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ABSTRACT

Scientific discovery is an iterative process, yet most machine learning approaches
treat it as an end-to-end prediction task, limiting interpretability and alignment with
scientific reasoning workflows. We introduce The Hypothesis Game, a symbolic,
game-based framework where a system of agents refines hypotheses through a fixed
set of reasoning moves (a reasoning grammar). Inspired by the idea that scientific
progress often relies on small, incremental changes, our framework emphasizes
“tiny moves” as the building blocks of incremental hypothesis evolution. We evalu-
ate the approach on pathway-level reasoning tasks derived from Reactome, focusing
on reconstruction from partial cues and recovery of corrupted hypotheses. Across
820 reconstruction and 2880 corruption experiments, it matches strong prompting
baselines on reconstruction and achieves superior precision and error recovery in
corruption. Beyond accuracy, it produces concise, interpretable hypotheses and
enables controllable reasoning, highlighting the potential of game-based reasoning
for accelerating discovery across the sciences.

1 INTRODUCTION

Scientific discovery is rarely a single leap from the data to the conclusion. In fields like biology, the
discovery process unfolds iteratively and non-linearly. It often starts from partial hypotheses based
on incomplete data, which researchers expand by combining or generating new evidence, allowing a
hypothesis to evolve. The emerging hypothesis undergoes multiple rounds of pruning, testing and
iterative refinement to reveal a final causal foundation (Alkan et al.| [2025)).

Recent work in Al for science has shown increasing interest in agentic approaches, where Large
Language Models (LLMs) or multi-agent systems get assigned specialized roles, such as literature
reviewer, clinical trial designer, or experiment planner, to support parts of the scientific workflow
(Gridach et al., [2025; Zheng et al.,|2025)). Examples such as the “Co-Scientist” (Gottweis et al.,[2025)
and “Robin” (Ghareeb et al.,2025), as well as lab-in-the-loop multi-agent frameworks (Swanson et al.}
2024) and domain-focused agent systems for biomedical discovery (Gao et al.,[2024), demonstrate
how role-specific capabilities and tools can be orchestrated to address domain problems end-to-end.

Although these systems integrate domain knowledge into agents’ abilities, they typically leave
the structure of reasoning implicit: agents produce output in free form, without clear constraints
on intermediate states or transformations (Liu et al.l 2023} [Majumder et al.| 2024)). This limits
interpretability, makes it difficult to control reasoning style, and hinders transfer across related
problems (Mondort & Plank, [2024; Madaan et al., 2023)).

In contrast, human scientific reasoning is compositional: hypotheses are built gradually from smaller
fragments and the process is guided by a repertoire of common reasoning patterns (e.g. combination,
analogy, critique, generalization, expansion, etc.) (Lawson| 2004). Based on this observation we
propose a symbolic, game-based framing for hypothesis refinement tasks, in which LLM agents
operate over a shared hypothesis state using a fixed reasoning grammar. This grammar defines a
small, generic set of moves that can be reused across a range of related biological reasoning tasks.
This framing enables the system to “think about thinking” rather than hard wiring problem-specific
behaviors. This grammar could in principle be applied to a variety of open-ended biological problems,
from mechanism of action (MoA) construction for therapeutic drug targets to more general causal
and mechanistic reasoning over complex biological processes.
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In this paper, we introduce The Hypothesis Game, a symbolic, game-based framework for hypothesis
refinement. Our contributions are threefold: (1) a formalization of hypothesis refinement as a
compositional reasoning game with a reusable grammar of moves; (2) an implementation with
LLM agents operating over shared hypothesis states, enabling transparent reasoning trajectories
and controllable reasoning styles; and (3) an empirical evaluation on pathway-level reasoning tasks
demonstrating performance competitive with strong prompting baselines, while producing finer-
grained, more precise hypotheses. Together, these results highlight the potential of game-based
reasoning formalisms to support more granular, interpretable, and transferable scientific discovery.

2 FRAMEWORK

The Hypothesis Game formalizes hypothesis refinement as the iterative transformation of a shared
state through structured reasoning moves. This section defines how hypotheses are represented, how
moves operate on them, and how modes and scoring functions may shape the dynamics of the game.

Here we introduce a general operator-based formalism that captures a broad design space for hy-
pothesis refinement. We intentionally instantiate only the minimal subset of this formalism required
to evaluate the central research question: whether our proposed framework with a small, reusable
reasoning grammar provides measurable benefits in biological refinement tasks. Other components,
such as explicit scoring, policy-based or learned controllers, and richer hypothesis representations are
optional extensions of the basic game. Our experiments are designed to isolate and test the general
reasoning framework, while the broader formalism outlines how more sophisticated controllers and
utilities can be incorporated in future work.

2.1 HYPOTHESIS REPRESENTATION

A hypothesis is represented as a set of fragments:
Ht = {hla h27 EERR hn}7

where each fragment h; may be a text claim, a structured triple (subject—relation—object), or optionally
mapped to a graph G = (V, E) of entities and relations. In our experiments, we primarily use
structured text.

2.2 REASONING GRAMMAR (MOVES)

Let O = {01, 09, ...,0,} denote a fixed set of reasoning operations. Formally, let # be the space of
all possible hypotheses and C the space of contexts (e.g., cell type, disease, etc). Each operation is a
function

OjIHXCHH, (Ht,C)’—)HH_l,

where H; € H is the current hypothesis, C' € C is an optional context (e.g., biological priors), and
H;,1 € H is the updated hypothesis state.

In our implementation, we restrict the set of moves to four core operations: prune, expand,
retrieve, and debate (see Table|I|). Moves may be atomic (e.g. prune, expand) or composite
(e.g. retrieve_expand). More granular move types can be introduced as needed, typically
informed by the structure of the underlying hypothesis representation. An example of a complete
reasoning grammar based on graph representation of hypothesis fragments is shown in Fig. [T}

Moves can be applied repeatedly and composed arbitrarily. We can define a maximum number of
reasoning operations per round (move budget) as a fixed constant k.. A round can be defined locally
as one update step from H; to H;, 1, and globally, a sequence of rounds constitutes a complete game.

Ht+1 = Ojy, O-~-OOj1(Ht7C)’ k < Emax-
At each round, a controller selects and applies up to kp,x moves to evolve the hypothesis. The

controller can be realized in different ways (e.g., an LLM, finite state machine, or RL agent),
depending on the desired game design.
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2.3 GAME MODES

In open-ended discovery, the precise outcome is often unknown, but the overall style of reasoning
can still be guided. We capture this through a mode M, which specifies how moves are selected. One
way to formalise this idea is through a probability distribution over moves,

ma(oi | Hy) = P(apply o; | M),

where, for example, a discovery mode favors generative moves such as expand, while a validation
mode favors critical moves such as prune or debate. More generally, modes can also be realized
by restricting the available moves O, enforcing deterministic rules, or combining weighting and
constraints set by the overall objective of a game.

In our experiments, modes are approximated through natural language instructions to the controller,
but the reasoning grammar provides a principled way to configure high-level exploration or validation
goals in more open-ended settings.
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Figure 1: A conceptual framework for reasoning games. The objective of the game is to evolve
a hypothesis fragment through a sequence of reasoning moves, with progress assessed through
properties such as novelty, coherence, and traceability. *Graph structures shown for conceptual
illustration only, actual implementation uses structured text fragments with equivalent reasoning
operations.

2.4 SCORING

While modes can guide reasoning styles at a high level, scoring functions may offer a way to make
the game more controllable. Quantifying metrics during refinement provides a way to shape the
trajectory of the game. Formally, we can define a vector of metrics,

S(Ht) = (Dknown(Ht)7 Adiv(I{t)a Lconnecl(Ht)a Tfrag(Ht))7

where the components capture distance from known hypotheses (Dgyown ), diversity of current hypoth-
esis (Agiy), local connectivity (Lconnect), and traceability to prior knowledge (Tf,g). These can be
aggregated into a scalar utility,

U(Ht) = BTS(Ht)’

with weights g reflecting mode-specific priorities (e.g., traceability in validation, diversity in dis-
covery). In practice, robust scoring for biological hypotheses likely requires a hybrid setup that
combines computational metrics with sparse experimental signals, even if sparse. For example,
hypothesis fragments involving molecular interactions could be evaluated using targeted binding
assays or perturbation readouts, providing grounded feedback that complements algorithmic metrics.
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In this work, we do not use explicit scoring to drive the controller; modes are implemented through
natural-language instructions. The scoring framework presented here is therefore conceptual, illus-
trating how computationally and experimentally informed metrics could be integrated into more
autonomous implementations in the future.

2.5 GAME VARIANTS

The outlined game formalism allows us to define game variants that operate on different granularity
levels. Simple Hypothesis Refinement treats the whole hypothesis as a single state (Algorithm TJ).
In each round, a mode-conditioned controller selects a move from the shared grammar and updates
the entire state, stopping when task goals are met.

Algorithm 1 Simple Hypothesis Refinement (single round)

Require: initial hypothesis state Hy, reasoning moves O, mode M, move budget k., termination
criteria
t<«0
while not Terminate(H;) do
Game Master: provide current state H; and mode M to controller
Controller: select sequence of moves (0;,, ..., 05, ) With & < kmax according to s
for each o; in selected moves do
H, < 0j(H,C) > apply reasoning move with optional context C'
end for
t—t+1
end while
return final hypothesis H;

Noting that large changes are rarely necessary to refine a hypothesis, we can build on the simple variant
by enabling granular edits during the hypothesis’ evolution. Localized Hypothesis Refinement keeps
the same controller and move set but operates on fragments (structured text or subgraphs), selecting
regions to edit and enforcing global consistency so untouched parts remain unchanged (Algorithm 2).
This game type strongly depends on the underlying hypothesis representation structure.

Algorithm 2 Localized Hypothesis Refinement (single round)

Require: Hypothesis state H; = {hq, ..., hy,} (structured text or graph), moves O, mode M, move
budget k,.x, context C, selector o
Selector o: propose a set of candidate regions R = {Ry, ..., R,,} where each R; C nodes/tuples
of H, ¢

Controller (mode M): choose up to k < kmay pairs {(o0;, R;)}5_, witho; € O
for each (0, R;) do

H; < ApplyLocal(H;,o0j, R;,C) > local rewrite on R; only
H; < EnforceConsistency(Hy, R;) > maintain schema/typing/acyclicity/etc.
end for
return H;

Together, these variants illustrate that the formalism supports both high-level, whole-state reasoning
and fine-grained, region-focused reasoning under a shared utility function and mode settings. The
simple variant is recovered when the selected region spans the full state. This design mirrors the
varying levels of complexity observed in biological systems.

3 IMPLEMENTATION

To test the proposed framework, we implement a minimal version of the game as a system of
specialized agents, where the reasoning process is determined by a central LLM controller, Game
Master. The Game Master guides the reasoning process by iteratively analyzing the hypothesis state



Under review as a conference paper at ICLR 2026

and selecting moves based on the analysis. Move selection consists of a clear request (e.g. "remove
component A from the hypothesis") and which agent(s) should execute it. Table [I| summarizes the
moves, their components and corresponding responsibilities.

Table 1: Key elements of The Hypothesis Game. Full prompts are provided in the Supplementary
Methods (see Section E[)

Move Components Description

Game Master Diagnose Evaluate hypothesis and recommend next actions.

(LLM controller) Move selection Choose next move based on recommendations.

Prune Prune Remove component(s) from hypothesis.

Expand with Retrieve evidence Search external corpora for evidence.

corpus Expand Integrate retrieved information into the hypothesis.

Expand with LLM  Retrieve evidence Gather information using LLM prior knowledge.

introspection Expand Integrate retrieved information into the hypothesis.
Setup Frame the debate around the requested topic.

Debate Debate topic Multiple agents argue from distinct positions.
Conclude Analyse the debate and propose a final conclusion.

Modes: In our minimal prototype, modes are realized by injecting mode descriptions into the
initial prompt to the Game Master (controller). This prompt influences the choice of reasoning
operations without an explicit probabilistic policy module. While simplified, this approach provides
a controllable approximation of 7, and allows us to explore the impact of different modes.

Optimisation: Game goals and stopping conditions are specified to the Game Master (controller)
through the initial prompt, and the Game Master’s Diagnose component decides when the hypothesis
satisfies the requirements. Although this approach lacks explicit metric-based control, it provides a
flexible mechanism for steering the game. The scoring function described above is presented as part
of the general formalism, illustrating how automated, quantitative evaluation could be incorporated in
future implementations.

4 EXPERIMENT SET-UP

Reasoning benchmarks in mathematics and common sense (GSMS8K (Cobbe et al., [2021), MATH
(Hendrycks et al., 2021), BIG-Bench (Srivastava et al., |2022)) do not translate to biological hypothesis
generation, where researchers must build complex hypotheses step by step from incomplete, noisy,
sometimes contradictory evidence rather than retrieve facts. Without established ways to evaluate
reasoning quality, benchmarks should challenge systems to tolerate noise, recover missing links, and
extend hypotheses in controlled ways. Emerging biological benchmarks such as BioMaze (Zhao
et al., 2025 move in this direction with graph-based pathway QA and high-level LLM-as-judge
evaluations, but still differ from the longer-horizon, statement-level refinement studied here.

To fill this gap, we introduce two evaluation tasks designed as first benchmarks for hypothesis refine-
ment. These tasks mirror realistic challenges in biological discovery: (1) hypothesis reconstruction,
and (2) corruption recovery (Table @

Table 2: Evaluation tasks overview

Task Purpose Validates Metrics
Reconstruction Can the system rebuild Incremental reasoning; Precision, recall,
known mechanisms from Traceability F1

partial cues?
Corruption Can the system correct Robustness to noise; FError  removal
Recovery noisy or misleading hy- Logical refinement rate, precision,
potheses? recall, F1
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4.1 TASK SETUP

We instantiate evaluation tasks using curated subsets of human pathways from Reactome (Jassal
et al., 2020). Each pathway consists of biochemical reactions, available in both graph and text
representations (see[I.T)). In the text representation, pathways are expressed as sets of statements
describing biochemical reactions; for example, ATP phosphorylates glucose to form glucose-6-
phosphate.

We sampled pathways stratified by the number of biochemical reactions, to capture the diversity and
complexity of the complete dataset. For reconstruction and corruption tasks, we sampled 100 and 20
pathways, respectively. The rationale was to create datasets large enough to capture key reasoning
patterns across multiple approaches, while remaining feasible for large-scale experimentation. In
total, we ran 820 experiments for reconstruction and 2880 experiments for corruption.

Common Experimental Principles Across all tasks, hypotheses are represented as text
fragments. The Hypothesis Game is restricted to four available moves: prune, expand,
expand_with_corpus, and debate (See Table[T). Move selection and termination are dy-
namically governed by the Game Master, adapting to task-specific goals.

We compared our approach against three reasoning baselines: Zero-Shot prompting, Chain-of-
Thought, and ReAct. Zero-Shot directly generates answers without intermediate reasoning steps
(Brown et al., [2020). Chain-of-Thought elicits step-by-step reasoning through intermediate natural
language explanations (Wei et al., 2022). ReAct interleaves reasoning traces with access tools to
improve decision making (Yao et al., 2023). We compared these baselines against our Hypothesis
Game under different move configurations and a fixed move budget. All models received the same
input prompt (see Supplementary A Sec. [3)), which instructs the system to either reconstruct a pathway
or recover a corrupted pathway. All curated datasets are available on Hugging Faceﬂ

Task 1 — Reconstruction: The reconstruction task evaluates whether a system can reconstruct
complex hypotheses from partial cues by performing incremental reasoning. Starting from a minimal
cue, the system must recover the biochemical reactions (steps) of a biological pathway, modeling the
onerous curation process domain experts go through to construct the Reactome database. To reduce
the risk of models exploiting memorized knowledge of well-known pathways, we rephrased pathway
names while preserving their semantic content and level of granularity. A domain expert inspected
and corrected the paraphrased titles to ensure semantic fidelity (available on Hugging Face.) For
agents with tool access (our approach and ReAct), we additionally provided a corpus of open-access
biomedical articles, consisting mainly of abstracts cited in the Reactome pathway descriptions.

Evaluation relied on two complementary notions of correctness. At the pathway level, we annotated
entities (genes, protein complexes/families, and chemicals) in both original and generated pathways
using Gilda (Gyori et al.| |2022); precision and recall over these entity sets provided a quantitative
measure of biological fidelity. At the reaction level we refer to the LLM-as-judge metric as ‘Detailed
Recall’, it evaluates whether the generated pathways reproduced the intended biochemical reactions,
assessing four attributes: input entities, output entities, reaction directionality, and type of biological
interaction (Supplementary A Sec. [3). To assess the reliability of this LLM-as-judge, we conducted
a post-hoc calibration study in which two senior domain experts independently scored a stratified
sample of model outputs for both tasks (Supplementary A Sec. [3.8).

Task 2 — Corruption: The corruption task assesses the ability to detect and repair errors while
preserving the structure of a valid pathway. Starting from 20 human pathways, we introduced three
types of corruptions (errors) (Supplementary A Table 1):

* wrong entity — replacing a correct entity with an incorrect one;
» wrong relationship — altering the relation between entities;
* irrelevant statement — inserting a non-relevant statement into the pathway.

We further varied level of challenge along two axes: 1) difficulty: easy (trivial errors) and hard (subtle
changes, requiring a deeper biological understanding); 2) error rate: 10-40% of pathway length
(measured as a number of steps/reactions) to capture differences in pathway size and complexity. All

'"https://huggingface.co/datasets/TuringRRX/TinyMoves


https://huggingface.co/datasets/TuringRRX/TinyMoves/blob/main/task_1_reconstruction/pathway_name_mapping.tsv
https://huggingface.co/datasets/TuringRRX/TinyMoves
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errors were generated by an LLM and iteratively refined, with two domain experts reviewing and
manually correcting outputs to produce the curated corruption set.

Evaluation combined two measures. First, an LLM judge was presented with the original statement,
the corrupted version, and the model’s output, and determined whether the error persisted. Second,
entity mapping, as in reconstruction, quantified biological fidelity by measuring precision and recall
of annotated entities against the ground truth.

5 RESULTS

We evaluated The Hypothesis Game on two pathway-level reasoning tasks described above: recon-
struction from partial cues and recovery from corrupted hypotheses. In both settings, we compare the
Hypothesis Game configuration (four move types with access to the corpus) against strong prompting
baselines (Zero-Shot, Chain-of-Thought, ReAct). This study focuses on the minimal game version,
though the formalism extends to richer move sets and modes.

Hypothesis Game

/) /) 7
.......................... Identifies | s |dentifies | s
i . Expands on
.......................... and flxeS PERRREE i PP remalnll’lg essssssssssssssaseesssnanse component X
specific errors.
errors.
ReAct Legend
7 7
.......................... Runs many Makes Errors
.......................... search queries. multiple Fixed Erfors
In one step large
implicitly fixes changes in Other Changes
some errors. each step.

Figure 2: Representative example run of Hypothesis Game and ReAct on the corruption task,
illustrating incremental vs large single-step edits. *Other changes are quantified as (1) the number
of biological entity additions/removals and (2) word-level normalised Levenshtein distance to the
reference pathway. See[Supplementary B Fig. 4| for details.

Qualitative observations. In the Reconstruction task, The Hypothesis Game tends to make smaller
incremental and traceable updates to a hypothesis. In contrast, the baselines introduce larger changes
at once, often overwriting significant parts of the initial hypothesis (for a complete example, see

Supplementary B Sec. [L.1).

Figure [2]illustrates a similar pattern in the Corruption task. The Hypothesis Game incrementally
identifies and corrects all errors, while making only minor additional changes to the input hypothesis.
ReAct, in contrast, modifies the pathway by making multiple large changes in each step, incurring
overall much larger changes to the pathway. Detailed numbers showing overall changes made to
the hypothesis by each method are shown in[Supplementary B Fig. 4] This highlights the benefit of
controlled step-by-step refinement.

Reconstruction task. In the controlled reconstruction setting, the Hypothesis Game performed
comparably to the strongest baseline (ReAct) and better than Zero-Shot and Chain-of-Thought
(Fig. [B). Since some Reactome pathways are relatively well known, LLMs were expected to recall
key components. This is reflected in the relatively higher recall of Chain-of-Thought and Zero-
Shot. However, these methods also tended to generate hypotheses with a large number of additional
concepts absent from the original pathway, leading to much lower precision, [Supplementary B Fig. 1|

Overall, ReAct achieved slightly higher F1 scores than the Hypothesis Game, followed by Zero-Shot
and Chain-of-Thought. Low precision—recall values across all methods indicate the difficulty of
the pathway reconstruction task. Beyond the inherent difficulty of a task typically performed by
domain experts, low performance likely reflects three factors: insufficient information in partial cues,
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heterogeneity in pathway curation, and limited biological detail in an abstract-biased corpus. To
better understand which reasoning moves drive performance, we performed an ablation study over all
subsets of the four core moves in the reconstruction task, as well as removing access to the corpus
(20 pathways; [Supplementary B Table IJ).

Corruption task. In the corruption recovery task (error rates 10-40%), the Hypothesis Game
achieves the best overall performance. Figure [3]summarises results aggregated across pathways,
corruption types, and error rates. The Errors Removed panel shows that Hypothesis Game decisively
outperforms the baselines by consistently removing more errors. The Recall and Precision panels
highlight the trade-off: ReAct attains high Recall but at the expense of Precision, while Chain-
of-Thought and Zero-Shot retain content yet introduce additional noise. In contrast, Hypothesis
Game combines strong error removal with the highest Precision and F1 Score, selectively pruning
corrupted statements while preserving the underlying pathway structure.

The error removal panel in Figure [@]reveals a consistent hierarchy in removal difficulty. Unsupported
step errors are most easily removed, as they introduce entire statements that are readily identified
as irrelevant. Wrong-direction corruptions are harder, since they preserve surface plausibility while
inverting causal polarity. Wrong-entity substitutions prove most challenging: the corrupted pathways
still appear fluent, but introduce subtle inconsistencies in biochemical grounding. This shows that
entity-level corruptions demand deeper semantic discrimination. Notably, Hypothesis Game achieved
the strongest overall performance across all error types, with particularly large gains on entity and
relationship errors (Fig. ). The complete results, stratified by difficulty and corruption fraction, are
provided in Supplementary B Sec. [2.1]

Overall, these results show that small, targeted reasoning moves - implemented as incremental
edits rather than wholesale rewrites - enable targeted error identification and correction, yielding
substantially cleaner pathway repairs than standard prompting baselines. Hypothesis Game combines
strong error removal, high precision, and competitive recall across corruption types and difficulty
levels, establishing it as the most effective strategy for recovering corrupted mechanistic pathways.
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Figure 3: Comparison of Hypothesis Game vs. prompting baselines on two pathway-level tasks. Bars
show averages over the evaluation sets described in the text. The error bars show 95% confidence
intervals. Top row: Reconstruction; All methods struggled with faithfully reconstructing the
pathways. ReAct and Hypothesis Game had a statistically non-significant difference in F1 score,
but Hypothesis Game performed significantly better in Detailed Recall of pathways (Friedman test,
x2(3) = 84.3, p < 0.0001, post-hoc Wilcoxon test with Bonferroni correction p < 0.001). Bottom
row: Corruption; Hypothesis Game balances error removal and retention of valid content, achieving
the highest precision, F1 and error removal rate (for all scores Friedman test p < 0.0001, post-hoc
Wilcoxon test with Bonferroni correction p < 0.0005).
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B add unsupported step wrong direction wrong entity

Figure 4: Aggregation of all results on the corruption task based on error type. Error bars show 95%
confidence intervals.

Summary Our results highlight complementary strengths across the two tasks. In reconstruction,
all methods struggled, reflecting the inherent difficulty of recovering complete pathways from sparse
cues. Here, the Hypothesis Game matched the strongest baseline (ReAct), while outperforming
simpler prompting strategies in precision. In corruption recovery, the advantages of structured
reasoning are evident: Hypothesis Game achieved the highest overall performance, combining strong
error removal with superior precision and F1 scores, while maintaining recall. Taken together, these
findings suggest that the game-based framework, centered on small incremental reasoning steps ("tiny
moves"), is particularly effective in settings that require targeted error correction and robustness to
noisy inputs. This motivates extending the approach to open-ended refinement tasks. Preliminary
Monte Carlo tree search-based experiments suggest that even in such settings, the framework can
generate qualitatively plausible hypotheses (Supplementary B Sec. [3), although systematic evaluation
and broader experimentation are needed.

6 CONCLUSIONS AND FUTURE WORK

Our study demonstrates that a structured, game-based approach to hypothesis refinement can match
strong prompting baselines in reconstruction tasks and clearly outperform them in corruption recovery,
where explicit reasoning moves enable targeted error correction while preserving valid pathway
content. These results highlight both the promise and the limitations of current methods: while
controlled corruption recovery benefits strongly from structured reasoning, open-ended reconstruction
remains a challenging setting for all approaches. Although our experiments focus on settings with
known ground truth, the formalism can extend beyond consistency-bound refinement and can also
support more exploratory hypothesis generation.

In future work we aim to extend this framework along several directions. First, we plan to sys-
tematically explore richer hypothesis representations, including structured and semi-structured text
and graph formalism. Second, we plan to optimise move selection using metric-driven scoring and
reinforcement learning. Third, we intend to broaden the evaluation suite to include open-ended
hypothesis evolution. Taken together, these steps will move us from controlled settings with known
ground truth toward more realistic discovery scenarios, enabling both consistency-driven refinement
and more exploratory reasoning where robustness, novelty, and interpretability are critical.
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