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Abstract
Hybrid control problems are complicated by the need to make a suitable sequence of discrete de-
cisions related to future modes of operation of the system. Model predictive control (MPC) encodes
a finite-horizon truncation of such problems as a mixed-integer program, and then imposes a cost
and/or constraints on the terminal state intended to reflect all post-horizon behaviour. However,
these are often ad hoc choices tuned by hand after empirically observing performance. We present
a learning method that sidesteps this problem, in which the so-called N -step Q-function of the
problem is approximated from below, based on experience evaluating the policy. The function
takes a state and a sequence of N control decisions as arguments, and therefore extends the tradi-
tional notion of a Q-function from reinforcement learning. After learning it from a training process
exploring the state-input space, we use it in place of the usual MPC objective. We take an example
hybrid control task and show that it can be completed successfully with a shorter planning horizon
than conventional hybrid MPC thanks to our proposed method. Furthermore, we report that Q-
functions trained with long horizons can be truncated to a shorter horizon for online use, yielding
simpler control laws with apparently little loss of performance.

Keywords: Hybrid systems, reinforcement learning, approximate dynamic programming

1. Introduction

Hybrid control problems arise frequently in applications as diverse as robotic motion planning
(Kuindersma et al., 2016) and power electronic converters (Geyer and Quevedo, 2014), and fea-
ture systems that must be steered between various discrete modes of operation. In discrete time,
it is typical to use binary decision variables to encode choices of mode at each step of a planning
horizon; see Marcucci and Tedrake (2019) for an up-to-date review of hybrid system descriptions.

Even with a perfect model, hybrid problems are made difficult by the need to plan a potentially
long sequence of discrete decisions in advance, only a small fraction of which correspond to feasible
state trajectories, and fewer still achieve the control objective. A common approach is hybrid MPC
(Borrelli et al., 2017), in which an N -step decision problem is encoded as a mixed-integer convex
program (MICP), and a terminal cost V (xN ) and/or constraint xN ∈ Xf is used to account for
the evolution of the system after xN , the N th state in the planned sequence. However, one is often
forced to make very conservative choices, for example xN = 0, because subsequent safe behaviour
is otherwise hard to guarantee. In some applications, physical insights can be used to tailor the
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terminal cost in order to bring about desired long-term behaviour, e.g. Stellato et al. (2016) for
power converter control. However, there is no general approach for this, with the exception of
highly specialized and computationally expensive explicit hybrid MPC methods (Beccuti et al.,
2007; Axehill et al., 2014). Alternatively one can increase N to limit the impact of a poorly chosen
V (xN ) or Xf , however this may often render real-time control impractically expensive.

1.1. Contributions

We propose instead to change the objective function of the N -step decision problem to a direct
approximation of the optimal Q-function of the problem, also known as the state-action value func-
tion (Sutton and Barto, 2018), and learn this function using reinforcement learning (RL) techniques.
The Q-function we employ is in fact an N -step extension of the traditional definition, taking as its
arguments the same N inputs as used in hybrid MPC. We propose a hybrid extension of Warrington
(2019), which generates an increasingly tight lower-approximation of the optimalQ-function, in the
form of a pointwise maximum of lower-bounding functions. These lower bounds are model based,
in that they feature the (known) model dynamics, stage cost, and constraints in their parameteriza-
tion. They are constructed via an exploration of the state-action space during which greedy N -step
policies are used to choose the actions. They are convex, and yet induce complex N -step predict-
ive control policies as we only evaluate them along feasible hybrid system trajectories. This is far
more expressive than the method of Bouchat and Jungers (2019), which also uses Benders cuts
but fits convex value functions only to system modes in isolation and limits the resulting control
performance.

Numerical experiments show that our controllers outperform naive implementations of hybrid
MPC, without having to choose terminal costs or constraints. Although we only demonstrate and
visualize our approach on a simple problem, our results represent a step towards a general model-
based learning method for hybrid control problems that have no other tractable solution.

2. The N -step Q-function

We consider infinite-horizon hybrid control problems for a sub-class of standard mixed logical dy-
namical (MLD) systems, given in Bemporad and Morari (1999), that are time-invariant and do not
have binary states or control inputs. We denote the optimal infinite-horizon cost, or optimal value
function, V ?:

V ?(x) := min
{xt}∞t=0,{ut}∞t=0,{δt}∞t=0,{zt}∞t=0

∞∑
t=0

γt
(
1
2x
>
t Qxt +

1
2u
>
t Rut

)
(1a)

s. t. xt+1 = Axt +B1ut +B2δt +B3zt , t = 0, 1, . . . , (1b)

E2δt + E3zt ≤ E4xt + E1ut + E5 , t = 0, 1, . . . , (1c)

δt ∈ {0, 1}nδ , t = 0, 1, . . . , (1d)

x0 = x , (1e)

in which xt ∈ Rn is the state, ut ∈ Rm is the input, and zt ∈ Rnz and δt are auxiliary continuous
and binary variables required in the MLD framework. We assume Q � 0 and R � 0. Constraints
(1b)-(1e) jointly bind the evolution of the system to feasible trajectories, including mode switches
parameterized by δt. Constraints (1c) encode both the MLD dynamics, and state and input con-
straints that only involve xt and ut. We assume the system is “well-posed” in the sense that δt and
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zt are uniquely fixed by xt and ut. The discount factor γ ∈ (0, 1] does not appear in Bemporad and
Morari (1999), but is common in the RL literature, and is used here to accommodate, for example,
problems with periodic solutions, where V ?(x) = +∞ unless we allow γ < 1.

The notion of an optimal value function readily extends to the case where the first N control
inputs are also arguments (as are the associated δ and z values), resulting in what we call the optimal
N -step state-action value function Q(N)?:

Q(N)?(x, {u}N−10 , {δ}N−10 , {z}N−10 ) :=

min
{x}∞0 ,{u}∞N ,{δ}

∞
N ,{z}

∞
N

∑∞
t=0 γ

t
(
1
2x
>
t Qxt +

1
2u
>
t Rut

)
s. t. (1b)-(1e) . (2)

We use the shorthands {u}N−10 etc. to avoid writing out full argument lists u0, u1, . . . , uN−1,
etc. Note that the first N inputs and auxiliary variables are parameters rather than optimization
variables in (2). The conventional “optimal Q-function” in the usual RL sense (Sutton and Barto,
2018) is just a special case of the above with N = 1. It is trivial to show that

Q(N)?(x, {u}N−10 , {δ}N−10 , {z}N−10 ) =
∑N−1

t=0 γt
(
1
2x
>
t Qxt +

1
2u
>
t Rut

)
+ γNV ?(xN ) ,

in which the state sequence x1, . . . , xN is generated by the dynamics (1b) and satisfies (1c)-(1e).
For later use we denote triples of inputs and auxiliary variables s = (u, δ, z). Triples that are

instantaneously compatible with the state x are described by the set S(x) := {s = (u, δ, z) ∈
Rm×{0, 1}nδ ×Rnz : E2δ+E3z ≤ E1u+E4x+E5}. We also define the set of feasible N -step
trajectories with initial state x,

S(N)(x) :=

{
{s}N−10 = ({u}N−10 , {δ}N−10 , {z}N−10 ) : x0 = x, sk ∈ S(xk) and
xk = Axk−1 +B1uk−1 +B2δk−1 +B3zk−1 for k = 1, . . . , N − 1

}
. (3)

2.1. Control via N -step approximate Q-functions

An approximation of Q(N)?, denoted Q(N), can be used to generate a control policy:

π(x;Q(N)) ∈

[
argmin

{s}N−1
0 ∈S(N)(x)

Q(N)(x, {s}N−10 )

]
u0

(4)

where the outer [· · · ]u0 indicates that the initial control decision u0 is taken from the optimal
{s}N−10 , assuming an optimum is attained. In the RL literature, this would be called a greedy policy
with respect to Q(N). From (2) it follows that π(x;Q(N)?) is an optimal policy bringing about the
optimal infinite-horizon “closed-loop” cost V ?(x) when applied recursively. By the definition of
V ? in (1), any other Q(N) will generally induce closed-loop costs greater than V ?(x).

2.2. Hybrid MPC

In hybrid MPC, the infinite-horizon problem (1) is approximated by an N -step MICP, in which a
terminal cost V (xN ) replaces all terms for time steps t ≥ N in the objective function. A terminal
constraint xN ∈ Xf may also be imposed to guarantee certain stability or recursive feasibility
properties. See §17.4 of Borrelli et al. (2017) for the formulation, which truncates (1) to N steps.

3



BENDERS CUTS FOR HYBRID CONTROL

According to DP principles, one would ideally like to use V ?(xN ) as the terminal cost to ensure
optimal performance for any N . However, this function is generally very complicated for hybrid
systems, as it is the parametric minimum of infinite-dimensional problem (1). Convex approxim-
ations of V ? amenable to MICP solvers may all be inherently poor for some hybrid control tasks.

3. Learning N -step Q-functions

The central idea of our approach is to approximate Q(N)? directly and use policy (4) to control the
system. This is the same as replacing the whole of the MPC cost function with an approximation
Q(N), rather than trying to use an approximation of V ? as the terminal cost. We find that Q(N)?

can be approximated more accurately with a simple function parameterization than V ?. This is at-
tractive, given that the optimization variables and constraints governing policy (4) are the same as in
hybrid MPC. Surprisingly, our proposed approximation Q(N) is convex in its arguments, but yields
rich closed-loop behaviour and high-quality approximations thanks to the fact that we only use it
in the context of input sequences satisfying the hybrid dynamics. This extends the Benders-based
learning approach of Warrington (2019) to hybrid systems, and to the required N -step horizon.

3.1. Bellman operator for N -step Q-functions

We define a Bellman operator T (N)
Q for a generic function Q(N) taking the same arguments, in a

manner similar to TQ in Warrington (2019) for any x0 ∈ Rn and {s}N−10 ∈ S(N)(x0):

T (N)
Q Q(N)(x0, {s}N−10 ) = 1

2x
>
0 Qx0 +

1
2u
>
0 Ru0 + infsN∈S(xN−1) γQ

(N)(x1, {s}N1 ) . (5)

From the definition (2) one can see that T (N)
Q Q(N)?(x0, {s}N−10 ) = Q(N)?(x0, {s}N−10 ) for all

x0 ∈ Rn and {s}N−10 ∈ S(N)(x0). The T (N)
Q operator is monotonic: if Q(N)

a (x0, {s}N−10 ) ≤
Q

(N)
b (x0, {s}N−10 ) for all x0 ∈ Rn and {s}N−10 ∈ S(N)(x0), then we have:

T (N)
Q Q(N)

a (x0, {s}N−10 ) ≤ T (N)
Q Q

(N)
b (x0, {s}N−10 ), ∀x0 ∈ Rn , {s}N−10 ∈ S(N)(x0) .

3.2. Benders cut

Suppose we have an approximation of Q(N)?, denoted Q(N)
I , taking the form of a point-wise max-

imum of functions q0, q1, . . . , qI :

Q
(N)
I (x0, {s}N−10 ) := maxi=0,...,I{qi(x0, {s}N−10 )}, (6)

where the functions each satisfy a lower bounding property,

qi(x0, {s}N−10 ) ≤ Q(N)?(x0, {s}N−10 ) , ∀(x0, {s}N−10 ) . (7)

Thus Q(N)
I ≤ Q(N)?. We now show that if the functions qi are parameterized in a particular way,

then applying the Bellman operator to Q(N)
I at some (x0, {s}N−10 ) generates a new valid lower

bound qI+1. This new bound tightens our approximation of Q(N)? under certain conditions.
The Bellman operator T (N)

Q in (5) can be written out for N -step Q-functions of the form (6) in
an equivalent manner:
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T (N)
Q Q

(N)
I (x0, {s}N−10 ) = inf

{x}N1 ,sN ,α
1
2x
>
0 Qx0 +

1
2u
>
0 Ru0 + γα (8a)

s. t. xt+1 = Axt +B1ut +B2δt +B3zt, t = 0, . . . , N − 1 (8b)

E2δN + E3zN ≤ E1uN + E4xN + E5, (8c)

qi(x1, {s}N1 ) ≤ α, i = 0, . . . , I (8d)

where α is an epigraph variable, which is bounded from below by each function qi, and therefore
models the value of Q(N)

I (x1, {s}N1 ). For parameters {s}k+N−1k ∈ S(N)(xk), the linearity of the
system dynamics and constraints motivates us to impose a separable form of qi-functions for i ≥ 1,

qi(xk, {s}k+N−1k ) = qx0i (xk)+
∑N−1

j=0 q
uj
i (uk+j)+

∑N−1
j=0 q

δj
i (δk+j)+

∑N−1
j=0 q

zj
i (zk+j)+ ci

(9)

where the terms qx0i etc. are convex linear and quadratic functions built up recursively starting from
an initial lower bound q0:

q0(xk, {s}k+N−1k ) =
∑k+N−1

t=k
1
2γ

t−kx>t Qxt +
1
2γ

t−ku>t Rut. (10)

As q0 represents the sum ofN stage costs, it is clearly a valid lower bound onQ(N)? from definition
(2). Note q0 includes the x costs directly, whereas q1, q2, . . . do not. Forms (9) and (10) are choices
we have made in order to be able to define a tractable recursive algorithm for approximating Q(N)?.
The treatment of these is made clear in Lemma 3.1.

We now form the dual of (8) by assigning the dual multipliers νt ∈ Rn, µ ∈ Rnc , and λ ∈ RI+1

to constraints (8b), (8c), and (8d) respectively, and using the forms (9)-(10) for the lower bounding
functions. This can be viewed as a new operator D(N) acting on Q(N)

I :

D(N)Q
(N)
I (x0, {s}N−10 ) := sup

ν,µ,λ

1
2x
>
0 Qx0 +

1
2u
>
0 Ru0 + ν>0 (Ax0 +B1u0 +B2δ0 +B3z0)

+
∑N−1

t=1 ν>t (B1ut +B2δt +B3zt) +
∑I

i=1 λici − µ>E5

+
∑I

i=1 λi
∑N−2

t=0

(
quti (ut+1) + qδti (δt+1) + qzti (zt+1)

)
+
∑N−1

t=1 λ0
γt−1

2 u>t Rut + ξ(ν, µ, λ) (11a)

s. t. µ ≥ 0, λ ≥ 0, 1>λ = γ, (11b)

where

ξ(ν, µ, λ) :=

inf
{x}N1 ,sN


(ν>1 A− ν>0 )x1 +

∑I
i=1 λiq

x0
i (x1) +

∑N−1
t=2

(
ν>t A− ν>t−1

)
xt +

∑N−1
t=1 λ0

γt−1

2 x>t Qxt

−
(
µ>E4 + ν>N−1

)
xN + λ0

γN−1

2 x>NQxN − µ>E1uN +
∑I

i=1 λiq
uN−1

i (uN )

+ λ0
γN−1

2 u>NRuN + µ>E3zN +
∑I

i=1 λiq
zN−1

i (zN ) + µ>E2δN +
∑I

i=1 λiq
δN−1

i (δN )

 .

For an approximateQ-functionQ(N)
I of the form (6) constructed from lower bounding functions

qi satisfying (7), a new lower bounding function qI+1 for Q(N)? can be formed using the optimal
multipliers (ν?, µ?, λ?) from the solution of (11):
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Lemma 3.1 The function

qI+1(x0, {s}N−10 ) := qx0I+1(x0) +
∑N−1

t=0 qutI+1(ut) +
∑N−1

t=0 qδtI+1(δt) +
∑N−1

t=0 qztI+1(zt) + cI+1 ,
(12)

where qx0I+1(x0) =
1
2x
>
0 Qx0 + ν?0

>Ax0, qδ0I+1(δ0) = ν?0
>B2δ0,

qu0I+1(u0) =
1
2u
>
0 Ru0 + ν?0

>B1u0, qz0I+1(z0) = ν?0
>B3z0,

qutI+1(ut) =
∑I

i=1 λ
?
i q

ut−1

i (ut) + λ?0
γt−1

2 u>t Rut + ν?t
>B1ut, t = 1, . . . , N − 1

qδtI+1(δt) =
∑I

i=1 λ
?
i q

δt−1

i (δt) + ν?t
>B2δt, t = 1, . . . , N − 1

qztI+1(zt) =
∑I

i=1 λ
?
i q

zt−1

i (zt) + ν?t
>B3zt, t = 1, . . . , N − 1

cI+1 =
∑I

i=1 λ
?
i ci − µ?

>E5 + ξ(ν?, µ?, λ?)

and the triplet (ν?, µ?, λ?) solves problem (11) for a particular parameter (x̂0, {ŝ}N−10 ), satisfies
the global lower bounding property

qI+1(x0, {s}N−10 ) ≤ Q(N)?(x0, {s}N−10 ) , ∀x0 ∈ Rn, {s}N−10 ∈ S(N)(x0) .

Proof The optimal dual solution (ν?, µ?, λ?) of (11) with parameter (x̂0, {ŝ}N−10 ) is in general a
sub-optimal solution for any other parameter (x0, {s}N−10 ) where {s}N−10 ∈ S(N)(x0). Let

H(x0, {s}N−10 ) = 1
2x
>
0 Qx0 +

1
2u
>
0 Ru0 + ν?0

>(Ax0 +B1u0 +B2δ0 +B3z0)+∑N−1
t=1 ν?t

>(B1ut +B2δt +B3zt) +
∑I

i=1 λ
?
i

∑N−2
t=0

(
quti (ut+1) + qδti (δt+1) + qzti (zt+1)

)
+∑N−1

t=1 λ?0
γt−1

2 u>t Rut +
∑I

i=1 λ
?
i ci + ξ(ν?, µ?, λ?)− µ?>E5

Hence, H(x0, {s}N−10 ) ≤ D(N)Q
(N)
I (x0, {s}N−10 ). Note that (ν?, µ?, λ?) is feasible in (11) for all

parameters (x0, {s}N−10 ), as the feasible set is independent of the parameter. From weak duality,

D(N)Q
(N)
I (x0, {s}N−10 ) ≤ T (N)

Q Q
(N)
I (x0, {s}N−10 ).

We get T (N)
Q Q

(N)
I ≤ T (N)

Q Q(N)? from the fact that Q(N)
I ≤ Q(N)? and the monotonicity property

of T (N)
Q . Combining this with T (N)

Q Q(N)?(x0, {s}N−10 ) = Q(N)?(x0, {s}N−10 ), the Bellman op-
timality condition, we obtain H(x0, {s}N−10 ) ≤ Q(N)?(x0, {s}N−10 ). The result follows as H is
equal to qI+1 in (12).

Lemmas III.2-4 of Warrington (2019) carry over to the present setting but have been omitted
for brevity. In particular, we note that adding a new lower bounding function qI+1 at the parameter
(x0, {s}N−10 ) raises the lower bound there by D(N)Q

(N)
I (x0, {s}N−10 )−Q(N)

I (x0, {s}N−10 ).

3.3. Learning algorithm

The training procedure for generating Q(N) is listed in Algorithm 1. Given a set of points XAlg we
evaluate theN -step greedy control policy, i.e., the sequence {s}N−10 that minimisesQ(N)

I (x, {s}N−10 ),

6



BENDERS CUTS FOR HYBRID CONTROL

Algorithm 1 Modified Q-Benders algorithm for MLD systems

1: Inputs: System model; training points XAlg := {x1, . . . , xM}, Imax

2: Set I = 0, β? =∞ and q0(x, {s}N−10 ) =
∑N−1

t=0 γt
(
1
2xt
>Qxt +

1
2ut
>Rut

)
3: while I ≤ Imax and β? ≥ βmin do
4: Q

(N)
I (·, ·, ·, ·)← maxi=0,...,I qi(·, ·, ·, ·)

5: for each xa ∈ XAlg do
6: {sa}N−10 ← argmin{s}N−1

0 ∈S(N)(xa)

{
Q

(N)
I (xa, {s}N−10 )

}
7: β(xa, {sa}N−10 ;Q

(N)
I )← D(N)Q

(N)
I (xa, {sa}N−10 )−Q(N)

I (xa, {sa}N−10 )
8: end for
9: x? ← argmaxxa∈XAlg

{β(xa, {sa}N−10 ;Q
(N)
I )}

10: if (ν?, µ?, λ?) is optimal for problem (11) with parameter (x?, {s?}N−10 ) and β? =

β(x?, {s?}N−10 ;Q
(N)
I ) ≥ βmin then

Add qI+1(·, ·, ·, ·) parameterized by (ν?, µ?, λ?) to the set of qi(·, ·, ·, ·) functions
11: end if
12: I ← I + 1
13: end while
14: Output: Q(N)

I (·, ·, ·, ·) = maxi=0,...,I qi(·, ·, ·, ·)

for each x ∈ XAlg. We then evaluate the improvement (or equivalently, increase) to the Q-function
approximation, β, that would result if a cut were made there as in Lemma 3.1:

β(xa, {sa}N−10 ;Q
(N)
I ) := D(N)Q

(N)
I (xa, {sa}N−10 )−Q(N)

I (xa, {sa}N−10 ) .

We then find the x? ∈ XAlg that brings about the largest β, denoted β?, and construct qI+1 by
solving (11) at (x?, {s?}N−10 ) as long as β? ≥ βmin. This is repeated until I > Imax or β? < βmin.

4. Numerical example

In this section we present the results of using Algorithm 1 on a scalar example with hybrid dynamics
to learn the optimal Q(N)-function. The system evolves as xt+1 = xt + ut − 5δa,t + 2δb,t, where
δa,t = 1 ⇔ xt ∈ [4.5, 5.5], and δb,t = 1 ⇔ xt ∈ [1, 2]. Thus δa,t and δb,t encode “jumps” of −5
and +2 respectively. The input is bounded as |ut| ≤ 0.25, and these bounds are encoded in the
MLD constraints (1c) along with “big-M” conditions governing δa,t and δb,t; see Bemporad and
Morari (1999) for an explanation of this procedure. The stage cost is 1

2x
2
t +

1
20u

2
t and γ = 1, thus

the task is to reach the origin. In our simulations we say the controller fails to complete the task if
the trajectories never reach |xt| < 0.005 for some t. For initial conditions x0 ∈ [1, 4.5), the control
task is non-trivial as the only path to the origin uses the δa,t jump, and it is often optimal to use the
δb,t jump once or even twice before this.

Consider the function

Q(N)(x) = inf{s}N−1
0 ∈S(N)(x)Q

(N)(x, {s}N−10 ).

It is readily shown thatQ(N)?(x) = V ?(x), thus evaluatingQ(N) for any suboptimalQ(N) gives
an indication of approximation quality. This is shown in the top half of Fig. 1. Note that even this

7
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simple problem has a complicated V ?(x). The approximations are generated by running Algorithm
1 over the discretised range x ∈ [−0.5, 6.5], Imax = 50 and βmin = 10−5. Our approximations
capture the shape and values of V ?(x) well, and improve with the horizon length N ; see the upper
plot of Fig. 1. Algorithm 1 terminates after I = (50, 40, 15) cuts for N = (10, 13, 15) respectively.
As N increases, each iteration of the algorithm takes longer, but the number of iterations decreases.

The closed-loop cost of recursively applying the control policy (4) induced byQ(N) is compared
against the optimal cost function V ?(x), for all initial conditions, in the lower plot of Fig. 1, along
with the cost using a hybrid MPC controller (denoted HMPC) with the LQR terminal cost derived
from the linear dynamics omitting the δ variables. In regionXh := [1, 1.75]∪[2, 3.75], short-horizon
controllers fail at the task as the system trajectories get stuck just above x = 2. The costs of such
failed trajectories have been capped at 100 in the plot. For N < 10, both controllers fail at the
task for all x ∈ Xh and for N > 10 both techniques succeed everywhere. For N = 10 the policy
induced by Q(N) succeeds everywhere, whereas HMPC fails in some places.

A surprising benefit of our proposed q-function parameterization is that for the trained Q(N)-
function, using the sum of just qx0i , q

ut
i , q

δt
i and qzti for t = {0, 1, . . . , Nt} to construct an approx-

imation that uses a “policy horizon” length of Nt < N is often enough for the controller to succeed
for all initial conditions. Moreover,er with increasing training horizon N we find the task can be
completed everywhere with a shorter policy horizon Nt. For N = (11, 13, 15) the lowest Nt that
leads to success everywhere is Nt = (8, 5, 4) respectively and the corresponding results are shown
in Fig. 2. The average policy computation time for HMPC with N = 11, the lowest N that leads to
success everywhere, is 35.5 ms, and that for using Q(15) truncated to Nt = 4 is 29.0 ms.
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Figure 1: Upper: V ? vs. Q(N).
Lower: Closed-loop costs of (4) compared to HMPC.
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Figure 2: Upper: V ? vs. Q(N) truncated to Nt < N .
Lower: Online costs with truncations of Q(N) in (4).

5. Conclusion

We have demonstrated a learning algorithm in which the optimal N -step state-action value function
is approximated directly, as an improvement on the naive MPC cost function for hybrid systems.
In particular, we showed that good control performance can be obtained with a shorter decision
horizon, and without the need to find a suitable terminal cost or state constraint: instead the optimal
N -step Q-function is approximated based on training experience evaluating the control policy. The
method readily extends to higher dimensional systems, and future work will focus on more elaborate
problems of practical relevance, characterizing the training process in more detail, and making
safety guarantees for sub-optimal Q-functions.
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