90

Answer w/ CoT: 277.90.

Answer w/o CoT: 277.00.

Figure 6: Visualization results of VisCoT-Pro to illustrate the difference between various inference modes.
Model-generated bounding boxes are shown in green (first-round) and red (second-round), while ground truth
(GT) bounding boxes are in blue. Best viewed in color and zoomed in.

This section presents qualitative results in fig. 6, showcasing our model’s visual CoT ability: the
model first localizes evidence via predicted RoIs, then iteratively zooms and fuses fine-grained crops
with the global view to produce the final answer. We compare three settings—our full CoT pipeline,
VisCoT-Pro with ground-truth RoIs (GT BBox), and VisCoT-Pro without CoT (w/o CoT). The full
and GT-BBox variants consistently focus on the correct regions and recover small, detail-sensitive
cues (e.g., attributes, prices), while the w/o CoT baseline often mis-localizes or relies on superficial
priors. These examples illustrate that accurate region selection and depth-aware, stepwise reasoning
directly translate into higher answer fidelity and fewer hallucinations.

6 CONCLUSION

In summary, we close three gaps in visual CoT—limited scale/coverage, missing multi-round pro-
cess supervision, and weak depth awareness—by releasing VisCoT-Pro (506k) and VisCoT-Pro-
Max (165k) with detailed annotations: compact global to local stepwise rationales, RoI boxes, and
in Pro-Max, pseudo-3D cues (monocular depth, semantic segmentation, ordinal relations). These
comprehensive resources span text/doc, fine-grained, general VQA, and spatial relational reasoning,
providing rich signals for faithful, spatially grounded inference. Models trained on VisCoT-Pro series
achieve higher accuracy, grounded faithfulness, and generalization across Visual-CoT, MME, and
V*Bench, with corroborating human studies. We hope VisCoT-Pro series serves as a strong baseline
and widely applicable foundation for future spatially aware visual reasoning.
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A IMPLEMENTATION DETAILS

We train both VisCoT-Pro-7B and VisCoT-Pro-Max-7B on four H200 GPUs (140 GB each). The
implementation is carried out in PyTorch with DeepSpeed ZeRO-2 optimization. Detailed training
configurations are provided in table 6 and table 7. All evaluations are performed on four A800 GPUs
(80 GB each).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Configuration VisCoT-Pro
Batch size 96
Learning rate 1.0× 10−5

Epochs 2
Optimizer AdamW
LoRA rank 32
Image max pixels 262,144 (512× 512)
Image min pixels 12,544 (112× 112)
Cutoff length 8192

Table 6: Training configurations for VisCoT-Pro.

Configuration VisCoT-Pro-Max
Batch size 96
Learning rate 1.0× 10−5

Epochs 1
Optimizer AdamW
LoRA rank 32
Image max pixels 262,144 (512× 512)
Image min pixels 12,544 (112× 112)
Cutoff length 8192

Table 7: Training configurations for VisCoT-Pro-Max.

B DATA GENERATION DETAILS

For completeness, the full data–generation procedures are summarized in Appendix as algorithms 1
and 2. algorithm 1 details the VisCoT-Pro pipeline: given an image–QA pair and a GT box, a
generator produces per-round (description, RoI, rationale) triplets; the RoI is mapped to pixel space
and corrected via fixRoI to cover the GT, then iteratively refined by cropping and re-prompting
until either the area ratio falls below the threshold (Area(RoI) ≤ N · Area(B⋆)) or the round budget
(Rmax=3) is reached, followed by a brief final justification. algorithm 2 extends this to VisCoT-Pro-
Max by deriving pseudo-3D cues (monocular depth and semantic segmentation), forming an object
list with ordinal depths, optionally generating a 3D-aware QA, and then running the same multi-round
crop–refine loop (local2global + fixRoI ) with a larger budget (Rmax=4). Together, these
algorithms make the dataset’s process-level supervision explicit while cleanly separating the 2D-only
and depth-aware variants.
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Algorithm 1: VisCoT-Pro: Multi-round spatial CoT
generation

Require: Image I , question q, answer a, GT box
B⋆; max rounds Rmax=3; area ratio thresh-
old N=2; generator G (GPT-4.1-Nano)

Ensure: Multi-round chain
{(desct,AoIt, reasont)}Tt=1 and final
crop justification

1: t← 1; (W,H)← size(I)
2: (Round 1) Prompt G with (I, q, a) to obtain

desc1, Â1 ∈ [0, 1]4, reason1

3: A1 ← ratio2xyxy(Â1;W,H)
4: A1 ← AdjustAoI(A1, B

⋆) ▷ ensure
coverage and in-bounds

5: while t < Rmax and Area(At) > N ·
Area(B⋆) do

6: It+1 ← crop(I, At)
7: Prompt G with (It+1, q, a) to get

desct+1, Ât+1, reasont+1

8: Map Ât+1 to global coords: At+1 ←
local2global(Ât+1;At)

9: At+1 ← AdjustAoI(At+1, B
⋆)

10: t← t+1
11: end while
12: T ← t; Afinal ← AT ; Ifinal ←

crop(I, Afinal)
13: Query G once more with (Ifinal, q, a, B

⋆) for
a one-sentence final justification

14: return {(desct,AoIt, reasont)}Tt=1 and final
justification

15: function ADJUSTAOI(A,B⋆)
16: A← A ∪B⋆ ▷ expand to include GT

box
17: return clipToImage(A)
18: end function

Algorithm 2: VisCoT-Pro-Max: Spatial-aware spatial
CoT generation

Require: Image I , optional seed QA
(q0, a0, B

⋆
0); max rounds Rmax=4; area

ratio threshold N=2; generators GQ, GCoT
(GPT-4.1-Mini)

Ensure: 3D-aware QA (q, a,B⋆) and multi-
round chain {(desct,AoIt, reasont)}Tt=1

1: Compute pseudo-3D cues: depth map D ←
MonocularDepth(I), semantic segmentation
S ← Seg(I)

2: Build structured object list O with cate-
gories, [x1, y1, x2, y2], and ordinal depths
from (S,D)

3: if no seed QA then
4: (q, a,B⋆)← GQ(I,O) ▷ joint 2D

(left-of, above) + depth (in front of /behind)
5: else
6: (q, a,B⋆)← (q0, a0, B

⋆
0)

7: end if
8: t ← 1; (Round 1) Prompt GCoT with

(I, q, a,O) to get desc1, Â1, reason1
9: A1 ← ratio2xyxy(Â1); A1 ←

AdjustAoI(A1, B
⋆)

10: while t < Rmax and Area(At) > N ·
Area(B⋆) do

11: It+1 ← crop(I, At)
12: Prompt GCoT with (It+1, q, a) to get

desct+1, Ât+1, reasont+1

13: At+1 ← local2global(Ât+1;At);
At+1 ← AdjustAoI(At+1, B

⋆)
14: t← t+1
15: end while
16: return (q, a,B⋆) and
{(desct,AoIt, reasont)}tt=1

C PROMPTS DESIGN

We provide the prompts used in dataset generation and GPT-evaluation here.

D MORE DATA EXAMPLES

We show more examples in our dataset here.

E MORE INFERENCE EXAMPLES

F THE USE OF LARGE LANGUAGE MODELS

LLMs are only used for for editorial support. Its role was strictly limited to improving grammar,
phrasing, and overall readability. The LLMs did not contribute to any core scientific aspects of the
work, including the research methodology, data analysis, or the formulation of results and conclusions.
The intellectual contributions presented herein are entirely those of the authors.
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You are given:

- An image showing a complex scene.
- A list of all objects in the image:
Objects: {objects_ratio}
Each object includes its semantic category, bounding box 
formatted as [x1, y1, x2, y2], and its depth value (smaller 
value = closer).
- A reasoning question:
Question: {question}
- The answer to this question:
Answer: {answer}

Your task is:

1. Provide a natural, continuous description of the scene.

2. Predict an Area of Interest (AoI) for answering the 
question. The AoI must:
- Strictly cover the object(s) mentioned in the question.
- Include any parts necessary to answer accurately.
- Avoid unrelated areas.
- Be formatted as ratios [x1_ratio, y1_ratio, x2_ratio, 
y2_ratio] within [0,1].

3. Provide a brief, natural reasoning step explaining why 
this area is sufficient.

Output format:

Scene Description:
[your description here]

Area of Interest:
[x1_ratio, y1_ratio, x2_ratio, y2_ratio]

Reasoning:
[your explanation here]

Figure 7: Propmpts used for First-Round AoI on Full Image Generates a scene description, the initial
normalized Area of Interest, and brief reasoning on the original image (optionally with semantic mask)
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You are given:

- A cropped image that already focuses on a region of 
interest (AoI).
- A reasoning question about this cropped scene:
Question: {question}
- The answer to this question:
Answer: {answer}

Task:
1) Short description of the cropped scene.
2) Refine a new AoI in ratio [x1_ratio, y1_ratio, x2_ratio, 
y2_ratio] within [0,1], tight but sufficient.
3) Brief reasoning for why this area suffices.

Output:

Scene Description:
[...]
Area of Interest:
[x1_ratio, y1_ratio, x2_ratio, y2_ratio]
Reasoning:
[...]

Figure 8: Propmpts used for Second-Round AoI Refinement (Cropped Image) Tightens the AoI on the first
crop with a short description and justification when the initial region is too large.
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You are given:

- A cropped image that already focuses on a region of 
interest (AoI).
- A reasoning question:
Question: {question}
- The answer:
Answer: {answer}

Task:
1) Very brief description.
2) Final tight AoI in ratios [x1_ratio, y1_ratio, x2_ratio, 
y2_ratio] within [0,1].
3) One-sentence reasoning.

Output:

Scene Description:
[...]
Area of Interest:
[x1_ratio, y1_ratio, x2_ratio, y2_ratio]
Reasoning:
[...]

Figure 9: Propmpts used for Third-Round Final AoI (Further Crop) Produces the final tight AoI with a
minimal description and one-sentence rationale on the second crop.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

You are given:

- A final cropped region already focused on the answer.
- The reasoning question:
Question: {question}
- The final answer:
Answer: {answer}
- The ground truth bounding box for the answer in this 
cropped region as ratios [x1, y1, x2, y2]:
Ground Truth BBox: {gt_bbox}

Task: Write ONE short sentence directly explaining how, by 
looking at this crop, you recognize the answer, and include 
the final answer and the grounding bbox.

Output:
Reasoning:
[your one-sentence explanation]

Figure 10: Propmpts used for One-Sentence Visual Evidence on Final Crop (with GT Box) Explains in one
sentence how the final crop reveals the answer, explicitly including the final answer and the normalized GT
bounding box.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

You are given multiple rounds of reasoning and zoom-in areas of interest 
(AoIs), leading to the final answer.

Question: {question}

Round 1:
- Description: {r1_desc}
- Area of Interest: {r1_area}
- Reasoning: {r1_reason}

Round 2 (if any):
- Description: {r2_desc}
- Area of Interest: {r2_area}
- Reasoning: {r2_reason}

Round 3 (if any):
- Description: {r3_desc}
- Area of Interest: {r3_area}
- Reasoning: {r3_reason}

Final Reasoning Step:
{final_reason}
Final Answer:
{final_answer}

Task:
- Summarize the reasoning across rounds into one coherent chain inside 
<think>...</think>.
- Each round must mention:
1) what is observed,
2) why it is relevant,
3) the bounding box as <|box_start|>[x1, y1, x2, y2]<|box_end|>,
4) then insert <|image_zoomin|><image> to represent zooming in.
- Use natural, continuous sentences to describe the zooming process.
- Conclude with a short statement showing how the final zoom reveals the 
answer.
- After </think>, output only the final answer in <answer>...</answer>.
Example output:
<think> To determine the jersey number of the player taking the shot, I 
need to locate the player near the free-throw line where the action is likely 
happening. 
However, the relevant details are not clearly visible. To improve visibility, I 
need to explore step by step. I start by zooming in on the region around the 
free-throw line within the bounding box <|box_start|>[810, 555, 1598, 
1080]<|box_end|>. 
After zooming in on this area, I obtain a refined visual embedding 
<|image_zoomin|><image>, which helps me locate the player taking the shot. 
Next, I focus on the identified player within the bounding box 
<|box_start|>[990, 750, 1103, 1020]<|box_end|>. 
I zoom in again and extract a new visual embedding 
<|image_zoomin|><image>, which clearly shows that the player is wearing the 
number 8 jersey. </think> <answer> 8 </answer>

Now produce your own output for the given rounds and final answer.
Output (strict):
<think> [summary reasoning chain across rounds with boxes + zooms] 
</think> <answer> {final_answer} </answer>

Figure 11: Propmpts used for Multi-Round Chain Summarization (<think> + <answer>)20
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You are given an image and its detected objects (with IDs, 
categories, bounding boxes, and depth values).

Objects:
{objects}

The objects use [x1, y1, x2, y2] pixel bounding boxes (top-left to 
bottom-right). Depth is in [0,1], where 1 = closest (in front) and 0 = 
farthest.

Create ONE 3D-aware QA pair.

Requirements:
- The question must include at least one 2D spatial relation (left of, 
right of, above, below, on, under) AND one depth relation (in front 
of, behind), No other condition is needed.
- The answer is one word: the category of the unique target object.
- Full answer is a short sentence with the answer in context.
- Output the **ground truth bounding box** of the answer object, 
copied exactly from the objects.
- All relations and the answer must strictly match the given bboxes 
and depths.

Output format (strict):
Question: <your question here>
Answer: <single word>
Full Answer: <short sentence>
Ground Truth BBox: [x1, y1, x2, y2]

Figure 12: Propmpts used for 3D-Aware QA Generation (Spatial + Depth Relations)Creates a single QA pair
that combines 2D spatial relations and depth relations, and outputs the target object’s ground-truth bounding box.
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GRADER_SYSTEM_PROMPT = (
"You are an automatic grader. Given Question / 

Standard answer / Model’s answer, "
"output a similarity score in [0,1] and nothing else, 

formatted exactly as: "
"score: <score> (up to two decimals).\n"
"Rules: normalize case/whitespace; unify 

number/time formats; exact or formatting-only →
1.00; "

"synonyms or mutual containment without 
contradiction → ~0.95–1.00; minor deviations →
~0.85–0.94; "

"partial overlap → ~0.75–0.84; 
unrelated/contradictory → ~0.00. "

"For numbers use smaller relative error ⇒ higher 
score; for intervals use larger overlap ⇒ higher score. 
"

"Grade only the core answer."
)

Figure 13: Propmpts used for Evaluation for the visual CoT benchmark using the ChatGPT
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Question: Does the bird in the picture have rufous breast and rufous back?

Answer: Yes

Multi-round Answer:{

Round 1 Answer: {

Description: From the image, I can see a small blue bird perched steadily on a rock in a natural 

environment. The bird is facing slightly sideways, allowing partial visibility of its body features.

RoI: [0.352, 0.343, 0.872, 0.714]. 

Reasoning: This area focuses on the bird itself rather than the background, ensuring that the critical 

parts of the bird’s body are included. By isolating this region, the breast and back can be observed 

with more clarity, which is essential for determining whether these parts are rufous in color.}

Round 2 Answer:{

Description: From the cropped image, I now have a closer view of the bird’s main body, with more 

visible detail of the feather texture and coloration.

RoI: [0.000, 0.712, 0.475, 0.884]. 

Reasoning: This area directly highlights the lower part of the bird’s body, especially the breast and the 

beginning of the back, which are most relevant for identifying the color. }

Round 3 Answer:{

Description: From the cropped image, I can now clearly observe the targeted regions with high detail. 

The bird’s breast shows a rich rufous coloration, and the back is consistently covered with rufous 

feathers

Reasoning: I am pretty sure about the answer now. The answer is: yes. }}

Figure 14: More data examples in VCT-Pro.
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Question: What is the work request # given in the form? 

Answer: 000184

Multi-round Answer:{

Round 1 Answer: {

Description: The image displays a laboratory work request form issued by a company, 

containing multiple structured fields such as contact information, request details, and 

identification numbers. The layout is typical of administrative forms with boxed sections and 

printed labels.

RoI: [0.601, 0.010, 0.952, 0.281]. 

Reasoning: This region is selected because the top right portion of such forms commonly 

contains reference numbers, identifiers, or request codes. }

Round 2 Answer:{

Description: The cropped image highlights a more specific portion of the form, which includes 

several fields placed close to each other. Within this cropped section, I can see lines of text 

and numeric entries that represent different categories, such as contact details and form 

identifiers. The label “Work Request #” is visible and appears beneath the phone number field.

RoI: [0.301, 0.001, 0.901, 0.532].

Reasoning: This region is important because it narrows the focus from the larger form to the 

area directly containing the label “Work Request #:”.

Round 3 Answer:{

Description: The cropped image clearly shows the number after the \“Work Request #\”.

Reasoning: Based on this close inspection, the number following the label “Work Request #:” is 

identified as the requested value.

Thus, the answer is 000184.}}

Figure 15: More data examples in VCT-Pro.
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Question: What is the person doing? 
Answer: Sitting on a seesaw

Multi-round Answer:{

Round 1 Answer: {

Description: The image shows what at first appears to be a teddy bear placed on a wooden 

bench, but upon closer inspection, it seems to be part of a larger outdoor scene. The 

background resembles a park or playground setting, with natural light and surrounding 
greenery.

RoI: [0.000, 0.119, 0.312, 0.378]. 

Reasoning: This area is chosen because it contains shapes and textures that resemble a 

person’s outline rather than just background elements. Although the initial impression is 

ambiguous, it is the most likely region to include the subject of interest.
Round 2 Answer:{

Description: The cropped image reveals a person dressed in red clothing. The figure is no 

longer confused with surrounding objects, and the structure of the playground equipment 

becomes visible in this view.

Reasoning: I can clearly recognize the person’s activity. The body posture indicates that the 
individual is sitting on a seesaw. Thus, the answer is: the person is sitting on a seesaw. }}

Figure 16: More data examples in VCT-Pro.
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Question: What is the man wearing green jacket holding in his hands?

Answer: A cup and its tray

Multi-round Answer:{

Round 1 Answer: {

Description: The image shows a group of three people, consisting of two men and one 

woman, seated next to each other in what looks like a casual indoor setting. The man in the 

green jacket is positioned in the left, leaning slightly towards the woman as if engaged in a 

conversation. Meanwhile, the other man is seated nearby, focusing on his laptop which rests 

on his lap.

RoI: [0.317,0.000,0.579,0.812]. 

Reasoning: This region is chosen because it isolates the man in the green jacket, who is the 

subject of the question.

Round 2 Answer:{

Description: The cropped image provides a closer look at the man in the green jacket. He is 

wearing a black hat. His upper body and arm positions become clearer in this cropped view.

RoI: [0.213,0.342,0.712,0.609]. 

Reasoning: This region contains the man’s hands, where I can find what he is holding.

Round 3 Answer:{

Description: The cropped image now focuses closely on the man’s hands. He is holding a cup 

in one hand, and in his other hand, he supports a tray.

Reasoning: It is evident that the man is holding a cup along with a tray. Thus, the answer is 

“cup and tray”}}

Figure 17: More data examples in VCT-Pro.
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The container with green lid 
[0.212, 0.435, 0.717, 0.819] is 
at the bottom. I need to find 

the flavor on its label.

What is the flavor of the cheese inside the 
container with the green lid?

The green label [0.331, 0.627, 
0.727, 0.919] below the 

cheese name maybe critical 
for this question …

Please think further …

I can see that the cheese 
contains Jalapenos.

Please think further …

Figure 18: More inference examples in VCT-Pro.
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This image shows an airport on 
a rainy day.
I see a large plane ([0.000, 
0.429, 0.815, 0.716], 74) …

Please think further …

How many planes are in the image?

I see an object ([0.101, 0.442, 
0.529, 0.873], 91) beneath the 
larger one’s wing, but I am not 

sure about what it is..

Please think further …

There are totally two planes in 
the image, one large and one 

small.

Figure 19: More inference examples in VCT-Pro.
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I see people boarding on a plane 
[0.204, 0.307, 0.751, 0.756] …

Please think further …

Which airline is the airplane in the picture from?

The airline information should 
be located on the main body of 

the plane
[0.417, 0.423, 0.619, 0.523]…

Please think further …

The airline is DELTA.

Figure 20: More inference examples in VCT-Pro.
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What is parked in the yard?

I see a large window [0.612, 
0.235, 0.741, 0.391] in the 

room. I need to focus on this 
region.

Please think further …

Now, I see some cars in 
the yard clearly.

Figure 21: More inference examples in VCT-Pro.
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