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Abstract

Recently, the community has achieved sub-
stantial progress on many commonsense rea-
soning benchmarks. However, it is still unclear
what was learned from the training process:
the knowledge, how to do inference, or both?
We argue that due to the large scale of com-
monsense knowledge, it is infeasible to anno-
tate a large enough training set for each task
to cover all commonsense for learning. Thus
we should separate the commonsense knowl-
edge acquisition and inference over common-
sense knowledge as two separate tasks. In this
work, we focus on investigating models’ com-
monsense inference capabilities from two per-
spectives: (1) Whether models can know if
the knowledge they have is enough to solve
the task; (2) Whether models can learn com-
monsense inference capabilities, that general-
ize across commonsense tasks. We first align
commonsense tasks with relevant knowledge
from commonsense knowledge bases and ask
humans to annotate whether the knowledge is
enough or not. Then, we convert different
commonsense tasks into a unified question an-
swering format to evaluate models’ general-
ization capabilities. We name the benchmark
as Commonsense Inference with knowledge-
in-the-loop Question Answering (CIKQA).

1 Introduction

Understanding human language requires both the
language knowledge (e.g., grammar and seman-
tics) and world knowledge, which can be further
divided into factual and commonsense knowledge
(Katz and Fodor, 1963). Recently, the community
has made great progress on helping machines ac-
quire and apply language and factual knowledge.
However, how to help machines acquire and in-
ference over commonsense is still unclear. To an-
swer this question, many commonsense reasoning
datasets (Roemmele et al., 2011; Sakaguchi et al.,
2019; Talmor et al., 2019; Zellers et al., 2019; Lin
et al., 2020) have been proposed. Even though

they target different knowledge types, modalities,
and come in different formats, they often follow
a standard supervised learning setting, and aim at
helping machines to solve a specific task with the
training data. However, two limitations of this
learning paradigm have limited the development
of commonsense reasoning systems.

First, there is no clear separation between
knowledge and inference. As discussed in (Elazar
et al., 2021), a common phenomenon is that
larger training data will lead to better perfor-
mance, mainly because richer knowledge is cov-
ered. However, due to the large scale of com-
monsense knowledge, it is infeasible to annotate
a large enough training data for each task, and the
responsibility of the training data should be teach-
ing models how to do inference rather than acquir-
ing the commonsense knowledge. Several recent
works have explored using structured knowledge
for commonsense reasoning tasks (Lin et al., 2019;
Lv et al., 2020; Paul and Frank, 2020). However,
as these works did not clearly analyze the cover-
age of the structured knowledge (i.e., knowledge
graphs), it is still unclear what the performance
means, better knowledge coverage or better infer-
ence capability. To dig into what is behind this
learning process, we propose to equip each ques-
tion with supporting knowledge. By doing so, we
could evaluate whether models can know if there
provided knowledge is sufficient or not and how
well they can conduct inference over the provided
knowledge to solve the task.

Second, the supervised learning may force the
model to learn the distribution of the training data
rather than a universal inference model. As a re-
sult, the model may perform well on the test set
that follows the same distribution but fail on other
tasks (Kejriwal and Shen, 2020). Previously, as
different tasks have different formats, it is hard
to evaluate the generalization ability of common-
sense reasoning models. Motivated by existing



Figure 1: CIKQA demonstration. Models need to
learn that all pronouns “I” refer to the same person and
then solve the question based on the knowledge that
“one may fall into sleep if he/she rests on a bench.”

trends of using a unified format (i.e., question
answering) for different tasks (Khashabi et al.,
2020), we propose to convert various common-
sense reasoning tasks into a unified QA format
such that we can easily and fairly evaluate the gen-
eralization ability of learned commonsense rea-
soning models.

Combining these two lines of effort, we propose
a new commonsense inference evaluation bench-
mark Knowledge-based Commonsense Inference
with QA (CIKQA). An example is shown in Fig-
ure 1. We equip several popular commonsense
reasoning tasks with the supporting knowledge
from existing commonsense knowledge graphs
and convert them into a unified QA format. We
leverage human annotation to label whether the
provided knowledge is enough to answer the ques-
tion. With CIKQA, we are interested in answer-
ing three questions: (1) Whether current models
can distinguish the knowledge is gold or not; (2)
Whether current models can learn to conduct in-
ference over provided knowledge; (3) Can current
commonsense inference models generalize across
different commonsense reasoning tasks.

Experiments with several recent knowledge-
based commonsense reasoning models and a pro-
posed baseline JointI, which jointly encodes the
knowledge and question with a single model, show
that even though inference over commonsense
knowledge is challenging, models can learn to
conduct simple inference after training with a few
examples and better answer the questions than not
using the knowledge. As a comparison, learn-
ing to distinguish gold knowledge is still a more
challenging task. Last but not least, even though
current models demonstrate the encouraging gen-
eralization ability across three relatively simple

tasks, they still cannot learn complex inference
(i.e., compare multiple paths) very well. We hope
that our benchmark could motivate more advanced
commonsense inference methods in the future.

2 Related works

To help machines understand commonsense, the
community has devoted great efforts to construct-
ing commonsense knowledge bases with either
crowdsourcing (e.g., ConceptNet (Liu and Singh,
2004) and ATOMIC (Sap et al., 2019)) or infor-
mation extraction techniques (e.g., ASER (Zhang
et al., 2020)). Typically, crowd-sourced knowl-
edge bases have higher quality, but the auto-
constructed ones have larger coverage. Besides
acquiring the commonsense knowledge, the com-
munity also developed many commonsense rea-
soning datasets to test models’ commonsense rea-
soning abilities. Even though these datasets may
have different formats (e.g., slot fitting in Wino-
grande (Sakaguchi et al., 2019) and question
answering in CommonsenseQA (Talmor et al.,
2019)), knowledge types (e.g., causal common-
sense in COPA (Roemmele et al., 2011) and nu-
merical commonsense in NumerSense (Lin et al.,
2020)), or modalities (e.g, visual commonsense in
VCR (Zellers et al., 2019) and textual common-
sense in many others), they all follow a standard
supervised learning setting, and aim at helping
machines to solve a specific commonsense task in
an end-to-end manner. Given this setting, it is of-
ten difficult to tell what has been learned during
the training process. Was it used to acquire com-
monsense knowledge, learn to conduct common-
sense inference, or both? Such ambiguity limits
our progress in solving these commonsense rea-
soning tasks. In this work, we connect the ef-
forts on commonsense acquisition and inference
by creating a commonsense inference benchmark
CIKQA , where the models can focus on learning
to do the inference over the supporting common-
sense knowledge graph (KG).

Answering questions in natural language based
on a knowledge base (KB) has been a mature
research topic in the NLP community, which is
also known as the KBQA problem (Clark et al.,
1999; Yih et al., 2015, 2016; Usbeck et al., 2017;
Cui et al., 2017). Previous works mainly focus
on factual knowledge, which is stored in the for-
mat of triplets, and the main challenge is how to
parse the question and then precisely and effec-



tively identify the correct path over a large-scale
KB to do the inference. Compared with inference
over factual knowledge, inference over common-
sense knowledge brings the following unique chal-
lenges: (1) Commonsense is a kind of preference
rather than fixed knowledge, which typically in-
volves the comparison of several candidates. As a
result, the ideal commonsense reasoning process
could involve the comparison of multiple paths;
(2) Commonsense is about daily events or objects
rather than named entities, and thus it is difficult
to find an exact node from the commonsense KB
that matches the question and we may need to con-
duct inference based on the partial match (i.e., the
extracted nodes are relevant but not identical).

3 Task Formulation

In CIKQA, to encourage a generalizable com-
monsense inference model, we equip each ques-
tion with a supporting knowledge graph G. and
follow previous works (Khashabi et al., 2020; Co-
hen et al., 2020; Wu et al., 2020; Du and Cardie,
2020) to unify all selected tasks as a binary ques-
tion answering problem (Q, A1, A2). As the auto-
extracted knowledge could contain noise or may
not cover all the essential knowledge for answer-
ing the question and humans are capable of say-
ing “I do not know” when they do not know how
to answer a question, we leverage human anno-
tators to annotate whether the knowledge is gold
(i.e., accurate and enough) for answering the ques-
tion and test whether current models have the same
commonsense reasoning capability of distinguish-
ing the gold knowledge as humans. Details about
task selection, format unification, support knowl-
edge extraction, and annotation are as follows.

3.1 Task Selection and format Unification
In CIKQA, we select the following four popular
commonsense reasoning tasks:

1. HardPCR: The hard pronoun coreference res-
olution (HardPCR) task is one of the most fa-
mous commonsense reasoning tasks. For each
question, a target pronoun and two candidate
mentions are provided, and the task is to se-
lect the correct mention that the pronoun refers
to. Careful expert annotations are conducted
to get rid of the influence of all simple linguis-
tic rules and ask the models to solve the prob-
lem with commonsense reasoning. In CIKQA,
we include instances from WSC (Levesque

et al., 2012), DPR (Rahman and Ng, 2012), and
WinoGrande (Sakaguchi et al., 2020). To cre-
ate a question regarding the target pronoun, we
first find the sentence that contains the target
pronoun and then determine whether the pro-
noun refers to a person or an object. If it is a
person, we will ask who participates. Other-
wise, we will ask what participates.

2. CommonsenseQA (Talmor et al., 2019): Com-
monsenseQA is a commonsense question an-
swering dataset. For each question-answer pair,
four relevant but wrong concepts are used as the
other candidates, and the models are required to
select the correct one out of five candidates. In
CIKQA, we randomly sample a negative an-
swer to make it a binary choice task, which is
consistent with other datasets.

3. COPA (Roemmele et al., 2011): COPA focuses
on evaluating whether models can understand
the causality between events or not. For each
head event, two candidate tail events are pro-
vided, and models are asked to predict the one
caused by or the reason for the head event.

4. ATOMIC (Sap et al., 2019): The last one is
the commonsense knowledge base completion.
Given a head concept (e.g., “eat food”) and a
relation (e.g., “cause”), we want to predict the
tail concept. In CIKQA, we focus on predict-
ing edges of ATOMIC.

For COPA and ATOMIC, as they are essen-
tially predicting the relations between two events
or states (e.g., “PersonX eats”-Causes-“PersonX
is full”), for each edge, we randomly sample an-
other event or state (e.g., “PersonX is hungry”) as
the negative tail and ask the model to select the
correct one. To make the task challenging and
avoid sampling irrelevant events or states, we re-
quire the sampled negative event or state to be con-
nected with the head event or state with a different
edge. For each type of relation, we write a sim-
ple pattern to generate the question. For exam-
ple, for the “Causes” relation, we will ask “What
can be caused by ‘PersonX is hungry’?” Demon-
strations of instances in original datasets and their
transformed questions and candidate answers are
presented in Appendix Section C.

3.2 Supporting Knowledge Extraction
As mentioned in Section 1, a limitation of existing
commonsense reasoning benchmarks is that there



is no clear boundary between knowledge and in-
ference such that we are unclear about what has
been learned from the training process, the knowl-
edge, or how to do inference. To address this is-
sue and encourage models to learn inference rather
than knowledge from the training data, we propose
to equip each question with supporting knowl-
edge. Only if we can find supporting knowledge
for a question will the question be selected to form
the dataset. This section introduces the selected
commonsense knowledge graphs and then intro-
duces how we extract the corresponding common-
sense knowledge for each question.

3.2.1 Commonsense KG Selection
Many commonsense knowledge graphs have been
developed to enhance machines’ commonsense
reasoning abilities. Several representative ones are
ConceptNet (Liu and Singh, 2004), ATOMIC (Sap
et al., 2019), GLUCOSE (Mostafazadeh et al.,
2020), and ASER (Zhang et al., 2020). Among
these four, ConceptNet, ATOMIC, and GLU-
COSE are constructed via crowd-sourcing while
ASER is constructed automatically with informa-
tion extraction techniques. Besides ATOMIC,
which is used as one of the tasks, we use the other
KBs as supporting knowledge resources.

3.2.2 Supporting Graph Extraction
Here we introduce how to extract the supporting
knowledge from external commonsense knowl-
edge bases. For each question, we need to obtain
a sub-graph from supporting knowledge graphs
such that it contains the relevant commonsense
knowledge about the question. The sub-graph ex-
traction process includes the following three steps:
(1) Pre-processing: Convert each question into
several key sentences; (2) Matching: Match the
sentences into nodes in the KG; (3) Extraction:
Retrieve the supporting sub-graph for the overall
knowledge graph.
Data Pre-processing: For each question and the
associated candidate answers, we first replace the
question words (e.g., “What”) with the two candi-
date answers such that it becomes two declarative
sentences. For instance, if the question is “The
fish ate the worm. It was hungry. Who is hun-
gry?” and the candidates are “Fish” and “Worm,”
we will convert the question into the declarative
sentence: “The fish is hungry” and “The worm is
hungry.” As a result, we will get three sentences
for this question: “The fish ate the worm,” “The

fish is hungry,” and “The worm is hungry.”
KG Matching: After getting the declarative sen-
tences that contain the question and key answers,
to extract the relevant knowledge, we map them
to nodes in knowledge graphs. Considering that
each sentence may have multiple words and it is
often hard to find an exact match, we adopt an
embedding-based matching technique. For each
sentence and node in the KG, we treat them as
a sentence and get the corresponding representa-
tions with SimCSE (Gao et al., 2021). For each
input sentence, SimCSE encodes the sentence in a
vector. A close distance between two vectors in-
dicates that the two sentences are similar to each
other. We use cosine similarity on the obtained
representations to measure the similarity between
two sentences.1 Since there are 287 thousand
nodes in GLUCOSE and 194 million nodes in
ASER, it is computationally infeasible to compute
the cosine similarity between sentences pair by
pair. Thus for each extracted sentence, we first
apply Faiss (Johnson et al., 2017), a large-scale
similarity-based matching algorithm that first clus-
ters all KG nodes in the vector space to increase
the matching efficiency when finding the top N
nodes in the KG. After that, we sort the N nodes
based on the cosine similarity to find the top K
similar nodes. In our implementation, we set N
and K to be 60 and 1. On average, it takes 25 sec-
onds to retrieve relevant nodes for each question.
Graph Extraction: In the next step, we construct
the sub-graph. We denote the extracted m nodes
as n1, n2, ..., nm, and for each of them, we find
K similar nodes from KG. The resulting matched
node sets are denoted as N1,N2, ...,Nm. For any
pair of eventualities n ∈ Ni and n′ ∈ Nj (i 6= j),
if there exist a path in the KG between n and n′,
we will keep that path. After merging all paths
together, we will get the final sub-graph. On av-
erage, it takes less than two seconds to construct a
graph for each question.
Knowledge Quality Annotation: We annotate
whether the extracted knowledge is accurate and
enough. For each question, we invite five annota-
tors to provide the annotation. The average Inter-
annotator agreement (Cohen’s kappa statistic) is
0.83, which indicates the high-quality of our an-
notation. In the end, we apply a strict standard (at
least four of five annotators need to vote for gold)

1We also tried other techniques such as string match,
ROUGE (Lin, 2004), and BLEURT (Sellam et al., 2020), but
found them to be either inaccurate or too slow for our scale.



Task Name # Instance by Knowledge Resource # Total Instance # Instance with Gold KnowledgeASER ConceptNet GLUCOSE

HardPCR 2,030 202 2,143 4,375 670
CommonsenseQA 530 31 37 598 59
COPA 103 41 149 293 78
ATOMIC 5,655 212 3,466 9,333 2,200

Total 8,318 486 5,795 14,599 3,007

Table 1: CIKQA statistics. We report the number of instances supported by different knowledge resources and
annotated high quality (i.e., Accurate and Enough) knowledge.

to select the gold knowledge. More annotation de-
tails could be found in Appendix Section A.

3.3 CIKQA Statistics

We report the dataset statistics in Table 1. In
total, we collect 14,599 instances, and among
which Hard PCR and ATOMIC provide the most
questions because their original datasets are much
larger than others. According to the annotation,
16.69% of the supporting knowledge graphs are
gold knowledge. Based on our analysis, annota-
tors hold a very strict standard for selecting the
gold knowledge. For each task, we randomly split
the dataset into training, development, and testing
set with a standard 8:1:1 splitting. As a result, we
get 11,678 training, 1,459 development, and 1,462
testing instances. More detailed statistics, and ex-
amples of CIKQA are presented in Appendix Sec-
tion B and C, respectively.

4 The JointI Model

We introduce a transformer-based commonsense
inference model as a strong baseline for CIKQA.
Unlike previous works that acquire question and
knowledge representations separately, we propose
to combine them first and then acquire the rep-
resentation jointly. As a result, we name our
method as Joint Inference (JointI). As shown in
Figure 2, given a question Q, two answers A1

and A2, and a supporting knowledge graph G =
(h1, r1, t1, w1), ..., (hn, rn, tn, wn), where h, r, t,
w indicates the head, relation, tail, weight respec-
tively, and n is the number of edges, our goal is
predict which answer is the correct one. Here, all
questions, answers, heads and tails in the KG are
list of tokens. JointI consists of two main com-
ponents (i.e., knowledge sampling and joint infer-
ence). Details are as follows.
Knowledge Sampling: As current language mod-
els require the input to be in a sequence format
rather than a graph, we first conduct a weighted

random walk over G to convert it into several
knowledge paths P that are in the format of se-
quence. During our sampling, the weight of an
edge determines the possibility of it being sam-
pled. As a result, an edge with a larger weight
is more likely to appear in the sampled path and
has a bigger impact on the prediction. Another
point worth mentioning is that, following previ-
ous work (Lv et al., 2020), we convert all the re-
lations into natural language according to the rela-
tion template (e.g., “IsA” to “is a”). As shown in
Figure 2, each P ∈ P can be viewed as a long sen-
tence, where nodes in G are connected with con-
nectives. An example is “I sleep because I am tired
so I rest on a bench...”.
Joint Inference: The key difference between
JointI and previous works is that we jointly ac-
quire the representation of the knowledge, ques-
tion, and answer rather than acquiring them sepa-
rately and then combining. Many previous works
have demonstrated the superiority of such an ap-
proach on other NLP tasks (Huang et al.; Sak-
aguchi et al., 2020). Specifically, if we want to
predict the plausibility score for A given Q, for
each knowledge path P , we first concatenate it
with the question Q and candidate answer A:

S = [P : Q : A], (1)

where [·] indicates the concatenation. We follow
previous works to insert a special token between
P and Q and Q and A. Once obtaining a con-
catenated input of P , Q and A, we encode it using
a transformer module Trans and get a prediction
score with a multi-layer perceptron module MLP
for a particular question and answer:

f(Q,A|P ) = MLP (Trans(S)). (2)

After that, we will get the final prediction with the
average of all sampled paths:

F (Q,A) =

∑
P∈P f(Q,A|P )

|P|
. (3)



Figure 2: JointI demonstration. We first conduct weighted random walk over the supporting knowledge graph to
sample several paths, and then concatenate these knowledge paths with the input question and answer together. In
the end, we made the prediction with a transformer based classifier.

In the end, the candidate answer with a higher
score will be predicted. Since the task is formu-
lated as a binary classification problem, we adopt
the cross-entropy loss and optimize the model with
Adam (Kingma and Ba, 2015).

5 Experiments

In this section, we present the performance of cur-
rent commonsense inference models on CIKQA.
Besides JointI, we also show the performance of
the following baseline methods:
(1) Vanilla LM: We use the language model (LM)
based multiple-choice (MC) model as the basic
baseline. For each candidate answer, we follow
the standard finetuning procedure to concatenate it
with the question and then feed it to a pre-trained
language model. After getting the sentence repre-
sentation, a linear layer is used to obtain a score
and trained with a cross-entropy loss.
(2) KagNet: As one of the pioneering works that
utilized structured knowledge for solving com-
monsense reasoning tasks, KagNet (Lin et al.,
2019) first uses a graph convolution network to
encode the knowledge graph and then apply an
LSTM based hierarchical attention mechanism to
encode the knowledge path that starts with the
concepts corresponding to the question and end
with concepts corresponding to the answer. At the
same time, KagNet encodes the question and an-
swers with pre-trained LMs. In the end, it concate-
nates all representations for the final prediction.
(3) Graph Based Reasoning (GBR): Instead of
only encoding paths starting with the question
concepts and ending with answer concepts, the
follow-up work GBR (Lv et al., 2020) proposes
to conduct a depth-first algorithm over the knowl-
edge graph to generate a sequence of paths as the

supporting knowledge paths.
(4) Multi-Head Knowledge Attention (MHKA):
To further utilize the knowledge, MHKA (Paul
and Frank, 2020) uses a transformer network to
model the paths from the question concepts and
answer concepts, then concatenates the knowledge
and context representation for the final prediction.

We implement all experiments with Hugging-
face (Wolf et al., 2019). We select BERT-base
(Devlin et al., 2019) as the base language model
for all models. The batch size is set to be 16.
All models are trained for 10,000 steps2, and the
best-performing checkpoints on the dev set are
evaluated. For our model, we set both the num-
ber of random walk paths and walk length to be
five. Considering that the auto-extracted knowl-
edge could contain noise or miss certain knowl-
edge, we add a “gold knowledge” setting, where
only examples with the gold knowledge are used
for training and testing, for all models as the upper
bound of their model. All other hyper-parameters
are the same as the base language model. All mod-
els are trained with GTX 2080 and the average
running time is 12 hours.

5.1 Results

For each model, we train it with different num-
bers of training instances and report the average
performance and standard deviation3 of five trails
in Figure 3, from which we can observe that with
the help of knowledge, all inference models out-
perform the baseline model without knowledge,
especially JointI. When the auto-extracted knowl-
edge and gold knowledge are provided, JointI out-
performs the baseline Vanilla LM model by 4.17

2All models converge at 10,000 steps.
3Due to the space limitation, we put the detailed experi-

mental results in Appendix Section D.



Figure 3: Learning curves of all evaluated models.
Models with the “gold” suffix are evaluated on the
gold subset of CIKQA, where only instances with gold
knowledge are used for training and testing. We can-
not directly compare them with other models, but they
could serve as a good signal for the upper-bound of
these models when we have a perfect commonsense
knowledge base.

and 15.34, respectively. It supports our assump-
tion that it is hard to learn all knowledge from
the limited training data and external structured
knowledge could help. Moreover, we also notice
that when the knowledge is provided, JointI could
learn to answer the questions with only a small
number of examples. This suggests that if we only
want to learn to do the inference over common-
sense, we may only need a few training exam-
ples. Besides that, the comparison between auto-
extracted knowledge and gold knowledge also
shows that current commonsense knowledge base
construction and retrieval methods are still not op-
timal and we may need to devote more effort to
these two directions in the future. Last but not
least, we can see that JointI outperforms other in-
ference models among most settings, which shows
that jointly encoding question and knowledge is
not just more efficient but also a more effective
strategy than acquiring them separately, and could
serve as a stronger baseline for future works. Due
to the simplicity and efficiency of JointI, we will
conduct the rest analysis experiments with JointI.

5.2 Distinguishing the Gold Knowledge

Humans have the capability of saying “I do not
know” when they find out that they cannot answer

Figure 4: The learning curve of JointI on the gold
knowledge identification task.

a question with their knowledge. To investigate
whether current deep models have a similar capa-
bility, we use JointI as an example to test whether
these deep models can distinguish the gold knowl-
edge. For each (question, answer, and knowl-
edge) triplet, we train and test JointI with anno-
tated knowledge quality label. To address the im-
balanced distribution problem, we randomly select
the same number of “Not Gold” examples as the
“Gold” ones to make the dataset balanced. From
the results in Figure 4, we can see that the perfor-
mance of JointI could be improved slightly with
the increase of training data. However, after see-
ing thousands of examples, it still can only achieve
0.65 accuracy on a binary classification problem.
It shows that knowing when to say “I do not know”
is still a challenging task for current deep models.

6 Generalization Ability

An important assumption and motivation behind
CIKQA is that even though the commonsense
could be enormous, the inference rules over com-
monsense knowledge should be limited. As a re-
sult, even though we could not learn all the com-
monsense from limited training data, we can learn
how to conduct inference with several tasks and
then generalize to others. In this section, we con-
duct experiments with both the “Without Knowl-
edge” and “With Knowledge” models to show that
with our unified formulation, we can gain such
generalization ability across different tasks. To
clearly show the effect of the supporting common-



Training Task Testing Task
Hard PCR CommonsenseQA COPA ATOMIC

Hard PCR - 46.67/37.50 63.33/75.00 51.85/44.13
CommonsenseQA 49.32/50.00 - 50.00/62.50 60.39/56.34
COPA 52.51/45.95 56.67/62.50 - 53.01/49.77
ATOMIC 50.46/39.19 68.33/50.00 56.67/62.50 -

(a) Vanilla LM (Without Knowledge)

Training Task Testing Task
Hard PCR CommonsenseQA COPA ATOMIC

Hard PCR - 51.67/52.30 56.67/53.24 55.78/53.32
CommonsenseQA 50.32/50.14 - 75.00/56.67 91.08/70.56
COPA 54.79/51.26 87.50/58.33 - 76.06/62.96
ATOMIC 51.35/50.76 93.75/76.67 87.50/73.33 -

(b) JointI (With Knowledge)

Table 2: Generalization ability demonstration. We report the performance on both the clean dataset (i.e., only
questions with gold knowledge are selected for training and testing) and full dataset to show the generalization
ability before and after the slash, respectively. Strong and moderate generalization settings are indicated with the
green and orange background, respectively.

sense KB, we conduct experiments on two set-
tings: (1) Gold Subset: We only train and test the
model on questions, where the supporting graph is
annotated as gold; (2) Full Set: We train and test
the model with the whole dataset. We train the
model with questions from a specific task and test
it on all tasks. The results are presented in Table 2.

From the results, we can see that the knowledge
can help models to generalize well among Com-
monsenseQA, COPA, and ATOMIC. The only ex-
ception is HardPCR. This is mainly because the in-
ference needed for solving HardPCR is more com-
plex than the other tasks, where we do not only
need to find the relevant knowledge but also need
to replace the target pronoun with the entity in the
provided knowledge. How to train a model that
can learn to conduct such complex reasoning is a
problem worth exploring in the future.

In general, the observed generalization ability is
encouraging because if we can learn a good model
on CIKQA, based on the assumption that there ex-
ists limited types of inference, potentially we can
solve any commonsense reasoning tasks as long as
the needed inference type is covered by CIKQA.
At the same time, we also notice that current mod-
els still cannot learn complex inference (i.e., com-
pare multiple paths) with few examples, and we
leave how to solve that problem as the future work.

7 Conclusion

In this paper, we present CIKQA, a unified com-
monsense inference benchmark. Specifically, we
first convert several popular commonsense tasks
into a unified QA format and equip each ques-

tion with a supporting commonsense knowledge
graph. During the training on CIKQA, mod-
els do not need to worry about the commonsense
knowledge and can thus focus on learning to do
the inference. Experiments show that models can
better learn how to do commonsense inference
with a few examples and significantly outperform
the baseline method that does not use structured
knowledge in the data-scarce setting. More in-
terestingly, with our unified formulation, models
demonstrate the encouraging generalization abil-
ity across tasks. As both the format unification
and supporting graph extraction are automatic, we
can easily extend to other commonsense reason-
ing tasks in the future. All used code and data are
submitted as part of the appendix.
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and Giulio Napolitano. 2017. 7th open challenge
on question answering over linked data (QALD-7).
In Proceedings of 4th SemWebEval Challenge at
ESWC 2017, pages 59–69.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
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A Annotation Details

Figure 5: An example of the used survey.

The annotation goal is to determine whether
the supporting graph can help answer the ques-
tion or not. Thus, for each QA pair, we present
the question, candidate answers, and the support-
ing sub-graph to annotators4, and then ask them
two questions: (1) What is the correct answer for
this question; (2) Whether the provided common-
sense knowledge contains all the essential com-
monsense for answering this question. The pur-
pose of the first question is to assess the annota-
tion quality. A survey example is shown in Fig-
ure 5. In beginning of each survey, we also provide
detailed instructions and examples to help annota-
tors understand our task. We employ annotators
from Amazon Mechanical Turk to provide anno-
tations. To improve the annotation quality, we re-
quire the annotators to be English native speaker
and to have an overall acceptance rate above 90%.
For each survey, we invite five annotators to pro-
vide the annotations and pay them $0.1. The av-
erage Inter-annotator agreement (Cohen’s kappa
statistic) for Q1 and Q2 are 0.87 and 0.83, respec-
tively. The annotation results show that humans
could provide consistent annotation about whether
the knowledge could be used to answer the ques-
tions.

B Statistics

We report the number of questions that a supported
graph can be find, the average size of support-
ing graph, and the number of helpful instances of
CIKQA in Table 4. In total, we collect 14,599 in-
stances with the average supported graph size of
2.75.

C Case Study

Demonstration of how we convert the origi-
nal dataset into the unified format is presented
in Table 3. For each task, we use a tem-
plate to automatically convert it into the uni-
fied QA format. Besides that, we also present
several questions along with knowledge in Fig-
ure 6. From the example we can see that,
the reasoning over HardPCR is more challeng-
ing than other tasks. In the HardPCR example,
two paths can be found relevant to question: (1)
“I am drunk”→Co Occurrence→“I hit someone”;
(2) “I am drunk”→Co Occurrence→“That is not
fair”→Co Occurrence→“You kick me”. For the
correct inference, we need to know when there is
a conflict, we should trust the one-hop inference
more because the additional node in the two-hop
path may introduce extra noise. As a comparison,
for other tasks, the main inference we need is to
find the relevant paths, which is relatively easy.

D Detailed Experimental Results

Detailed experimental results are presented in Ta-
ble 5.

4All annotations follow the ethical guidelines.



Task Name Original Assertion Transformed Question Answer

HardPCR The fish ate the worm. It was
hungry.

The fish ate the worm. It was hun-
gry. What was hungry?

(A) Fish; (B) Worm

CommonsenesQA What is a place that someone
can go buy a teddy bear?

What is a place that someone can go
buy a teddy bear?

(A) Toy store; (B) Shelf

COPA I drank from the water fountain. I drank from the water fountain.
What was the cause of this?

(A) I was thirsty.; (B) I felt
nauseous.

ATOMIC PersonX buys the bike. Before PersonX buys the bike, what
did PersonX want?

(A) To be social.; (B) To
have transportation.

Table 3: Demonstration of the original assertion, transformed questions, and answers. Correct and wrong answers
are indicated with blue and red, respectively.

Task Name # Instances Avg Sub-graph Size (# Edges) # Helpful Instances

Hard PCR 4,375 2.85 670
CommonsenseQA 598 3.19 59
COPA 293 3.03 78
ATOMIC 9,333 2.67 2200

Total 14,599 2.75 3,007

Table 4: Detailed CIKQA dataset statistics.

Figure 6: CIKQA Case Study. Mapped sentences for the question and answers are indicated with blue and pink.
Other eventualities are white. Edge weights are in brackets. We only show the relevant part of the graph for the
clear representation. All extracted eventualities are lemmatized, we recover them for the ease of understanding.

Model Number of Training Instances
5 10 100 500 1,000 5,000 11,678

Chance Performance 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00)

Vanilla LM 51.16 (1.92) 55.88 (2.41) 56.52 (2.37) 63.67 (2.19) 66.76 (1.37) 70.04 (0.58) 70.11 (0.28)

KagNet (Lin et al., 2019) 53.29 (2.16) 55.47 (2.74) 59.92 (3.05) 61.97 (1.19) 65.90 (1.54) 68.90 (1.21) 71.50 (1.29)
GBR (Lv et al., 2020) 51.77 (1.75) 56.57 (3.13) 59.92 (2.34) 63.36 (1.62) 68.06 (0.35) 67.10 (0.17) 71.34 (0.31)
MHKA (Paul and Frank, 2020) 54.89 (2.34) 60.47 (1.13) 61.70 (0.41) 63.82 (0.78) 67.85 (0.32) 69.29 (1.58) 71.30 (1.14)
JointI(Our Model) 57.25 (0.21) 62.41 (0.97) 64.02 (0.99) 68.54 (0.47) 71.55 (0.75) 72.36 (0.56) 74.28 (0.21)

KagNet-gold 55.21 (3.21) 64.36 (0.83) 68.65 (1.64) 74.28 (1.31) 79.05 (0.57) 80.21 (0.84) 80.20 (0.21)
GBR-gold 50.53 (1.62) 66.34 (1.82) 69.31 (1.33) 72.94 (0.35) 76.24 (0.21) 80.86 (0.21) 78.85 (0.13)
MHKA-gold 58.35 (2.67) 78.54 (1.32) 78.55 (0.72) 79.23 (0.64) 80.53 (0.50) 80.52 (0.52) 81.85 (0.15)
JointI-gold 61.39 (2.56) 80.85 (1.35) 82.18 (0.33) 82.51 (0.50) 84.32 (0.42) 85.81 (0.45) 85.48 (0.17)

Table 5: Demonstration of different models with different training instances. We report the average performance of
five different random seeds and standard deviation (in brackets). “-gold” indicates that the models are trained and
tested with instances with gold knowledge. We cannot directly compare them with the normal setting, but it could
serve as the upper-bound for our learning paradigm. Best performing models under both settings are indicated with
the bold font.
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