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ABSTRACT

Unsupervised domain adaptation (UDA) is a potent approach for enhancing model
performance in an unlabeled target domain by leveraging relevant labeled data
from a source domain. Despite the significant progress in UDA facilitated by deep
learning, model selection, already a challenging task with deep models, becomes
considerably more demanding in UDA scenarios due to the absence of labeled
target data and substantial distribution shifts between domains. Existing model
selection methods in UDA often struggle to maintain stable selections across diverse
UDA methods and various UDA scenarios, frequently resulting in suboptimal or
even the worst choices. This limitation significantly impairs their practicality
and reliability for researchers and practitioners in the community. To address
this challenge, we introduce a novel ensemble-based validation approach called
EnsV, aiming to simplify and stabilize model selection in UDA. EnsV relies solely
on predictions of unlabeled target data without making any assumptions about
distribution shifts, offering high simplicity and versatility. Additionally, EnsV is
built upon an off-the-shelf ensemble that is theoretically guaranteed to outperform
the worst candidate model, ensuring high stability. In our experiments, we compare
EnsV to 8 competitive model selection approaches. Our evaluation involves 12
UDA methods across 5 diverse UDA benchmarks and 5 popular UDA scenarios.
The results consistently demonstrate that EnsV stands out as a highly simple,
versatile, and stable approach for practical model selection in UDA scenarios.

1 INTRODUCTION

Deep learning models (Krizhevsky et al., 2012; He et al., 2016; Dosovitskiy et al., 2021) have
achieved significant advancements in various tasks through supervised learning with large labeled
datasets (Russakovsky et al., 2015). However, obtaining labels can be expensive, and deep models
often struggle to generalize to unlabeled data from unseen distributions (Hendrycks & Gimpel, 2016).
Domain adaptation (Pan & Yang, 2009) offers a promising solution to this challenge by transferring
knowledge from a labeled source domain to a target domain with limited labels but a similar task. In
particular, unsupervised domain adaptation (Pan et al., 2010) (UDA) has gained significant attention
due to its practical assumption that the target domain is entirely unlabeled.

Initially, UDA is studied in a closed-set setting (CDA) where only covariate shift (Sugiyama et al.,
2007) is considered as the domain shift, and the two domains share the same label set. Recent
research has explored many real-world UDA scenarios by incorporating label shift, where the two
domains have distinct label sets. This includes partial-set UDA (PDA) (Cao et al., 2018), where
several source classes are missing in the target domain, open-set UDA (ODA) (Panareda Busto & Gall,
2017), where the target domain contains samples from unknown classes, and open-partial-set UDA
(OPDA) (Saito et al., 2020), where there are only some overlaps in the label sets across domains. More
recently, source-free UDA settings (SFUDA) (Li et al., 2020; Liang et al., 2020) have been explored,
where only the source model instead of source data is available for target adaptation, potentially
addressing privacy concerns in the source domain. Subsequently, in the context of black-box domain
adaptation (Liang et al., 2021), the privacy of the source domain is fully safeguarded.

Specifically, the research community has made significant efforts to develop effective UDA methods
in image classification (Ganin & Lempitsky, 2015; Long et al., 2018) and semantic segmentation (Tsai
et al., 2018; Vu et al., 2019), which can be seen through two distinct research directions. The first
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direction focuses on aligning the distributions across domains by minimizing specific discrepancy
measures (Gong et al., 2012; Fernando et al., 2013; Long et al., 2015; Sun & Saenko, 2016; Yang &
Soatto, 2020) or using adversarial learning to maximize domain confusion (Ganin & Lempitsky, 2015).
Especially, adversarial learning has become a popular approach and has been explored at different
levels for domain alignment, including image-level (Hoffman et al., 2018), manifold-level (Ganin
& Lempitsky, 2015; Tzeng et al., 2017; Long et al., 2018), and prediction-level (Saito et al., 2018;
Tsai et al., 2018; Vu et al., 2019; Zhang et al., 2019). The second direction focuses on target-oriented
learning, aiming to learn a suitable structure for the target domain. This includes self-training
approaches (Shu et al., 2018; Liang et al., 2020; 2021) and target-specific regularizations (Xu et al.,
2019; Cui et al., 2020; Jin et al., 2020).

While UDA has witnessed significant advancements, the successful application of UDA methods
across diverse tasks relies heavily on selecting appropriate hyperparameters. Sub-optimal hyperpa-
rameters can cause state-of-the-art UDA methods to underperform compared to the source model
without adaptation (Saito et al., 2021; Musgrave et al., 2022), emphasizing the significance of model
selection or hyperparameter selection in UDA. In a typical model selection scenario, we are presented
with a set of m candidate models with the weights {θi}mi=1. These models are trained using a given
UDA method with a corresponding set of hyperparameters {ηi}mi=1. The goal is to identify the
candidate model that exhibits the best performance on the unlabeled target domain and subsequently
adopt the associated hyperparameters. This model selection problem remains challenging and under-
explored in UDA due to significant domain shifts and the absence of labeled target data. Existing
approaches can be categorized into two types. The first type involves leveraging labeled source
data for target model selection (Sugiyama et al., 2007; You et al., 2019; Ganin et al., 2016). The
second type designs unsupervised metrics based on priors of the learned target structure and utilizes
them for selection (Morerio et al., 2017; Saito et al., 2021; Musgrave et al., 2022; Tu et al., 2023).
Despite their particular designs, all of these methods face challenges in avoiding the selection of poor
models or even the worst models across various UDA methods and settings, limiting their adoption
by researchers and practitioners in the community (Musgrave et al., 2022).

In this paper, we aim to address this dilemma by introducing a novel ensemble-based validation
approach, called EnsV. Our approach originates from a meticulous examination of the model selection
problem itself. Surprisingly, we discovered that the problem setting inherently provides an ensemble
of candidate models without any additional effort. Unfortunately, many existing model selection stud-
ies overlook this "free lunch", treating each candidate model independently. Our theoretical analysis
of the ensemble confirms that it consistently outperforms the worst candidate model. Motivated by
the ensemble’s strength, we propose EnsV, which leverages the ensemble as a role model for the direct
assessment of candidate models. EnsV tackles model selection exclusively with target predictions
generated by all candidate models, eliminating the need for specific domain shift assumptions and
source data access. This simplicity and versatility make it suitable for various UDA tasks. The role
model utilized in EnsV, backed by performance guarantees, reinforces the robust model selection
stability that EnsV offers. Our main contributions can be summarized as follows:

• We study the significant but under-explored problem of model selection in UDA. To the best
of our knowledge, we are the first to approach it through the lens of ensembles. Furthermore,
we uncover an intriguing "free lunch" of ensembles in model selection, substantiated by
theoretical and empirical evidence of their superiority over the worst candidate model.

• With a novel perspective on approximating target ground truth labels for model selection,
we introduce a novel ensemble-based validation approach, known as EnsV. In EnsV, we
ingeniously leverage the performance-guaranteed ensemble as a reliable role model. This
allows us to effortlessly select the best candidate model through a straightforward accuracy
comparison. Notably, both steps within EnsV rely solely on the predictions of unlabeled
target data, requiring no additional complexities.

• We conduct a comprehensive empirical study to compare EnsV’s model selection perfor-
mance with that of existing methods. This study encompasses the evaluation of 8 model
selection approaches, 12 UDA methods, 5 UDA benchmarks, and 5 practical UDA scenarios.
The results consistently showcase EnsV’s superiority, as it consistently achieves the best
model selection performance on average while effectively avoiding the selection of poor
models. This solidifies its position as a simple, versatile, and highly stable baseline for
model selection in various UDA scenarios.
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Table 1: Comparing existing methods for model selection in unsupervised domain adaptation.

Validation
Method

Covariate
Shift

Label
Shift

w/o
source data

w/o
hyperparameters

w/o
extra training

SourceRisk ✗ ✗ ✗ ✗ ✓
IWCV ✓ ✗ ✗ ✗ ✗
DEV ✓ ✗ ✗ ✗ ✗
RV ✓ ✗ ✗ ✗ ✗
Entropy ✓ ✗ ✓ ✓ ✓
InfoMax ✓ ✗ ✓ ✓ ✓
SND ✓ ✓ ✓ ✗ ✓
Corr-C ✓ ✗ ✓ ✓ ✓
EnsV (Ours) ✓ ✓ ✓ ✓ ✓

2 RELATED WORK

Model selection in unsupervised domain adaptation (UDA) is significant in the practical deployment
of UDA methods but remains relatively under-explored. Efforts to address this challenge can be
broadly categorized into two lines. Early approaches to model selection in UDA focused on estimating
the target domain risk through labeled source data. SourceRisk Ganin & Lempitsky (2015) utilized
a hold-out source validation set to guide model selection based on source risk. To mitigate the
impact of domain shift on source estimation, Sugiyama et al. (2007) introduced Importance-Weighted
Cross Validation (IWCV), which re-weights source risk using a source-target density ratio estimated
in the input space. Building upon this, You et al. (2019) improved IWCV by introducing Deep
Embedded Validation (DEV), which estimates the density ratio in the feature space and offers lower
variance. Ganin et al. (2016) proposed a novel Reverse Validation approach (RV) that leveraged
reversed source risk for selection. However, source-based validation methods often necessitate
additional model training to handle domain shifts, rendering them cumbersome and less reliable.
In contrast, recent model selection methods have shifted their focus exclusively to unlabeled target
data, employing specifically designed metrics for model selection. For instance, Morerio et al. (2017)
introduced the mean Shannon’s Entropy of target predictions as a model selection metric, promoting
confident predictions. Musgrave et al. (2022) proposed the use of Input-Output Mutual Information
Maximization (InfoMax)Bridle et al. (1991) as a metric, augmented with class-balance regularization
over Entropy. Saito et al. (2021) introduced Soft Neighborhood Density (SND), a novel metric
focusing on neighborhood consistency. Tu et al. (2023) presented Corr-C, a class correlation-based
metric that evaluates both class diversity and prediction certainty simultaneously. Our EnsV approach
aligns with the latter line of research. EnsV approaches the model selection problem from a novel
perspective, leveraging the power of the inherent ensemble. Importantly, it operates without making
any assumptions about distribution shifts or the learned target structure, making it suitable for a
variety of UDA scenarios. A comprehensive comparison, as presented in Table 1, underscores that
EnsV stands out as a simple and versatile approach.

Ensemble methods, which harness the collective power of a pool of models through prediction
averaging, have been extensively studied in the machine learning community for enhancing model
performance (Perrone & Cooper, 1995; Opitz & Maclin, 1999; Bauer & Kohavi, 1999; Dietterich,
2000) and improving model calibration (Lakshminarayanan et al., 2017; Ovadia et al., 2019). In the
era of deep learning, the efficiency of ensembling has garnered significant attention due to the high
training cost of deep models. Efficient solutions have been proposed, such as using partially shared
parameters (Lee et al., 2015; Wen et al., 2020; Dusenberry et al., 2020) and leveraging intermediate
snapshots (Huang et al., 2017; Garipov et al., 2018; Benton et al., 2021). Recently, weight averaging
has gained attention as an efficient alternative to prediction averaging during inference (Izmailov
et al., 2018; Wortsman et al., 2022; Matena & Raffel, 2022; Rame et al., 2022; Ramé et al., 2022).
In addition, diversity is considered crucial for effective ensembles. Various approaches have been
explored to achieve diverse checkpoints, including bootstrapping (Freund et al., 1996), random
initializations (Fort et al., 2019), tuning hyperparameters (Wenzel et al., 2020; Zaidi et al., 2021;
Wortsman et al., 2022), and combining multiple strategies (Gontijo-Lopes et al., 2021). Different
from existing ensemble applications, our work innovatively and elegantly applies ensemble to help
address the open problem of unsupervised model selection in domain adaptation.
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Figure 1: Overview of our model selection approach EnsV for unsupervised domain adaptation.

3 METHODOLOGY

We consider a C-way image classification task to introduce the concept of unsupervised domain adap-
tation (UDA). In UDA, we typically have a labeled source domain Ds = {(xi

s, y
i
s)}

ns
i=1 comprising

ns annotated source images xs and their corresponding labels ys. Additionally, there is an unlabeled
target domain, Dt = {xi

t}
nt
i=1, containing only nt unlabeled target images xt. Despite the tasks being

similar, there exist data distribution shifts between the two domains. The primary objective of UDA
is to accurately predict the unavailable target labels, {yit}

nt
i=1, by leveraging a discriminative mapping

f(x, θ), which is learned using data from two domains. Here, θ ∈ Rd represents the weights of
the trained UDA model. When presented with an input image x, the model generates a probability
prediction vector, p = f(x, θ), where p ∈ RC and

∑C
i=1 p

i = 1.

The model selection problem in UDA is essentially equivalent to the hyperparameter selection
challenge. Here, we aim to determine the optimal hyperparameter η from a set of m candidate values
{ηi}mi=1. The hyperparameter η can encompass various aspects, including the learning rate, loss
coefficients, architectural settings, training iterations, and more. By training UDA models using the
m different values of η, we obtain corresponding models with weights denoted as {θi}mi=1. In UDA,
the objective of model selection is to pinpoint the model θk that demonstrates the best performance
on the unlabeled target domain. Subsequently, we select the corresponding hyperparameter ηk as the
optimal choice for potential adaptation with unlabeled target samples from the exact target domain.
We illustrate the problem setting in Figure 1. Without loss of generality, in this paper, we assume m
is greater than 1, and candidate models have different weights θ, resulting in different discriminative
mappings of f(x, θ). For clarity, we treat both θ and the model interchangeably in our presentation.
This also applies to model selection, hyperparameter selection, and validation.

3.1 ENSEMBLE: THE OVERLOOKED "FREE LUNCH" IN MODEL SELECTION

Model selection in UDA is challenging due to the absence of labeled target data available for
directly evaluating candidate models. Existing approaches typically address this challenge from two
perspectives: leveraging the help of labeled source data (You et al., 2019) and utilizing specific prior
assumptions to design unsupervised metrics (Saito et al., 2021). Surprisingly, we’ve observed that all
existing model selection methods treat each model independently, overlooking the collective potential
offered by the off-the-shelf ensemble created by these candidates. In this paper, unless otherwise
specified, the ensemble refers to prediction-based ensembling, which involves averaging probability
predictions across all models to obtain the averaged prediction, i.e., 1

m

∑m
i=1 f(x, θi) for a sample x.

Contrastingly, we adopt a fresh perspective in analyzing the challenge of model selection in UDA by
leveraging the ensemble. Typically, two concerns arise when considering the use of the ensemble:
one pertains to the efficiency issue caused by training multiple models, and the other relates to
the lack of diversity among candidate models. In the context of model selection, we observe that,
without the need to introduce additional models, the problem setting inherently provides a range of
pre-existing candidate models, directly addressing the efficiency concern. Furthermore, all candidate
models are trained using a UDA method with varying hyperparameters, yielding diverse yet effective
discriminative abilities. This naturally eases the diversity concern. As a surprising consequence, the
ensemble appears to be a "free lunch" in the context of UDA model selection, a point that has been
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previously overlooked by researchers. To gain a deeper insight into the effectiveness of the ensemble,
we present a theoretical analysis grounded in the proposition below.

Proposition 1 Given the use of negative log-likelihood (NLL) as the loss function, defined as
l(p, y) = − log py, and considering a random target sample x with label y, the following in-
equality can be established between the loss of the ensemble 1

m

∑m
i=1 f(x, θi), the averaged loss of

all candidate models {θi}mi=1, and the loss of the worst candidate model θworst:

l(
1

m

m∑
i=1

f(x, θi), y) <
1

m

m∑
i=1

l(f(x, θi), y) < l(f(x, θworst), y).

Kindly refer to Appendix A for proof of the above proposition. This proposition theoretically guaran-
tees that the ensemble always outperforms the worst candidate model. In contrast, as demonstrated by
our comprehensive experiments, existing model selection methods cannot consistently avoid selecting
the worst candidate model.

3.2 ENSEMBLE AS A ROLE MODEL: SIMPLE AND STABLE MODEL SELECTION

When it comes to addressing model selection in UDA, an oracle solution would involve selecting
models based on their accuracy, measured against the unattainable target ground truth {yit}

nt
i=1.

Motivated by this ideal case, we offer a novel perspective on model selection: If we can obtain a
reliable approximation of the true target labels, we can use it directly for accurate model selection. To
achieve this, we leverage the off-the-shelf yet performance-guaranteed ensemble and take a further
step by using it to build a reliable role model. We then select the model that most closely resembles
this role model among all candidates. With these two straightforward steps, we introduce an elegantly
simple model selection approach known as ensemble-based validation (EnsV).

Step 1: Ensemble as a role model. To begin with, for each unlabeled target sample x, we consider
the ensemble 1

m

∑m
i=1 f(x, θi) as a reliable estimation of its ground truth. This enables us to obtain

reliable predictions for all target data, denoted as { 1
m

∑m
i=1 f(xj , θi)}nt

j=1. These ensembles serve as
our role model, providing guidance for accurate model selection in the subsequent step.

Step 2: Model selection. In this step, we utilize the role model to assess all candidate models and
select the one with the highest similarity. For simplicity, EnsV involves a direct measurement of
accuracy between the role model { 1

m

∑m
i=1 f(xj , θi)}nt

j=1 and the predictions made by each candidate
model, such as {f(xj , θi)}nt

j=1 for the model with weights θi. We then select the model θk with the
highest accuracy and determine the optimal value ηk for the hyperparameter η.

We present a comprehensive illustration of our ensemble-based validation approach, known as EnsV,
in Figure 1. Furthermore, through a comparison with other model selection methods presented in
Table 1, we can observe that EnsV stands out as a simple but versatile validation method.

4 EXPERIMENTS

4.1 SETUP

Datasets. Our experiments encompass diverse and widely-used image classification benchmarks: (i)
Office-31(Saenko et al., 2010) with 31 classes and 3 domains (Amazon (A), DSLR (D), and Webcam
(W)); (ii) Office-Home(Venkateswara et al., 2017) with 65 classes and 4 domains (Art (Ar), Clipart
(Cl), Product (Pr), and Real-World (Re)); (iii) VisDA(Peng et al., 2017) with 12 classes and 2 domains
(training (T) and validation (V)); and (iv) DomainNet-126(Peng et al., 2019; Saito et al., 2018) with
126 classes and 4 domains (Real (R), Clipart (C), Painting (P), and Sketch (S)). Additionally, we
conduct experiments in synthetic-to-real semantic segmentation, specifically targeting the transfer
from GTAV(Richter et al., 2016) to Cityscapes(Cordts et al., 2016).

UDA methods. In our experiments, we assess all the model selection methods listed in Table 1. Kindly
see Appendix C for more introductions. With these validation methods, we perform model selection
for various UDA methods across different UDA settings. For CDA, we consider ATDOC (Liang et al.,
2021), BNM (Cui et al., 2020), CDAN (Long et al., 2018), MCC (Jin et al., 2020), MDD (Zhang
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Table 2: CDA accuracy (%) on Office-Home (Home). bold: Best value.

Method ATDOC BNM CDAN
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg

SourceRisk 66.63 52.54 78.57 76.61 68.59 62.44 50.74 77.53 74.76 66.37 55.00 42.65 69.50 68.81 58.99
IWCV 67.97 54.03 78.31 79.26 69.89 66.56 48.16 74.09 73.28 65.52 61.31 41.24 67.17 71.93 60.41
DEV 67.39 54.23 77.78 79.39 69.70 65.76 56.39 73.92 77.59 68.41 67.23 57.04 68.76 76.91 67.49
RV 68.68 56.13 78.93 79.64 70.85 68.25 56.75 78.08 78.67 70.44 67.66 56.74 76.01 77.68 69.52
Entropy 63.67 55.83 76.54 78.36 68.60 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
InfoMax 63.67 55.63 77.61 78.36 68.82 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
SND 63.67 55.63 76.54 77.54 68.34 66.28 54.49 74.15 77.64 68.14 67.94 57.56 76.96 77.68 70.04
Corr-C 63.51 50.39 73.89 73.88 65.42 58.10 45.37 68.97 70.59 60.76 53.84 41.21 64.96 67.65 56.91
EnsV 68.70 58.05 79.81 80.41 71.74 68.61 57.38 78.08 79.54 70.90 67.88 57.56 77.39 78.19 70.25
Worst 62.89 50.39 73.89 73.88 65.26 58.10 45.37 68.96 70.59 60.75 53.80 41.21 64.78 67.65 56.86
Best 68.97 58.35 80.27 80.58 72.04 68.93 57.51 78.43 79.57 71.11 68.19 57.90 77.44 78.19 70.43

Method MCC MDD SAFN Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

SourceRisk 66.57 56.53 79.55 80.90 70.89 62.53 54.43 75.27 75.55 66.94 63.54 51.34 73.66 74.54 65.77 66.26
IWCV 68.69 58.93 80.37 80.08 72.02 64.20 56.50 73.78 74.28 67.19 64.31 52.36 72.31 74.29 65.82 66.81
DEV 68.81 58.07 78.54 80.10 71.38 64.42 56.94 76.85 75.94 68.54 63.15 50.47 71.20 74.54 64.84 68.39
RV 70.40 58.80 80.63 80.39 72.56 66.57 55.75 76.60 76.90 68.96 64.31 50.13 73.77 74.93 65.78 69.68
Entropy 69.29 59.33 80.63 80.96 72.55 66.54 57.63 77.27 77.45 69.72 59.85 46.41 72.51 73.18 62.99 68.63
InfoMax 66.58 58.48 79.12 80.81 71.25 66.54 57.74 77.27 77.45 69.75 64.56 49.71 73.77 73.18 65.31 68.84
SND 69.05 55.61 79.72 79.10 70.87 51.34 38.01 77.61 68.46 58.86 57.90 46.41 67.04 68.18 59.88 66.02
Corr-C 69.05 55.61 79.72 79.10 70.87 47.79 31.69 63.40 60.63 50.88 62.66 46.41 68.83 68.18 61.52 61.06
EnsV 69.92 59.50 80.30 80.86 72.65 66.46 57.81 77.61 76.51 69.60 65.91 52.18 74.51 75.57 67.04 70.36
Worst 62.72 54.63 76.19 78.19 67.93 47.79 31.69 63.40 60.63 50.88 57.90 46.41 67.04 68.18 59.88 60.26
Best 70.68 59.95 80.93 81.02 73.14 66.75 58.36 77.61 77.45 70.04 66.59 53.14 74.90 75.57 67.55 70.72

Table 3: CDA accuracy (%) on Office-31 (Office) and VisDA.

Method ATDOC BNM CDAN
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V

SourceRisk 72.56 88.96 87.80 83.11 67.79 72.92 90.36 89.43 84.24 70.51 63.90 91.16 89.06 81.37 64.50
IWCV 72.56 86.14 86.54 81.75 67.79 72.92 85.54 89.43 82.63 76.94 63.90 69.08 58.74 63.91 64.50
DEV 72.56 86.14 86.54 81.75 70.34 72.92 85.54 89.43 82.63 76.94 63.90 91.16 88.30 81.12 64.50
RV 74.93 89.96 87.23 84.04 77.37 70.71 88.55 89.43 82.90 74.58 73.27 91.16 88.30 84.24 76.02
Entropy 73.29 86.14 87.80 82.41 62.85 72.67 85.54 83.14 80.45 58.36 71.62 91.16 89.06 83.95 80.46
InfoMax 73.29 86.14 87.80 82.41 76.49 70.52 85.54 83.14 79.73 58.36 71.62 91.16 88.30 83.69 80.46
SND 73.29 92.37 87.80 84.49 77.37 74.44 85.54 83.14 81.04 69.65 71.55 92.37 88.55 84.16 80.46
Corr-C 71.05 90.96 84.40 82.14 67.79 67.16 84.34 78.99 76.83 70.51 58.29 67.67 59.62 61.86 64.50
EnsV 74.83 90.96 87.80 84.53 73.36 74.87 90.36 89.43 84.89 74.58 73.20 92.77 88.55 84.84 79.05
Worst 71.05 86.14 84.40 80.53 62.85 67.16 84.34 78.99 76.83 23.08 58.29 67.67 57.11 61.02 64.50
Best 75.31 92.37 87.80 85.16 77.37 75.52 90.36 89.43 85.10 76.94 73.38 92.77 89.06 85.07 80.46

Method MCC MDD SAFN Office VisDA
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V AVG AVG

SourceRisk 73.11 90.96 91.07 85.05 80.46 75.72 91.06 86.23 84.34 72.25 69.20 83.73 87.17 80.03 70.71 83.02 71.04
IWCV 73.11 91.16 88.55 84.27 81.48 75.49 91.16 89.18 85.28 72.25 69.32 86.55 80.38 78.75 66.33 79.43 71.55
DEV 72.70 89.16 93.08 84.98 81.48 75.65 91.16 89.18 85.33 72.25 68.21 86.55 80.38 78.38 66.33 82.36 71.97
RV 73.97 89.06 93.08 85.37 82.22 74.46 92.57 86.79 84.61 77.23 68.69 90.83 87.17 82.23 66.33 83.90 75.62
Entropy 73.93 90.56 93.46 85.98 82.22 76.31 92.57 90.82 86.57 78.95 68.23 91.57 85.66 81.82 70.20 83.53 72.17
InfoMax 73.93 89.16 88.55 83.88 81.48 76.50 92.57 90.82 86.63 78.95 68.23 91.57 87.42 82.41 70.20 83.13 74.32
SND 73.93 91.97 93.46 86.45 69.35 76.50 92.17 90.82 86.50 78.95 68.23 89.96 85.66 81.28 58.15 83.99 72.32
Corr-C 73.93 91.37 93.46 86.25 69.35 74.25 91.57 85.66 83.83 72.25 68.39 86.75 80.38 78.51 62.52 78.24 67.82
EnsV 73.75 90.56 91.45 85.25 82.22 75.92 92.57 90.82 86.44 77.23 69.67 90.96 87.17 82.60 73.96 84.76 76.73
Worst 70.56 86.75 87.17 81.49 69.35 73.06 87.35 85.66 82.02 72.25 67.27 83.73 80.38 77.13 58.15 76.50 58.36
Best 74.42 91.97 93.46 86.62 82.23 76.52 92.57 92.20 87.10 78.95 70.06 91.57 87.42 83.02 75.30 85.34 78.54

et al., 2019), and SAFN (Xu et al., 2019). For PDA, we consider PADA (Cao et al., 2018) and
SAFN (Xu et al., 2019). For OPDA, we consider DANCE (Saito et al., 2020). For SFUDA, we
consider SHOT (Liang et al., 2020) and DINE (Liang et al., 2021). For domain adaptive semantic
segmentation, we consider AdaptSeg (Tsai et al., 2018) and AdvEnt (Vu et al., 2019). During
selection, we explore 7 candidate values for each hyperparameter. Specifically, we select the loss
coefficient for ATDOC, BNM, CDAN, PADA, SAFN, DANCE, SHOT, DINE, AdaptSeg, and AdvEnt,
while the margin is selected for MDD and the temperature for MCC. Additionally, we perform two
complex two-hyperparameters validation tasks. For classification, we tune the bottleneck dimension
with 4 options in MCC and MDD, whereas for segmentation, we tune the training iteration with 8
options in AdaptSeg and AdvEnt. Detailed hyperparameter settings are provided in Appendix B.

Implementation details. We train UDA models using the Transfer Learning Library1 on a single
RTX TITAN 16GB GPU with a batch size of 32 and a total number of iterations of 5000. Unless
specified, checkpoints are saved at the last iteration. ResNet-101 (He et al., 2016) is used for VisDA
and segmentation tasks, ResNet-34 (He et al., 2016) for DomainNet, and ResNet-50 (He et al., 2016)
for other benchmarks. Source-based validation methods allocate 80% of the source data for training
and the remaining 20% for validation.

1https://github.com/thuml/Transfer-Learning-Library
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Table 4: CDA accuracy (%) on DomainNet-126.

Method CDAN BNM ATDOC
→ C → P → R → S avg → C → P → R → S avg → C → P → R → S avg

Entropy 67.09 65.80 74.42 59.34 66.66 63.36 64.28 74.31 48.69 62.66 63.75 61.85 79.60 52.17 64.34
InfoMax 67.09 65.80 74.42 59.34 66.66 67.05 64.28 74.31 55.67 65.33 63.75 61.85 79.60 52.17 64.34
SND 67.09 64.68 74.42 59.34 66.38 56.56 54.50 74.31 42.37 56.93 63.75 61.85 79.60 47.00 63.05
Corr-C 57.35 62.88 74.42 54.63 62.32 59.75 63.41 77.62 42.37 60.79 59.98 62.27 74.42 53.69 62.59
EnsV 65.88 65.27 74.44 57.42 65.75 67.86 66.06 77.62 57.69 67.31 70.30 68.44 80.01 61.73 70.12
Worst 57.35 60.76 73.44 51.41 60.74 55.79 54.50 74.31 42.37 56.74 59.98 61.85 74.42 47.00 60.81
Best 67.09 65.80 74.44 59.34 66.66 67.86 66.50 78.68 58.49 67.88 70.30 68.44 80.38 62.23 70.34

Table 5: PDA accuracy (%) on Office-Home.

Method PADA SAFN
→ Ar → Cl → Pr → Re avg → Ar → Cl → Pr → Re avg

SourceRisk 57.21 41.90 64.48 71.89 58.87 66.82 54.71 74.41 76.48 68.11
IWCV 59.65 50.51 66.84 72.96 62.49 69.36 53.91 71.78 76.38 67.86
DEV 66.88 49.29 72.40 70.46 64.76 69.36 54.94 73.95 76.06 68.58
RV 57.79 40.87 63.87 70.83 58.34 68.98 52.74 72.83 77.14 67.92
Entropy 60.08 46.51 53.16 62.47 55.56 71.75 55.62 76.36 76.59 70.08
InfoMax 60.08 51.40 60.20 66.67 59.59 63.67 51.74 69.64 73.62 64.67
SND 67.80 50.71 59.46 67.13 61.27 71.75 51.74 76.36 78.36 69.55
Corr-C 61.34 45.65 54.90 62.25 56.04 71.23 55.70 76.94 79.13 70.75
EnsV 68.54 55.60 69.86 78.23 68.06 70.98 56.12 75.67 78.48 70.31
Worst 56.29 39.76 50.49 59.31 51.46 62.48 49.91 68.50 73.62 63.63
Best 69.33 55.86 74.55 79.59 69.83 73.37 58.09 77.35 79.33 72.03

Table 8: OPDA H-score (%) on Office-Home. SFUDA accuracy (%) on Office-31 and VisDA.

Method DANCE SHOT DINE
→Ar →Cl →Pr →Re avg →A →D →W avg T→V

Entropy 32.00 39.48 27.52 38.08 34.27 71.67 90.76 88.68 83.70 71.99
InfoMax 32.00 39.48 27.52 38.01 34.25 71.67 90.76 88.68 83.70 71.99
SND 15.05 4.33 23.75 16.79 14.98 71.67 90.76 88.68 83.70 74.43
Corr-C 29.60 4.33 23.75 16.79 18.62 71.58 90.76 90.19 84.18 71.99
EnsV 77.01 51.36 78.81 68.65 68.96 74.85 94.78 91.82 87.15 74.43
Worst 15.05 4.33 15.17 16.79 12.84 71.56 90.76 88.68 83.67 71.99
Best 77.01 66.29 78.81 69.81 72.98 75.06 94.78 93.33 87.72 76.17

4.2 RESULTS

We evaluate the validation performance of EnsV in 5 UDA scenarios: CDA, PDA, OPDA, SFUDA
(classification), and CDA (semantic segmentation). The results are averaged using three random
seeds. We present averaged results for UDA tasks with the same target domain. The ‘Worst’ selection
indicates the one with the lowest performance, while the ‘Best’ selection indicates the opposite.

CDA: We provide comprehensive model selection results for 6 typical UDA methods on Office-Home,
Office-31, and VisDA in Tables 2 and 3. EnsV methods consistently outperform other validation
methods in terms of the average accuracy on each benchmark and furthermore, consistently achieve
near-best selections. For results on DomainNet-126, we report them in Table 4. EnsV consistently
makes selections above the median, while other approaches exhibit more variability.

PDA: For partial-set UDA with label shift, we perform hyperparameter selections for two typical
UDA methods on Office-Home (Table 5). Our EnsV outperforms all other model selection methods
by a significant margin in terms of average accuracy.

OPDA: In the open-partial-set UDA with label shift, we choose a representative method DANCE for
validation on Office-Home (Table 8). Prior model selection works have not explored this challenging
setting, resulting in poor selections. However, our EnsV achieves selections close to the best.

SFUDA: For source-free UDA (SFUDA), we choose SHOT for the white-box setting on Office-31
and DINE for the black-box setting on VisDA (Table 8). EnsV consistently maintains near-best
selections, while other target-based approaches occasionally make near-worst selections.

Validation with two hyperparameters: We conduct practical two-hyperparameters model selection
experiments on classification tasks (Table 9) and segmentation tasks (Table 7). Most model selection
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Figure 2: Qualitative comparisons of two-hyperparameters validation for MCC on Ar → Cl.
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Figure 3: MDD on Ar→Cl.

Table 6: ViT results.

Method BNM
Entropy 28.21
InfoMax 28.21
SND 52.42
Corr-C 28.21
EnsV 55.16
Worst 28.21
Best 55.16

Table 7: Segmentation mIoU (%).

Method AdaptSegt AdvEnt
SourceRisk 39.52 39.08
Entropy 39.47 38.41
SND 40.69 40.02
EnsV 40.69 40.67
Worst 35.32 34.22
Best 42.20 41.78

studies focus on classification, with limited attention (Saito et al., 2021) to segmentation. We
find EnsV consistently achieves near-optimal selections on both tasks, outperforming other generic
methods like Entropy and SND.

4.3 ANALYSIS

Qualitative comparison. We perform a qualitative comparison between two state-of-the-art target-
based model selection methods, Entropy and SND, and our EnsV. In Figure 2, we present the rankings
of the 28 candidate checkpoints in ascending order based on the respective selection metric of each
approach. On the left side, we show the rankings according to the real target accuracy and denote the
accuracy for each candidate model. Our EnsV demonstrates a high level of consistency with the real
target accuracy, while the other methods exhibit significant deviations. This highlights the superior
reliability of our EnsV over other methods.

Robustness to architectures. Architecture plays a significant role in the ensemble. In our exper-
iments, we assess the effectiveness of EnsV using various ResNet backbone variants and observe
consistent success across different scales. For further study, we conduct validation experiments
using the ViT-B (Dosovitskiy et al., 2021) architecture on the R→S task with BNM. The validation
results, presented in Table 6, demonstrate that EnsV achieves the best selection. However, all other
target-based methods except SND make the worst selection.

Performance of role models. The effectiveness of our ensemble-based validation method, EnsV,
relies on the performance of the role model. We evaluate the target performance of role models
for various UDA methods in 4 UDA settings on Office-Home and present the results in Table 10.
Through a comparison of ensemble performance with model selection performance in our empirical
experiments, we demonstrate that the ensemble consistently exhibits high performance. The success
of EnsV can be attributed to the robust role model provided by the ensemble. We present the results of
the weight-based ensemble (Wortsman et al., 2022), denoted as ‘W-Avg,’ and the EnsV variant based
on this ensemble, denoted as ‘EnsV-W.’ While the weight ensemble also shows competitiveness, it
necessitates all candidate models to have the same architecture. Thus, we recommend the simple and
generic prediction-based ensemble. Kindly refer to Appendix D for full results.

Robustness to bad candidates. The robustness of deep ensembling to bad checkpoints is critical for
its effectiveness. We conduct two-hyperparameter validation experiments using MDD on Ar→Cl
to assess this. In the worst-case scenario where we have only one good checkpoint and several bad
checkpoints, the ensemble results may be heavily influenced by the bad checkpoints, leading to poor
selections. To analyze this, we rank the 28 candidate checkpoints based on their true target accuracy.

8
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Table 9: Two-hyperparameter validation accuracy (%) on Office-Home.

Method MDD MCC Home
Ar → Cl Cl → Pr Pr → Re Re → Ar avg Ar → Cl Cl → Pr Pr → Re Re → Ar avg AVG

SourceRisk 55.99 73.15 78.77 69.39 69.33 57.91 76.84 81.13 72.89 72.19 70.76
IWCV 37.89 72.92 80.42 58.43 62.42 46.09 77.74 80.68 74.45 69.74 66.08
DEV 52.60 72.11 53.36 67.70 61.44 59.47 76.84 81.94 74.08 73.08 67.26
RV 57.59 72.25 80.83 70.79 70.37 59.13 76.84 82.03 71.98 72.50 71.44
Entropy 57.21 73.19 80.06 72.31 70.69 59.75 77.77 82.37 74.33 73.56 72.13
InfoMax 57.59 72.92 80.06 72.31 70.72 59.70 78.73 82.58 70.33 72.84 71.78
SND 38.10 56.45 70.03 65.10 57.42 53.49 74.97 77.25 74.12 69.96 63.69
Corr-C 30.17 44.74 57.15 50.76 45.71 44.90 56.75 74.32 67.61 60.90 53.31
EnsV 56.91 72.74 80.93 71.16 70.44 60.39 78.71 82.28 74.91 74.07 72.26
Worst 30.17 39.81 53.36 50.76 43.53 43.02 56.75 73.47 67.24 60.12 51.83
Best 57.59 73.35 80.93 72.52 71.10 61.10 78.94 83.04 75.36 74.61 72.86

Table 10: Accuracy (%) of the ensemble on Office-Home.

Method CDA PDA OPDA SFUDA
ATDOC BNM CDAN MCC MDD SAFN PADA SAFN DANCE SHOT

W-Avg 72.04 70.48 69.30 72.77 69.39 66.65 67.46 70.11 64.97 71.82
Ensemble 72.13 70.86 70.32 72.82 69.80 67.12 68.23 70.71 69.31 71.94
EnsV-W 71.72 70.74 69.81 72.70 69.23 67.38 68.21 71.91 66.85 71.74
EnsV 71.74 70.90 70.25 72.65 69.60 67.04 68.06 70.71 68.96 71.88
Worst 65.26 60.75 56.86 67.93 50.88 59.88 51.46 63.63 12.84 67.21
Best 72.04 71.11 70.43 73.14 70.04 67.55 69.83 72.03 72.98 72.05

Starting with the best and worst checkpoints, we gradually introduce more bad checkpoints into the
ensemble. By observing the ensembling and validation performance in Figure 3, we study the impact
of bad checkpoints. Despite the presence of bad checkpoints, both the prediction-average Ensemble
and our EnsV consistently prioritize selections above the median, demonstrating their resilience. In
contrast, the state-of-the-art method SND falls short in surpassing the median selection.

5 DISCUSSIONS

Limitations. In unsupervised model selection, EnsV reliably avoids the worst selection but may face
low-performance challenges in two scenarios: (i) Selecting the optimal candidate from a pool where
most options perform poorly, and (ii) Choosing between a single poor model and a good one.

Key insights for model selection in UDA. After conducting a thorough comparison of existing
model selection methods, we have identified the following key insights regarding the model selection
problem in UDA:

• Firstly, we emphasize the importance of addressing model selection in UDA, which has
often been overlooked. We call for increased attention (You et al., 2019; Saito et al., 2021;
Musgrave et al., 2022) and reporting of validation methods used to determine hyperparame-
ters, rather than relying solely on fixed hyperparameters or limited hyperparameter analyses
within a predefined range.

• Secondly, among existing methods, we recommend the reverse validation (RV) approach
as the most reliable method for CDA when source data is accessible. However, it requires
additional model re-training, making it less lightweight compared to target-based validation
methods. It is worth noting that no existing validation methods can effectively handle the
validation of UDA models in diverse scenarios with varying domain shifts or tasks.

• Lastly, our ensemble-based validation method, EnsV, demonstrates superior performance
across various UDA scenarios without any instances of poor selection let alone worst
selection. EnsV is a post-hoc method that leverages the ensemble of available candidate
models, eliminating the need for additional model training. We suggest employing EnsV as a
simple, versatile, yet highly stable approach for model selection or hyperparameter selection
in UDA study. Furthermore, we believe that EnsV has the potential to offer valuable insights
for model selection in a wide range of applications beyond UDA.
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REPRODUCIBILITY STATEMENT

We propose an ensemble-based method EnsV for unsupervised model selection in domain adaptation.
Our method is frustratingly easy, without any hyperparameters or tricks and anyone interested can
breezily implement our method. We plan to release a full implementation upon acceptance.
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A PROOF OF PROPOSITION 1

Given the use of negative log-likelihood (NLL) as the loss function, defined as l(p, y) = − log py.
We first prove the first inequality, i.e., l( 1

m

∑m
i=1 f(x, θi), y) <

1
m

∑m
i=1 l(f(x, θi), y). We employ

Jensen’s inequality, which asserts that for a real-valued, convex function φ with its domain as a
subset of R and numbers t1, . . . , tn in its domain, the inequality φ

(
1
n

∑n
i=1 ti

)
≤ 1

n

∑n
i=1 φ(ti)

holds. Given that − log is a convex function, and in the main text, we assume m is greater than 1, and
candidate models have different weights θ, resulting in different discriminative mappings of f(x, θ).
we can obtain l( 1

m

∑m
i=1 f(x, θi), y) <

1
m

∑m
i=1 l(f(x, θi), y), without the equal situation.

Then for the proof of the second inequality 1
m

∑m
i=1 l(f(x, θi), y) < l(f(x, θworst), y), we leverage

the transitivity of inequalities. Because θworst denotes the worst candidate model, for any other
candidate model θi, we have l(f(x, θworst), y) < l(f(x, θi), y). Because − log is a monotonically
decreasing function, we can surely have 1

m

∑m
i=1 l(f(x, θi), y) < 1

m

∑m
i=1 l(f(x, θworst), y), i.e.,

1
m

∑m
i=1 l(f(x, θi), y) < l(f(x, θworst), y).

B HYPERPARAMETER CONFIGURATIONS

In our experiments, we adopt the setting of previous studies (You et al., 2019; Saito et al., 2021)
by tuning a single hyperparameter for various UDA methods. The comprehensive hyperparameter
settings can be found in Table 11. For MCC (Jin et al., 2020) and MDD (Zhang et al., 2019),
we also explore different bottleneck dimensions: 256, 512, 1024, 2048. Additionally, in semantic
segmentation tasks, we consider the training iteration following SND (Saito et al., 2021).

Table 11: Overview of the UDA methods validated and their associated hyperparameters

UDA method UDA Type Hyperparameter Search Space Default Value

ATDOC (Liang et al., 2021) closed-set loss coefficient {0.02, 0.05, 0.1,
0.2self-training λ 0.2, 0.5, 1.0, 2.0}

BNM (Cui et al., 2020) closed-set loss coefficient {0.02, 0.05, 0.1,
1.0output regularization λ 0.2, 0.5, 1.0, 2.0}

CDAN (Long et al., 2018) closed-set loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

MCC (Jin et al., 2020) closed-set temperature {1.0, 1.5, 2.0,
2.5output regularization T 2.5, 3.0, 3.5, 4.0}

MDD (Zhang et al., 2019) closed-set margin factor {0.5, 1.0, 2.0,
4.0output alignment γ 3.0, 4.0, 5.0, 6.0}

SAFN (Xu et al., 2019) closed/partial-set loss coefficient {0.002, 0.005, 0.01,
0.05feature regularization λ 0.02, 0.05, 0.1, 0.2}

PADA (Cao et al., 2018) partial-set loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

DANCE (Saito et al., 2020) open-partial-set loss coefficient {0.02, 0.05, 0.1,
0.05self-supervision η 0.2, 0.5, 1.0, 2.0}

SHOT (Liang et al., 2020) source-free loss coefficient {0.03, 0.05, 0.1,
0.3hypothesis transfer β 0.3, 0.5, 1.0, 3.0}

DINE (Liang et al., 2021) black-box loss coefficient {0.05, 0.1, 0.2,
1.0knowledge distillation β 0.5, 1.0, 2.0, 5.0}

AdaptSeg (Tsai et al., 2018) closed-set loss coefficient {0.0001, 0.0003, 0.001,
0.0002output alignment λ 0.003, 0.01, 0.03}

AdvEnt (Vu et al., 2019) closed-set loss coefficient {0.0001, 0.0003, 0.001,
0.001output alignment λ 0.003, 0.01, 0.03}

C MODEL SELECTION BASELINES

Let {pit}
nt
i=1 represent the target probability output, and let P ∈ Rnt×C denote the prediction matrix.

We provide a brief overview of the existing model selection approaches.

Source risk. The Source risk approach (SourceRisk) (Ganin & Lempitsky, 2015) utilizes a hold-out
source validation set to select the model θk with the best performance on this set as the final choice.
However, this method is limited in its ability to handle significant domain shifts between domains
and introduces additional hyperparameters during the splitting of the validation set.

14



Under review as a conference paper at ICLR 2024

Importance-weighted source risk. Directly taking source risk as target risk is unreliable due to
domain distribution shifts between domains. To address this challenge, Sugiyama et al. (2007)
propose Importance-Weighted Cross Validation (IWCV), which re-weights the source risk using a
source-target density ratio estimated in the input space. You et al. (2019) further enhance IWCV by
introducing Deep Embedded Validation (DEV), which estimates the density ratio in the feature space
using a domain discriminator and controls the variance. Both IWCV and DEV rely on the importance
weighting technique (Cortes et al., 2008), which assumes that the target distribution is included in
the source distribution (Sugiyama et al., 2007), making the weighting unreliable in scenarios with
significant covariate shift and label shift. In addition, both IWCV and DEV involve hyperparameters
and extra model training during the density ratio estimation process.

Reversed source risk. Building upon the concept of reverse cross-validation (Zhong et al., 2010),
Ganin et al. (2016) propose a novel Reverse Validation approach (RV). This method first conducts
source-to-target adaptation to obtain a UDA model, which enables the acquisition of pseudo labels
for the target unlabeled data. Subsequently, Reverse Validation performs a reversed adaptation from
the pseudo-labeled target to the source and utilizes the source risk in this reversed adaptation task
for validation. Reverse Validation heavily relies on the symmetry between domains and is unable to
handle label shift. Additionally, this approach involves hyperparameters for dataset splitting.

Entropy. Morerio et al. (2017) propose using the mean Shannon’s Entropy of target predictions as
a validation metric, which encourages confident predictions. The motivation behind this is that the
decision boundary should avoid crossing high-density regions in the target structure (Grandvalet &
Bengio, 2004; Chapelle & Zien, 2005). Lower Entropy scores indicate better model performance for
this metric.

Entropy = − 1

nt

nt∑
i=1

C∑
j=1

Pij logPij , InfoMax = −
C∑

j=1

p̄ log p̄+
1

nt

nt∑
i=1

C∑
j=1

Pij logPij

Information maximization. The Entropy score only considers sample-wise certainty, which can
be misleading when confident predictions are biased towards a small fraction of classes (Saito et al.,
2021). To address this challenge, Musgrave et al. (2022) utilize input-output mutual information
maximization (InfoMax) (Bridle et al., 1991) as a validation metric. In contrast to Entropy, InfoMax
includes an additional class-balance regularization by encouraging the averaged prediction p̄ =
1
nt

∑nt
i=1 Pij , p̄ ∈ RC to have a large entropy. Higher InfoMax scores indicate better model

performance according to this metric.

Neighborhood consistency. Saito et al. (2021) introduce Soft Neighborhood Density (SND), a novel
metric that focuses on neighborhood consistency. SND leverages softmax predictions as features
and constructs a sample-sample similarity matrix. This matrix is transformed into a probabilistic
distribution using the softmax function: S = softmax(PPT /τ), S ∈ Rnt×nt . Here, τ is a small
temperature parameter that sharpens the distribution, enabling the differentiation between nearby
and distant samples. SND promotes high neighborhood consistency by encouraging samples to have
similar predictions to other points in their neighborhood, resulting in larger SND scores.

SND = − 1

nt

nt∑
i=1

nt∑
j=1

Sij logSij , Corr-C =
sum(diag(PTP ))

∥PTP∥F

Class correlation. Tu et al. (2023) introduce Corr-C, a class correlation-based metric that evaluates
class diversity and prediction certainty simultaneously. Corr-C calculates the cosine similarity
between the class correlation matrix and an identity matrix. Lower Corr-C scores are indicative of
better model performance based on this metric.

D FULL MODEL SELECTION RESULTS

Due to space constraints in the main text, we have presented the average results for tasks with the
same target domain. For example, in the case of the Office-Home dataset, UDA tasks including
‘Cl→Ar’, ‘Pr→Ar’ and ‘Re→Ar’ share the common target domain ‘Ar.’ As a result, we have averaged
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the results of these three UDA tasks and reported the averaged value in the tables within our main
text under the row labeled ‘→ Ar’.

Furthermore, it’s important to distinguish between the ‘avg’ row, which signifies the average results
within each UDA method’s rows to the left of the ‘avg’ row, and the ‘AVG’ row, which represents the
averaged results across all ‘avg’ rows associated with different UDA methods. Consequently, the
‘AVG’ row can be considered more reliable and representative for drawing conclusions.

In our evaluation, we conduct hyperparameter selection for both classification and segmentation tasks.
For open-set experiments, we utilize the H-score (%) (Fu et al., 2020; Bucci et al., 2020) metric,
which combines the accuracy of known classes and unknown samples. For semantic segmentation
tasks, we employ the mean intersection-over-union (mIoU) (%) (Tsai et al., 2018; Vu et al., 2019)
metric. For all other classification tasks, we measure the accuracy (%). Due to space constraints in
the main text, we consolidate the results of UDA tasks with the same target domain. Please refer to
Table 12 to Table 26 for the complete set of validation results.

Table 12: Accuracy (%) of a closed-set UDA method ATDOC (Liang et al., 2021) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr AVG
SourceRisk 51.41 77.31 78.17 66.87 74.36 75.60 61.85 48.04 76.06 71.16 58.14 84.05 68.59
IWCV 55.88 76.57 78.88 66.25 74.50 78.33 65.60 48.04 80.58 72.06 58.14 83.87 69.89
DEV 51.41 76.55 78.88 66.25 74.36 77.67 64.77 51.29 81.62 71.16 59.98 82.43 69.70
RV 56.38 76.12 80.01 66.25 76.80 78.33 67.82 55.62 80.58 71.98 56.40 83.87 70.85
Entropy 55.88 74.14 78.88 59.25 74.52 77.67 64.19 54.39 78.54 67.57 57.23 80.96 68.60
InfoMax 55.88 74.14 78.88 59.25 77.74 77.67 64.19 54.39 78.54 67.57 56.61 80.96 68.82
SND 55.88 74.14 78.88 59.25 74.52 75.21 64.19 54.39 78.54 67.57 56.61 80.96 68.34
Corr-C 51.41 72.00 76.04 59.37 69.36 69.54 61.85 48.04 76.06 69.30 51.71 80.31 65.42
EnsV-W 57.85 76.57 81.04 66.25 79.48 78.52 67.94 55.62 82.17 71.9 59.24 84.03 71.72
EnsV 57.85 76.57 80.54 66.25 78.82 78.52 67.94 57.07 82.17 71.9 59.24 84.03 71.74
Worst 51.41 72.00 76.04 59.25 69.36 69.54 61.85 48.04 76.06 67.57 51.71 80.31 65.26
Best 58.01 77.31 81.04 66.91 79.48 78.52 67.94 57.07 82.17 72.06 59.98 84.03 72.04

Table 13: Accuracy (%) of a closed-set UDA method BNM (Cui et al., 2020) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr AVG
SourceRisk 56.93 77.00 77.74 57.64 73.33 69.36 56.45 42.38 77.19 73.22 52.90 82.26 66.37
IWCV 46.46 77.00 79.30 63.86 61.34 62.54 63.95 42.38 78.01 71.86 55.65 83.92 65.52
DEV 57.75 71.62 79.30 57.64 67.90 75.46 66.21 54.04 78.01 73.42 57.37 82.25 68.41
RV 58.67 77.00 79.30 65.68 73.33 75.46 65.64 52.05 81.25 73.42 59.54 83.92 70.44
Entropy 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
InfoMax 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
SND 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
Corr-C 46.46 67.04 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.76
EnsV-W 58.67 77.00 80.61 66.21 73.33 76.75 66.21 53.93 81.25 73.42 57.59 83.92 70.74
EnsV 58.67 77.00 80.61 66.21 73.33 76.75 66.21 53.93 81.25 73.42 59.54 83.92 70.90
Worst 46.46 67.04 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.75
Best 58.67 77.00 80.61 67.16 74.16 76.75 66.21 54.04 81.36 73.42 59.82 84.12 71.11

Table 14: Accuracy (%) of a closed-set UDA method CDAN (Long et al., 2018) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr AVG
SourceRisk 43.41 62.51 75.51 43.96 61.59 57.70 53.75 37.50 73.22 67.28 47.01 84.39 58.99
IWCV 43.14 62.51 77.81 44.71 54.58 56.14 65.14 37.50 81.85 74.08 43.02 84.39 60.41
DEV 57.16 71.75 77.81 62.46 55.64 71.08 65.14 56.54 81.85 74.08 57.43 78.89 67.49
RV 57.16 71.75 77.78 63.62 72.92 73.40 65.14 54.50 81.85 74.21 58.56 83.37 69.52
Entropy 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
InfoMax 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
SND 57.55 72.43 77.78 64.61 73.73 73.40 65.14 56.66 81.85 74.08 58.47 84.73 70.04
Corr-C 43.14 63.05 73.61 43.96 54.58 56.12 51.75 37.50 73.22 65.80 43.00 77.25 56.91
EnsV-W 57.18 73.30 77.78 63.37 73.89 73.38 65.14 55.44 81.36 73.88 58.56 84.39 69.81
EnsV 57.55 73.71 78.33 64.61 73.73 74.39 65.14 56.56 81.85 73.88 58.56 84.73 70.25
Worst 43.14 62.51 73.61 43.96 54.58 56.12 51.63 37.50 73.22 65.80 43.00 77.25 56.86
Best 57.55 73.71 78.33 64.61 73.89 74.39 65.76 56.66 81.85 74.21 59.50 84.73 70.43
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Table 15: Accuracy (%) of a closed-set UDA method MCC (Jin et al., 2020) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr AVG
SourceRisk 57.23 78.19 81.75 60.65 76.50 78.79 64.15 53.15 82.17 74.91 59.20 83.96 70.89
IWCV 60.02 78.15 81.34 68.73 78.51 77.85 64.15 57.85 81.04 73.18 58.92 84.46 72.02
DEV 57.16 78.15 81.34 69.10 73.01 76.80 64.15 57.85 82.17 73.18 59.20 84.46 71.38
RV 59.34 78.53 80.70 69.10 77.83 78.22 67.20 57.85 82.24 74.91 59.20 85.54 72.56
Entropy 59.31 78.53 81.59 66.87 77.83 78.79 67.20 57.85 82.51 73.79 60.82 85.54 72.55
InfoMax 60.02 74.66 81.75 64.98 78.24 78.49 64.15 54.52 82.19 70.62 60.89 84.46 71.25
SND 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
Corr-C 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
EnsV-W 59.31 77.86 81.59 69.10 78.51 78.79 66.87 57.85 82.19 73.79 61.35 85.22 72.70
EnsV 59.31 77.86 81.59 69.10 77.83 78.79 66.87 57.85 82.19 73.79 61.35 85.22 72.65
Worst 53.56 73.44 79.25 60.65 73.01 75.76 59.74 53.15 79.55 67.78 57.18 82.11 67.93
Best 60.02 78.53 81.75 69.22 78.51 78.79 67.90 58.49 82.51 74.91 61.35 85.74 73.14

Table 16: Accuracy (%) of a closed-set UDA method MDD (Zhang et al., 2019) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr AVG
SourceRisk 54.85 73.35 77.05 58.76 69.95 72.23 60.03 51.02 77.36 68.81 57.42 82.50 66.94
IWCV 56.40 69.52 76.59 58.76 67.40 69.43 61.89 56.43 76.82 71.94 56.68 84.43 67.19
DEV 57.71 75.42 77.05 58.76 72.99 70.51 63.95 56.43 80.26 70.54 56.68 82.14 68.54
RV 58.05 75.42 76.59 63.54 69.95 73.74 63.95 51.02 80.38 72.23 58.17 84.43 68.96
Entropy 57.73 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.72
InfoMax 58.05 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.75
SND 58.05 75.42 77.05 44.99 72.99 48.06 37.08 21.60 80.26 71.94 34.39 84.43 58.86
Corr-C 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
EnsV-W 54.89 75.42 78.01 61.89 72.99 72.23 63.08 56.43 79.66 72.23 60.02 83.96 69.23
EnsV 56.40 75.42 77.05 64.07 72.99 72.23 63.08 57.02 80.26 72.23 60.02 84.43 69.60
Worst 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
Best 58.05 75.42 78.22 64.07 72.99 73.74 63.95 57.02 80.38 72.23 60.02 84.43 70.04

Table 17: Accuracy (%) of a closed-set UDA method SAFN (Xu et al., 2019) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr AVG
SourceRisk 50.78 69.72 76.06 59.66 70.29 69.86 60.90 46.07 77.71 70.05 57.16 80.96 65.77
IWCV 50.24 69.72 77.28 62.63 67.24 69.86 58.84 49.69 75.72 71.45 57.16 79.97 65.82
DEV 51.07 69.72 76.64 59.66 67.24 71.26 58.84 49.69 75.72 70.95 50.65 76.64 64.84
RV 51.07 71.41 76.64 62.63 68.44 70.44 58.84 44.49 77.71 71.45 54.82 81.46 65.78
Entropy 45.93 69.72 75.49 55.29 67.22 68.35 54.26 43.30 75.69 70.00 49.99 80.60 62.99
InfoMax 50.47 69.72 75.49 62.46 70.98 68.35 61.23 43.30 75.69 70.00 55.37 80.60 65.31
SND 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Corr-C 45.93 69.72 70.60 55.29 60.13 62.50 61.23 43.30 71.43 71.45 49.99 76.64 61.52
EnsV-W 51.73 72.07 76.64 64.65 70.98 71.26 63.66 50.52 77.48 70.99 57.16 81.46 67.38
EnsV 51.07 72.27 77.30 63.58 70.29 71.70 62.71 49.69 77.71 71.45 55.78 80.96 67.04
Worst 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Best 51.73 72.27 77.30 64.65 70.98 71.70 63.66 50.52 77.71 71.45 57.16 81.46 67.55

Table 18: Accuracy (%) of closed-set UDA methods on Office-31.

Method ATDOC (Liang et al., 2021) BNM (Cui et al., 2020) CDAN (Long et al., 2018)
A → D A → W D → A W → A AVG A → D A → W D → A W → A AVG A → D A → W D → A W → A AVG

SourceRisk 88.96 87.80 73.65 71.46 80.47 90.36 89.43 73.13 72.70 81.41 91.16 89.06 66.33 61.46 77.00
IWCV 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 69.08 58.74 66.33 61.46 63.90
DEV 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 91.16 88.30 66.33 61.46 76.81
RV 89.96 87.23 74.28 75.58 81.76 88.55 89.43 74.90 66.52 79.85 91.16 88.30 76.18 70.36 81.50
Entropy 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 74.26 78.50 91.16 89.06 72.88 70.36 80.87
InfoMax 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 69.97 77.43 91.16 88.30 72.88 70.36 80.68
SND 92.37 87.80 73.87 72.70 81.69 85.54 83.14 74.62 74.26 79.39 92.37 88.55 72.88 70.22 81.01
Corr-C 90.96 84.40 71.88 70.22 79.37 84.34 78.99 67.80 66.52 74.41 67.67 59.62 58.15 58.43 60.97
EnsV-W 92.37 87.80 74.65 75.01 82.46 88.55 89.43 75.43 75.29 82.18 92.77 88.55 76.18 70.22 81.93
EnsV 90.96 87.80 74.65 75.01 82.11 90.36 89.43 75.43 74.30 82.38 92.77 88.55 76.18 70.22 81.93
Worst 86.14 84.40 71.88 70.22 78.16 84.34 78.99 67.80 66.52 74.41 67.67 57.11 58.15 58.43 60.34
Best 92.37 87.80 75.04 75.58 82.70 90.36 89.43 75.75 75.29 82.71 92.77 89.06 76.18 70.57 82.15

Table 19: Accuracy (%) of closed-set UDA methods on Office-31.

Method MCC (Jin et al., 2020) MDD (Zhang et al., 2019) SAFN (Xu et al., 2019)
A → D A → W D → A W → A AVG A → D A → W D → A W → A AVG A → D A → W D → A W → A AVG

SourceRisk 90.96 91.07 73.33 72.89 82.06 91.06 86.23 76.68 74.76 82.18 83.73 87.17 68.96 69.44 77.33
IWCV 91.16 88.55 73.33 72.89 81.48 91.16 89.18 76.68 74.30 82.83 86.55 80.38 68.96 69.68 76.39
DEV 89.16 93.08 73.33 72.06 81.91 91.16 89.18 76.68 74.62 82.91 86.55 80.38 68.96 67.45 75.84
RV 89.06 93.08 74.42 73.52 82.52 92.57 86.79 73.91 74.97 82.07 90.83 87.17 68.76 68.62 78.85
Entropy 90.56 93.46 74.83 73.02 82.97 92.57 90.82 78.03 74.58 84.00 91.57 85.66 67.20 69.26 78.42
InfoMax 89.16 88.55 74.16 73.70 81.39 92.57 90.82 78.03 74.97 84.10 91.57 87.42 67.20 69.26 78.86
SND 91.97 93.46 74.83 73.02 83.32 92.17 90.82 78.03 74.97 84.00 89.96 85.66 67.20 69.26 78.02
Corr-C 91.37 93.46 74.83 73.02 83.17 91.57 85.66 73.91 74.58 81.43 86.75 80.38 67.09 69.68 75.98
EnsV-W 90.56 91.07 74.16 73.70 82.37 92.57 90.82 77.53 74.30 83.80 91.57 87.17 70.22 69.12 79.52
EnsV 90.56 91.45 73.80 73.70 82.38 92.57 90.82 77.53 74.30 83.80 90.96 87.17 70.22 69.12 79.37
Worst 86.75 87.17 71.18 69.93 78.76 87.35 85.66 73.91 72.20 79.78 83.73 80.38 67.09 67.45 74.66
Best 91.97 93.46 74.83 74.01 83.57 92.57 92.20 78.03 75.01 84.45 91.57 87.42 70.43 69.68 79.78
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Table 20: Accuracy (%) of a closed-set UDA method CDAN (Long et al., 2018) on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P AVG
Entropy 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
InfoMax 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
SND 58.04 64.78 74.42 69.39 68.65 60.63 60.70 65.23
Corr-C 58.04 57.73 74.42 56.98 65.07 51.23 60.70 60.60
EnsV-W 55.15 60.98 73.86 60.99 65.07 55.50 60.27 61.69
EnsV 56.73 64.67 74.44 67.08 67.97 58.12 62.57 64.51
Worst 51.59 57.73 73.44 56.98 63.06 51.23 58.46 58.93
Best 58.04 64.78 74.44 69.39 68.65 60.63 62.94 65.55

Table 21: Accuracy (%) of a closed-set UDA method BNM (Cui et al., 2020) on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P AVG
Entropy 56.42 61.57 74.31 65.15 65.15 40.95 63.42 61.00
InfoMax 56.42 68.95 74.31 65.15 65.15 54.93 63.42 64.05
SND 43.78 61.57 74.31 51.55 54.40 40.95 54.59 54.45
Corr-C 43.78 60.03 77.62 59.47 67.19 40.95 59.64 58.38
EnsV-W 58.48 68.42 77.62 66.05 67.79 57.65 64.34 65.76
EnsV 57.73 69.63 77.62 66.10 67.79 57.65 64.34 65.84
Worst 43.78 60.03 74.31 51.55 54.40 40.95 54.59 54.23
Best 58.48 69.63 78.68 66.10 67.79 58.50 65.20 66.34

Table 22: Accuracy (%) of a closed-set UDA method ATDOC (Liang et al., 2021) on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P AVG
Entropy 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
InfoMax 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
SND 46.43 65.98 79.60 61.52 64.24 47.58 59.46 60.69
Corr-C 54.71 60.63 74.42 59.33 64.58 52.66 59.95 60.90
EnsV-W 63.12 69.57 78.33 67.93 69.32 60.85 66.33 67.92
EnsV 62.11 71.14 80.01 69.45 69.79 61.35 67.10 68.71
Worst 46.43 60.63 74.42 59.33 64.24 47.58 59.46 58.87
Best 63.12 71.14 80.38 69.45 69.79 61.35 67.10 68.90

Table 23: Accuracy (%) of a partial-set UDA method PADA (Cao et al., 2018) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr AVG
SourceRisk 45.03 68.85 81.89 43.25 46.83 57.26 57.21 36.42 76.53 71.26 44.30 77.76 58.87
IWCV 55.58 65.10 84.54 51.42 61.29 53.01 56.93 35.16 81.34 70.52 60.78 74.12 62.49
DEV 54.81 78.15 78.02 58.13 61.29 50.14 67.86 35.16 83.21 74.66 57.91 77.76 64.76
RV 43.22 65.10 81.89 42.70 48.74 52.79 57.21 35.16 77.80 73.46 44.30 77.76 58.34
Entropy 40.12 40.11 55.94 52.43 37.25 50.14 57.30 47.22 81.34 70.52 52.18 82.13 55.56
InfoMax 54.81 69.24 78.02 52.43 37.25 50.14 57.30 47.22 71.84 70.52 52.18 74.12 59.59
SND 40.12 40.11 55.94 58.13 56.13 64.11 70.62 51.22 81.34 74.66 60.78 82.13 61.27
Corr-C 40.12 40.11 55.94 54.18 46.89 53.01 58.59 38.93 77.80 71.26 57.91 77.70 56.04
EnsV-W 55.58 77.25 86.14 58.13 60.17 67.86 73.00 37.97 84.04 76.77 57.91 83.75 68.21
EnsV 54.81 69.24 86.53 58.13 56.13 64.11 70.62 51.22 84.04 76.86 60.78 84.20 68.06
Worst 40.12 40.11 55.94 41.41 37.25 50.14 56.93 34.87 71.84 70.52 44.24 74.12 51.46
Best 55.58 78.15 86.53 58.13 61.29 68.19 73.00 51.22 84.04 76.86 60.78 84.20 69.83

Table 24: Accuracy (%) of a partial-set UDA method SAFN (Xu et al., 2019) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr AVG
SourceRisk 59.40 77.14 81.34 63.97 67.00 71.29 65.60 46.21 76.81 70.89 58.51 79.10 68.11
IWCV 52.24 74.45 82.16 70.98 62.41 70.18 63.45 53.49 76.81 73.65 56.00 78.49 67.86
DEV 55.22 74.45 80.07 70.98 67.00 71.29 63.45 51.70 76.81 73.65 57.91 80.39 68.58
RV 53.67 71.60 81.34 67.58 67.00 73.27 65.70 48.54 76.81 73.65 56.00 79.89 67.92
Entropy 58.93 74.90 80.73 70.98 74.12 69.80 70.16 50.09 79.24 74.10 57.85 80.06 70.08
InfoMax 51.82 67.62 76.97 64.65 65.77 69.80 59.69 50.09 74.10 66.67 53.31 75.52 64.67
SND 51.82 74.90 80.73 70.98 74.12 75.10 70.16 50.09 79.24 74.10 53.31 80.06 69.55
Corr-C 59.40 77.20 82.16 67.58 72.89 75.10 70.16 55.70 80.12 75.94 52.00 80.73 70.75
EnsV-W 59.40 77.20 82.16 71.72 72.89 74.82 72.45 55.70 80.73 75.94 59.16 80.73 71.91
EnsV 55.22 76.30 81.28 67.58 70.31 74.05 70.16 54.63 80.12 75.21 58.51 80.39 70.31
Worst 51.52 67.62 76.97 61.07 62.35 69.80 59.69 46.21 74.10 66.67 52.00 75.52 63.63
Best 59.40 77.20 82.16 71.72 74.12 75.10 72.45 55.70 80.73 75.94 59.16 80.73 72.03

Table 25: H-score (Fu et al., 2020; Bucci et al., 2020) (%) of an open-partial-set UDA method
DANCE (Saito et al., 2020) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr AVG
Entropy 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.53 25.39 33.75 39.37 34.27
InfoMax 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.33 25.39 33.75 39.37 34.25
SND 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 25.39 0.00 28.40 14.98
Corr-C 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 69.02 0.00 28.40 18.62
EnsV-W 67.00 75.15 66.57 67.87 67.35 59.05 66.41 62.59 69.40 59.86 67.54 73.40 66.85
EnsV 38.40 76.96 66.57 71.76 75.17 69.99 77.42 48.15 69.40 81.84 67.54 84.31 68.96
Worst 1.00 0.00 12.73 0.00 17.10 1.95 19.77 11.99 35.69 25.39 0.00 28.40 12.84
Best 67.00 76.96 66.57 71.76 75.17 69.99 77.42 64.32 72.87 81.84 67.54 84.31 72.98
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Table 26: Accuracy (%) of a source-free UDA method SHOT (Liang et al., 2020) on Office-31.

Method A → D A → W D → A W → A AVG
Entropy 90.76 88.68 71.21 72.13 80.69
InfoMax 90.76 88.68 71.21 72.13 80.69
SND 90.76 88.68 71.21 72.13 80.69
Corr-C 90.76 90.19 71.21 71.96 81.03
EnsV-W 94.78 91.82 75.15 74.55 84.08
EnsV 94.78 91.82 75.15 74.55 84.08
Worst 90.76 88.68 71.21 71.92 80.64
Best 94.78 93.33 75.58 74.55 84.56

Table 27: Worst-case selections for various target-only model selection methods, reported as the
H-score (%) for OPDA and accuracy (%) for other tasks, demonstrate that EnsV consistently avoids
the worst selections, while other methods often encounter significant challenges.

Method
CDA PDA OPDA SFUDA

ATDOC ATDOC BNM BNM MDD SAFN PADA PADA DANCE DANCE SHOT DINE
Cl→Ar C→S Ar→Pr R→S Pr→Cl Pr→Cl Ar→Re Re→Ar Re→Ar Pr→Re D→A T→V

Entropy 59.25 46.43 67.04 40.95 55.85 43.30 55.94 70.52 25.39 45.53 71.21 71.99
InfoMax 59.25 46.43 67.04 54.93 55.85 43.30 78.02 70.52 25.39 45.53 71.21 71.99
SND 59.25 46.43 67.04 40.95 21.60 43.30 55.94 74.66 25.39 35.69 71.21 74.43
Corr-C 59.37 54.71 67.06 40.95 21.60 43.30 55.94 71.26 69.02 35.69 71.21 71.99
EnsV 66.25 62.11 77.00 57.65 57.02 49.69 86.53 76.86 81.84 69.40 75.15 74.43
Worst 59.25 46.43 67.04 40.95 21.60 43.30 55.94 70.52 25.39 35.69 71.21 71.99
Best 66.91 63.12 77.00 58.50 57.02 50.52 86.53 76.86 81.84 72.87 75.15 76.17
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