
Activated LoRA: Fine-tuned LLMs for Intrinsics

Kristjan Greenewald, Luis Lastras, Thomas Parnell, Vraj Shah, Lucian Popa, Giulio Zizzo,
Chulaka Gunasekara, Ambrish Rawat, David Cox

IBM Research

Abstract

Low-Rank Adaptation (LoRA) has emerged as a highly efficient framework for
finetuning the weights of large foundation models, and has become the go-to
method for data-driven customization of LLMs. Despite the promise of highly
customized behaviors and capabilities, switching between relevant LoRAs in a
multiturn setting is inefficient, as the key-value (KV) cache of the entire turn
history must be recomputed with the LoRA weights before generation can begin. To
address this problem, we propose Activated LoRA (aLoRA), an adapter architecture
which modifies the LoRA framework to only adapt weights for the tokens in the
sequence after the aLoRA is invoked. This change crucially allows aLoRA to
accept the base model’s KV cache of the input string, meaning that aLoRA can
be instantly activated whenever needed in a chain without recomputing the prior
keys and values. This enables building what we call intrinsics, i.e. specialized
models invoked to perform well-defined operations on portions of an input chain
or conversation that otherwise uses the base model by default. We train a set of
aLoRA-based intrinsics models, demonstrating competitive accuracy with standard
LoRA while significantly improving inference efficiency. We contributed our
Activated LoRA implementation to the Huggingface PEFT library.1

1 Introduction

The rapid adoption of large language models (LLMs) has catalyzed significant advancements in
natural language processing tasks, from text generation to knowledge extraction. However, adapting
these models to specific tasks or domains often demands finetuning their immense parameter space,
a process that is computationally expensive and difficult to scale. Low-Rank Adaptation (LoRA)[13]
has addressed these challenges by introducing a parameter-efficient method for fine-tuning [12],
enabling highly customized model behavior without the need to retrain or modify the entire model.
By optimizing a small subset of low-rank matrices, LoRA has emerged as a widely-used lightweight
and effective alternative for task-specific customization [25], particularly for large foundation models
such as LLMs, and popular LoRA finetuning services are offered by both corporate and open-source
LLM providers [26, 36, 28]. While large models perhaps have less need for finetuning, small models
continue to see strong benefits from LoRA adapters [40, 5].

Motivated by this, significant work has been done to enable highly efficient serving of and inference
with LoRAs, e.g. [34, 2], with vLLM [16] incorporating and further optimizing many of these
algorithms in its popular, state-of-the-art inference engine. Yet, while LoRA excels in static or
single-task scenarios, in modern applications a wide mix of skills is typically needed, e.g. in multiturn
interactions and agentic applications [41, 44]. Crucially, LoRAs often must be carefully tuned to
avoid forgetting/degradation of performance on the wide variety of tasks the base model already
performs well on. In applications where dynamic switching between multiple specialized skills
would be advantageous (e.g. agentic or reasoning pipelines), this strategy breaks down. Additionally,
multi-task LoRA training is significantly more difficult than training a LoRA for a single task, and

1https://github.com/huggingface/peft

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/huggingface/peft

this approach would be inherently non-modular, requiring retraining to incorporate further abilities
later on.

In an ideal world, we would like to be able to seamlessly switch—within the same chat/agentic
pipeline—between arbitrary sets of pretrained LoRA configurations for specialized tasks, while
keeping the base model as-is for most interactions in the sequence. Unfortunately, the LoRA
architecture is not well-suited to this regime, creating major inference inefficiencies. Specifically, for
each switch between LoRA adapters, it becomes necessary to recompute the representation of all
context tokens prior to generation with the LoRA. In the case of the popular attention mechanism
introduced by [37], such a representation takes the form of the key-value (KV) cache of such prior
tokens2, but more generally, it is a problem that reoccurs even in different architectures; for example,
in a state-space model, the state representation of the tokens prior to generation would need to
be recomputed if the matrices A and B are updated by a low rank correction. This recalculation
introduces significant latency, GPU memory, and computational overhead that all scale with the length
of the context that must be prefilled, especially as LLMs increasingly work with documents, files,
or reasoning/agentic chains in the many (sometimes hundreds of) thousands of tokens [24, 21, 22]
(even millions for software engineering [14]). This limits LoRA’s usability in scenarios where rapid
transitions between specialized behaviors are essential.

In this work, we address this shortcoming, presenting our Activated LoRA method, which activates
adapted weights only on tokens corresponding to a short intrinsic instruction and subsequent genera-
tion, leaving the weights for other context tokens unchanged. We elaborate on the setting we envision
here. Within the discipline of software engineering, intrinsics are generally useful functions that are
built into a programming language whose implementation can be optimized by a compiler. We define
an LLM intrinsic to be a capability that can be invoked through a well defined API that is reasonably
stable and independent across model generations and families of how the intrinsic is implemented.
Performance metrics such as accuracy, latency, and throughput may vary significantly across such
implementations.

The concept of activated LoRA takes an opinionated view on how such differentiated performance
could be attained. As inspiration, we note that instructions in LLMs can appear in many places in
a prompt; Figure 1 illustrates an example of two such places: an “early prompting” case where the
instruction precedes the content, or a “late prompting” case where the content precedes the instruction.
In the latter, the instruction does not have to be revealed ahead of time, making the representation of
the content (KV cache) potentially reusable for or from other tasks. We note that these paradigms
can take on many shapes; for example, prefix tuning methods such as [18] explicitly use an early
prompting framework, tuning this early prompt. Recently, a set of real-world tasks (and trained
adapters) conforming to the late-prompting intrinsics regime was presented in [5], in the context of
building performant and robust RAG [17] pipelines. We believe that a vast array of intrinsics-style
finetuning tasks can be created with applications throughout the agentic, chat, and reasoning spaces.

A LoRA adapter, like the prefix tuning example above, shares the downsides of the early prompting
concept; the LoRA-adapted LLM’s internal representation of the content (KV cache) is fit-for-purpose,
specific to the LoRA adapter and not reusable by or from the base model or other adapters. Note
that while late-prompt tuning approaches do exist and may be viable in some cases, they tend to
underperform prefix tuning (early-prompt tuning), which in turn significantly underperforms LoRA-
based training [10]. As a result, a trainable late-prompting style adapter is needed to close this
gap.

We therefore introduce Activated LoRA (aLoRA), a novel extension of the LoRA framework designed
to only adapt the model’s weights for tokens encountered after activation, allowing base model KV
cache for prior context to be reused (Figure 2). By decoupling the adaptation process from the need to
recompute the input’s representation, aLoRA facilitates instantaneous switching between specialized
models (intrinsics) while maintaining seamless interaction with the base model. This innovation not
only reduces computational costs, but also unlocks new possibilities for deploying highly modular,
task-specific behaviors within complex workflows.

2In this work, we use the term “(KV) cache” to denote the set of saved keys and values for prior tokens in
the LLM context, noting that our approach is not limited to attention types that use keys and values. We use
“(KV) cache reuse” to mean (re)use of stored keys and values from an LLM call (e.g. base model generation)
in a subsequent LLM call (e.g. the aLoRA generation) whose context shares a prefix with the original context
and/or generation.

2

early prompting instruction content answer

late prompting content instruction answer

Figure 1: Late vs. early prompting framework for intrinsics. The aLoRA adapter architecture is
designed to preserve the cache-reuse benefits of late prompting by adapting weights only on the red
tokens, allowing it to reuse the base model cache for the blue input tokens.

In our experiments, we demonstrate significant speedups for aLoRA vs LoRA on the state-of-the-art
inference engine vLLM [45], and show that aLoRA adapters do not lose accuracy versus LoRA on a
collection of benchmark finetuning tasks and a collection of real-world “intrinsics” tasks from [5].

Relationship to other LoRA variants. QLoRA [7] proposes quantizing the weights in the base
model while keeping the adapter higher precision in training and inference, which dramatically
reduces overall memory costs. This can be directly applied to Activated LoRA as well3, with KV
cache reuse still possible if the base model inference also uses the same or sufficiently similar
quantization. Experiments with this are beyond the scope of the present work. DoRA [23] adapters
are similar to LoRA with a different decomposed low rank weight matrix, with magnitude and
direction of the adaptation parameterized separately. In principle, extension to DoRA-style adapters
(“Activated DoRA”) is immediate along the same principles as aLoRA. That said, inference with
DoRA is less efficient than LoRA, so it is typically recommended [25] that DoRA adapters be merged
into the base model weights — a procedure that is not possible for our “activated” approach due to
the selective application of the adapter weights.

(a) prompt answer eval1 eval2

prefill (base) gen (base)

prefill (LoRA1) prefill (LoRA1) gen (LoRA1)

prefill (LoRA2) prefill (LoRA2) gen (LoRA2)

(b) prompt answer eval1 eval2

prefill (base) gen (base) gen (aLoRA1) gen (aLoRA2)

Figure 2: Computation and memory pattern of (a) LoRA vs. (b) aLoRA used as evaluators of an
answer given by a base model. (1) prompt is input to the base model, which generates answer,
(2) prompt + answer is input to both intrinsics in parallel, which generate eval_1 and eval_2
respectively. Narrow rectangles denote tokens and wide rectangles denote the KV cache.

1.1 Background

Modern decoder-only causal LLMs are transformers containing a sequence of decoder layers, each of
which typically contain MLP layers that operate on each token’s representation independently, and
a causal attention mechanism that allows tokens to attend to representations of prior tokens in the
same layer (see Figure 9 in the appendix). We review the ubiquitous softmax attention mechanism
introduced by [37] and its connection to the KV cache, as well as LoRA adapters.4 Further, note that
LoRA and aLoRA adapters can be applied to MLP blocks as well, but since it is typical practice to
not adapt the MLP blocks we focus the presentation on the attention blocks only.

3Implementation already supported in the Huggingface PEFT library.
4Extension of this to other forms of attention is straightforward, but we leave this treatment to future work.

3

Attention: Recall that the softmax attention mechanism in each attention layer takes the form

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V, (1)

where dk is the dimension and Q,K, V are concatenated queries, keys, and values for the tokens:

Q = XWQ, K = XWK , V = XWV (2)

where WQ, WK , and WV are weight matrices.

LLM inference and the KV cache: LLMs, using a causal attention mask [29], generate tokens
autoregressively one at a time. Suppose we have already generated tokens 1, . . . , t − 1 with cor-
responding hidden-state embeddings x1, . . . , xt−1. Whenever these tokens were processed (either
during prefill or generation) their keys and values were already computed:

K1:t−1 = [K1; . . . ;Kt−1], V1:t−1 = [V1; . . . ;Vt−1], Ki = xiW
K , Vi = xiW

V .

Due to causal attention, tokens can only attend to prior tokens, and hence are not affected by
subsequent generations and can be stored for use by future tokens. At generation step t, we therefore
only need to compute the new query, key, and value for the latest token

Qt = xtW
Q, Kt = xtW

K , Vt = xtW
V , (3)

and then form the full cached matrices by appending K1:t =
[
K1:t−1; Kt

]
, V1:t =

[
V1:t−1; Vt

]
.

Finally, the output hidden state for token t is (dk is hidden dimension)

ht = Attention
(
Qt, K1:t, V1:t

)
= softmax

(
Qt K

⊤
1:t√

dk

)
V1:t. (4)

Because the entire matrix of past keys K1:t−1 and values V1:t−1 is precomputed and stored in the
“KV cache,” at each new step t we only pay the cost of computing one new row for each of Q, K, and
V , and performing a single-row softmax and weighted sum over the remaining cached K and V . As
shown in [37, 29], this reduces what would have been an O(t2dk) full-matrix multiply down to only
O(t dk) operations at each step, yielding massive speedups.

LoRA: LoRA adapts the attention weights WQ, WK , and WV by replacing them with WQ +∆Q,
WK +∆K , and WV +∆V , where ∆Q,∆K ,∆V are rank r matrices. This yields

Q = X(WQ +∆Q), K = X(WK +∆K), V = X(WV +∆V). (5)

This lowers the number of parameters, making finetuning significantly more efficient [13]. If the
LoRA is active for the entire chain, then the KV cache-based inference applies and generation is
efficient. If, on the other hand, any part of the input was generated or prefilled by the base model or
another LoRA, then K and V for the LoRA are different than the corresponding K and V for the
base model, hence any existing base model KV cache cannot be used by the LoRA, meaning the
KV cache for the entire (potentially very long) input must be recomputed. To clarify, this involves
passing the input through all layers of the transformer in sequence–not just the adapted attention
layers–since modifications to attention blocks modify the inputs to all downstream layers and tokens.

2 Activated LoRA

Just as in LoRA, our aLoRA architecture adapts the attention weights WQ, WK , and WV by
replacing them with WQ + ∆Q, WK + ∆K , and WV + ∆V , where ∆Q,∆K ,∆V are rank r
matrices. The difference lies in how these adapted weights are used. We assume that the default
generation model for the chat is the base model, and that intrinsics only operate on these base model
generations. As a result, we can assume that the base model has precomputed a KV cache for the
input context (the blue region in Figure 1).

The aLoRA architecture is designed to match the base model keys and values on context tokens,
allowing the adapter to reuse base model KV cache for those tokens, or, vice versa, the base model to
reuse KV cache that the aLoRA adapter creates for its context inputs. Specifically, in the attention
mechanism (1), aLoRA only adapts the Q,K, V matrices for tokens occurring after the start of the

4

invocation sequence. Let the token index for adapter activation be tinvoke, and let the current token
have index t ≥ tinvoke. Instead of (5) we then have

Q=

[
X1:tinvoke−1W

Q

Xtinvoke:t(W
Q+∆Q)

]
,K=

[
X1:tinvoke−1W

K

Xtinvoke:t(W
K+∆K)

]
, V=

[
X1:tinvoke−1W

V

Xtinvoke:t(W
V +∆V)

]
(6)

where X1:tinvoke−1 and Xtinvoke:t are the portions of X coming before and after the aLoRA model
is invoked. If X1:tinvoke−1 is associated with tokens generated or prefilled by the base model, then
X1:tinvoke−1W

K and X1:tinvoke−1
WV are already in the KV cache and do not need to be recomputed.

Similarly, any tokens that have been prefilled or generated by the aLoRA model have keys and values
processed by the adapted weights, so Xtinvoke:t(W

K + ∆K) and Xtinvoke:t(W
V + ∆V) are also

available (except for the current token being generated). As a result, the aLoRA architecture can
seamlessly reuse the existing base model KV cache as well as continue to maintain its own KV cache
as it generates. Note that adaptations for the MLP blocks that preserve this KV cache property can be
done via directly corresponding equations as for the Q,K, V blocks above.

We can formalize this cache reuse claim as follows (proved in the appendix):
Proposition 1 (KV equivalence and aLoRA inference). For the causal decoder-only transformers
we consider, the keys and values (actually, all internal states) prior to tinvoke are identical for the
base model and any aLoRA adapter model using (6). Specifically, Kbase

1:tinvoke−1 = Kadapter
1:tinvoke−1, and

V base
1:tinvoke−1 = V adapter

1:tinvoke−1. Inference with the aLoRA adapted model can be done causally one token
at a time (by simply increasing t in (6) iteratively) with KV cache reuse.

Furthermore, we can quantify the computation and memory savings:
Proposition 2 (aLoRA vs. LoRA inference costs). Consider invoking an adapter with Tcache tokens
of input for which a base model KV cache exists and Tnew ≪ Tcache input tokens without cache.5
The first token generated by the aLoRA adapter requires O(TcacheTnew) operations, while LoRA
requires O((Tcache + Tnew)

2). Furthermore, aLoRA must maintain only O(Tnew) additional KV
cache memory, while LoRA requires additional O(Tcache + Tnew). If N distinct adapters share the
first Tcache tokens as input, aLoRA costs become O(NTcacheTnew) and O(NTnew), while LoRA has
O(N(Tcache + Tnew)

2) and O(N(Tcache + Tnew)).

As the context length and number of concurrent adapters rise, the computation and memory advantages
of aLoRA scale linearly. Note that while methods exist for KV cache compression that can reduce
overall memory footprint, e.g. [19], and various methods exist increasing the practical scalability of
attention, KV cache reuse is still a major factor in practice as context length increases.

Cache reuse patterns: Importantly, while we typically emphasize the aLoRA adapter reusing cache
from the base model, the fact that input cache is interchangeable between the base model and every
aLoRA adapter presents multiple opportunities for reuse. Consider three regimes:

1. The adapter reuses cache from the base model, e.g. checking a base model generation.
2. The base model reuses cache created when the aLoRA adapter was invoked, e.g. when an

adapter checks an input prior to sending to the base model for full generation.
3. Multiple adapters reuse the same cache, e.g. when checking base model outputs on multiple

axes. This regime creates the most dramatic advantage for aLoRA over LoRA.

In the results, we explore concrete intrinsics which follow these patterns. Note that any KV cache
created by aLoRA adapter for their own generations are not reusable by other adapters or the base
model, as these tokens come after the adapter weights are turned on. If these strings needs to be input
into other adapters or the base model, they should be prefilled again. This is a fairly minor concern,
however, as intrinsics generations are often short, and per token, prefill is much faster than generation.

Invocation: We found it useful to demarcate the activation of the aLoRA adapter via a short
invocation token sequence. Advantages are elaborated on in Appendix A and include allowing more
space for the adapted weights to process the input. Typically, this sequence will be appended to
the prompt prior to generation, just as a “generation prompt” is typically appended to prompts for
instruct-tuned model (e.g. <|assistant|> or some other string). While the aLoRA will often be
invoked programmatically, this design in principle allows for the base model (or other intrinsics) to
call the aLoRA model themselves (we do not explore this behavior in the current work).

5We presume that Tnew is the invocation sequence and following.

5

2.1 Training

The activated LoRA framework is explicitly designed for tuning the LLM to modify its output
conditioned on an input. This regime matches (but is not limited to) instruction finetuning tasks,
where the context tokens are excluded from the loss while finetuning the adapter to produce a specified
output sequence (supervised finetuning, or SFT). aLoRA can in principle also be used in RL training
pipelines, though we do not explore these in the current work.

Our implementation of aLoRA is in the supplementary material. It seamlessly supports standard
Huggingface training libraries [43] as well as inference/generation methods (with or without using
available base model KV cache) if needed (e.g. for testing or proofs of concept when the efficiencies
of vLLM [45] are not needed). Later in this section, we will also show inference experiments using
our modification of the more efficient (SOTA) inference package vLLM to support aLoRA.

For aLoRA SFT, training data is specified as a set of (possibly multiturn) inputs and completions,
typically with the base model’s chat template applied. An invocation token sequence for the aLoRA
model is optionally specified as described in the previous section. This invocation sequence is
appended to the input sequence, and the model is finetuned to produce the output given the input.
To train the aLoRA adapter, a base model is specified, and following standard LoRA practice, we
apply low-rank adapters to any (or all) of the query, key, and value blocks in the attention layers.6 In
training, the aLoRA is aware of which tokens occur before the invocation sequence, and does not
adapt the weights for those tokens (as in (6)).

Adapter Model Capacity and Increased Rank: Empirically, we observe that aLoRA adapters
sometimes require higher rank than LoRA adapters to get good performance (no experiments in this
paper use rank higher than r = 32). We offer the following intuition for this. LoRA adapters are
free to adapt the weights for the keys and values for tokens prior to activation, so they are able to
“compress” information needed for generation into the low-rank signal captured by the adaptation.
This signal can then be more easily “picked up” by the adapted query weights for generated tokens.
See Appendix D for further exploration. This also provides the key motivation for starting the
adapted weights at the intrinsic instruction tokens, rather than waiting to activate the weights only at
generation time—this choice boosts model capacity.

We now compare aLoRA to standard LoRA both in terms of inference compute costs as well as
generation quality and accuracy. Recall that our goal is to achieve significant gains in inference cost,
while preserving (not losing) accuracy relative to what is achievable with LoRA.

3 Inference timing results on vLLM

In Figure 2 we illustrate how computation and memory differ in LoRAs versus aLoRA in a simple
agent pattern. A prompt (blue) is passed to a model which then prefills the corresponding KV cache,
and then generates an answer (green). The task is now to evaluate the answer; in this example, two
different hypothetical evaluators are used. An example of such evaluations may be to determine if the
answer is faithful to the content provided, or how certain the model is of the answer, given the content.
If these evaluators are implemented using LoRAs (Figure 2a), then to generate the evaluations, new
KV cache computations need to be performed, independently for each evaluator. In the case of
aLoRAs (Figure 2b), the KV cache of the underlying model is reused, resulting in significant savings.

To prove this experimentally, we modified vLLM [45] to be able to perform inference on aLoRAs
with base model prefix cache reuse, and compared LoRA and aLoRA inference on 7 small (≤ 14B)
LLMs in the setting where the initial base model prompt length is varied, the base model generated
answer is comprised of 256 tokens, and each adapter evaluation is given by 16 tokens.7 Results are in
Figure 3, showing timing for both 1 evaluator and 5 evaluators.8 In this experiment, we set the LoRA
to have rank 8 and the aLoRA to be rank 32, illustrating that any need for rank increase with aLoRA
has negligible inference time effect since the adapter parameters are still typically much less than 1%
of the base model parameters.

6Adapting MLP layers is possible but less common in LoRA SFT.
7Code for our vLLM implementation can be found at https://github.com/tdoublep/vllm/

tree/alora.
8While 5 evaluators may initially seem a lot, this is a stand-in for more complex pipelines where the input,

retrieved documents, and generation are all being checked, as in [5].

6

https://github.com/tdoublep/vllm/tree/alora
https://github.com/tdoublep/vllm/tree/alora

Figure 3: Comparison of aLoRA and LoRA when used as evaluators in a simple agentic pattern.
Top left: Multiplicative speedup of an aLoRA evaluator vs LoRA, showing up to 35x improvement
depending on base model and prompt length. Top right: Multiplicative speedup for the end-to-
end pipeline including the base model generation (256 tokens) and 1 or 5 parallel eval (adapter)
generations (16 tokens each). Despite the large fixed cost of the base model call, end-to-end aLoRA
speedups are still significant, highlighting LoRA inefficiency. Bottom row: Log-log plots for the
wall clock evaluation, showing that even for small models, the delay for LoRA becomes significant
in absolute terms as the prompt and number of evaluations in the agentic pipeline scale.

The speedup factor of aLoRA increases as prompt length increases, adapter generation time improving
over 2 to 7× even for 250-token prompts, and over 20× for most models on the longest prompts.
Despite most of the compute advantages coming from the prefill savings (time to 1st token of the
adapter), we still see highly meaningful speedups in the end-to-end pipeline which also includes
the large fixed cost of generating 256 tokens with the base model. Finally, in the last row, despite
the adapters only generating 16 tokens, we see that the LoRA delays are noticeable in wall clock
time. Note these wall clock delays will be further magnified for more complex agentic or reasoning
pipelines where many rounds of input and generation happen before the overall pipeline completes.

4 Finetuning Accuracy Results

Having demonstrated significant inference time speedups for aLoRA, it remains to ascertain whether
we lose generation accuracy or quality. We first train LoRA and aLoRA adapters on 4 LLMs on
a set of benchmark SFT tasks, and then consider a set of more challenging “intrinsics”-type tasks
for which well-engineered, very recent LoRA adapters already exist against which we can compare.
Our code implementing Activated LoRA has been contributed to the Huggingface PEFT library
https://github.com/huggingface/peft [25], which we also use for LoRA.9

7

https://github.com/huggingface/peft

Task Llama 3.2 1B Llama 3.2 3B Llama 3.1 8B Mistral 7B
LoRA aLoRA LoRA aLoRA LoRA aLoRA LoRA aLoRA

Bengali Hate
Speech Classification 79.30% 81.94% 86.34% 89.43% 70.04% 85.02% 72.25% 85.46%

WIQA: Effect
Classification 68.92% 71.38% 76.15% 76.00% 74.92% 78.00% 61.08% 79.08%
MMLU Conceptual
Physics MCQA 33.33% 38.89% 72.20% 66.67% 55.56% 55.56% 55.56% 55.56%
MMLU College Computer
Science MCQA 66.67% 58.33% 66.67% 75.00% 66.67% 58.33% 75.00% 75.00%

SocialIQA Question
Generation 86.00% 88.77% 89.85% 90.15% 52.00% 88.92% 97.23% 90.92%

Hindi Sentence
Perturbation 69.60% 74.69% 98.30% 63.89% 86.11% 35.19% 99.23% 96.30%
SuperGLUE Question
Generation 98.42% 95.79% 95.26% 96.84% 98.95% 92.11% 99.47% 92.11%

Figure 4: LoRA vs. aLoRA accuracy (%) on each task across base models after hyperparameter grid
search guided by the validation set. While individual task performance is noisy due to the size of the
datasets etc., there is no consistent accuracy loss from using aLoRA over LoRA.

4.1 Benchmark SFT tasks

In [2], a collection of 1000 instruction SFT tasks were curated and LoRA adapters were trained for
each. These tasks were drawn from the Super-Natural Instructions [42] benchmark collection of
datasets, which in turn drew from sources such as MMLU [11] etc.

From this list, we selected 7 tasks at random, roughly split between multiple-choice and freeform
outputs. We excluded from consideration any tasks with (a) too small datasets, (b) overly open-ended
instructions, or (c) difficulty such that trained adapters did no better than random chance. The
selected tasks and datasets are detailed in Appendix F. For each task, we trained both LoRA and
aLoRA adapters for 4 instruct-tuned models of various sizes. To ensure a fair comparison, for each
task-model pair, using the validation set performance we performed grid search over 4 rank values
and 5 learning rate values10, and followed typical LoRA SFT best practices for all parameters. Note
that we did not observe any pattern to the performance-maximizing rank value in these experiments,
in particular there was not a clear pattern of LoRA or aLoRA needing higher or lower rank. The
invocation sequence was set to equal the model’s chat template generation prompt. See Appendix F
for further details.

Results are shown in Figure 4. While there is decent variability due to the generally small size of
the datasets and non-exhaustiveness of the hyperparameter search, overall it can be seen that neither
aLoRA or LoRA has a consistent accuracy advantage. The median performance difference is 0.0%,
and the mean performance difference is 0.6% in favor of LoRA (3.06% in favor of activated LoRA
when restricted to MC tasks). Using a 2 sided t-test, the p-value for rejecting the null hypothesis of
equal means is 0.8, failing to reject at level 0.05. This supports our thesis that aLoRA can achieve
comparable accuracy to LoRA while significantly outperforming in inference costs.

4.2 Intrinsics Tasks

In this subsection, we consider real-world tasks that fit the framework of intrinsics, specifically,
settings where the task requires a potentially long input that either (a) already has base model KV
cache available from either being input to or generated by the base model, or (b) does not have
(complete) base model KV cache available, but base model KV cache created through an aLoRA call
will be used in a subsequent base model call. We draw from those proposed in [5] for a RAG pipeline,
though these intrinsics are not limited to RAG. See [5] for deeper motivation for each intrinsic and
extensive experimental results comparing their LoRA adapters to strong baselines.

In [5], LoRA adapters were trained for the intrinsics using the Granite 3.2 8b Instruct model. For
direct comparison to their released adapters, we train corresponding aLoRA adapters (using the same
datasets and chat-template-based formatting) and compare their performance in terms of generation

9PEFT contains the model implementation and handles inference. Training in our experiments is done using
a standard Huggingface TRL [38] trainer (SFTTrainer).

10Note that this experiment represents 1120 separate adapter training runs.

8

https://huggingface.co/ibm-granite/granite-3.2-8b-instruct

quality and/or accuracy.11 Note that since all the below models use the same base model, they can be
swapped in and out as needed in the same flow. The reader can envision the wide range of possibilities
enabled by these intrinsics, e.g. for RAG. See the Appendix G for additional details for this section.

Uncertainty Quantification: This intrinsic provides a Certainty score for model responses
to user questions. The model will respond with a number from 0 to 9, corresponding to
5%, 15%, 25%, . . . , 95% confidence respectively. Training data for these confidence scores are
obtained by applying the UQ calibration method of [32] to a large, diverse set of benchmark question
answering datasets, quantizing the predicted confidences and using these predicted confidences
as SFT targets for the adapter. Following the chat template, the invocation sequence is 4 tokens:
<|start_of_role|>certainty<|end_of_role|>. Note that the model is evaluating re-
sponses from its base model - in other words, it cannot be applied to generations from other models.
The aLoRA architecture is thus particularly well-suited to this use case. In practice, the goal is to
provide a highly efficient uncertainty score without having to resort to expensive larger judge models.

Certainty Score LoRA aLoRA

MAE 0.50 0.49

Figure 5: Test error for the Un-
certainty Quantification intrin-
sic. Note that aLoRA does not
lose meaningful performance.

The Uncertainty Quantification intrinsic returns an ordinal score, so
we compute the mean absolute error between the predicted integer
and the target integer in the SFT data. Results are shown in Figure
5. Note that performance is largely unchanged using aLoRA instead
of standard LoRA.

Answerability Determination: This intrinsic assesses whether a
user’s final query in a multi-turn conversation can be answered
given the retrieved documents. In RAG or other settings, this decides whether to proceed with
generation or abstain with an “I don’t know” response. The invocation sequence is set to
<|start_of_role|>answerability<|end_of_role|>. We tested on binary answer-
ability classification on the single-turn SQUADRun Benchmark [30] with the user query and the
supporting documents, and the multi-turn MT-RAG Benchmark [15] using full multi-turn conversa-
tion history along with the supporting documents. Figure 6 shows the results. Overall, the aLoRA
model does not lose performance relative to the LoRA model.

Dataset Adapter Unans. Ans. Weighted F1

P R F1 P R F1

SQUADRUN Dev LoRA 84.2 68.0 75.2 73.1 87.2 79.5 77.4
aLoRA 83.0 81.1 82.0 81.4 83.3 82.4 82.2

MT-RAG Benchmark LoRA 85.4 89.3 87.3 87.0 82.4 84.6 86.1
aLoRA 85.8 89.1 87.4 86.8 83.0 84.9 86.2

Figure 6: Comparison of classification performance of LoRA vs.
aLoRA across the SQUADRUN Dev set and MT-RAG benchmark.
Metrics are broken down by class (Unanswerable vs. Answerable) and
include precision (P), recall (R), F1 score, and weighted F1.

Query Rewrite: This in-
trinsic is generally applica-
ble for multi-turn conver-
sational use cases, and its
role is to perform rewrites
of user queries for better
performance for the down-
stream tasks. It is especially
useful in RAG settings, see
the metrics and evaluation
results below. The query
rewrite task is as follows:
given a multi-turn conversa-
tion between a user and an AI assistant, de-contextualize the last user utterance (query) by rewriting
it (whenever necessary) into an equivalent version that is standalone and can be understood by itself.
The rewritten query can be sent to downstream tasks (e.g., to a retriever in a RAG setting) as a better
replacement for the original user query, and without the need for (a potentially very long) context.

Retrieval recall evaluation (Recall@k) with different query rewrite strategies, evaluated on full,
non-standalone and standalone subsets of MT-RAG dataset [15] are shown in Figure 7a. All retrieved
passages are obtained using the Elser retriever with the same settings as in the above paper. We
evaluate on three different subsets of MT-RAG detailed in the appendix.

Answer quality evaluation using RAGAS Faithfulness (RAGAS-F) and RAD-Bench on full, non-
standalone and standalone subsets of MT-RAG dataset are shown in Table 7b (see appendix for
details). Note that throughout, performance numbers for aLoRA and LoRA are within a point or two.
See [5] for additional comparisons showing that these approaches outperform benchmarks and are
very close to the performance with gold rewrites.

11As they released LoRA adapters for only one base model, we limit ourselves to their choice of base model.

9

Full MT-RAG Non-standalone Standalone

Strategy R@5 R@10 R@20 R@5 R@10 R@20 R@5 R@10 R@20

aLoRA 0.54 0.66 0.74 0.42 0.54 0.64 0.63 0.75 0.82
LoRA 0.56 0.68 0.76 0.44 0.57 0.66 0.63 0.75 0.83

(a) Retrieval (Recall@5, @10, and @20)

Full MT-RAG Non-standalone Standalone

Strategy RAGAS-F RAD-Bench RAGAS-F RAD-Bench RAGAS-F RAD-Bench

aLoRA 0.81 0.69 0.77 0.69 0.83 0.70
LoRA 0.81 0.70 0.79 0.69 0.83 0.71

(b) Answer generation quality (RAGAS-F, RAD-Bench)
Figure 7: Impact of query rewrite strategies on both retrieval and generation tasks across subsets of
MT-RAG.

Acc TPR FPR

aLoRA 0.925 0.863 0.013
LoRA 0.943 0.898 0.011

Figure 8: Performance of jail-
break risk detectors.

Jailbreak Detection: This intrinsic is designed for detecting jail-
break risk within user prompts. Prompts with jailbreak risk vary
across a wide range of attack styles - from direct instructions, to
encoding-style, social-hacking based attacks and even ones that ex-
ploit special token or context overload [31]. In our experiments
we focused on training intrinsics for detecting social hacking style
of adversarial prompts. As with prior intrinsics, the aLoRA/LoRA
detectors are trained in the same conditions with a rank of 32. The intrinsic is trained to return a
binary label - “Y” indicating jailbreak risk present and “N” indicating no risk.

After training, we evaluate the jailbreak intrinsic on new out-of-distribution datasets not used in
training to robustly assess generalizability [46]. The out-of-distribution datasets comprise of 3,282
samples containing a mixture of samples with jailbreak risk [33, 20, 39] and benign samples [4]. As
with the other intrinsics, we see very little performance difference between LoRA and aLoRA.

5 Conclusion

We presented Activated LoRA (aLoRA), a novel modification of the LoRA framework enabling
efficient and dynamic adaptation of large language models without requiring recomputation of the
key-value (KV) cache. By modifying LoRA to adapt weights only for tokens generated after activa-
tion, aLoRA facilitates seamless integration into multiturn settings, enabling the use of specialized
“intrinsics” for well-defined operations within a broader conversational or processing pipeline. While
aLoRA adapters sometimes require higher rank r than LoRA, this is not a meaningful downside at
inference time since the rank r matrix multiplications are a very small part of overall inference costs
(although training costs do increase).

Our experiments demonstrate that aLoRA maintains competitive accuracy compared to standard
LoRA while significantly reducing inference costs. This capability was showcased through appli-
cations in uncertainty quantification, answerability determination, hallucination detection, query
rewrite, and jailbreak detection. The flexibility and efficiency of aLoRA highlight its potential to
streamline the deployment of modular, task-specific models in complex workflows, paving the way
for more adaptive and responsive LLM-driven systems.

We anticipate that aLoRA can be profitably applied to a vast array of intrinsics-style finetuning tasks
that can be created for applications throughout the agentic, chat, and reasoning spaces. Future work
will explore developing and proving these expanded use cases.

10

References
[1] Awesome chatgpt prompts. https://github.com/f/awesome-chatgpt-prompts.

[2] Rickard Brüel-Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Gree-
newald, Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of
lora adapters with little overhead. arXiv preprint arXiv:2407.00066, 2024.

[3] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

[4] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam
Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin. Free
dolly: Introducing the world’s first truly open instruction-tuned LLM,
2023. URL https://www.databricks.com/blog/2023/04/12/
dolly-first-open-commercially-viable-instruction-tuned-llm.

[5] Marina Danilevsky, Kristjan Greenewald, Chulaka Gunasekara, Maeda Hanafi, Lihong He,
Yannis Katsis, Krishnateja Killamsetty, Yatin Nandwani, Lucian Popa, Dinesh Raghu, Frederick
Reiss, Vraj Shah, Khoi-Nguyen Tran, Huaiyu Zhu, and Luis Lastras. A library of LLM intrinsics
for retrieval-augmented generation. arXiv preprint arXiv:2504.11704, 2025.

[6] Boyi Deng, Wenjie Wang, Fuli Feng, Yang Deng, Qifan Wang, and Xiangnan He. Attack
prompt generation for red teaming and defending large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 2176–2189, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.143. URL https://aclanthology.
org/2023.findings-emnlp.143.

[7] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
finetuning of quantized LLMs. Advances in Neural Information Processing Systems, 36:
10088–10115, 2023.

[8] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint 2305.14233, 2023.

[9] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, and Alex Vaughan. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[10] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366,
2021.

[11] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

[12] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Marco Morrone, and Quentin de Larous-
silhe. Parameter-efficient transfer learning for NLP. In International Conference on Machine
Learning, pages 2790–2799, 2019.

[13] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[14] Mingjian Jiang, Yangjun Ruan, Luis Lastras, Pavan Kapanipathi, and Tatsunori Hashimoto.
Putting it all into context: Simplifying agents with LCLMs, 2025. URL https://arxiv.
org/abs/2505.08120.

[15] Yannis Katsis, Sara Rosenthal, Kshitij Fadnis, Chulaka Gunasekara, Young-Suk Lee, Lucian
Popa, Vraj Shah, Huaiyu Zhu, Danish Contractor, and Marina Danilevsky. MTRAG: A multi-
turn conversational benchmark for evaluating retrieval-augmented generation systems, 2025.
URL https://arxiv.org/abs/2501.03468.

[16] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model

11

https://github.com/f/awesome-chatgpt-prompts
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://aclanthology.org/2023.findings-emnlp.143
https://aclanthology.org/2023.findings-emnlp.143
https://arxiv.org/abs/2505.08120
https://arxiv.org/abs/2505.08120
https://arxiv.org/abs/2501.03468

serving with paged attention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[17] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, and Tim Rocktäschel. Retrieval-augmented
generation for knowledge-intensive NLP tasks. Advances in Neural Information Processing
Systems, 33:9459–9474, 2020.

[18] Xi Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
International Conference on Learning Representations, 2021.

[19] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking
for before generation. Advances in Neural Information Processing Systems, 37:22947–22970,
2024.

[20] Zi Lin, Zihan Wang, Yongqi Tong, Yangkun Wang, Yuxin Guo, Yujia Wang, and Jingbo Shang.
ToxicChat: Unveiling hidden challenges of toxicity detection in real-world user-AI conversation.
In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association for
Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pages 4694–4702.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.
311. URL https://doi.org/10.18653/v1/2023.findings-emnlp.311.

[21] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, and Daya Guo. Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

[22] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

[23] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In
Forty-first International Conference on Machine Learning, 2024.

[24] Xiang Liu, Zhenheng Tang, Hong Chen, Peijie Dong, Zeyu Li, Xiuze Zhou, Bo Li, Xuming Hu,
and Xiaowen Chu. Can LLMs maintain fundamental abilities under KV cache compression?
arXiv preprint arXiv:2502.01941, 2025.

[25] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and
Benjamin Bossan. PEFT: State-of-the-art parameter-efficient fine-tuning methods. https:
//github.com/huggingface/peft, 2022.

[26] OpenAI. OpenAI fine-tuning API. https://platform.openai.com/docs/guides/
fine-tuning, 2024.

[27] Niklas Pfister, Václav Volhejn, Manuel Knott, Santiago Arias, Julia Bazińska, Mykhailo
Bichurin, Alan Commike, Janet Darling, Peter Dienes, and Matthew Fiedler. Gandalf the
red: Adaptive security for LLMs. arXiv preprint arXiv:2501.07927, 2025.

[28] Predibase. Multi-lora inference server that scales to 1000s of fine-tuned LLMs. https:
//loraexchange.ai, 2024.

[29] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[30] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 784–789, 2018.

[31] Ambrish Rawat, Stefan Schoepf, Giulio Zizzo, Giandomenico Cornacchia, Muhammad Zaid
Hameed, Kieran Fraser, Erik Miehling, Beat Buesser, Elizabeth M. Daly, Mark Purcell, Prasanna
Sattigeri, Pin-Yu Chen, and Kush R. Varshney. Attack atlas: A practitioner’s perspective on
challenges and pitfalls in red teaming GenAI. CoRR, abs/2409.15398, 2024.

[32] Maohao Shen, Subhro Das, Kristjan Greenewald, Prasanna Sattigeri, Gregory Wornell, and
Soumya Ghosh. Thermometer: Towards universal calibration for large language models. In
International Conference on Machine Learning, 2024.

12

https://doi.org/10.18653/v1/2023.findings-emnlp.311
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://loraexchange.ai
https://loraexchange.ai

[33] Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "Do anything now":
Characterizing and evaluating in-the-wild jailbreak prompts on large language models. In
Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie, editors, Proceedings of the 2024
on ACM SIGSAC Conference on Computer and Communications Security, CCS 2024, Salt Lake
City, UT, USA, October 14-18, 2024, pages 1671–1685. ACM, 2024.

[34] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher
Chou, Banghua Zhu, Lianmin Zheng, and Kurt Keutzer. S-LoRA: Serving thousands of
concurrent LoRA adapters. arXiv preprint arXiv:2311.03285, 2023.

[35] Arthur Mensch Chris Bamford Devendra Singh, Chaplot Diego de las Casas Florian, Bressand
Gianna Lengyel Guillaume Lample Lucile, Saulnier Lélio Renard Lavaud Marie-Anne, Lachaux
Pierre Stock Teven Le Scao, Thibaut Lavril Thomas Wang Timothée Lacroix, William El Sayed
Albert Q Jiang, and Alexandre Sablayrolles. Mistral 7b. arXiv preprint arXiv:2310.06825,
2023.

[36] TogetherAI. Together fine-tuning. https://www.together.ai/products#
fine-tuning, 2024.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998–6008, 2017.

[38] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. TRL: Transformer reinforce-
ment learning. https://github.com/huggingface/trl, 2020.

[39] Shengye Wan, Cyrus Nikolaidis, Daniel Song, David Molnar, James Crnkovich, Jayson Grace,
Manish Bhatt, Sahana Chennabasappa, Spencer Whitman, Stephanie Ding, Vlad Ionescu, Yue
Li, and Joshua Saxe. CYBERSECEVAL 3: Advancing the evaluation of cybersecurity risks and
capabilities in large language models. CoRR, abs/2408.01605, 2024.

[40] Shangshang Wang, Julian Asilis, Ömer Faruk Akgül, Enes Burak Bilgin, Ollie Liu, and Willie
Neiswanger. Tina: Tiny reasoning models via lora. arXiv preprint arXiv:2504.15777, 2025.

[41] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, and Jaskirat Singh. Openhands: An open platform for ai software
developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2024.

[42] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, and David Stap.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ NLP tasks. In
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, 2022.

[43] Thomas Wolf et al. Huggingface’s transformers: State-of-the-art natural language processing.
https://huggingface.co/transformers/, 2019.

[44] John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

[45] Xu Zhu et al. vLLM: Fast inference of large language models. https://github.com/
vllm-project/vllm, 2023.

[46] Giulio Zizzo, Giandomenico Cornacchia, Kieran Fraser, Muhammad Zaid Hameed, Ambrish
Rawat, Beat Buesser, Mark Purcell, Pin-Yu Chen, Prasanna Sattigeri, and Kush Varshney.
Adversarial prompt evaluation: Systematic benchmarking of guardrails against prompt input
attacks on LLMs. arXiv preprint arXiv:2502.15427, 2025.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]

13

https://www.together.ai/products#fine-tuning
https://www.together.ai/products#fine-tuning
https://github.com/huggingface/trl
https://huggingface.co/transformers/
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm

Justification: We clearly state and support our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss aLoRA requiring higher rank, being limited to non-pretraining
type tuning tasks, and focusing on intrinsics-style tasks.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Proofs are found in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

14

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: While we cannot provide code for every experiment, we provide a user-friendly
codebase that implements our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Partial Yes. We provide code, but not all datasets. Some datasets are public
and can be downloaded.
Guidelines:

15

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are specified.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We mention a p-value where appropriate, and throughout indicate how many
samples were used. vLLM experiments were repeated until error bounds became too small
to show.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While LLMs will certainly have societal impacts, we do not see any new or
additional societal impacts to our innovation.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release new data, and models are trained on specialized tasks that
should pose no more risk than the base LLMs (which themselves put significant safeguards
in place).

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite prior assets as requested by the owners.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

18

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code is documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

A Invocation sequences

In our implementation, the aLoRA weights are activated one token after the start of the invocation
sequence. For the benchmark dataset experiments, we simply set the invocation sequence to be
the “generation prompt” specified by the base model’s chat template. For the various intrinsics
experiments, we most often used a 3-4 token length sequence which included a one-word description
of the task.

The invocation sequence has several benefits. The invocation sequence can be designed to

• Conform to the chat template (for instance by making the aLoRA response its own turn with
a specialized role).

• Provide an (optional) short prompt to aid the learning process.

• Give the adapter weights a few more tokens to process the input prior to generating the
output, often improving performance in practice.

In our current implementation, the invocation sequence denoting the starting point of adaptation is
fixed, with the option to have a variable prompt follow it prior to actual generation. In principle, there
is no need for any consistency of input sequences so long as the point at which the adapter weights
should be turned on can be indicated by some means.

B LLM Transformer architecture

A generic architecture is shown in Figure 9.

Figure 9: A generic LLM architecture.

C Proofs

We repeat the propositions here from the main text and prove them.

Proposition 3 (Proposition 1 (KV equivalence and aLoRA inference)). For the causal decoder-only
transformers we consider, the keys and values (actually, all internal states) prior to tinvoke are
identical for the base model and any aLoRA adapter model using (6). Specifically, Kbase

1:tinvoke−1 =

Kadapter
1:tinvoke−1, and V base

1:tinvoke−1 = V adapter
1:tinvoke−1. Inference with the aLoRA adapted model can be done

causally one token at a time (by simply increasing t in (6) iteratively) with KV cache reuse.

Proof of Proposition 1 (KV equivalence and aLoRA inference). In the proof, for notational simplic-
ity we focus on adapters to the attention blocks, but the treatment for adapters to the MLP blocks
is the same. By construction (6), for every token index i < tinvoke the adapter’s weight matrices
coincide with the base model’s:

WQ
adapter

∣∣
i
= WQ, WK

adapter

∣∣
i
= WK , WV

adapter

∣∣
i
= WV .

21

Hence for each i < tinvoke and starting with the first attention layer,

Qadapter
i = xi

(
WQ + 0

)
= xiW

Q = Qbase
i ,

and similarly
Kadapter

i = xiW
K = Kbase

i , V adapter
i = xiW

V = V base
i .

Since the transformer’s subsequent layer outputs (including all MLP and layer-norm states) are
deterministic functions of these Q,K, V up to i, it follows by induction on layer depth that all
internal states for tokens 1, . . . , tinvoke − 1 agree between the two models. In particular the cached
key- and value-matrices satisfy

Kadapter
1:tinvoke−1 = Kbase

1:tinvoke−1, V adapter
1:tinvoke−1 = V base

1:tinvoke−1.

During generation at time t ≥ tinvoke, both models proceed token-by-token via exactly the same
causal-attention mechanism (1), merely appending the new (Qt,Kt, Vt) row and reusing the previ-
ously cached rows. Since up to t− 1 those rows coincide, the adapter may reuse the base model’s
KV cache for the first tinvoke − 1 tokens, and then continue to grow its own cache for tokens
tinvoke, . . . , t−1. This establishes that aLoRA inference can indeed be performed causally, one token
at a time, with full KV cache reuse.

Proposition 4 (Proposition 2 (aLoRA vs. LoRA inference costs)). Consider invoking an adapter
with Tcache tokens of input for which a base model KV cache exists and Tnew ≪ Tcache input
tokens without cache.12 The first token generated by the aLoRA adapter requires O(TcacheTnew)
operations, while LoRA requires O((Tcache + Tnew)

2). Furthermore, aLoRA must maintain only
O(Tnew) additional KV cache memory, while LoRA requires additional O(Tcache + Tnew). If N
distinct adapters share the first Tcache tokens as input, aLoRA costs become O(NTcacheTnew) and
O(NTnew), while LoRA has O(N(Tcache + Tnew)

2) and O(N(Tcache + Tnew)).

Proof of Proposition 2 (aLoRA vs. LoRA inference costs). Let the input be partitioned into Tcache

tokens whose base-model cache is already available, and Tnew tokens on which the adapter must act
without precomputed cache. We compare the cost of generating the first new token:

• aLoRA. To generate token t = Tcache + Tnew + 1, we do a forward pass of the transformer,
where we have keys and values for the first Tcache tokens (and therefore do not need to
recompute these). The MLP blocks do not interact between tokens, so scale linearly only
with Tnew + 1, hidden dimension, and number of layers. For each attention layer, we

1. compute Tnew + 1 new rows each of Q,K, V in O(Tnewdk),
2. form the attention scores by multiplying these new queries against the cached-plus-new

key-matrix of size (Tcache + Tnew)× dk, costing O((Tcache + Tnew) dk),
3. apply the Tnew + 1 masked softmaxes and weighted sums over (Tcache + Tnew) values

in O(Tnew(Tcache + Tnew) dv),
4. form the adapter’s own new cache entries, yielding at most O(Tnew) extra storage.

Hence, considering hidden dimension and number of layers as constant, the dominant cost
is O(Tcache + Tnew(Tnew + Tcache)) = O(TnewTcache), and extra memory O(Tnew).

• LoRA. Since LoRA’s rank-r updates apply to all tokens—including those in the original
context—no prefill cache may be reused. Generating the first token thus requires recomput-
ing attention over (Tcache + Tnew) tokens, incurring O

(
(Tcache + Tnew)

2
)
= O

(
T 2
cache

)
≫

O(TnewTcache) compute, and storing O(Tcache + Tnew) key/value rows.

If N distinct adapters each process the same Tcache + Tnew context but disjoint Tnew segments, the
aLoRA per-adapter cost scales as O(Tcache +N TnewTcache) time and O(N Tnew) memory, whereas
LoRA’s cost scales on the full quadratic context for each adapter (totaling O

(
N (Tcache + Tnew)

2
)

time and O
(
N (Tcache + Tnew)

)
memory).

12We presume that Tnew is the invocation sequence and following.

22

D Adapter Model Capacity and Increased Rank

Figure 10 illustrates this observation (described in the main text). In our experiments, rank of 32
seems to be sufficient in most cases, which is still vastly smaller than the size of the base model.
Whenever comparing to LoRA models, we chose a LoRA rank that achieved top performance for
LoRA, rather than attempting to match the ranks between LoRA and aLoRA.

context

Invocation answer

(a) LoRA is able to modify the keys (K) of task-relevant values (V) in the context attention layers for
the modified queries (Q) recover via the attention mechanism.

context

Invocation answer

(b) For the context, aLoRA is not able to modify context KVs, it must rely on learning modified Qs
alone to extract information from existing context KVs.

Figure 10: Intuition for why aLoRA adapters often require increased rank r. ALoRA is not able to
modify the keys and values of input tokens prior to the invocation sequence to send new “messages”
forward to the generation step, and a too small rank constraint limits its capacity to do this.

E Inference Timing Performance Evaluation Details

In this section we document the methodology followed in the experiments leading to Figure 3. These
experiments are modeled, particularly for the smaller prompt lengths (10k tokens) after multi-turn
RAG situations where a collection of documents concatenated with multiple conversation turns are
followed by an answer of total length a few hundred tokens, and then where judges are used to
determine various qualities of the answer.

For each model considered, 5 low rank adapters with random weights were created for ranks 8 and
32, and independent vLLM instances were launched for each model and collection of adapters in
two modalities: a server where the adapters are regarded as regular LoRAs (where we used rank 8)
and a server where they are regarded as activated LoRAs (where we used rank 32). We note that
while in our experiments such high rank discrepancies are the exception rather than the rule, we
adopted this setup so as to give an additional potential advantage to LoRA in the evaluation, as a
lower rank update is in principle cheaper to compute; we also remark that we saw very little change in
the experiments compared to a settign where both ranks match. For each model, the KV cache size in
tokens as calculated by vLLM is used to compute the batch size to use by dividing the KV cache size
by the length of the sequence that the LLM will be tested on (including initial prompt, generation and
evaluation). A total of three batches are tested consecutively for each combination of model, number
of evaluators and prompt length. Each batch is processed in sequential stages: answer generation for
the entire batch is then followed by one or more evaluations, also done for the entire batch.

Batches are created by choosing prompts at random while ensuring that their length, after tokenization
using any given model’s tokenizer, is precisely the desired length. The length of the answers (256
tokens) and evaluations (16 tokens) are enforced by passing to vLLM’s generate method matching
minimum and maximum number of tokens to generate.

23

F Benchmark SFT experiment details

F.1 Models

Llama 3.2 1B Instruct (meta-llama/Llama-3.2-1B-Instruct on Hug-
gingface), Llama 3.2 3B Instruct (meta-llama/Llama-3.2-3B-Instruct),
Llama3.1 8B (meta-llama/Llama-3.1-8B-Instruct) [9], and Mistral 7B
(mistralai/Mistral-7B-Instruct-v0.3) [35].

F.2 Tasks and Datasets

Here we provide additional information on the SFT tasks in Figure 4. Table 1 gives information for
each dataset on the size of the train/validation/test splits, as well as the number of multiple-choice
responses for the multiple-choice tasks. Freeform tasks have unstructured natural language strings as
target output.

Table 2 provides the Huggingface path for each dataset. The URL can be recovered as
https://huggingface.co/datasets/Lots-of-LoRAs/PATHwhere PATH is the name
indicated in Table 2.

We next provide the task definition prompt for each of the datasets. Note that the actual datasets
include this task definition, in-context-learning (ICL) examples, and the test input as part of the full
prompt to the LLM. Examples can be seen on the Huggingface pages for each dataset.

Bengali Hate Speech Classification “In this task, you are given a hateful post in Bengali that ex-
presses hate or encourages violence towards a person or a group based on the protected characteristics
such as race, religion, sex, and sexual orientation. You are expected to classify the post into four
classes: Religious, Political, Geopolitical and Personal depending on the topic.”

WIQA: Effect Classification “In this task you will be given a process, and a question. The process
contains a sequence of steps that happen in order. The question asks about the effect of a certain
event on another event. If the first event has a positive effect on the second event, answer with "for",
if it has a negative effect, answer with "against". If there’s no causal relationship between the two,
answer with "none".”

MMLU Conceptual Physics MCQA “You are given a question on conceptual physics. You are
also given 4 answer options (associated with "A", "B", "C", "D"), out of which only one is correct.
You need to answer the question by selecting the correct option. You should only answer with the
choice letter, not the whole answer.”

MMLU College Computer Science MCQA “You are given a question on college computer
science. You are also given 4 answer options (associated with "A", "B", "C", "D"), out of which only
one is correct. You need to answer the question by selecting the correct option. You should only
answer with the choice letter, not the whole answer.”

SocialIQA Question Generation “In this task, you’re given context and an answer. Your task is to
generate the question for this answer based on the given context with commonsense reasoning about
social situations.”

Hindi Sentence Perturbation “Given a sentence in Hindi, generate a new Hindi sentence by
performing small changes on the sentence. Here, make sure that the changes are semantically related
and syntactically similar to the input. And the generated sentence should have high commonsense
plausibility, that is to have reasonable probability of it being true.”

SuperGLUE Question Generation “In this task, you are given Wikipedia articles on a range of
topics, we ask you to write a question based on the content of the articles that can be answered in a
binary manner i.e. True or False.”

24

Type Task #Options Train Valid Test

Multiple Choice Bengali Hate Speech Classification 3 18.1k 227 227
WIQA: Effect Classification 3 5.2k 650 650
MMLU Conceptual Physics MCQA 4 142 18 18
MMLU College Computer Science MCQA 4 90 12 11

Freeform SocialIQA Question Generation 5.2k 650 650
Hindi Sentence Perturbation 5.18k 648 647
SuperGLUE Question Generation 1.51k 190 189

Table 1: Dataset sizes and option counts for selected tasks.

Task Name on Lots-of-LoRAs (Huggingface)

Bengali Hate Speech Classification task1494_bengali_hate_speech_classification
WIQA: Effect Classification task1727_wiqa_what_is_the_effect
MMLU Conceptual Physics task693_mmmlu_answer_generation_conceptual_physics
MMLU College Computer Science task688_mmmlu_answer_generation_college_computer_science

SocialIQA Question Generation task581_socialiqa_question_generation
Hindi Sentence Perturbation task407_mickey_hi_sentence_perturbation_generation
SuperGLUE Question Generation task1660_super_glue_question_generation

Table 2: Task types and their Hugging Face dataset paths on Lots-of-LoRAs.

F.3 Training and evaluation details

Following typical LoRA SFT best practices, for both LoRA and aLoRA we used 4 training epochs,
alpha of 32, dropout of 0.05, adapted the K, Q, and V modules in all layers, and searched over ranks
[6, 8, 16, 32] and learning rates [3 × 10−6, 10−5, 3 × 10−5, 10−4, 3 × 10−4]. Batch size of 8 was
used, with 16-bit arithmetic precision. Hyperparameters were selected by taking the configuration
that performed best on the validation set, and reported performance was computed on the test set for
those selected models. All training runs were done on single H100 GPUs.

All models were evaluated by comparing the generated answers to golden answers provided in the
dataset13, and percent correctness was used as the metric. For the multiple-choice tasks, agreement
was simple to evaluate. For the freeform tasks, an LLM judge prompt compared the generated
answers to the golden answers and output a binary decision.

G Additional details for intrinsics experiments

For the intrinsics tasks, all attention weights (keys, queries, values) were adapted in all layers, using
rank 32 adapters. The learning rate and number of epochs were tuned to achieve the best validation
performance (as was the case for the LoRA adapters of [5]). Intrinsics training tasks each used an 8
GPU H100 node.

G.1 Uncertainty Quantification

Certainty score interpretation The returned percentages are calibrated in the following sense: given
a set of answers assigned a certainty score of X%, approximately X% of these answers should be
correct. Here “approximately" can be quantified via the expected calibration error, or ECE. Essentially
what happens is teaching the adapter model what the base model knows and doesn’t know. This
inherently requires generalization to questions of wildly varying difficulty (some of which may be
trick questions!) and to settings not in training. Intuitively, it does this by extrapolating based on
related questions it has been evaluated on in training - this is an inherently inexact process and leads
to some hedging. Training pipeline First, a probe-based model was trained to produce calibrated
certainty scores, using a large diverse collection of QA datasets detailed in Appendix H.1. Note that
throughout, the chat template was used. The procedure for this was as follows:

13Note that some datasets may contain some label noise.

25

1. A “meta-dataset" was created containing User inputs, Answer generations (from the base
model), and correctness labels for those generations.

2. For each row in the meta-datset, the base model was prompted with input of the form (User
inputs, Answer generations, meta prompt), where the meta prompt was

Is the above answer correct?\n <A> Yes, \n No, \nAnswer:

and one token was generated.

3. The hidden state from the last layer of the model was saved off for the generated token. This
was then combined with the correctness labels from step (1) to create a dataset of (hidden
states, correctness labels).

4. A 3 layer MLP was trained on the dataset of the previous step. This is known in the literature
as a probe.

5. The logits of the output of this MLP on held-out validation datasets were converted into
probabilities, and the ECE was computed.

6. Temperature scaling was applied here to minimize the ECE, resulting in test dataset ECE of
0.02.

The above follows the procedure of [32] for freeform responses, and was applied to both the multiple
choice and freeform data for consistency.

Having a calibrated probe model, we then created a teacher dataset, where all datasets were processed
by the probe model and the computed probabilities were recorded and quantized in steps of 10%
(05% to 95%). This teacher dataset served as the training data for the aLoRA model, which was
trained to use the invocation sequence

<|start_of_role|>certainty<|end_of_role|>

and to generate the quantized percentage values.

G.2 Answerability determination

The input to the model is a list of conversational turns and a list of documents converted to a string
using apply_chat_template function. These turns can alternate between the user and assistant
roles. The last turn is from the user. The list of documents is a dictionary with text field, which contains
the text of the corresponding document. To prompt the aLoRA adapter to determine answerability, a
special answerability role is used to trigger this capability of the model. The role includes the keyword
"answerability": <|start_of_role|>answerability<|end_of_role|>When
prompted with the above input, the model generates the answerable or unanswerable output. See [5]
for more details.

Training Details The aLoRA and LoRA adapters were fine-tuned under the following regime: rank
= 32, learning rate = 5e-6, number of epochs = 25, with early stopping based on validation set, and
90/10 split between training and validation.

G.3 Query Rewrite

Usage The input to the model is a list of conversational turns converted to a string using
apply_chat_template function. These turns can alternate between the user and assistant
roles, and the last turn is assumed to be from the user. To prompt the aLoRA adapter to rewrite the
last user turn, a special rewrite role is used to trigger the rewrite capability of the model. The role
includes the keyword “rewrite” followed by a short description of the query rewrite task. Even though
one main application for query rewrite is in RAG settings, this intrinsic can be used to rewrite user
questions for other conversational use cases (e.g., to access a database, or other APIs, or tools). As
such, the adapter does not need any RAG documents (that may be present in the context, in a RAG
setting) and uses only the dialog turns with what is being said between the user and assistant.

Training Both the aLoRA and LoRA adapters were fine-tuned under the following regime: rank
= 32, number of epochs = 25, with early stopping based on validation set, and 90/10 split between
training and validation.

26

Evaluation data We evaluate on three different subsets of MT-RAG: a) full MT-RAG dataset (842
data points with last user turns); b) the non-standalone subset of MT-RAG dataset, which is a subset
of 260 (out of 842) last user turns that were annotated by humans as non-standalone (i.e., they
are dependent on the prior context); c) the standalone subset of MT-RAG dataset, which is the
complementary subset, with all the last user turns that were annotated by humans as standalone.

Answer generation quality We also evaluate answer generation quality, with top-k passages retrieved
under the various query rewrite strategies for the retriever. We choose here k = 20, but similar
trends take place for other values of k. We used Granite-3.2-8b instruct as the answer generator, and
RAGAS Faithfulness (RAGAS-F) and RAD-Bench score as metrics for answer quality. We use the
same three testsets as above.

G.4 Jailbreak Detection

Usage The input to the model is a single prompt to assess for harmful content. Cur-
rently, the intrinsics operate on single turn queries. To prompt the aLoRA/LoRA adapters
<|start_of_role|>jailbreak<|end_of_role|> is used.

Training Both the aLoRA and LoRA adapters were fine-tuned under the following regime: rank =
32, fixed 5,000 optimization steps, 6e-5 learning rate with the Adam optimizer.

H Training datasets for intrinsics

H.1 QA datasets for Uncertainty Quantification Intrinsic

The following datasets were used for calibration and/or finetuning.

• BigBench

• MRQA

• newsqa

• trivia_qa

• search_qa

• openbookqa

• web_questions

• smiles-qa

• orca-math

• ARC-Easy

• commonsense_qa

• social_i_qa

• super_glue

• figqa

• riddle_sense

• ag_news

• medmcqa

• dream

• codah

• piqa

27

https://huggingface.co/datasets/tasksource/bigbench
https://huggingface.co/datasets/mrqa-workshop/mrqa
https://huggingface.co/datasets/lucadiliello/newsqa
https://huggingface.co/datasets/mandarjoshi/trivia_qa
https://huggingface.co/datasets/lucadiliello/searchqa
https://huggingface.co/datasets/allenai/openbookqa
https://huggingface.co/datasets/Stanford/web_questions
https://huggingface.co/datasets/alxfgh/ChEMBL_Drug_Instruction_Tuning
https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/tau/commonsense_qa
https://huggingface.co/datasets/allenai/social_i_qa
https://huggingface.co/datasets/aps/super_glue
https://huggingface.co/datasets/nightingal3/fig-qa
https://huggingface.co/datasets/INK-USC/riddle_sense
https://huggingface.co/datasets/fancyzhx/ag_news
https://huggingface.co/datasets/openlifescienceai/medmcqa
https://huggingface.co/datasets/dataset-org/dream
https://huggingface.co/datasets/jaredfern/codah
https://huggingface.co/datasets/ybisk/piqa

H.2 Training data for Query Rewrite Intrinsic

The training data contains both: 1) standalone examples, which teach the adapter to refrain from
rewriting user questions that are already standalone, and 2) non-standalone examples containing a
diversity of patterns that are used to teach the adapter to expand the user turn so that it becomes
standalone.

The training data used the publicly available Cloud corpus of technical documentation pages from
MT-RAG.14 Based on this corpus of documents, a dataset was created consisting of high-quality,
human-created conversations, where the last turn of the conversation comes into versions: non-
standalone version, and corresponding standalone version.

H.3 Training data for Answerability Determination Intrinsic

The training data uses the publicly available Government corpus from MT-RAG [15] as the source of
documents. Based on this corpus, the dataset consists of a mix of human-created and synthetically
generated multi-turn conversations. It includes two types of examples: (1) Answerable queries, where
the final user question can be answered based on the provided documents. These examples teach the
adapter to recognize when sufficient information is present to support an answer. (2) Unanswerable
queries, where the documents lack the necessary information to answer the final user query. Mixtral
was used as an automatic judge to validate the answerability labels and filter out noisy samples.

H.4 Training data for Jailbreak Intrinsic

The Jailbreak Intrinsic was trained on 40,000 harmful and benign samples. This is composed of
several sub-sampled open source datasets (Gandalf Ignore Instructions [27], Awesome ChatGPT
Prompts [1], BoolQ [3], SAP [6], UltraChat [8], super natural instructions [42]) as well as non-public
prompt datasets of harmful/benign content.

14https://github.com/IBM/mt-rag-benchmark

28

https://github.com/IBM/mt-rag-benchmark

	Introduction
	Background

	Activated LoRA
	Training

	Inference timing results on vLLM
	Finetuning Accuracy Results
	Benchmark SFT tasks
	Intrinsics Tasks

	Conclusion
	Invocation sequences
	LLM Transformer architecture
	Proofs
	Adapter Model Capacity and Increased Rank
	Inference Timing Performance Evaluation Details
	Benchmark SFT experiment details
	Models
	Tasks and Datasets
	Training and evaluation details

	Additional details for intrinsics experiments
	Uncertainty Quantification
	Answerability determination
	Query Rewrite
	Jailbreak Detection

	Training datasets for intrinsics
	QA datasets for Uncertainty Quantification Intrinsic
	Training data for Query Rewrite Intrinsic
	Training data for Answerability Determination Intrinsic
	Training data for Jailbreak Intrinsic

