

000 TINY MOVES: GAME-BASED HYPOTHESIS REFINE- 001 002 MENT 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Scientific discovery is an iterative process, yet most machine learning approaches
012 treat it as an end-to-end prediction task, limiting interpretability and alignment with
013 scientific reasoning workflows. We introduce The Hypothesis Game, a symbolic,
014 game-based framework where a system of agents refines hypotheses through a fixed
015 set of reasoning moves (a reasoning grammar). Inspired by the idea that scientific
016 progress often relies on small, incremental changes, our framework emphasizes
017 “tiny moves” as the building blocks of incremental hypothesis evolution. We eval-
018 uate the approach on pathway-level reasoning tasks derived from Reactome, focusing
019 on reconstruction from partial cues and recovery of corrupted hypotheses. Across
020 820 reconstruction and 2880 corruption experiments, it matches strong prompting
021 baselines on reconstruction and achieves superior precision and error recovery in
022 corruption. Beyond accuracy, it produces concise, interpretable hypotheses and
023 enables controllable reasoning, highlighting the potential of game-based reasoning
024 for accelerating discovery across the sciences.
025

026 1 INTRODUCTION 027

028 Scientific discovery is rarely a single leap from the data to the conclusion. In fields like biology, the
029 discovery process unfolds iteratively and non-linearly. It often starts from partial hypotheses based
030 on incomplete data, which researchers expand by combining or generating new evidence, allowing a
031 hypothesis to evolve. The emerging hypothesis undergoes multiple rounds of pruning, testing and
032 iterative refinement to reveal a final causal foundation (Alkan et al., 2025).

033 Recent work in AI for science has shown increasing interest in agentic approaches, where Large
034 Language Models (LLMs) or multi-agent systems get assigned specialized roles, such as literature
035 reviewer, clinical trial designer, or experiment planner, to support parts of the scientific workflow
036 (Gridach et al., 2025; Zheng et al., 2025). Examples such as the “Co-Scientist” (Gottweis et al., 2025)
037 and “Robin” (Ghareeb et al., 2025), as well as lab-in-the-loop multi-agent frameworks (Swanson et al.,
038 2024) and domain-focused agent systems for biomedical discovery (Gao et al., 2024), demonstrate
039 how role-specific capabilities and tools can be orchestrated to address domain problems end-to-end.

040 Although these systems integrate domain knowledge into agents’ abilities, they typically leave
041 the structure of reasoning implicit: agents produce output in free form, without clear constraints
042 on intermediate states or transformations (Liu et al., 2023; Majumder et al., 2024). This limits
043 interpretability, makes it difficult to control reasoning style, and hinders transfer across related
044 problems (Mondorf & Plank, 2024; Madaan et al., 2023).

045 In contrast, human scientific reasoning is compositional: hypotheses are built gradually from smaller
046 fragments and the process is guided by a repertoire of common reasoning patterns (e.g. combination,
047 analogy, critique, generalization, expansion, etc.) (Lawson, 2004). Based on this observation we
048 propose a symbolic, game-based framing for hypothesis refinement tasks, in which LLM agents
049 operate over a shared hypothesis state using a fixed reasoning grammar. This grammar defines a
050 small, generic set of moves that can be reused across a range of related biological reasoning tasks.
051 This framing enables the system to “think about thinking” rather than hard wiring problem-specific
052 behaviors. This grammar could in principle be applied to a variety of open-ended biological problems,
053 from mechanism of action (MoA) construction for therapeutic drug targets to more general causal
and mechanistic reasoning over complex biological processes.

054 In this paper, we introduce **The Hypothesis Game**, a symbolic, game-based framework for hypothesis
 055 refinement. Our contributions are threefold: (1) a formalization of hypothesis refinement as a
 056 compositional reasoning game with a reusable grammar of moves; (2) an implementation with
 057 LLM agents operating over shared hypothesis states, enabling transparent reasoning trajectories
 058 and controllable reasoning styles; and (3) an empirical evaluation on pathway-level reasoning tasks
 059 demonstrating performance competitive with strong prompting baselines, while producing finer-
 060 grained, more precise hypotheses. Together, these results highlight the potential of game-based
 061 reasoning formalisms to support more granular, interpretable, and transferable scientific discovery.

063 2 FRAMEWORK

065 The Hypothesis Game formalizes hypothesis refinement as the iterative transformation of a shared
 066 state through structured reasoning moves. This section defines how hypotheses are represented, how
 067 moves operate on them, and how modes and scoring functions may shape the dynamics of the game.

069 Here we introduce a general operator-based formalism that captures a broad design space for hy-
 070 pothesis refinement. We intentionally instantiate only the minimal subset of this formalism required
 071 to evaluate the central research question: whether our proposed framework with a small, reusable
 072 reasoning grammar provides measurable benefits in biological refinement tasks. Other components,
 073 such as explicit scoring, policy-based or learned controllers, and richer hypothesis representations are
 074 optional extensions of the basic game. Our experiments are designed to isolate and test the general
 075 reasoning framework, while the broader formalism outlines how more sophisticated controllers and
 076 utilities can be incorporated in future work.

077 2.1 HYPOTHESIS REPRESENTATION

079 A hypothesis is represented as a set of fragments:

$$081 H_t = \{h_1, h_2, \dots, h_n\},$$

082 where each fragment h_i may be a text claim, a structured triple (subject–relation–object), or optionally
 083 mapped to a graph $G = (V, E)$ of entities and relations. In our experiments, we primarily use
 084 structured text.

086 2.2 REASONING GRAMMAR (MOVES)

088 Let $O = \{o_1, o_2, \dots, o_m\}$ denote a fixed set of reasoning operations. Formally, let \mathcal{H} be the space of
 089 all possible hypotheses and \mathcal{C} the space of contexts (e.g., cell type, disease, etc). Each operation is a
 090 function

$$091 o_j : \mathcal{H} \times \mathcal{C} \mapsto \mathcal{H}, \quad (H_t, C) \mapsto H_{t+1},$$

093 where $H_t \in \mathcal{H}$ is the current hypothesis, $C \in \mathcal{C}$ is an optional context (e.g., biological priors), and
 094 $H_{t+1} \in \mathcal{H}$ is the updated hypothesis state.

095 In our implementation, we restrict the set of moves to four core operations: prune, expand,
 096 retrieve, and debate (see Table 1). Moves may be atomic (e.g. prune, expand) or composite
 097 (e.g. retrieve_expand). More granular move types can be introduced as needed, typically
 098 informed by the structure of the underlying hypothesis representation. An example of a complete
 099 reasoning grammar based on graph representation of hypothesis fragments is shown in Fig. 1.

100 Moves can be applied repeatedly and composed arbitrarily. We can define a maximum number of
 101 reasoning operations per round (move budget) as a fixed constant k_{\max} . A round can be defined locally
 102 as one update step from H_t to H_{t+1} , and globally, a sequence of rounds constitutes a complete game.

$$104 H_{t+1} = o_{j_k} \circ \dots \circ o_{j_1}(H_t, C), \quad k \leq k_{\max}.$$

106 At each round, a controller selects and applies up to k_{\max} moves to evolve the hypothesis. The
 107 controller can be realized in different ways (e.g., an LLM, finite state machine, or RL agent),
 depending on the desired game design.

108 2.3 GAME MODES
109110 In open-ended discovery, the precise outcome is often unknown, but the overall style of reasoning
111 can still be guided. We capture this through a *mode* M , which specifies how moves are selected. One
112 way to formalise this idea is through a probability distribution over moves,
113

114
$$\pi_M(o_i | H_t) = P(\text{apply } o_i | M),$$

115 where, for example, a *discovery* mode favors generative moves such as `expand`, while a *validation*
116 mode favors critical moves such as `prune` or `debate`. More generally, modes can also be realized
117 by restricting the available moves O , enforcing deterministic rules, or combining weighting and
118 constraints set by the overall objective of a game.119 In our experiments, modes are approximated through natural language instructions to the controller,
120 but the reasoning grammar provides a principled way to configure high-level exploration or validation
121 goals in more open-ended settings.
122140 Figure 1: A conceptual framework for reasoning games. The objective of the game is to evolve
141 a hypothesis fragment through a sequence of reasoning moves, with progress assessed through
142 properties such as novelty, coherence, and traceability. **Graph structures shown for conceptual
143 illustration only; actual implementation uses structured text fragments with equivalent reasoning
144 operations.*
145146 2.4 SCORING
147148 While modes can guide reasoning styles at a high level, scoring functions may offer a way to make
149 the game more controllable. Quantifying metrics during refinement provides a way to shape the
150 trajectory of the game. Formally, we can define a vector of metrics,
151

152
$$S(H_t) = (D_{\text{known}}(H_t), \Delta_{\text{div}}(H_t), L_{\text{connect}}(H_t), T_{\text{frag}}(H_t)),$$

153

154 where the components capture distance from known hypotheses (D_{known}), diversity of current hypothesis
155 (Δ_{div}), local connectivity (L_{connect}), and traceability to prior knowledge (T_{frag}). These can be
156 aggregated into a scalar utility,
157

158
$$U(H_t) = \beta^\top S(H_t),$$

159

160 with weights β reflecting mode-specific priorities (e.g., traceability in *validation*, diversity in *discovery*). In practice, robust scoring for biological hypotheses likely requires a *hybrid* setup that
161 combines computational metrics with sparse experimental signals, even if sparse. For example,
hypothesis fragments involving molecular interactions could be evaluated using targeted binding
assays or perturbation readouts, providing grounded feedback that complements algorithmic metrics.

162 In this work, we do not use explicit scoring to drive the controller; modes are implemented through
163 natural-language instructions. The scoring framework presented here is therefore conceptual, illus-
164 trating how computationally and experimentally informed metrics could be integrated into more
165 autonomous implementations in the future.

167 2.5 GAME VARIANTS

169 The outlined game formalism allows us to define game variants that operate on different granularity
170 levels. **Simple Hypothesis Refinement** treats the whole hypothesis as a single state (Algorithm 1).
171 In each round, a mode-conditioned controller selects a move from the shared grammar and updates
172 the entire state, stopping when task goals are met.

Algorithm 1 Simple Hypothesis Refinement (single round)

```

175 Require: initial hypothesis state  $H_0$ , reasoning moves  $\mathcal{O}$ , mode  $M$ , move budget  $k_{\max}$ , termination
176 criteria
177  $t \leftarrow 0$ 
178 while not Terminate( $H_t$ ) do
179     Game Master: provide current state  $H_t$  and mode  $M$  to controller
180     Controller: select sequence of moves  $(o_{j_1}, \dots, o_{j_k})$  with  $k \leq k_{\max}$  according to  $\pi_M$ 
181     for each  $o_j$  in selected moves do
182          $H_t \leftarrow o_j(H_t, C)$                                  $\triangleright$  apply reasoning move with optional context  $C$ 
183     end for
184      $t \leftarrow t + 1$ 
185 end while
186 return final hypothesis  $H_t$ 

```

Noting that large changes are rarely necessary to refine a hypothesis, we can build on the simple variant by enabling granular edits during the hypothesis' evolution. **Localized Hypothesis Refinement** keeps the same controller and move set but operates on fragments (structured text or subgraphs), selecting regions to edit and enforcing global consistency so untouched parts remain unchanged (Algorithm 2). This game type strongly depends on the underlying hypothesis representation structure.

Algorithm 2 Localized Hypothesis Refinement (single round)

```

195 Require: Hypothesis state  $H_t = \{h_1, \dots, h_n\}$  (structured text or graph), moves  $\mathcal{O}$ , mode  $M$ , move
196 budget  $k_{\max}$ , context  $C$ , selector  $\sigma$ 
197 Selector  $\sigma$ : propose a set of candidate regions  $\mathcal{R} = \{R_1, \dots, R_m\}$  where each  $R_i \subseteq$  nodes/tuples
198 of  $H_t$ 
199 Controller (mode  $M$ ): choose up to  $k \leq k_{\max}$  pairs  $\{(o_j, R_j)\}_{j=1}^k$  with  $o_j \in \mathcal{O}$ 
200 for each  $(o_j, R_j)$  do
201      $H_t \leftarrow \text{ApplyLocal}(H_t, o_j, R_j, C)$                                  $\triangleright$  local rewrite on  $R_j$  only
202      $H_t \leftarrow \text{EnforceConsistency}(H_t, R_j)$                           $\triangleright$  maintain schema/typing/acyclicity/etc.
203 end for
204 return  $H_t$ 

```

Together, these variants illustrate that the formalism supports both high-level, whole-state reasoning and fine-grained, region-focused reasoning under a shared utility function and mode settings. The simple variant is recovered when the selected region spans the full state. This design mirrors the varying levels of complexity observed in biological systems.

3 IMPLEMENTATION

214 To test the proposed framework, we implement a minimal version of the game as a system of
215 specialized agents, where the reasoning process is determined by a central LLM controller, **Game**
Master. The Game Master guides the reasoning process by iteratively analyzing the hypothesis state

216 and selecting moves based on the analysis. Move selection consists of a clear request (e.g. *"remove*
 217 *component A from the hypothesis"*) and which agent(s) should execute it. Table 1 summarizes the
 218 moves, their components and corresponding responsibilities.

219
 220 Table 1: Key elements of The Hypothesis Game. Full prompts are provided in the Supplementary
 221 Methods (see Section 3).

Move	Components	Description
Game Master (LLM controller)	Diagnose Move selection	Evaluate hypothesis and recommend next actions. Choose next move based on recommendations.
Prune	Prune	Remove component(s) from hypothesis.
Expand with corpus	Retrieve evidence Expand	Search external corpora for evidence. Integrate retrieved information into the hypothesis.
Expand with LLM introspection	Retrieve evidence Expand	Gather information using LLM prior knowledge. Integrate retrieved information into the hypothesis.
Debate	Setup Debate topic Conclude	Frame the debate around the requested topic. Multiple agents argue from distinct positions. Analyse the debate and propose a final conclusion.

236 **Modes:** In our minimal prototype, modes are realized by injecting mode descriptions into the
 237 initial prompt to the Game Master (controller). This prompt influences the choice of reasoning
 238 operations without an explicit probabilistic policy module. While simplified, this approach provides
 239 a controllable approximation of π_M and allows us to explore the impact of different modes.

240 **Optimisation:** Game goals and stopping conditions are specified to the Game Master (controller)
 241 through the initial prompt, and the Game Master’s *Diagnose* component decides when the hypothesis
 242 satisfies the requirements. Although this approach lacks explicit metric-based control, it provides a
 243 flexible mechanism for steering the game. The scoring function described above is presented as part
 244 of the general formalism, illustrating how automated, quantitative evaluation could be incorporated in
 245 future implementations.

247 4 EXPERIMENT SET-UP

249 Reasoning benchmarks in mathematics and common sense (GSM8K (Cobbe et al., 2021), MATH
 250 (Hendrycks et al., 2021), BIG-Bench (Srivastava et al., 2022)) do not translate to biological hypothesis
 251 generation, where researchers must build complex hypotheses step by step from incomplete, noisy,
 252 sometimes contradictory evidence rather than retrieve facts. Without established ways to evaluate
 253 reasoning quality, benchmarks should challenge systems to tolerate noise, recover missing links, and
 254 extend hypotheses in controlled ways. Emerging biological benchmarks such as BioMaze (Zhao
 255 et al., 2025) move in this direction with graph-based pathway QA and high-level LLM-as-judge
 256 evaluations, but still differ from the longer-horizon, statement-level refinement studied here.

257 To fill this gap, we introduce two evaluation tasks designed as first benchmarks for hypothesis refinement.
 258 These tasks mirror realistic challenges in biological discovery: (1) hypothesis reconstruction,
 259 and (2) corruption recovery (Table 2).

261 Table 2: Evaluation tasks overview

Task	Purpose	Validates	Metrics
Reconstruction	Can the system rebuild known mechanisms from partial cues?	Incremental reasoning; Traceability	Precision, recall, F1
Corruption Recovery	Can the system correct noisy or misleading hypotheses?	Robustness to noise; Logical refinement	Error removal rate, precision, recall, F1

270 4.1 TASK SETUP
271

272 We instantiate evaluation tasks using curated subsets of human pathways from Reactome (Jassal
273 et al., 2020). Each pathway consists of biochemical reactions, available in both graph and text
274 representations (see 1.1). In the text representation, pathways are expressed as sets of statements
275 describing biochemical reactions; for example, *ATP phosphorylates glucose to form glucose-6*
276 *phosphate*.

277 We sampled pathways stratified by the number of biochemical reactions, to capture the diversity and
278 complexity of the complete dataset. For reconstruction and corruption tasks, we sampled 100 and 20
279 pathways, respectively. The rationale was to create datasets large enough to capture key reasoning
280 patterns across multiple approaches, while remaining feasible for large-scale experimentation. In
281 total, we ran 820 experiments for reconstruction and 2880 experiments for corruption.

282 **Common Experimental Principles** Across all tasks, hypotheses are represented as text
283 fragments. The Hypothesis Game is restricted to four available moves: `prune`, `expand`,
284 `expand_with_corpus`, and `debate` (See Table 1). Move selection and termination are dy-
285 namically governed by the Game Master, adapting to task-specific goals.

286 We compared our approach against three reasoning baselines: Zero-Shot prompting, Chain-of-
287 Thought, and ReAct. Zero-Shot directly generates answers without intermediate reasoning steps
288 (Brown et al., 2020). Chain-of-Thought elicits step-by-step reasoning through intermediate natural
289 language explanations (Wei et al., 2022). ReAct interleaves reasoning traces with access tools to
290 improve decision making (Yao et al., 2023). We compared these baselines against our Hypothesis
291 Game under different move configurations and a fixed move budget. All models received the same
292 input prompt (see Supplementary A Sec. 3), which instructs the system to either reconstruct a pathway
293 or recover a corrupted pathway. All curated datasets are available on Hugging Face¹.

294 **Task 1 – Reconstruction:** The reconstruction task evaluates whether a system can reconstruct
295 complex hypotheses from partial cues by performing incremental reasoning. Starting from a minimal
296 cue, the system must recover the biochemical reactions (steps) of a biological pathway, modeling the
297 onerous curation process domain experts go through to construct the Reactome database. To reduce
298 the risk of models exploiting memorized knowledge of well-known pathways, we rephrased pathway
299 names while preserving their semantic content and level of granularity. **A domain expert inspected**
300 **and corrected the paraphrased titles to ensure semantic fidelity (available on Hugging Face.)** For
301 agents with tool access (our approach and ReAct), we additionally provided a corpus of open-access
302 biomedical articles, consisting mainly of abstracts cited in the Reactome pathway descriptions.

303 **Evaluation** relied on two complementary notions of correctness. At the pathway level, we annotated
304 entities (genes, protein complexes/families, and chemicals) in both original and generated pathways
305 using Gilda (Gyori et al., 2022); precision and recall over these entity sets provided a quantitative
306 measure of biological fidelity. At the reaction level we refer to the LLM-as-judge metric as ‘Detailed
307 Recall’, it evaluates whether the generated pathways reproduced the intended biochemical reactions,
308 assessing four attributes: input entities, output entities, reaction directionality, and type of biological
309 interaction (Supplementary A Sec. 3). **To assess the reliability of this LLM-as-judge, we conducted**
310 **a post-hoc calibration study in which two senior domain experts independently scored a stratified**
311 **sample of model outputs for both tasks (Supplementary A Sec. 3.8).**

312 **Task 2 – Corruption:** The corruption task assesses the ability to detect and repair errors while
313 preserving the structure of a valid pathway. Starting from 20 human pathways, we introduced three
314 types of corruptions (errors) (Supplementary A Table 1):

- 316 • wrong entity – replacing a correct entity with an incorrect one;
- 317 • wrong relationship – altering the relation between entities;
- 318 • irrelevant statement – inserting a non-relevant statement into the pathway.

319 We further varied level of challenge along two axes: 1) **difficulty:** *easy* (trivial errors) and *hard* (subtle
320 changes, requiring a deeper biological understanding); 2) **error rate:** 10-40% of pathway length
321 (measured as a number of steps/reactions) to capture differences in pathway size and complexity. **All**

322 323 ¹<https://huggingface.co/datasets/TuringRRX/TinyMoves>

324 errors were generated by an LLM and iteratively refined, with two domain experts reviewing and
 325 manually correcting outputs to produce the curated corruption set.

326
 327 **Evaluation** combined two measures. First, an LLM judge was presented with the original statement,
 328 the corrupted version, and the model’s output, and determined whether the error persisted. Second,
 329 entity mapping, as in reconstruction, quantified biological fidelity by measuring precision and recall
 330 of annotated entities against the ground truth.

331 5 RESULTS

332 We evaluated The Hypothesis Game on two pathway-level reasoning tasks described above: recon-
 333 struction from partial cues and recovery from corrupted hypotheses. In both settings, we compare the
 334 *Hypothesis Game* configuration (four move types with access to the corpus) against strong prompting
 335 baselines (Zero-Shot, Chain-of-Thought, ReAct). This study focuses on the minimal game version,
 336 though the formalism extends to richer move sets and modes.

Figure 2: Representative example run of *Hypothesis Game* and ReAct on the corruption task, illustrating incremental vs large single-step edits. **Other changes* are quantified as (1) the number of biological entity additions/removals and (2) word-level normalised Levenshtein distance to the reference pathway. See Supplementary B Fig. 4 for details.

Qualitative observations. In the Reconstruction task, The Hypothesis Game tends to make smaller incremental and traceable updates to a hypothesis. In contrast, the baselines introduce larger changes at once, often overwriting significant parts of the initial hypothesis (for a complete example, see Supplementary B Sec. 1.1).

Figure 2 illustrates a similar pattern in the Corruption task. The *Hypothesis Game* incrementally identifies and corrects all errors, while making only minor additional changes to the input hypothesis. ReAct, in contrast, modifies the pathway by making multiple large changes in each step, incurring overall much larger changes to the pathway. Detailed numbers showing overall changes made to the hypothesis by each method are shown in Supplementary B Fig. 4. This highlights the benefit of controlled step-by-step refinement.

Reconstruction task. In the controlled reconstruction setting, the *Hypothesis Game* performed comparably to the strongest baseline (ReAct) and better than Zero-Shot and Chain-of-Thought (Fig. 3). Since some Reactome pathways are relatively well known, LLMs were expected to recall key components. This is reflected in the relatively higher recall of Chain-of-Thought and Zero-Shot. However, these methods also tended to generate hypotheses with a large number of additional concepts absent from the original pathway, leading to much lower precision, Supplementary B Fig. 1.

Overall, ReAct achieved slightly higher F1 scores than the *Hypothesis Game*, followed by Zero-Shot and Chain-of-Thought. Low precision-recall values across all methods indicate the difficulty of the pathway reconstruction task. Beyond the inherent difficulty of a task typically performed by domain experts, low performance likely reflects three factors: insufficient information in partial cues,

378 heterogeneity in pathway curation, and limited biological detail in an abstract-biased corpus. To
 379 better understand which reasoning moves drive performance, we performed an ablation study over all
 380 subsets of the four core moves in the reconstruction task, as well as removing access to the corpus
 381 (20 pathways; Supplementary B Table 1).

382

383

Corruption task. In the corruption recovery task (error rates 10–40%), the *Hypothesis Game* achieves the best overall performance. Figure 3 summarises results aggregated across pathways, corruption types, and error rates. The **Errors Removed** panel shows that *Hypothesis Game* decisively outperforms the baselines by consistently removing more errors. The **Recall** and **Precision** panels highlight the trade-off: ReAct attains high **Recall** but at the expense of **Precision**, while Chain-of-Thought and Zero-Shot retain content yet introduce additional noise. In contrast, *Hypothesis Game* combines strong error removal with the highest **Precision** and **F1 Score**, selectively pruning corrupted statements while preserving the underlying pathway structure.

391

392

393

394

395

396

397

398

399

The error removal panel in Figure 4 reveals a consistent hierarchy in removal difficulty. *Unsupported step* errors are most easily removed, as they introduce entire statements that are readily identified as irrelevant. *Wrong-direction* corruptions are harder, since they preserve surface plausibility while inverting causal polarity. *Wrong-entity* substitutions prove most challenging: the corrupted pathways still appear fluent, but introduce subtle inconsistencies in biochemical grounding. This shows that entity-level corruptions demand deeper semantic discrimination. Notably, *Hypothesis Game* achieved the strongest overall performance across all error types, with particularly large gains on entity and relationship errors (Fig. 4). The complete results, stratified by difficulty and corruption fraction, are provided in Supplementary B Sec. 2.1.

400

401

402

403

404

Overall, these results show that small, targeted reasoning moves - implemented as incremental edits rather than wholesale rewrites - enable targeted error identification and correction, yielding substantially cleaner pathway repairs than standard prompting baselines. Hypothesis Game combines strong error removal, high precision, and competitive recall across corruption types and difficulty levels, establishing it as the most effective strategy for recovering corrupted mechanistic pathways.

405

406

407

408

409

410

411

412

423

424

425

426

427

428

429

430

431

Figure 3: Comparison of *Hypothesis Game* vs. prompting baselines on two pathway-level tasks. Bars show averages over the evaluation sets described in the text. The error bars show 95% confidence intervals. Top row: **Reconstruction**: All methods struggled with faithfully reconstructing the pathways. *ReAct* and *Hypothesis Game* had a statistically non-significant difference in F1 score, but *Hypothesis Game* performed significantly better in Detailed Recall of pathways (Friedman test, $\chi^2(3) = 84.3$, $p < 0.0001$, post-hoc Wilcoxon test with Bonferroni correction $p < 0.001$). Bottom row: **Corruption**: *Hypothesis Game* balances error removal and retention of valid content, achieving the highest precision, F1 and error removal rate (for all scores Friedman test $p < 0.0001$, post-hoc Wilcoxon test with Bonferroni correction $p < 0.0005$).

Figure 4: Aggregation of all results on the corruption task based on error type. Error bars show 95% confidence intervals.

Summary Our results highlight complementary strengths across the two tasks. In reconstruction, all methods struggled, reflecting the inherent difficulty of recovering complete pathways from sparse cues. Here, the *Hypothesis Game* matched the strongest baseline (ReAct), while outperforming simpler prompting strategies in precision. In corruption recovery, the advantages of structured reasoning are evident: *Hypothesis Game* achieved the highest overall performance, combining strong error removal with superior precision and F1 scores, while maintaining recall. Taken together, these findings suggest that the game-based framework, centered on small incremental reasoning steps ("tiny moves"), is particularly effective in settings that require targeted error correction and robustness to noisy inputs. **This motivates extending the approach to open-ended refinement tasks.** Preliminary Monte Carlo tree search-based experiments suggest that even in such settings, the framework can generate qualitatively plausible hypotheses (Supplementary B Sec. 3), although systematic evaluation and broader experimentation are needed.

6 CONCLUSIONS AND FUTURE WORK

Our study demonstrates that a structured, game-based approach to hypothesis refinement can match strong prompting baselines in reconstruction tasks and clearly outperform them in corruption recovery, where explicit reasoning moves enable targeted error correction while preserving valid pathway content. These results highlight both the promise and the limitations of current methods: while controlled corruption recovery benefits strongly from structured reasoning, open-ended reconstruction remains a challenging setting for all approaches. **Although our experiments focus on settings with known ground truth, the formalism can extend beyond consistency-bound refinement and can also support more exploratory hypothesis generation.**

In future work we aim to extend this framework along several directions. First, we plan to systematically explore richer hypothesis representations, including structured and semi-structured text and graph formalism. Second, we plan to optimise move selection using metric-driven scoring and reinforcement learning. Third, we intend to broaden the evaluation suite to include open-ended hypothesis evolution. **Taken together, these steps will move us from controlled settings with known ground truth toward more realistic discovery scenarios, enabling both consistency-driven refinement and more exploratory reasoning where robustness, novelty, and interpretability are critical.**

ACKNOWLEDGMENTS

We thank our colleagues and collaborators for their support and constructive feedback during this work. We also thank the Reactome team for making the pathway knowledge base openly available.

REFERENCES

Atilla Kaan Alkan, Bowen Xu, Yuxuan Su, and Pontus Stenetorp. A survey on hypothesis generation for scientific discovery in the era of large language models. *arXiv preprint arXiv:2504.05496*, 2025.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel

486 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 487 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
 488 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
 489 Sutskever, and Dario Amodei. Language models are few-shot learners. In *Advances in Neural*
 490 *Information Processing Systems (NeurIPS)*, 2020. URL <https://arxiv.org/abs/2005.14165>.

492 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 493 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 494 Schulman. Training verifiers to solve math word problems. In *Proceedings of the 39th International*
 495 *Conference on Machine Learning (ICML)*, 2021. URL <https://arxiv.org/abs/2110.14168>.

498 Shanghua Gao, Ada Fang, Yepeng Huang, Valentina Giunchiglia, Ayush Noori, Jonathan Richard
 499 Schwarz, Yasha Ektelafie, Jovana Kondic, and Marinka Zitnik. Empowering biomedical discovery
 500 with ai agents. *Cell*, 187(22):6125–6151, 2024.

501 Ali Essam Ghareeb, Benjamin Chang, Ludovico Mitchener, Angela Yiu, Caralyn J. Szostkiewicz,
 502 Jon M. Laurent, Muhammed T. Razzak, Andrew D. White, Michaela M. Hinks, and Samuel G.
 503 Rodrigues. Robin: A multi-agent system for automating scientific discovery. *arXiv preprint*
 504 *arXiv:2505.13400*, 2025. doi: 10.48550/arXiv.2505.13400.

505 Juraj Gottweis, Wei-Hung Weng, Alexander N. Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
 506 Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, Khaled Saab, Dan Popovici, Jacob
 507 Blum, Fan Zhang, Katherine Chou, Avinatan Hassidim, Burak Gokturk, Amin Vahdat, Pushmeet
 508 Kohli, Yossi Matias, Andrew Carroll, Kavita Kulkarni, Nenad Tomasev, Yuan Guan, Vikram
 509 Dhillon, Eeshit Dhaval Vaishnav, Byron Lee, Tiago R. D. Costa, José R. Penadés, Gary Peltz,
 510 Yunhan Xu, Annalisa Pawlosky, Alan Karthikesalingam, and Vivek Natarajan. Towards an AI
 511 co-scientist. *CoRR*, abs/2502.18864, 2025.

512 Mourad Gridach, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, and Christina Mack.
 513 Agentic ai for scientific discovery: A survey of progress, challenges, and future directions. *arXiv*
 514 *preprint arXiv:2503.08979*, 2025. doi: 10.48550/arXiv.2503.08979.

516 Benjamin M Gyori, Charles Tapley Hoyt, and Albert Steppi. Gilda: biomedical entity text
 517 normalization with machine-learned disambiguation as a service. *Bioinformatics Advances*,
 518 2(1):vbac034, 05 2022. ISSN 2635-0041. doi: 10.1093/bioadv/vbac034. URL <https://doi.org/10.1093/bioadv/vbac034>.

520 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 521 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 522 2021. URL <https://arxiv.org/abs/2103.03874>.

524 Bijay Jassal, Lisa Matthews, Guilherme Viteri, Chuqiao Gong, Pamela Lorente, Antonio Fabregat,
 525 Konstantinos Sidiropoulos, Jennifer Cook, Marc Gillespie, Robin Haw, Francis Loney, Bruce
 526 May, Marija Milacic, Karen Rothfels, Cristoffer Sevilla, Veronica Shamovsky, Spencer Shorser,
 527 Thawfeek Varusai, Julie Weiser, Guanming Wu, Lincoln Stein, Henning Hermjakob, and Peter
 528 D'Eustachio. The reactome pathway knowledgebase. *Nucleic Acids Research*, 48(D1):D498–D503,
 529 2020. doi: 10.1093/nar/gkz1031.

530 Anton E. Lawson. The nature and development of scientific reasoning: A synthetic view. *International*
 531 *Journal of Science and Mathematics Education*, 2(3):307–338, 2004. doi: 10.1007/s10763-004-3224-2.

533 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 534 Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
 535 Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
 536 Tang. AgentBench: Evaluating LLMs as agents. *arXiv preprint arXiv:2308.03688*, 2023. doi:
 537 10.48550/arXiv.2308.03688.

538 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 539 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad

540 Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
 541 refine: Iterative refinement with self-feedback. *arXiv preprint arXiv:2303.17651*, 2023. doi:
 542 10.48550/arXiv.2303.17651.

543 Bodhisattwa Prasad Majumder, Harsit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
 544 jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
 545 DiscoveryBench: Towards data-driven discovery with large language models. *arXiv preprint*
 546 *arXiv:2407.01234*, 2024. doi: 10.48550/arXiv.2407.01234.

547 Philipp Mondorf and Barbara Plank. Beyond accuracy: Evaluating the reasoning behavior of large
 548 language models – a survey. *arXiv preprint arXiv:2404.05678*, 2024. doi: 10.48550/arXiv.2404.
 549 05678.

550 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, et al. Beyond the imitation game: Quantifying
 551 and extrapolating the capabilities of language models. In *Proceedings of the 40th International*
 552 *Conference on Machine Learning (ICML)*, 2022. URL <https://arxiv.org/abs/2206.04615>.

553 Kyle Swanson, Wesley Wu, Nash L. Bulaong, John E. Pak, and James Zou. The virtual lab: AI
 554 agents design new SARS-CoV-2 nanobodies with experimental validation. *bioRxiv*, 2024. doi:
 555 10.1101/2024.11.11.623004.

556 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou.
 557 Chain of thought prompting elicits reasoning in large language models. In *Advances in Neural*
 558 *Information Processing Systems (NeurIPS)*, 2022. URL <https://arxiv.org/abs/2201.11903>.

559 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 560 React: Synergizing reasoning and acting in language models. In *International Conference on*
 561 *Learning Representations (ICLR)*, 2023. URL <https://arxiv.org/abs/2210.03629>.

562 Haiteng Zhao, Chang Ma, Fangzhi Xu, Lingpeng Kong, and Zhi-Hong Deng. Biomaze: Benchmark-
 563 ing and enhancing large language models for biological pathway reasoning. *CoRR*, abs/2502.16660,
 564 2025.

565 Tianshi Zheng, Zheyen Deng, Hong Ting Tsang, Weiqi Wang, Jiaxin Bai, Zihao Wang, and Yangqiu
 566 Song. From automation to autonomy: A survey on large language models in scientific discovery.
 567 *arXiv preprint arXiv:2505.13259*, 2025. doi: 10.48550/arXiv.2505.13259.

568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593