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ABSTRACT

Minwise hashing (MinHash) is a standard hashing algorithm for large-scale search
and learning with the binary Jaccard similarity. One permutation hashing (OPH) is
an effective and efficient alternative of MinHash which splits the data into K bins
and generates hash values within each bin. In this paper, to protect the privacy of
the output sketches, we combine differential privacy (DP) with OPH, and propose
DP-OPH framework with three variants: DP-OPH-fix, DP-OPH-re and DP-OPH-
rand, depending on the densification strategy to deal with empty bins in OPH.
A detailed roadmap to the algorithm design is presented along with the privacy
analysis. Comparisons of our DP-OPH methods with the DP minwise hashing
(DP-MH) alternative are provided to justify the advantage of DP-OPH. Experi-
ments on similarity search confirm the effectiveness of our proposed algorithms,
and provide guidance on the choice of proper variant in different scenarios. We
also provide an extension to real-value data, named DP-BCWS, in the appendix.

1 INTRODUCTION

Let u,v ∈ {0, 1}D be two D-dimensional binary vectors. In this paper, we focus on the hashing
algorithms for the Jaccard similarity (a.k.a. the “resemblance”) defined as

J(u,v) =

∑D
i=1 1{ui = vi = 1}

∑D
i=1 1{ui + vi ≥ 1}

. (1)

This is a widely used similarity measure in machine learning applications. u and v can also be
viewed as two sets of items represented by the locations of non-zero entries. In industrial ap-
plications with massive data size, directly calculating the pairwise Jaccard similarity among the
data points becomes too expensive. To accelerate large-scale search and learning, the celebrated

“minwise hashing” (MinHash) algorithm (Broder, 1997; Broder et al., 1997) has been a standard
hashing technique for approximating the Jaccard similarity in massive binary datasets. It has seen
numerous applications such as near neighbor search, duplicate detection, malware detection, cluster-
ing, large-scale learning, social networks, and computer vision (Indyk & Motwani, 1998; Charikar,
2002; Fetterly et al., 2003; Das et al., 2007; Buehrer & Chellapilla, 2008; Bendersky & Croft, 2009;
Chierichetti et al., 2009; Pandey et al., 2009; Lee et al., 2010; Deng et al., 2012; Chum & Matas,
2012; Tamersoy et al., 2014; Shrivastava & Li, 2014; Zhu et al., 2017; Nargesian et al., 2018;
Wang et al., 2019; Lemiesz, 2021; Feng & Deng, 2021; Li & Li, 2022). The output of MinHash
is an integer. For large-scale applications, to store and use the hash values (or called sketches)
more conveniently and efficiently, Li & König (2010) proposed b-bit MinHash that only stores the
last b bits of the hashed integers, which is memory-efficient and convenient for similarity search
and machine learning. Thus, it has been a popular coding strategy for the MinHash values and its
alternatives (Li et al., 2011; 2015; Shah & Meinshausen, 2017; Yu & Weber, 2022).

1.1 ONE PERMUTATION HASHING (OPH) FOR JACCARD SIMILARITY

To use MinHash in practice, we need to generate K hash values to achieve good utility. This requires
applying K random permutations (or hash functions as approximations) per data point, yielding an
O(Kf) complexity where f is the number of non-empty entries of the data. The method of one
permutation hashing (OPH) (Li et al., 2012) provides a promising way to significantly reduce the
complexity to O(f). The idea of OPH is: to generate K hashes, we split the data vector into K non-
overlapping bins, and conduct MinHash within each bin. Yet, empty bins may arise which breaks
the alignment of the hashes such that the hash values do not form a metric space. To deal with empty
bins, densification schemes (Shrivastava, 2017; Li et al., 2019) are proposed that fill the empty bins
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with some non-empty bin. It is shown that OPH with densification also provides unbiased Jaccard
estimator, and the estimation variance can often be smaller than that of MinHash. OPH has been
widely used as an improved method over MinHash for the Jaccard similarity (Dahlgaard et al., 2017;
Zhao et al., 2020; Jia et al., 2021; Tseng et al., 2021; Jiang et al., 2022).

1.2 HASHING/SKETCHING AND DIFFERENTIAL PRIVACY

At a higher level, MinHash and OPH both belong to the broad family of hashing/sketching meth-
ods, which generate sketches for data samples that are designed for various purposes and tasks.
Examples of more sketching methods include the random projection (RP) based methods for co-
sine preserving (Charikar, 2002; Vempala, 2005), the count-sketch (CS) for frequency estima-
tion (Charikar et al., 2004), and the Flajolet-Martin (FM) sketch (Flajolet & Martin, 1985) and Hy-
perLogLog sketch (Flajolet et al., 2007) for cardinality estimation, etc. Since the data sketches pro-
duce “summaries” of the data which contain the original data information, sketching/hashing may
also cause data privacy leakage. Therefore, protecting the privacy of the data sketches becomes an
important topic which has gained growing research interests in recent years.

Differential privacy (DP) (Dwork et al., 2006b) has become a popular privacy definition with rigor-
ous mathematical formulation, which has been widely applied to clustering, regression and classifi-
cation, principle component analysis, matrix completion, optimization, deep learning (Blum et al.,
2005; Chaudhuri & Monteleoni, 2008; Feldman et al., 2009; Gupta et al., 2010; Chaudhuri et al.,
2011; Kasiviswanathan et al., 2013; Zhang et al., 2012; Abadi et al., 2016; Agarwal et al., 2018;
Ge et al., 2018; Wei et al., 2020; Dong et al., 2022), etc. Prior efforts have also been con-
ducted to combine differential privacy with the aforementioned hashing algorithms (e.g.,for
RP (Blocki et al., 2012; Kenthapadi et al., 2013; Stausholm, 2021), count-sketch (Zhao et al., 2022),
and FM sketch (Smith et al., 2020; Dickens et al., 2022)). Some works (e.g., Blocki et al. (2012);
Smith et al. (2020); Dickens et al. (2022)) assumed “internal randomness”, i.e., the randomness of
the hash functions are kept private, and showed that many hashing methods themselves already pos-
sess strong DP property under some data conditions. However, this setting is more restrictive in
practice as it requires the hash keys or projection matrices cannot be accessed by any adversary. In
another setup (e.g., Kenthapadi et al. (2013); Stausholm (2021); Zhao et al. (2022)), both the ran-
domness of the hash functions and the algorithm outputs are treated as public information, and
perturbation mechanisms are developed to make the algorithms differentially private.

1.3 OUR CONTRIBUTIONS

While prior works have proposed DP algorithms for some sketching methods mentioned earlier, the
differential privacy of OPH and MinHash for the Jaccard similarity has not been well studied. In
this paper, we mainly focus on the differential privacy of one permutation hashing (OPH), the state-
of-the-art framework for hashing the Jaccard similarity. We consider the more practical and general
setup where the randomness of the algorithm is “external” and public.

We develop three variants under the DP-OPH framework, DP-OPH-fix, DP-OPH-re, and DP-OPH-
rand, corresponding to fixed densification, re-randomized densification, and no densification for
OPH, respectively. We provide detailed algorithm design and privacy analysis for each variant, and
compare them with a DP MinHash (DP-MH) method. In our retrieval experiments, we show that
the proposed DP-OPH method substantially improves DP-MH, and re-randomized densification is
superior over fixed densification in terms of differential privacy. DP-OPH-rand performs the best
when ǫ is small, while DP-OPH-re is the most performant in when larger ǫ is allowed.

2 BACKGROUND: MINHASH, b-BIT CODING, AND DIFFERENTIAL PRIVACY

Algorithm 1 Minwise hashing (MinHash)

Input: Binary vector u ∈ {0, 1}D; number of hash values K
Output: K MinHash values h1(u), ..., hK(u)

1: Generate K independent permutations π1, ..., πK : [D]→ [D] with seeds 1, ...,K respectively
2: for k = 1 to K do
3: hk(u)← mini:ui 6=0 πk(i)
4: end for
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Minwise hashing (MinHash). The MinHash method is summarized in Algorithm 1. We first
generate K independent permutations π1, ..., πK : [D] 7→ [D], where the seeds ensure that all data
vectors use the same set of permutations. Here, [D] denotes {1, ..., D}. For each permutation, the
hash value is simply the first non-zero location in the permuted vector, i.e., hk(u) = mini:vi 6=0 πk(i),
∀k = 1, ...,K. Analogously, for another data vector v ∈ {0, 1}D, we also obtain K hash values,
hk(v). The MinHash estimator of J(u,v) is the average over the hash collisions:

ĴMH(u,v) =
1

K

K
∑

k=1

1{hk(u) = hk(v)}, (2)

where 1{·} is the indicator function. By some standard probability calculations, we can show that

E[ĴMH ] = J, V ar[ĴMH ] =
J(1− J)

K
.

In practice, K does not need to be very large to achieve good utility. For instance, usually 128 ∼
1024 hash values would be sufficient for search and learning problems (Indyk & Motwani, 1998;
Li et al., 2011; Shrivastava & Li, 2014).

b-bit coding of the hash value. Li & König (2010) proposed “b-bit minwise hashing” as a conve-
nient coding strategy for the integer hash value h(u) generated by MinHash (or by OPH which will
be introduced later). Basically, we only keep the last b-bits of each hash value. In our analysis, for
convenience, we assume that “taking the last b-bits” can be achieved by some “rehashing” trick to
map the integer values onto {0, ..., 2b− 1} uniformly. There are at least three benefits of this coding
strategy: (i) storing only b bits saves the storage cost compared with storing the full 32 or 64 bit
integers; (ii) the last few bits are more convenient for the purpose of indexing, e.g., in approximate
nearest neighbor search (Indyk & Motwani, 1998); (iii) we can transform the last few bits into a
positional representation, allowing us to approximate the Jaccard similarity by inner product, which
is required by training large-scale linear models (Li et al., 2011). Given these advantages, in this
work, we will adopt this b-bit coding strategy in our private algorithm design.

Differential privacy (DP). We formally define differential privacy (DP) as follows.

Definition 2.1 (Differential privacy (Dwork et al., 2006b)). For a randomized algorithmM : U 7→
Range(M) and ǫ, δ ≥ 0, if for any two neighboring datasets U and U ′, it holds that

Pr[M(U) ∈ Z] ≤ eǫPr[M(U ′) ∈ Z] + δ

for ∀Z ⊂ Range(M), then algorithmM is said to satisfy (ǫ, δ)-differentially privacy. If δ = 0,M
is called ǫ-differentially private.

Intuitively, DP requires the distributions of the outputs before and after a small change in the data are
similar so that an adversary cannot detect the change based on the outputs. Smaller ǫ and δ implies
stronger privacy. The parameter δ is usually interpreted as the “failure probability” allowed for
the ǫ-DP guarantee to be violated. In our work, we follow the standard definition in aforementioned
related works on DP hashing: u,u′ ∈ {0, 1}D are called neighboring if they differ in one dimension.

Privacy statement and applications. The above definition of adjacency leads to the “attribute-level”
DP. Treating the binary vectors as sets, with our proposed DP-OPH algorithms, an adversary cannot
detect from the output sketches whether any item exists in the set or not, which holds independently
for all the data vectors in the database. As a concrete example application, the bioinformatics
community releases sets of 1000 MinHashes for all known genomes on a regular basis (Ondov et al.,
2016; Brown & Irber, 2016), which are used for various ML tasks like classification, clustering, etc.
In this type of data, each data point corresponds to (a large set of) genes of a human, which contains
the basic biological information of an individual. Hence, it is highly sensitive and confidential. Our
methods protect the identification of any gene from the DP-OPH sketches in the DP sense.

3 HASHING FOR JACCARD SIMILARITY WITH DIFFERENTIAL PRIVACY

As discussed earlier, one permutation hashing (OPH) (Li et al., 2012) is a popular and highly effi-
cient hashing algorithm for the Jaccard similarity. In this section, we present our main algorithms
called DP-OPH based on privatizing the b-bit hash values from OPH. In addition, we compare it
with a differentially private MinHash alternative named DP-MH.
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Algorithm 2 One Permutation Hashing (OPH)

Input: Binary vector u ∈ {0, 1}D; number of hash values K
Output: K OPH hash values h1(u), ..., hK(u)

1: Let d = D/K. Use a permutation π : [D] 7→ [D] with fixed seed to randomly split [D] into K
equal-size bins B1, ...,BK , with Bk = {j ∈ [D] : (k − 1)d+ 1 ≤ π(j) ≤ kd}

2: for k = 1 to K do
3: if Bin Bk is non-empty then
4: hk(u)← minj∈Bk,uj 6=0 π(j)
5: else
6: hk(u)← E
7: end if
8: end for

Algorithm 3 Densification for OPH, two options: fixed and re-randomized

Input: OPH hash values h1(u), ..., hK(u) each in [D] ∪ {E}; bins B1, ...,BK ; d = D/K
Output: K densified OPH hash values h1(u), ..., hK(u)

1: Let NonEmptyBin = {k ∈ [K] : hk(u) 6= E}
2: for k = 1 to K do
3: if hk(u) = E then
4: Uniformly randomly select k′ ∈ NonEmptyBin
5: hk(u)← hk′(u) ⊲ OPH-fix: fixed densification
6: Or
7: MapToIndex = SortedIndex (π(Bk)) + (k′ − 1)d
8: π(k) : π(Bk′) 7→MapToIndex ⊲ within-bin partial permutation
9: hk(u)← minj∈Bk′ ,uj 6=0 π

(k) (π(j)) ⊲ OPH-re: re-randomized densification
10: end if
11: end for

3.1 ONE PERMUTATION HASHING (OPH)

As outlined in Algorithm 2, the procedure of OPH is simple: we first use a permutation π (same
for all data vectors) to randomly split the feature dimensions [D] into K bins B1, ...,BK with equal
length d = D/K (assuming integer division holds). Then, for each bin Bk, we set the smallest
permuted index of “1” as the k-th OPH hash value. If Bk is empty (i.e., it does not contain any “1”),
we record an “E” representing empty bin. Li et al. (2012) showed that we can construct statistically
unbiased Jaccard estimators by ignoring the empty bins. However, this estimator is unstable when
the data is relatively sparse; moreover, since empty bins are different for every distinct data vector,
the vanilla OPH hash values do not form a metric space (i.e., do not satisfy the triangle inequality).

Densification for OPH. To tackle the issue caused by empty bins, a series of works has been con-
ducted to densify the OPH. The general idea is to “borrow” the data/hash from non-empty bins, with
some careful design. In Algorithm 3, we present two recent representatives of OPH densification
methods: fixed densification (Shrivastava, 2017) and re-randomized densification (Li et al., 2019),
noted as OPH-fix and OPH-re, respectively. Given an OPH hash vector from Algorithm 2 (possibly
containing “E”s), we denote the set of non-empty bins NonEmptyBin = {k ∈ [K] : hk(u) 6= E}.
The densification procedure scans over k = 1, ...,K. For each k with hk(u) = E, we do:

1. Uniformly randomly pick a bin k′ ∈ NonEmptyBin that is non-empty.

2. (a) OPH-fix: we directly copy the k′-th hash value: hk(u)← hk′(u).
(b) OPH-re: we apply an additional minwise hashing to bin Bk′ using the “partial permu-

tation” of Bk to get the hash for hk(u).

More precisely, for re-randomized densification, in Algorithm 3, MapToIndex defines the “partial
permutation” of bin Bk, where the function SortedIndex returns the original index of an sorted
array. For example, let D = 16, K = 4, and d = D/K = 4 and suppose the indices in each bin
are in ascending order, and B2 = [1, 5, 13, 15] is empty. Suppose π(13) = 5, π(5) = 6, π(1) =
7, π(15) = 8. In this case, π(B2) = [7, 6, 5, 8], so SortedIndex(π(B2)) = [3, 2, 1, 4]. Assume
k′ = 3 is picked and π(B3) = [9, 12, 10, 11]. At line 7 we have MapToIndex = [11, 10, 9, 12]
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Algorithm 4 Differentially Private Densified One Permutation Hashing (DP-OPH-fix, DP-OPH-re)

Input: Densified OPH hash values h1(u), ..., hK(u); number of bits b; ǫ > 0, 0 < δ < 1
f : lower bound on the number of non-zeros in each data vector

Output: b-bit DP-OPH values h̃(u) = [h̃1(u), ..., h̃K(u)]

1: Take the last b bits of all hash values ⊲ After which hk(u) ∈ {0, ..., 2
b − 1}

2: Set N = F−1
fix(1−δ;D,K, f) (for DP-OPH-fix) or N = F−1

re (1−δ;D,K, f) (for DP-OPH-re),
and ǫ′ = ǫ/N

3: for k = 1 to K do

4: h̃k(u) =

{

hk(u), with probability eǫ
′

eǫ′+2b−1

i, with probability 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

5: end for

and at line 8, π(2) is a mapping [9, 12, 10, 11] 7→ [11, 10, 9, 12], which effectively defines another
within-bin permutation of π(B3) using the partial ordering of π(B2). Finally, we set hk(u) as the
minimal index of “1” among the additionally permuted elements in bin Bk′ .

We remark that in step 1, for any empty bin k, the “sequence” for non-empty bin lookup should
be the same for any data vector. In practice, this can be achieved by simply seeding a random
permutation of [K] for each k. For instance, for k = 1 (when the first bin is empty), we always
search in the order [3, 1, 2, 4] until one non-empty bin is found, for all the data vectors.

It is shown that for both variants, the Jaccard estimator of the same form as (2) is unbiased. Li et al.
(2019) showed that re-randomized densification always achieves smaller Jaccard estimation variance
than that of fixed densification, and the improvement is especially significant when the data is sparse
(see the reference paper for more details). Similar to b-bit minwise hashing, we can also keep the
last b bits of the OPH hash values to use them conveniently in search and learning.

3.2 DIFFERENTIAL PRIVATE ONE PERMUTATION HASHING (DP-OPH)

DP-OPH with densification. To privatize densified OPH, in Algorithm 4, we first take the last b
bits of the hash values. Since the output space is finite with cardinality 2b, we apply the randomized
response technique (Dwork & Roth, 2014; Wang et al., 2017) to flip the bits to achieve DP. After
running Algorithm 3, suppose a densified OPH hash value hk(u) = j, j ∈ 0, ..., 2b − 1. With

some ǫ′ > 0 that will be specified later, we output h̃k(u) = j with probability eǫ
′

eǫ′+2b−1
, and

h̃k(u) = i for i 6= j with probability 1
eǫ′+2b−1

. It is easy to verify that, for a neighboring data u′,

when hk(u
′) = j, for ∀i ∈ 0, ..., 2b − 1, we have P (h̃k(u)=i)

P (h̃k(u′)=i)
= 1; when hk(u

′) 6= j, we have

e−ǫ′ ≤ P (h̃k(u)=i)

P (h̃k(u′)=i)
≤ eǫ

′

. Therefore, for a single hash value, this bit flipping satisfies ǫ′-DP.

It remains to determine ǫ′. Naively, since the perturbations (flipping) of the hash values are indepen-
dent, by the composition property of DP (Dwork et al., 2006a), simply setting ǫ′ = ǫ/K for all K
MinHash values would achieve overall ǫ-DP (for the hashed vector). However, since K is usually
around hundreds, a very large ǫ value is required for this strategy to be useful. To this end, we can
trade a small δ in the DP definition for a significantly reduced ǫ. Note that, not all the K hashed bits
will change after we switch from u to its neighbor u′. Assume each data vector contains at least f
non-zeros, which is realistic since many data in practice have both high dimensionality D as well as
many non-zero elements. Intuitively, when the data is not too sparse, u and u′ tends to be similar
(since they only differ in one element). Thus, the number of different hash values from Algorithm 3,
X =

∑K
k=1 1{hk(u) 6= hk(u

′)}, can be upper bounded by some N with high probability 1− δ. In
the proof, this allows us to set ǫ′ = ǫ/N in the flipping probabilities and count δ as the failure proba-
bility in (ǫ, δ)-DP. In Lemma 3.1, we derive the precise probability distribution of X . Based on this
result, in Algorithm 4, we set N = F−1

fix(1−δ;D, f,K) for DP-OPH-fix, N = F−1
re (1−δ;D, f,K)

for DP-OPH-re, where Ffix(x) = P (X ≤ x) is the cumulative mass function (CMF) of X with
OPH-fix ((3) + (4)), and Fre is the cumulative mass function of X with OPH-re ((3) + (5)), and F−1

is the inverse CMF. The distribution of X is given as below. The proof can be found in Appendix C.
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Algorithm 5 Differentially Private One Permutation Hashing with Random Bits (DP-OPH-rand)

Input: OPH hash values h1(u), ..., hK(u) from Algorithm 2; number of bits b; ǫ > 0

Output: DP-OPH-rand hash values h̃(u) = [h̃1(u), ..., h̃K(u)]

1: Take the last b bits of all hash values ⊲ After which hk(u) ∈ {0, ..., 2
b − 1}

2: for k = 1 to K do
3: if hk(u) 6= E then

4: h̃k(u) =

{

hk(u), with probability eǫ

eǫ+2b−1

i, with probability 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

5: else
6: h̃k(u) = i with probability 1

2b
, for i = 0, ..., 2b − 1 ⊲ Assign random bits to empty bin

7: end if
8: end for

Lemma 3.1. Consider u ∈ {0, 1}D, and denote f = |{i : ui = 1}|. Let u′ be a neighbor of

u. Denote X =
∑K

k=1 1{hk(u) 6= hk(u
′)} where the hash values are generated by Algorithm 3.

Denote d = D/K. We have, for x = 0, ...,K − ⌈f/d⌉,

P (X = x) =

K−⌈f/d⌉
∑

j=max(0,K−f)

min(f,d)
∑

z=1

P̃ (x|z, j)P
(

f̃ = z|K − j
)

P (Nemp = j) , (3)

where P
(

f̃ = z|K − j
)

is given in Lemma C.2 and P (Nemp = j) is from Lemma C.1. Moreover,

For OPH-fix: P̃ (x|z, j) = 1{x = 0}
(

1− P 6=

)

+ 1{x > 0}P 6= · gbino

(

x− 1;
1

K − j
, j

)

, (4)

For OPH-re: P̃ (x|z, j) =
(

1− P 6=

)

· gbino

(

x;
P 6=

K − j
, j

)

+ P 6= · gbino

(

x− 1;
P 6=

K − j
, j

)

, (5)

where gbino(x; p, n) is the probability mass function of Binomial(p, n) with n trials and success

rate p, and P 6=(z, b) =
(

1− 1
2b

)

1
z .

The privacy guarantee of DP-OPH with densification is shown as below.

Theorem 3.2. Both DP-OPH-fix and DP-OPH-re in Algorithm 4 achieve (ǫ, δ)-DP.

Proof. Let u and u′ be neighbors only differing in one element. Denote S = {k ∈ [K] : hk(u) 6=
hk(u

′)} and Sc = [K] \ S. As discussed before, we can verify that for k ∈ Sc, we have
P (h̃k(u)=i)

P (h̃k(u′)=i)
= 1 for any i = 0, ..., 2b − 1. For k ∈ S, e−ǫ′ ≤ P (h̃k(u)=i)

P (h̃k(u′)=i)
≤ eǫ

′

holds for any

i = 0, ..., 2b − 1. Thus, for any Z ∈ {0, ..., 2b − 1}K , the absolute privacy loss can be bounded by
∣

∣

∣

∣

∣

log
P (h̃(u) = Z)

P (h̃(u′) = Z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log
∏

k∈S

P (h̃k(u) = i)

P (h̃k(u′) = i)

∣

∣

∣

∣

∣

≤ |S|ǫ′ = |S|
ǫ

N
. (6)

By Lemma 3.1, with probability 1−δ, |S| ≤ F−1
fix(1−δ) = N for DP-OPH-fix; |S| ≤ F−1

re (1−δ) =

N for DP-OPH-re. Hence, (6) is bounded by ǫ with probability 1−δ. This proves the (ǫ, δ)-DP.

DP-OPH without densification. From the practical perspective, we may also privatize the OPH
without densification (i.e., add DP to the output of Algorithm 2). The first step is to take the last b
bits of every non-empty hash and get K hash values from {0, ..., 2b−1}∪{E}. Then, for non-empty
bins, we keep the hash value with probability eǫ

eǫ+2b−1
, and randomly flip it otherwise. For empty

bins (i.e., hk(u) = E), we simply assign a random value in {0, ..., 2b − 1} to h̃k(u). The formal
procedure of this so-called DP-OPH-rand method is summarized in Algorithm 5.

Theorem 3.3. Algorithm 5 achieves ǫ-DP.

Proof. The proof is similar to the proof of Theorem 3.2. Since the original hash vector h(u) is
not densified, there only exists exactly one hash value such that hk(u) 6= hk(u) may happen for
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Algorithm 6 Differentially Private Minwise hashing (DP-MH)

Input: MinHash values h1(u), ..., hK(u); number of bits b; ǫ > 0, 0 < δ < 1
f : lower bound on the number of non-zeros in each data vector

Output: DP-MH values h̃(u) = [h̃1(u), ..., h̃K(u)]

1: Take the last b bits of all hash values ⊲ After which hk(u) ∈ {0, ..., 2
b − 1}

2: Set N = F−1
bino(1− δ; 1

f ,K), and ǫ′ = ǫ/N

3: for k = 1 to K do

4: h̃k(u) =

{

hk(u), with probability eǫ
′

eǫ′+2b−1

i, with probability 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

5: end for

u′ that differs in one element from u. W.l.o.g., assume ui = 1 and u′
i = 0, and i ∈ Bk. If

bin k is non-empty for both u and u′ (after permutation), then for any Z ∈ {0, ..., 2b − 1}K ,
∣

∣

∣
log P (h̃(u)=Z)

P (h̃(u′)=Z)

∣

∣

∣
≤ ǫ according to our analysis in Theorem 3.2 (the probability of hash in [K] \ {k}

cancels out). If bin k is empty for u′, since 1 ≤ eǫ

eǫ+2b−1
/ 1
2b
≤ eǫ and e−ǫ ≤ 1

2b
/ 1
eǫ+2b−1

≤ 1, we

also have
∣

∣

∣
log P (h̃(u)=Z)

P (h̃(u′)=Z)

∣

∣

∣
≤ ǫ. Therefore, the algorithm is ǫ-DP.

Compared with Algorithm 4, DP-OPH-rand achieves strict DP with smaller flipping probability (ef-
fectively, N ≡ 1 in Algorithm 4). This demonstrates the essential benefit of “binning” in OPH, since
the change in one data coordinate will only affect one hash value (if densification is not applied). As
a consequence, the non-empty hash values are less perturbed in DP-OPH-rand than in DP-OPH-fix
or DP-OPH-re. However, this comes with an extra cost as we have to assign random bits to empty
bins, which do not provide any useful information about the data. Moreover, this extra cost does not
diminish as ǫ increases, because the number of empty bins only depends on the data itself and K.

3.3 COMPARISON WITH DIFFERENTIALLY PRIVATE MINHASH (DP-MH)

While we have presented our main contributions on the DP-OPH algorithms, we also discuss the DP
MinHash (DP-MH) method (Algorithm 6) as a baseline comparison. The general mechanism of DP-
MH is the same as densified DP-OPH . The main difference between Algorithm 6 and Algorithm 4
is in the calculation of N . In Algorithm 6, we set N = F−1

bino(1 − δ; 1
f ,K) where F−1

bino(x; p, n) is
the inverse cumulative mass function of Binomial(p, n) with n trials and success probability p.

Theorem 3.4. Algorithm 6 is (ǫ, δ)-DP.

Proof. We use the same proof strategy for Theorem 3.2 by noting that X =
∑K

k=1 1{hk(u) 6=
hk(u

′)} for neighboring u and u′ follows Binomial( 1f ,K).

In a related work, Aumüller et al. (2020) also proposed to apply randomized response to MinHash.
However, the authors incorrectly used a tail bound for the binomial distribution (see their Lemma 1)
which is only valid for small deviation. In DP, δ is often very small (e.g., 10−6), so the large deviation
tail bound should be used which is looser than the one used therein1. That said, in their paper, the
perturbation is underestimated and their method does not satisfy DP rigorously. In our Algorithm 6,
we fix this minor error by using the exact probability mass function to compute the tail probability,
which also avoids any loss due to the concentration bounds.

Comparison: Densified DP-OPH versus DP-MH. We compare N , the “privacy discount factor”,
in DP-OPH-fix, DP-OPH-re, and DP-MH. Smaller N leads to smaller bit flipping probability which
benefits the utility. In Figure 1, we plot N vs. f , for D = 1024, K = 64, and δ = 10−6. Similar
comparison also holds for other D,K combinations. From the figure, we observe that N in DP-
OPH is typically smaller than that in DP-MH, showing the advantages of OPH from the privacy
perspective. Moreover, N for DP-OPH-re is consistently smaller than that for DP-OPH-fix. This

1For X following a Binomial distribution with mean µ, Aumüller et al. (2020) used the concentration in-

equality P (X ≥ (1 + ξ)µ) ≤ exp(− ξ2µ

3
), which only holds when 0 ≤ ξ ≤ 1. For large deviations (large ξ),

the valid Binomial tail bound should be P (X ≥ (1 + ξ)µ) ≤ exp(− ξ2µ

ξ+2
).
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illustrates that re-randomization in the densification process is an important step to ensure better
privacy. A comparison of the MSE of the unbiased Jaccard estimators are placed in Appendix A.
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Figure 1: Comparison of the privacy discount factor N for densified DP-OPH and DP-MH, against
the number of non-zero elements in the data vector f . D = 1024,K = 64, δ = 10−6.

4 EXPERIMENTS

We conduct retrieval experiments on three public datasets from various domains: (1) Leukemia gene
expression dataset (https://sbcb.inf.ufrgs.br/cumida); (2) MNIST (LeCun et al.,
1998) hand-written digit dataset; (3) Webspam (Chang & Lin, 2011) dataset for spam detection. All
the datasets are binarilized to 0/1. For Leukemia, we first standardize the features columns (to mean
0 and std 1), and then keep entries larger than 1 to be 1 and zero out the others. For MNIST and
Webspam, we simply set the non-zero entries to 1. For Leukemia, since the data size is small, we
treat every data point as a query and other points as the database. For MNIST and Webspam, we use
the train set as the database, and the test set as queries. For each query point, we set the ground truth
(“gold-standard” ) neighbors as the top 50 data points in the database with highest Jaccard similarity
to the query. To search with DP-OPH and DP-MH, we generate the private hash values and compute
the collision estimator (2) between the query and each data point. Then, we retrieve the data points
with the highest estimated Jaccard similarity to the query. For densified DP-OPH (Algorithm 4)
and DP-MH (Algorithm 6), we ensure the lower bound f on the number of non-zero elements by
filtering the data points with at least f non-zeros. We use f = 1000, 50, 500 for Leukemia, MNIST,
and Webspam, respectively, which cover 100%, 99.9%, 90% of the total data points. We average the
precision and recall over all the query points and over 5 independent runs.

Results. In Figure 2, we report the results for Leukemia with b = 1, 2, 4 and ǫ ∈ [1, 50]. Due to
space limitation, we plot the precision here; the recall comparisons are similar. We see that:

• DP-OPH-re performs considerably better than DP-MH and DP-OPH-fix, for all ǫ levels.

• DP-OPH-rand achieves good accuracy with small ǫ (e.g., ǫ < 5), but stops improving with
ǫ afterwards (due to the random bits for the empty bins), which demonstrates the trade-off
discussed in Section 3.2. When ǫ gets larger (e.g., ǫ > 10), DP-OPH-re performs the best.

• Increasing b is relatively more beneficial for DP-OPH-rand as it can achieve higher search
accuracy with small ǫ. Also, larger ǫ is required for DP-OPH-re to bypass DP-OPH-rand.

The results on MNIST and Webspam are presented in Figure 3 and Figure 4, respectively. Similarly,
DP-OPH-re achieves better performance than DP-MH and DP-OPH-fix for all ǫ. DP-OPH-rand
performs the best with ǫ < 10. Yet, it is outperformed by DP-OPH-re with larger ǫ.

5 CONCLUSION

In this paper, we propose differential private one permutation hashing (DP-OPH). We develop three
variants depending on the densification procedure of OPH, and provide detailed derivation and pri-
vacy analyses of our algorithms. We show the advantage of the proposed DP-OPH over the DP Min-
Hash alternative for hashing the Jaccard similarity. Experiments are conducted on retrieval tasks to
justify the effectiveness of the proposed DP-OPH, and provide guidance on the appropriate choice
of the DP-OPH variant in different scenarios. In Appendix B, we also provide DP-BCWS which
is based on bin-wise consistent weighted samples (BCWS) (Li et al., 2019) for weighted Jaccard
similarity (for non-negative data). Given the efficiency and strong performance, we expect DP-OPH
to be a useful private hashing method in practical applications.
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Figure 2: Precision@1 results on Leukemia gene expression dataset with b = 1, 2, 4. δ = 10−6. We
check the precision to recover the most similar neighbor for every data point.
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Figure 3: Precision@10 results on MNIST dataset for b = 1. δ = 10−6.
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Figure 4: Precision@10 results on Webspam dataset with b = 2. δ = 10−6.
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A UNBIASED JACCARD ESTIMATOR AND THE MSE COMPARISON

In the main paper, we have shown that DP-OPH-re has the smallest “privacy discount factor” N com-
pared to DP-OPH-fix and DP-MH (Figure 1). Here we further compare there Jaccard estimation ac-
curacy. For the two densified DP-OPH variants, DP-OPH-fix and DP-OPH-re, and the DP MinHash
(DP-MH) methods, each full-precision (and unprivatized) hash value of h(u) and h(v) has collision
probability equal to P (h(u) = h(v)) = J(u,v). Let h(b)(u) denote the b-bit hash values. Since
we assume the last b bits are uniformly assigned, we have P (h(b)(u) = h(b)(v)) = J + (1− J) 1

B .

Denote p = exp(ǫ/N)
exp(ǫ/N)+2b−1

. By simple probability calculation, the privatized b-bit hash values has
collision probability

P (h̃(u) = h̃(v))

= P (h̃(u) = h̃(v)|h(b)(u) = h(b)(v))P (h(b)(u) = h(b)(v))

+ P (h̃(u) = h̃(v)|h(b)(u) 6= h(b)(v))P (h(b)(u) 6= h(b)(v))

=

[

p2 +
(1− p)2

2b − 1

](

1

2b
+

2b − 1

2b
J

)

+

[

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

](

2b − 1

2b
−

2b − 1

2b
J

)

,

which implies J = (2b−1)(2bP (h̃(u)=h̃(v))−1)
(2bp−1)2

. Therefore, let Ĵ = 1
K

∑K
k=1 1{h̃k(u) = h̃k(v)}, then

an unbiased estimator of J is

Ĵunbias =
(2b − 1)(2bĴ − 1)

(2bp− 1)2
. (7)

To compare the mean squared error (MSE), we simulate a two data vectors with D = 1024,K = 64,
and J = 1/3. In Figure 5, we vary f , the number of non-zeros per data vector, and report the
empirical MSE of the unbiased estimator (7) for DP-OPH-fix, DP-OPH-re and DP-MH, respectively.
As we can see, the comparison is consistent with the comparison of N in Figure 1, that the proposed
DP-OPH-re has smallest MSE among the three competitors. This again justifies the advantage of
DP-OPH-re with re-randomized densification.
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Figure 5: Empirical MSE comparison of the unbiased Jaccard estimator (7) from DP-OPH-fix, DP-
OPH-re and DP-MH. D = 1024,K = 64, δ = 10−6.

B EXTENSION: DIFFERENTIALLY PRIVATE BIN-WISE CONSISTENT

WEIGHTED SAMPLING (DP-BCWS) FOR WEIGHTED JACCARD

SIMILARITY

In our main paper, we focused on DP hashing algorithms for the binary Jaccard similarity. Indeed,
our algorithm can also be extended to hashing the weighted Jaccard similarity: (recall the definition)

Jw(u,v) =

∑D
i=1 min{ui, vi}

∑D
i=1 max{ui, vi}

, (8)

for two non-negative data vectors u,v ∈ R+. The standard hashing algorithm for (8) is called
Consistent Weighted Sampling (CWS) as summarized in Algorithm 7 (Ioffe, 2010; Manasse et al.,
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Algorithm 7 Consistent Weighted Sampling (CWS)

Input: Non-negative data vector u ∈ R
D
+

Output: Consistent weighted sampling hash h∗ = (i∗, t∗)

1: for every non-zero vi do
2: ri ∼ Gamma(2, 1), ci ∼ Gamma(2, 1), βi ∼ Uniform(0, 1)

3: ti ← ⌊
log ui

ri
+ βi⌋, yi ← exp(ri(ti − βi))

4: ai ← ci/(yi exp(ri))
5: end for
6: i∗ ← argmini ai, t∗ ← ti∗

2010; Li et al., 2021). To generate one hash value, we need three length-D random vectors r ∼
Gamma(2, 1), c ∼ Gamma(2, 1) and β ∼ Uniform(0, 1). We denote Algorithm 7 as a function
CWS(u; r, c,β). Li et al. (2019) proposed bin-wise CWS (BCWS) which exploits the same idea
of binning as in OPH. The binning and densification procedure of BCWS is exactly the same as
OPH (Algorithm 2 and Algorithm 3), except that every time we apply CWS, instead of MinHash,
to the data in the bins to generate hash values. Note that in CWS, the output contains two values:
i∗ is a location index similar to the output of OPH, and t∗ is a real-value scalar. Prior studies (e.g.,
Li et al. (2021)) showed that the second element has minimal impact on the estimation accuracy in
most practical cases (i.e., only counting the collision of the first element suffices). Therefore, in our
study, we only keep the first integer element as the hash output for subsequent learning tasks.

For weighted data vectors, we follow the prior DP literature on weighted sets (e.g., Xu et al. (2013);
Smith et al. (2020); Dickens et al. (2022); Zhao et al. (2022)) and define the neighboring data vec-
tors as those who differ in one element. To privatize BCWS, there are also three possible ways
depending on the densification option. Since the DP algorithm design for densified BCWS requires
rigorous and non-trivial computations which might be an independent study, here we empirically
test the (b-bit) DP-BCWS method with random bits for empty bins. The details are provided in
Algorithm 8. In general, we first randomly split the data entries into K equal length bins, and ap-
ply CWS to the data uBk

in each non-empty bin Bk using the random numbers (rBk
, cBk

,βBk
) to

generated K hash values (possibly including empty bins). After each hash is truncated to b bits, we
uniformly randomly assign a hash value in {0, ..., 2b − 1} to every empty bin.

Algorithm 8 Differential Private Bin-wise Consistent Weighted Sampling (DP-BCWS)

Input: Binary vector u ∈ {0, 1}D; number of hash values K; number of bits per hash b

Output: DP-BCWS hash values h̃1(u), ..., h̃K(u)

1: Generate length-D random vectors r ∼ Gamma(2, 1), c ∼ Gamma(2, 1), β ∼
Uniform(0, 1)

2: Let d = D/K. Use a permutation π : [D] 7→ [D] with fixed seed to randomly split [D] into K
equal-size bins B1, ...,BK , with Bk = {j ∈ [D] : (k − 1)d+ 1 ≤ π(j) ≤ kd}

3: for k = 1 to K do
4: if Bin Bk is non-empty then
5: hk(u)← CWS(uBk

; rBk
, cBk

,βBk
) ⊲ Run CWS within each non-empty bin

6: hk(u)← last b bits of hk(u)

7: h̃k(u) =

{

hk(u), with probability eǫ

eǫ+2b−1

i, with probability 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

8: else
9: hk(u)← E

10: h̃k(u) = i with probability 1
2b

, for i = 0, ..., 2b − 1 ⊲ Assign random bits to empty bin
11: end if
12: end for

Using the same proof arguments as Theorem 3.3, we have the following guarantee.

Theorem B.1. Algorithm 8 satisfies ǫ-DP.
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Empirical evaluation. In Figure 6, we train an l2-regularized logistic regression on the DailySports
dataset2. and report the test accuracy with various b and K values. The l2 regularization parameter
λ is tuned over a fine grid from 10−4 to 10. Similar to the results in the previous section, the
performance of DP-BCWS becomes stable as long as ǫ > 5. Note that, linear logistic regression
only gives ≈ 75% accuracy on original DailySports dataset (without DP). With DP-BCWS, the
accuracy can reach ≈ 98% with K = 1024 and ǫ = 5.
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Figure 6: Test classification accuracy of DP-BCWS on DailySports dataset (Asuncion & Newman,
2007) with l2-regularized logistic regression.

In Figure 7, we train a neural network with two hidden layers of size 256 and 128 respectively on
MNIST. We use the ReLU activation function and the standard cross-entropy loss. We see that,
in a reasonable privacy regime (e.g., ǫ < 10), DP-BCWS is able to achieve ≈ 95% test accuracy
with proper K and b combinations (one can choose the values depending on practical scenarios and
needs). For example, with b = 4 and K = 128, DP-BCWS achieves ≈ 97% accuracy at ǫ = 8.
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Figure 7: Test classification accuracy of DP-BCWS on MNIST with 2-hidden layer neural network.

C PROOF OF LEMMA 3.1

Lemma C.1 (Li et al. (2012)). Let f = |{i : ui = 1}|, and Iemp,k be the indicator function that the

k-th bin is empty, and Nemp =
∑K

k=1 Iemp,k. Suppose mod(D,K) = 0. We have

P (Nemp = j) =

K−j
∑

ℓ=0

(−1)ℓ
(

K

j

)(

K − j

ℓ

)(

D(1− (j + ℓ)/K)

f

)/(

D

f

)

.

Lemma C.2 (Li et al. (2019)). Conditional on the event that m bins are non-empty, let f̃ be the
number of non-zero elements in a non-empty bin. Denote d = D/K. The conditional probability

distribution of f̃ is given by

P
(

f̃ = j
∣

∣m
)

=

(

d
j

)

H(m− 1, f − j|d)

H(m, f |d)
, j = max{1, f − (m− 1)d}, ...,min{d, f −m+ 1},

2https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities
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where H(·) follows the recursion: for any 0 < k ≤ K and 0 ≤ n ≤ f ,

H(k, n|d) =

min{d,n−k+1}
∑

i=max{1,n−(k−1)d}

(

d

i

)

H(k − 1, n− i|d), H(1, n|d) =

(

d

n

)

.

Proof. (of Lemma 3.1) Without loss of generality, suppose u and u′ differ in the i-th dimension,
and by the symmetry of DP, we can assume that ui = 1 and u′

i = 0. We know that i is assigned to
the ⌈mod(π(i), d)⌉-th bin. Among the K hash values, this change will affect all the bins that uses
the data/hash of the k∗ = ⌈mod(π(i), d)⌉-th bin (after permutation), both in the first scan (if it is
non-empty) and in the densification process. Let Nemp be the number of empty bins in h(u), and f̃
be the number of non-zero elements in the k∗-th bin. We have, for x = 0, ...,K − ⌈f/d⌉,

P (X = x) =

K−⌈f/d⌉
∑

j=max(0,K−f)

min(f,d)
∑

z=1

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

P
(

f̃ = z,Nemp = j
)

=

K−⌈f/d⌉
∑

j=max(0,K−f)

min(f,d)
∑

z=1

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

P
(

f̃ = z|K − j
)

P (Nemp = j) ,

where P
(

f̃ = z|K − j
)

is given in Lemma C.2 and P (Nemp = j) can be calculated by

Lemma C.1. To compute the first conditional probability, we need to compute the number of times
the k∗-th bin is picked to generated hash values, and the hash values are different for u and u′.
Conditional on {f̃ = z,Nemp = j}, denote Ω = {k : Bk is empty}, and let Rk be the non-empty
bin used for the k-th hash value hk(u), which takes value in [K] \ Ω. We know that |Ω| = j. We
can write

X = 1{hk∗(u) 6= hk∗(u′)}+
∑

k∈Ω

1{Rk = k∗, hk(u) 6= hk(u
′)}.

Here we separate out the first term because the k∗-th hash always uses the k∗-bin. Note that the
densification bin selection is uniform, and the bin selection is independent of the permutation for
hashing. For the fixed densification, since the hash value hk∗(u) is generated and used for all hash
values that use Bk∗ , we have

P
(

X = x
∣

∣

∣
f̃ = z,Nempj

)

= 1{x = 0} (1− P 6=) + 1{x > 0}P 6= · gbino

(

x− 1;
1

K − j
, j

)

,

where gbino(x; p, n) is the probability mass function of the binomial distribution with n trials and
success rate p, and P 6= = P (hk∗(u) 6= hk∗(u′)) =

(

1− 1
2b

)

1
z . Based on the same reasoning, for

re-randomized densification, we have

P
(

X = x
∣

∣

∣
f̃ = z,Nempj

)

= (1− P 6=) · gbino

(

x;
P 6=

K − j
, j

)

+ P 6= · gbino

(

x− 1;
P 6=

K − j
, j

)

.

Combining all the parts together completes the proof.
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