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ABSTRACT

The problem of end-to-end learning of a communication system using an autoen-
coder has recently been shown to be a promising approach. We focus on the
problem of test-time domain adaptation for such an autoencoder system whose
channel is generatively-modeled using a mixture density network (MDN). Different
from the setting of conventional training-time (unsupervised or semi-supervised)
domain adaptation, here we have a fully-trained channel model and autoencoder
from a source domain, that we would like to adapt to a target domain using only a
small labeled dataset (and no unlabeled data). Moreover, since the distribution of
the channel is expected to change frequently (e.g., a wireless link), the error rate
of the autoencoder can degrade quickly, making it challenging to collect sufficient
data for frequent retraining of the autoencoder. To address this, we propose a
fast and sample-efficient method for adapting the autoencoder without modifying
the encoder and decoder neural networks, and adapting only the MDN channel
model. The method utilizes feature transformations at the decoder to compensate
for changes in the channel distribution, and effectively present to the decoder
samples close to the source distribution. Experimental evaluation on simulated
datasets and real mmWave wireless channels demonstrate that the proposed method
can adapt the MDN channel using very limited number of samples, and improve or
maintain the error rate of the autoencoder under changing channel conditions.

1 INTRODUCTION

End-to-end (e2e) learning of communication systems using autoencoders has been recently shown to
be a promising approach for designing the next generation of wireless networks (O’Shea & Hoydis,
2017; Dörner et al., 2018; Aoudia & Hoydis, 2019; O’Shea et al., 2019; Ye et al., 2018; Wang et al.,
2017). This new paradigm is a viable alternative to optimize communication for diverse applications,
hardware, and environments (Hoydis et al., 2021). It is particularly promising for dense deployments
of low-cost transceivers where there is interference between devices and hardware imperfections
that are difficult to model. The key idea of e2e learning for a communication system is to use an
autoencoder architecture to model and learn the transmitter and receiver jointly using neural networks
in order to minimize an e2e performance metric such as the block error rate (BLER) (O’Shea
& Hoydis, 2017). The channel (the propagation medium and transceiver imperfections) can be
represented as a stochastic transfer function that transforms its input x ∈ Rd to an output y ∈ Rd. It
can be regarded as a black-box that is non-linear and non-differentiable due to hardware imperfections
(e.g., quantization and amplifiers). Since autoencoders are trained using stochastic gradient descent
(SGD)-based optimization (O’Shea & Hoydis, 2017), it is challenging to work with a black-box
channel that is not differentiable. One approach to address this problem is by using a known
mathematical model of the channel (e.g., additive Gaussian noise). Use of such models enables
the computation of gradients of the loss function with respect to the autoencoder parameters via
backpropagation. However, such standard channel models do not capture well the realistic channel
effects, as shown in (Aoudia & Hoydis, 2018). Alternatively, recent works have proposed to learn
the channel using deep generative models that approximate p(y |x), the conditional probability
density of the channel output y given the channel input x, using generative adversarial networks
(GANs) (O’Shea et al., 2019; Ye et al., 2018), mixture density networks (MDNs) (García Martí et al.,
2020), and conditional variational autoencoders (VAEs) (Xia et al., 2020). The use of a differentiable
generative model of the channel enables SGD-based training of the autoencoder, while also capturing
realistic channel effects better than standard models.
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Although this e2e optimization with real channels learned from data can improve the physical layer
design for communication systems, in reality, channels often change, requiring collection of a large
number of samples and retraining the channel model and autoencoder frequently. For this reason,
adapting the learned conditional probability density of the channel as often as possible using only a
small number of samples is required for good communication performance. Prior works have (to be
best of our knowledge) not addressed the adaptation problem for autoencoder-based e2e learning,
which is crucial for the real-time deployment of such a system under frequently-changing channel
conditions. In this paper, we study the problem of domain adaptation (DA) of autoencoders using
an MDN as the channel model. In contrast to the conventional DA setting, where one has access to
a large unlabeled dataset and none or a small labeled dataset from the target domain (Jiang, 2008;
Ben-David et al., 2006), here we consider DA where we only have access to a small labeled dataset
from the target domain. This setting applies to our problem since the channel distribution changes
frequently, and we only get to collect a small number of samples at a time from the target domain.

We make the following contributions: 1) We propose a fast and sample-efficient method for adapting
a generative MDN (used for modeling the channel) based on the properties of Gaussian mixtures. 2)
Based on the MDN adaptation, we propose efficient input-transformation methods at the decoder that
compensate for changes in the class-conditional channel distribution, and decrease or maintain the
error rate of the autoencoder without requiring any retraining of the encoder and decoder networks. 1

2 RELATED WORK

Mixture Density Networks. MDNs were first introduced by (Bishop, 1994), providing a new
framework for modeling complex conditional densities using neural networks. Recently, (García Martí
et al., 2020) proposed to use an MDN to learn the wireless channel since Gaussian mixtures, with their
strong approximation capability (Kostantinos, 2000), can accurately capture the channel distribution
given sufficient parametric complexity and data. García Martí et al. (2020) also proposed to adapt the
MDN model to changing channel conditions by fine-tuning the MDN with a small set of samples
from a new distribution. To the best of our knowledge, (Li et al., 2020) is the only other work to study
the problem of adapting an MDN. They address the speaker identification problem, and propose a
gradient-based meta-learning algorithm for MDN that learns to transfer knowledge from an existing
set of speakers to a new speaker using a small number of labeled samples.

Domain Adaptation, Transfer Learning, and Few-Shot Learning. Recent approaches for DA
such as DANN (Ganin et al., 2016) based on adversarial learning of a shared representation between
the source and target domains (Ganin & Lempitsky, 2015; Ganin et al., 2016; Long et al., 2018; Saito
et al., 2018; Zhao et al., 2019; Johansson et al., 2019) have achieved much success on computer vision
and natural language processing tasks. Their high-level idea is to adversarially learn a shared feature
representation for which inputs from the source and target distributions are nearly indistinguishable
to a domain discriminator DNN, such that a label predictor DNN using this representation and
trained using labeled data from only the source domain also generalizes well to the target domain.
Adversarial DA methods are not suitable for our problem because of the high imbalance in the
number of source and target domain samples (hard to learn a good domain discriminator). Also,
adversarial DA methods being heavy on computational and data requirement, are not well-suited
for fast and frequent test-time DA. Related frameworks such as transfer learning (Long et al., 2015;
2016), model-agnostic meta-learning (Finn et al., 2017), domain-adaptive few-shot learning (Zhao
et al., 2021; Sun et al., 2019), and supervised DA (Motiian et al., 2017a;b) also deal with the problem
of frequent adaptation based on a small number of samples. Most of them are not directly applicable
to our problem because they primarily address novel classes (with potentially different distributions)
and knowledge transfer from existing to novel tasks. Motiian et al. (2017a) is closely related to
our work since they also deal with a target domain that only has a small labeled dataset and has
the same set of classes (label space). The key difference is that (Motiian et al., 2017a) address the
training-time supervised DA problem, while we focus on the test-time supervised DA problem. In the
test-time setting, frequent and fast adaptation of a trained source-domain classifier (here the decoder)
is required. It can be computationally challenging to adopt the adversarial DA method of Motiian
et al. (2017a) that would have to be retrained on every new batch of target domain samples.

1Code base for our work: anonymous.4open.science/r/domain_adaptation-7C0D/
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3 FAST ADAPTATION OF THE MDN CHANNEL MODEL

Notations and Problem Setup. We denote vectors and matrices by boldface symbols. We define 1(c)
to be an indicator function that takes the value 1 (0) when predicate c is true (false). For any integer
n > 1, we define [n] = {1, · · · , n}. We denote the one-hot-coded vector of all zeros except a 1 at
position i ∈ [m] by 1i ∈ {0, 1}m. The probability density function (pdf) of a multivariate Gaussian
with mean vector µ and covariance matrix Σ is denoted by N (· |µ,Σ). We consider a single-input,
single-output autoencoder-based communication system as shown in Fig. 7 in Appendix A. The
transmitter or encoder part of the autoencoder is as a multi-layer, feed-forward neural network (NN)
that takes as input the one-hot-coded representation 1s of a message s ∈ S := {1, 2, · · · ,m},
and produces an encoded symbol vector x = Eθe(1s) ∈ Rd. The receiver or decoder part is also
a multi-layer, feed-forward NN that takes the channel output y ∈ Rd as its input and predicts a
probability distribution over the m messages. The input-output mapping of the decoder NN can be
defined as Dθd(y) := [Pθd(1 |y), · · · , Pθd(m |y)]T . The message s is equivalent to a class label
and the encoded symbol vector x = Eθe(1s) is like a representation vector for label s. Table 3 in the
Appendix provides a quick reference for the notations used in the paper.

Channel Modeling using MDN. In this work, we use an MDN with Gaussian components to
learn the channel conditional density P (y |x). MDNs can model complex conditional densities
by combining a feed-forward neural network with a standard parametric mixture model (Bishop,
1994). The MDN learns to predict the parameters of the mixture model φ(x) as a function of the
channel input x. This can be expressed as φ(x) = Mθc(x) , where θc is the parameter vector of the
neural network. The parameters of the mixture model defined by the MDN are a concatenation of the
parameters from the k density components, i.e., φ(x)T = [φ1(x)T , · · · ,φk(x)T ]. A more detailed
background on MDNs and autoencoder-based end-to-end learning is given in Appendix A.
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Figure 1: Proposed MDN adaptation overview.

Consider the setting where the channel state (and
therefore its conditional distribution) is changing over
time due to e.g., environmental factors. Let P (y |x)
denote the (unknown) source channel distribution
underlying the dataset Dc used to train the MDN
Mθc(x). With a sufficiently large dataset and a suit-
able choice of k, the Gaussian mixture learned by the
MDN Pθc(y |x) can closely approximate P (y |x).
Let D(t)

c = {(x(t)
n ,y

(t)
n ), n = 1, · · · , N (t)

c } denote a small set of iid samples (N (t)
c � |Dc|) from

an unknown target channel distribution P (t)(y |x), which is potentially different from P (y |x) but
not by a large deviation. Our goal is to adapt the MDN (and therefore the underlying mixture density)
using D(t)

c such that it closely approximates P (t)(y |x). Note that the space of inputs to the MDN is
the finite set of modulated symbols X = {Eθe(1s), s ∈ S} (referred to as a constellation), with
each symbol corresponding to a unique message s ∈ S.

3.1 TRANSFORMATION BETWEEN GAUSSIAN MIXTURES

Pθc(y |x) =

k∑
i=1

πi(x)N
(
y |µi(x),σ2

i (x)
)

(1)

P
θ̂c

(y |x) =

k∑
i=1

π̂i(x)N
(
y | µ̂i(x), σ̂2

i (x)
)
. (2)

Consider the Gaussian mixtures corre-
sponding to the source and target channel
conditional densities, where θc and θ̂c are
the parameter vectors of the original and
adapted MDN. Here µi(x) ∈ Rd is the
mean vector, σ2

i (x) ∈ Rd+ is the variance
vector, and πi(x) ∈ [0, 1] is the prior probability (weight) of component i for the original mix-
ture. We have assumed that the Gaussian components have a diagonal covariance matrix, with
σ2
i (x) being the diagonal elements 2. The mixture weights are parameterized using the softmax

function as πi(x) = eαi(x) /
∑k
j=1 e

αj(x), ∀i. The MDN simply predicts the un-normalized
weights αi(x) ∈ R or the prior logits. The parameter vector of component i is defined as
φi(x)T = [αi(x),µi(x)T ,σ2

i (x)T ], and the MDN output φ(x) has dimension k (2d + 1). The
adapted MDN predicts the parameters of the target Gaussian mixture φ̂(x) = Mθ̂c

(x) as shown
in Fig. 1. The parameters of the adapted MDN and Gaussian mixture are similarly defined, with

2The diagonal covariance assumption does not imply conditional independence of y as long as k > 1.
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a hat in the notation. We next summarize the feature and parameter transformations required for
mapping the component densities of one Gaussian mixture to another. As shown in Appendix C.1,
the transformation between any two multivariate Gaussians y ∼ N(· |µ,Σ) and ŷ ∼ N(· | µ̂, Σ̂)
can be achieved by the transformation: ŷ = C (y − µ) + Aµ + b, where the mean vector and
covariance matrix of the two Gaussians are related as follows: µ̂ = Aµ + b and Σ̂ = C Σ CT .

Affine and Inverse-Affine Feature Transfomations. Applying the above result to our MDN with
k components, we define the affine feature transformation for a given symbol x and component i,
mapping from y ∼ N(· |µi(x),σ2

i (x)) to ŷ ∼ N(· | µ̂i(x), σ̂2
i (x)) as

ŷ = gxi(y) := Ci (y − µi(x)) + Ai µi(x) + bi, x ∈ X , i ∈ [k]. (3)

It is straightforward to also define the inverse-affine transformation from ŷ to y as

y = g−1xi (ŷ) := C−1i (ŷ − Ai µi(x) − bi) + µi(x), x ∈ X , i ∈ [k]. (4)

For the case of diagonal covariances, we constrain Ci to be diagonal. These feature transformations
will be used for aligning the target and source class-conditional distributions of the decoder input.

Parameter Transformations. The corresponding transformations between the source and target
Gaussian mixture parameters for any symbol x ∈ X and component i ∈ [k] are given by

µ̂i(x) = Ai µi(x) + bi, σ̂
2
i (x) = C2

i σ
2
i (x), and α̂i(x) = βi αi(x) + γi, (5)

where Ai ∈ Rd×d and bi ∈ Rd transform the means; Ci = diag(ci1, · · · , cid) is a diagonal scale
matrix for the variances; and βi ∈ R and γi ∈ R are the scale and offset for the prior logits.
The vector of all adaptation parameters to be optimized is defined as ψT = [ψT1 , · · · ,ψTk ], where
ψTi contains the affine-transformation parameters from component i. The number of adaptation
parameters (dimension of ψ) is given by k (d2 + 2 d+ 2). This is typically much smaller than the
number of MDN parameters (weights and biases from all layers), even for shallow fully-connected
NNs. In Fig. 1, the adaptation layer mapping φ(x) to φ̂(x) basically implements the parameter
transformations defined in Eq. (5).

Assumptions and Key Insight. The proposed adaptation of the MDN is based on the affine-
transformation property of multivariate Gaussians, i.e., one can transform between any two multivari-
ate Gaussians through an affine transformation.
Assumption 1: The source and target Gaussian mixtures have the same number of components.
This is a practical assumption we make in order to not have to change the architecture of the MDN.
Adding or removing components would require a change to the output layer of the MDN. Also, this
assumption can be practically justified when k is chosen to be sufficiently large.
Assumption 2: The two mixtures have a one-to-one correspondence between the components.
This assumption makes in mathematically convenient to derive a closed-form expression for the
KL-divergence between two Gaussian mixtures, which would not be possible in the general case.

Based on the above assumptions, we can formulate the MDN adaptation as an equivalent problem
of finding the optimal set of affine transformations (one per-component) from the source to the
target Gaussian mixture. This is a much smaller problem compared to optimizing the weights of
all the MDN layers. Moreover, the affine transformations are bijective, allowing the feature and
parameter mapping to be applied in the inverse direction. To reduce the possibility of the adapted
MDN finding bad solutions due to the small-sample regime, we include a regularization term based
on the KL-divergence (KLD) in the adaptation objective.

3.2 DIVERGENCE BETWEEN THE SOURCE AND TARGET DISTRIBUTIONS

For the pair of Gaussian mixtures (Eqs. (1) and (2)), based on Assumption 2 we can derive a
closed-form expression for the Kullback-Leibler divergence between them, given by

D(Pθc , Pθ̂c
) = EPθc

[
log

Pθc(y,K |x)

P
θ̂c

(y,K |x)

]
=
∑
x∈X

p(x)

k∑
i=1

πi(x) log
πi(x)

π̂i(x)

+
∑
x∈X

p(x)

k∑
i=1

πi(x)DKL

(
N
(
· |µi(x),σ2

i (x)
)
, N
(
· | µ̂i(x), σ̂2

i (x)
))
. (6)
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A detailed derivation of this result and the final expression for the KLD as a function ofψ are given in
Appendix C.2. The first term in Eq. (6) is the KLD between the component prior probabilities, which
simplifies into a function of the parameters [β1, γ1, · · · , βk, γk] . The second term in Eq. (6) involves
the KLD between two multivariate Gaussians (a standard result), which also simplifies into a function
of ψ. To make the dependence on ψ explicit, the KLD is henceforth denoted by Dψ(Pθc , Pθ̂c

).

3.3 MDN ADAPTATION OBJECTIVES

We consider two scenarios for adaptation: 1) Generative adaptation of the MDN in isolation and 2)
Discriminative adaptation of the MDN as the channel model for the autoencoder. In the first case,
the goal of adaptation is to find a good generative model for the target data distribution, while in the
second case, the goal is to improve the classification performance of the autoencoder on the target
data distribution. In both cases, we formulate the MDN adaptation as a minimization problem with a
regularized negative log-likelihood objective, where the regularization term penalizes solutions with
a large KLD between the source and target Gaussian mixtures.

Generative Adaptation. The data-dependent term in the adaptation objective is the regularized
negative conditional log-likelihood (CLL) of the target dataset:

JCLL(ψ ;λ) =
−1

N
(t)
c

N(t)
c∑

n=1

logP
θ̂c

(y(t)
n |x(t)

n ) + λDψ(Pθc , Pθ̂c
), (7)

where µ̂i(x), σ̂2
i (x) and α̂i(x) as a function of ψ are given by Eq. (5). The parameters of the

original mixture density αi(x),µi(x),σ2
i (x), ∀i are constants since they have no dependence on ψ.

The regularization constant λ ≥ 0 controls the allowed KLD between the source and target Gaussian
mixtures. Small values of λ weight the CLL term more, allowing more exploration in the adaptation;
large values of λ impose a strong regularization to constrain the space of target distributions.

Discriminative Adaptation. With the goal of improving the accuracy of the decoder in recovering
the transmitted symbol x from y, the data-dependent term in the adaptation objective (7) is replaced
with the symbol posterior log-likelihood (PLL) as follows:

JPLL(ψ ;λ) =
−1

N
(t)
c

N(t)
c∑

n=1

logP
θ̂c

(x(t)
n |y(t)

n ) + λDψ(Pθc , Pθ̂c
). (8)

The symbol posterior P
θ̂c

(x |y) is computed using Bayes rule, and the symbol prior {p(x =

Eθe(1s)), s = 1, · · · ,m} is estimated from the source domain training set.

We observe that the adaptation objectives are smooth and nonconvex function of ψ . Also, com-
putation of the objective and its gradient w.r.t ψ are inexpensive operations since i) they do not
require forward and back-propagation steps through the layers of the MDN and ii) both N (t)

c and the
dimension of ψ are relatively small. Therefore, we use the BFGS quasi-newton method (Nocedal &
Wright, 2006) for minimization, instead of SGD-based large-scale learning methods (e.g., Adam).
The regularization constant λ is a hyper-parameter of the proposed method, and we propose to set
its value automatically using a validation metric based on the inverse-affine transformation from the
target to the source distribution (see Appendix C.3).

4 ADAPTATION OF AUTOENCODER-BASED COMMUNICATION SYSTEM
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Figure 2: Adapted decoder with affine transformations.

In this section, we discuss how the proposed
MDN adaptation can be combined with an
autoencoder-based communication system to
adapt the decoder to changes in the channel con-
ditions. Recall that the decoder is basically a
classifier that predicts the most-probable input
message from the received channel output y.
When the decoder operates in a new (target)
channel environment, different from the one it
was trained on, its classification accuracy can
degrade due to the distribution change. Specif-
ically, any change in the channel conditions reflects as changes in the class-conditional density of
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the decoder’s input, i.e., {P (y | s), s ∈ S} changes 3. We propose to address this, by designing
transformations to the decoder’s input that can compensate for changes in the channel distribution,
and effectively present transformed inputs that are close to the source distribution on which the
decoder was trained. Our method does not require any change or adaptation to the trained encoder
and decoder networks, making it fast and suitable for the small-sample setting. We next propose two
such input transformation methods for the decoder.

4.1 ADAPTED DECODER BASED ON AFFINE FEATURE TRANSFORMATIONS

Consider the same problem setup as § 3, where we observe a small dataset of samples from the target
channel distribution. Suppose we have adapted the MDN channel by optimizing over the parameters
ψ, we can use the inverse-affine feature transformations (defined in Eq. (4)) to transform the channel
output y from a component of the target Gaussian mixture to the same component of the source
Gaussian mixture. However, this transformation requires knowledge of both the channel input x and
the mixture component i, which are not observed (latent) at the decoder. We address this by first
determining the most-probable pair of channel input and mixture component for a given y (using the
MAP rule), and applying the corresponding inverse-affine feature transformation as

ỹ = g−1x?i?(y) where x?, i? = argmax
x∈X ,i∈[k]

P
θ̂c

(x, i |y). (9)

The joint posterior over the channel input x and mixture component i, given the channel output y is
based on the adapted (target) Gaussian mixture, given by

P
θ̂c

(x, i |y) =
p(x) π̂i(x) N(y | µ̂i(x), σ̂2

i (x))∑
x′
∑
j p(x

′) π̂j(x′) N(y | µ̂j(x′), σ̂2
j (x′))

.

The adapted decoder based on the above affine feature transformation (see Fig. 2) is defined as

D̂θd(y) := Dθd(g−1x?i?(y)) = Dθd ◦ g−1x?i?(y). (10)

4.2 ADAPTED DECODER BASED ON MAP SYMBOL ESTIMATION
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Figure 3: Adapted decoder with MAP SE.

In the previous method, an input transformation
layer is introduced at the decoder only during adap-
tation, but not during training of the autoencoder.
Alternatively, we propose an input transformation
layer at the decoder that takes the channel output y
and produces a best estimate of the encoded sym-
bol x̂, which is then given as input to the decoder
as shown in Fig. 3. This input transformation layer
is included during the autoencoder training as a
fixed non-linear transformation that does not have
any trainable parameters. Since the decoder is
trained to predict using x̂ instead of y, it is inherently robust to changes in the distribution of y.

Given a generative model of the channel conditional density using Gaussian mixtures, we can estimate
the plug-in Bayes posterior distribution of x given y, Pθc(x |y) (ref. Eq. (27)). From this, we can
find the MAP estimate of x given y as

X̂map(y) = argmax
x∈X

Pθc(x |y) = argmax
x∈X

logPθc(y |x) + log p(x). (11)

The adapted decoder based on this input transformation, referred to as the MAP symbol estimation
(SE) layer, is defined as

D̂θd(y) := Dθd(X̂map(y)) = Dθd ◦ X̂map(y), (12)

and illustrated in Fig. 3. Whenever the MDN model is adapted to changes in the channel distribution,
resulting in a new MDN with parameters θ̂c, the MAP SE layer is also updated using θ̂c. This input
transformation shields the decoder from changes to the distribution of the channel output y.

3For this generative model, it is easy to see that the class-conditional density is equal to the channel-
conditional density, i.e., P (y | s) = P (y |Eθe(1s)), ∀s. Hence, by adapting the MDN, we are effectively
also adapting the class-conditional density of the decoder’s input.
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Since the MAP SE layer is also included in the autoencoder during training, the non-differentiable
argmax function presents an obstacle to training the autoencoder using backpropagation. We address
this by using a temperature-scaled softmax approximation to the argmax, which is differentiable and
provides a close approximation for small temperature values. This approximation is used only during
training, whereas the exact argmax is used during inference. Details on this approximation, and a
modified autoencoder training algorithm with temperature annealing are discussed in Appendix C.5.

Comments. The proposed input transformation methods at the decoder have some similarities to
equalization methods used in communication receivers (Goldsmith, 2005). However, our problem
setting considers a memoryless channel, and does not deal with intersymbol interference (ISI), which
is the main focus of equalization methods. A key advantage of the proposed adaptation is that it is
very computationally efficient to implement at the receiver of a communication system. A discussion
of the computational complexity of the proposed methods is given in Appendix C.4.

5 EXPERIMENTAL EVALUATION

We implemented the MDN, communication autoencoder, and the adaptation methods in Python using
TensorFlow (Abadi et al., 2015) and TensorFlow Probability. We used the following setting in our
experiments. The size of the message setmwas fixed to 16, corresponding to 4 bits. The dimension of
the encoding (output of the encoder) d was set to 2, and the number of mixture components k was set
to 5. More details on the experimental setup, neural network architecture, and the hyper-parameters
are given in Appendix D.1. The generative adaptation objective (7) is used for the experiments in
§ 5.1, where the MDN is adapted in isolation. The discriminative adaptation objective (8) is used for
the experiments in § 5.2 and § 5.3, where the MDN is adapted as part of the autoencoder.

5.1 MDN ADAPTATION ON SIMULATED CHANNELS

We evaluate the proposed adaptation method for an MDN (§ 3) on simulated channel variations
based on models commonly used for wireless communication. Specifically, we use the following
channel models: i) additive white Gaussian noise (AWGN), ii) Ricean fading, and iii) Uniform or flat
fading (Goldsmith, 2005). Details on these channel models and calculation of the their signal-to-noise
ratio (SNR) are provided in Appendix E. In each case, the MDN is first trained on a large dataset
simulated from a particular type of channel model (e.g., AWGN), referred to as the source channel.
The trained MDN is then adapted using a small dataset from a different type of channel model
(e.g., Ricean fading), referred to as the target channel. We used a standard constellation corresponding
to quadrature amplitude modulation of 16 symbols, referred to as 16-QAM (Goldsmith, 2005), as
inputs to the channel. A training set of 25000 samples from the source channel is used to train the
MDN. The size of the adaptation dataset from the target channel is varied over a few different values –
5, 10, 15, and 20 samples per symbol, corresponding to target datasets of size 80, 160, 240, and 320.

Table 1: Log-likelihood of the MDN adaptation methods on simulated channel variations
Source
channel

Target
channel

#Target
samples

Proposed Transfer Transfer-last-layer

median 95% CI median 95% CI median 95% CI

AWGN Uniform fading

80 -0.49 (-3.89, 0.45) -6.97 (-17.92, -1.72) -2.09 (-6.50, -0.21)
160 -0.43 (-2.32, 0.48) -1.65 (-4.41, -0.14) -0.79 (-1.90, 0.13)
240 -0.58 (-1.94, 0.52) -0.74 (-2.07, 0.25) -0.35 (-1.32, 0.51)
320 -0.22 (-2.27, 0.63) -0.40 (-1.35, 0.31) -0.19 (-1.16, 0.54)

AWGN Ricean fading

80 1.17 (0.68, 1.33) -1.78 (-6.88, 0.22) -0.64 (-6.86, 0.96)
160 1.26 (0.51, 1.39) 0.37 (-1.10, 0.88) 0.55 (-0.71, 1.22)
240 1.31 (-0.09, 1.39) 0.91 (0.28, 1.17) 1.00 (0.42, 1.29)
320 1.27 (0.70, 1.41) 1.07 (0.73, 1.22) 1.14 (0.86, 1.32)

Ricean fading Uniform fading

80 -0.53 (-3.77, 0.49) -11.48 (-26.06, -3.15) -5.77 (-16.20, -2.27)
160 -0.10 (-3.68, 0.74) -2.91 (-5.48, -0.91) -1.45 (-3.72, 0.12)
240 -0.59 (-5.44, 0.68) -1.24 (-2.21, -0.22) -0.71 (-1.43, 0.21)
320 -0.41 (-3.57, 0.68) -0.43 (-1.51, 0.21) -0.23 (-1.15, 0.35)

Baseline Methods. We evaluate the following two baseline methods for adapting the MDN. 1)
A new MDN is initialized using the weights of the MDN trained on the source dataset, and it is
adapted using the target dataset. 2) Same as baseline 1, but only the weights of the final layer are
adapted (fine-tuned) using the target dataset. The above methods are referred to as transfer and
transfer-last-layer respectively. We used the Adam optimization method (Kingma & Ba, 2015) for
200 epochs, with a batch size of 10 or 0.01 times the target dataset size, whichever is larger. Table 2
compares the number of parameters being optimized by the proposed and baseline MDN adaptation
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methods for the architecture in Table 4. We observe that the number of parameters optimized by the
proposed method is orders of magnitude smaller.

Results and Inference. Since the MDN is a generative model, we evaluate the conditional log-
likelihood (CLL) of the adapted Gaussian mixture on an unseen test set of 25000 samples from the
target channel. Table 1 compares the median and 95% confidence interval (CI) of the CLL for three
(source, target) channel pairs. For each pair, the methods are run on 50 randomly generated training,
adaptation, and test datasets. The training dataset is sampled from the source channel, while the
adaptation and test datasets are sampled from the target channel. The SNR of the source and target
channels are independently and randomly selected from the range 10 dB to 20 dB for each trial. We
observe that the proposed method has a higher median CLL in a majority of the cases (particularly
for low sample sizes), and has comparable median CLL for higher sample sizes. We also observe that
the baseline methods have a more negatively-skewed CLL at the smaller sample sizes, suggesting
that they often found poor adaptation solutions.

Table 2: Number of parameters being optimized by the
MDN adaptation methods.

Adaptation
method # parameters # parameters

(specific)

Transfer nh (nh + d+ 2)
+ k (2 d+ 1) (nh + 1)

12925

Transfer-last-layer k (2 d+ 1) (nh + 1) 2525
Proposed k (d2 + 2 d+ 2) 50

We performed additional experiments where the
source and target channel distributions are Gaus-
sian mixtures with different parameters that are
randomly sampled (in a controlled way). We
also evaluated the performance of the methods
in the special cases where i) the source and tar-
get distributions are the same, and ii) where the
number of components in the two mixtures is
mis-matched. These results in Table 5 in Ap-
pendix D support the strong adaptation performance of the proposed method.

5.2 AUTOENCODER ADAPTATION ON SIMULATED CHANNELS

(a) AWGN to Ricean fading. (b) AWGN to Uniform fading. (c) Ricean fading to Uniform fading.
Figure 4: Results of affine transformation based adaptation on simulated channels.

(a) AWGN to Ricean fading. (b) AWGN to Uniform fading. (c) Ricean fading to Uniform fading.
Figure 5: Results of MAP SE based adaptation on simulated channels.

We evaluate the proposed decoder adaptation methods on different pairs of simulated source and
target channel distributions. The setup for this experiment for adapting from a source channel A
to a target channel B is as follows. The autoencoder is initially trained using data from the source
channel A at an SNR of 14 dB. Details of how the SNR is related to the distribution parameters of
the simulated channels is discussed in Appendix E. The MDN and the decoder are adapted using a
small dataset from the target channel B for different fixed SNRs varied over 8 dB to 20 dB in steps of
2 dB. For each SNR, the adaptation is repeated over 10 randomly-sampled datasets from the target
channel, and the average block error rate (BLER) values are calculated on a large held-out test dataset
(specific to each SNR). The size of training dataset (from channel A) and test dataset (from channel
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B) are both set to 20, 000 samples per symbol, with 16 symbols. The size of the adaptation dataset
from the target channel B is varied over 20, 40, and 60 samples per symbol.

The results of this experiment are given in Figs. 4 and 5 for three pairs of source and target channels.
Figure 4 corresponds to the adaptation method of § 4.1 referred to as Affine, and Figure 5 corresponds
to the adaptation method of § 4.2 referred to as MAP SE. The plots show the BLER vs. SNR curve,
with average BLER on the y-axis (log-scaled) and SNR on the x-axis. The performance of a standard
16-QAM decoder (Haykin, 1988), and an autoencoder trained on the source channel without any
adaptation (referred to as no_adapt) are included as baselines. The number of samples per symbol
from the target channel used by the proposed methods is shown as a suffix to the method name.
In Appendix D.3, we compare the proposed adaptation methods to the best-case performance of a
fully-retrained autoencoder.

Observations and Takeaways. 1) Both the adaptation methods significantly decrease the BLER for
the cases AWGN to Uniform fading and Ricean fading to Uniform fading. 2) For the case of AWGN
to Ricean fading, the adaptation methods perform at the same level or slightly worse compared to the
baselines. We think this is because the distribution of the two domains are not very different. 3) In
general, the BLER decreases with increasing number of the target domain samples. 4) Between the
two adaptation methods, MAP SE generally outperforms than the Affine method (see Appendix D.4).

5.3 AUTOENCODER ADAPTATION ON REAL FPGA TRACES
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(b) MAP SE
Figure 6: Results of adaptation on the real FPGA traces.

We evaluate the performance
of the adaptation methods
on real over-the-air wireless
experiments. We use a recent
high-performance mmWave
testbed (Lacruz et al., 2021),
featuring a high-end FPGA
board with 2 GHz bandwidth
per-channel and 60 GHz
SIVERS antennas (SIVER-
SIMA, 2020). We train the
MDN with a standard 16-QAM
constellation using 96,000
samples. We introduce distribution changes via IQ imbalance based distortions to the symbol
constellation, and gradually increase the level of imbalance to the system 4. More details on the
experimental setup and the source and target domains are given in Appendix D.2. We evaluate the
performance of the proposed adaptation for 20, 35 and 50 samples per symbol. The BLER of the
proposed adaptation methods and the baseline methods (16-QAM and no adaptation) is shown as a
function of the IQ imbalance in Fig. 6. The proposed methods (both Affine and MAP SE) show an
order of magnitude decrease in BLER compared to the baselines when the IQ imbalance is over 25%.

6 CONCLUSIONS
In this paper we proposed a fast and light-weight method for adapting a Gaussian MDN with very
limited number of samples from the target distribution. We applied the MDN adaptation to an
autoencoder-based e2e communication system, specifically by transforming the inputs to the decoder
such that their class-conditional distributions are close to that of the source domain. This allows
for fast adaptation of both the MDN channel and the autoencoder without the need for expensive
data collection and retraining. We demonstrated the effectiveness of the proposed methods through
extensive experiments on both simulated channels and a real mmWave FPGA testbed.
Limitations & Future Work. The proposed adaptation for a Gaussian MDN is primarily targeted
for low-dimensional problems such as the wireless channel. It can be challenging to apply on
high-dimensional input domains with structure. Extensions of the proposed work to deep generative
models based on normalizing flows (Dinh et al., 2017; Kingma & Dhariwal, 2018; Weng, 2018) is an
interesting direction, which would be more suitable for high-dimensional inputs. In this work, we do
not adapt the encoder network, i.e., the autoencoder constellation is not adapted to changes in the
channel distribution. Adapting the encoder, decoder, and channel networks jointly would allow for
more flexibility, but would likely be slower and require more data from the target distribution.

4IQ imbalance is a common issue in RF communication that introduces distortions to the final constellation.
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APPENDIX

Table 3: Commonly used notations and definitions

Notation Description

s ∈ S := {1, · · · ,m} Input message or class label. Usually m = 2b, where b is the number of bits.
1s,m or simply 1s, s ∈ S One-hot-coded vector of a message s, with 1 at position s and zeros elsewhere.
x ∈ X ⊂ Rd with |X | = m Encoded representation or symbol vector corresponding to an input message.
y ∈ Rd Channel output that is the feature vector to be classified by the decoder.
K ∈ {1, · · · , k} Categorical random variable denoting the mixture component of origin.
Eθe(1s) Encoder NN with parameters θe mapping a one-hot-coded message to a symbol vector in Rd.
Dθd(y) = [Pθd(1 |y), · · · , Pθd(m |y)]T Decoder NN with parameters θd mapping the channel output into probabilities over the message set.
Ŝ(y) = argmaxs∈S Pθd(s |y) MAP prediction of the input message by the decoder.
Pθc(y |x) Conditional density (generative) model of the channel with parameters θc.
φ(x) = Mθc(x) Mixture density network that predicts the parameters of a Gaussian mixture.
y = hθc(x, z) Transfer or sampling function corresponding to the channel conditional density.
z ∈ R` Random vector independent of x that captures the stochasticity of the channel.
fθ(1s) = Dθd(hθc(Eθe(1s), z)) Input-output mapping of the autoencoder with combined parameter vector θT = [θTe ,θ

T
c ,θ

T
d ].

ψT = [ψT1 , · · · ,ψTk ] Affine transformation parameters per component used to adapt the MDN.
gxi and g−1xi , i ∈ [k],x ∈ X Affine and inverse-affine transformations between the component densities of the Gaussian mixtures.
DKL(p, q) Kullback-Leibler divergence between the distributions p and q.
N(· |µ,Σ) Multivariate Gaussian density with mean vector µ and covariance matrix Σ.
Cat(p1, · · · , pk) Categorical distribution with pi ≥ 0 and

∑
i pi = 1.

1(c) Indicator function mapping a predicate c to 1 if true and 0 if false.
‖x‖p `p norm of a vector x.

The appendices are organized as follows:

• Appendix A provides background on end-to-end learning of a communication autoencoder, MDN-
based generative modeling, and domain adaptation.

• Appendix B provides details on the training and sampling (transfer) function of MDNs.
• Appendix C provides additional details on the proposed method that were omitted from the main

paper. This includes:
– Appendix C.1 discusses the feature and parameter transformations between multivariate Gaus-

sians.
– Appendix C.2 derives the KL divergence between the source and target Gaussian mixtures.
– Appendix C.3 discusses the validation metric used for setting the hyper-parameter λ.
– Appendix C.4 discusses the computational complexity of the proposed methods.
– Appendix C.5 provides details on training the MAP symbol estimation autoencoder.

• Appendix D provides additional experimental results, including ablation studies of the proposed
method.

• Appendix E provides details on the simulated channel models that were used in our experiments.

A BACKGROUND

In this section, we provide a background on the following topics: 1) components of an end-to-end
autoencoder-based communication system, 2) generative modeling using mixture density networks,
3) loss function and training algorithm of the autoencoder, and 4) a primer on domain adaptation.

A.1 AUTOENCODER-BASED END-TO-END LEARNING
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Figure 7: Representation of an end-to-end autoencoder-based communication system with a generative channel
model.
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Consider a single-input, single-output (SISO) wireless communication system as shown in Fig. 7,
where the transmitter encodes and transmits messages from the set S = {1, 2, · · · ,m} to the receiver
through d ≥ 2 discrete uses of the wireless channel. The receiver attempts to accurately decode
the transmitted message from the distorted and noisy channel output y. We discuss the end-to-end
learning of such a system using the concept of autoencoders (O’Shea & Hoydis, 2017; Dörner et al.,
2018).

Transmitter / Encoder Neural Network. The transmitter or encoder part of the autoencoder is
modeled as a multi-layer, feed-forward neural network (NN) that takes as input the one-hot-coded
representation 1s of a message s ∈ S , and produces an encoded symbol vector x = Eθe(1s) ∈ Rd.
Here, θe is the parameter vector (weights and biases) of the encoder NN and d is the encoding
dimension. Due to hardware constraints present at the transmitter, a normalization layer is used as the
final layer of the encoder network in order to constrain the average power and/or the amplitude of the
symbol vectors. The average power constraint is defined as E[‖x‖22] = ES [‖Eθe(1S)‖22] ≤ c, where
the expectation is over the prior distribution of the input messages, and c is typically set to 1. The
amplitude constraint is defined as |xi| ≤ 1, ∀i ∈ [d]. The size of the message set is usually chosen to
be a power of 2, i.e., m = 2b representing b bits of information. Following (O’Shea & Hoydis, 2017),
the communication rate of this system is the number of bits transmitted per channel use, which in this
case is R = b / d. An autoencoder transmitting b bits over d uses of the channel is referred to as a
(d, b) autoencoder. For example, a (2, 4) autoencoder uses a message set of size 16 and an encoding
dimension of 2, with a communication rate R = 2 bits/channel use.

Receiver / Decoder Neural Network. The receiver or decoder component is also a multilayer,
feedforward NN that takes the channel output y ∈ Rd as its input and outputs a probability distri-
bution over the m messages. The input-output mapping of the decoder NN can be expressed as
Dθd(y) := [Pθd(1 |y), · · · , Pθd(m |y)]T , where θd is the parameter vector of the decoder NN. The
softmax activation function is used at the final layer to ensure that the outputs are valid probabilities.
The message corresponding to the highest output probability is predicted as the decoded message,
i.e., Ŝ(y) = argmaxs∈S Pθd(s |y). The decoder NN is essentially a discriminative classifier that
learns to accurately categorize the received (distorted) symbol vector into one of the m message
classes. This is in contrast to conventional autoencoders, where the decoder learns to accurately
reconstruct a high-dimensional tensor input from its low-dimensional representation learned by the
encoder. The mean-squared and median-absolute error are commonly used end-to-end performance
metrics for conventional autoencoders. In the case of communication autoencoders, the symbol or
block error rate (BLER), defined as ES,Y[1(Ŝ(Y) 6= S)], is used as the end-to-end performance
metric.

Channel Model. As discussed in § 1, the wireless channel can be represented by a conditional
probability density of the channel output given its input P (y |x). The channel can be equivalently
characterized by a stochastic transfer function y = h(x, z) that transforms the encoded symbol vec-
tor into the channel output, where z captures the stochastic components of the channel (e.g., random
noise, phase offsets). For example, an additive white Gaussian noise (AWGN) channel is represented
by y = h(x, z) = x + z, with z ∼ N (· |0, σ2 Id) and P (y |x) = N (y |x, σ2 Id). For realistic
wireless channels, the transfer function and conditional probability density are usually unknown
and hard to approximate well with standard mathematical models. Recently, a number of works
have applied generative models such as conditional generative adversarial networks (GANs) (O’Shea
et al., 2019; Ye et al., 2018), MDNs (García Martí et al., 2020), and conditional variational autoen-
coders (VAEs) (Xia et al., 2020) for modeling the wireless channel. To model a wireless channel,
generative methods learn a parametric model Pθc(y |x) (possibly a neural network) that closely
approximates the true conditional density of the channel from a dataset of channel input, output
observations. Learning a generative model of the channel comes with important advantages. 1)
Once the parameters of the channel model are learned from data, the model can be used to generate
any number of representative samples from the channel distribution. 2) A channel model with a
differentiable transfer function makes it possible to backpropagate gradients of the autoencoder loss
function through the channel and train the autoencoder using stochastic gradient descent (SGD)-based
optimization. 3) It allows for continuous adaptation of the generative channel model to variations in
the channel conditions, and thereby maintain a low BLER of the autoencoder.
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A.2 GENERATIVE CHANNEL MODEL USING A MIXTURE DENSITY NETWORK

In this work, we use an MDN (Bishop, 1994; 2007) with Gaussian components to model the
conditional density of the channel output given its input. MDNs can model complex conditional
densities by combining a (feed-forward) neural network with a standard parametric mixture model
(e.g., mixture of Gaussians). The MDN learns to predict the parameters of the mixture model φ(x)
as a function of the channel input x. This can be expressed as φ(x) = Mθc(x) , where θc is
the parameter vector (weights and biases) of the neural network. The parameters of the mixture
model defined by the MDN are a concatenation of the parameters from the k density components,
i.e., φ(x)T = [φ1(x)T , · · · ,φk(x)T ], where φi(x) is the parameter vector of component i. Fo-
cusing on a Gaussian mixture, the channel conditional density modeled by the MDN is given by

Pθc(y |x) =

k∑
i=1

Pθc(K = i |x)Pθc(y |x,K = i) =

k∑
i=1

πi(x)N(y |µi(x),σ2
i (x)), (13)

where µi(x) ∈ Rd is the mean vector, σ2
i (x) ∈ Rd+ is the variance vector, and πi(x) ∈ [0, 1] is

the weight (prior probability) of component i. Also, K is the latent random variable denoting the
mixture component of origin. We have assumed that the Gaussian components have a diagonal
covariance matrix, with σ2

i (x) being the diagonal elements 5. The weights of the mixture are
parameterized using the softmax function as πi(x) = eαi(x) /

∑k
j=1 e

αj(x), ∀i in order to satisfy
the probability constraint. The MDN simply predicts the un-normalized weights αi(x) ∈ R (also
known as the prior logits). For a Gaussian MDN, the parameter vector of component i is defined as
φi(x)T = [αi(x),µi(x)T ,σ2

i (x)T ], and its output parameter vector φ(x) has dimension k (2d+ 1).
Details on the conditional log-likelihood (CLL) training objective and the transfer function of the
MDN, including a differentiable approximation of the transfer function, are discussed in Appendix B.

A.3 LOSS FUNCTION AND TRAINING OF THE AUTOENCODER

In this section, we provide a formal discussion of the end-to-end training of the autoencoder. First,
let us define the input-output mapping of the autoencoder as fθ(1s) = Dθd(hθc(Eθe(1s), z)) =
(Dθd ◦ hθc(·, z) ◦Eθe)(1s), where θT = [θTe ,θ

T
c ,θ

T
d ] is the combined vector of parameters from

the encoder, channel, and decoder. Given an input message s ∈ S , the autoencoder maps the one-hot-
coded representation of s into an output probability vector over the message set. Note that, while the
encoder and decoder neural networks are deterministic, a forward pass through the autoencoder is
stochastic due to the channel transfer function hθc . The learning objective of the autoencoder is to
accurately recover the input message at the decoder with a high probability. The cross-entropy (CE)
loss, which is commonly used for training classifiers, is also suitable for end-to-end training of the
autoencoder. For an input swith encoded representation x = Eθe(1s), channel output y = hθc(x, z),
and decoded output Dθd(y) = [Pθd(1 |y), · · · , Pθd(m |y)]T , the CE loss is given by

`CE(1s, fθ(1s)) = −1Ts log fθ(1s) = −1Ts log Dθd(hθc(Eθe(1s), z))

= − logPθd(s |hθc(Eθe(1s), z)), (14)

which is always non-negative and takes the minimum value 0 when the correct message is decoded
with probability 1. The autoencoder aims to minimize the following expected CE loss over the input
message set and the channel output:

E[`CE(1S , fθ(1S))] = −
m∑
s=1

p(s)

∫
Rd

Pθc(y |Eθe(1s)) logPθd(s |y) dy. (15)

Here p(s), ∀s ∈ S is the prior probability of the input messages, which is usually assumed to be
uniform in the absence of prior knowledge. In practice, the autoencoder minimizes an empirical
estimate of the expected CE loss function by generating a large set of samples from the channel
conditional density given each message. Let Y(s) = {y(s)

n = hθc(Eθe(1s), zn), n = 1, · · · , N}
denote a set of independent and identically distributed (iid) samples from Pθc(y |Eθe(1s)), the

5The diagonal covariance assumption does not imply conditional independence of y as long as k > 1.
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channel conditional density given message s. Also, let Y = ∪sY(s) denote the combined set of
samples. The empirical expectation of the autoencoder CE loss (15) is then given by

Lauto(θ ;Y) = −
m∑
s=1

p(s)
1

N

N∑
n=1

logPθd(s |hθc(Eθe(1s), zn)). (16)

It is clear from the above equation that the channel transfer function hθc should be differentiable in
order to be able to backpropagate gradients through the channel to the encoder network. The transfer
function defining sample generation for a Gaussian MDN channel is discussed in Appendix B.

The training algorithm for jointly learning the autoencoder and channel model (based on (García Martí
et al., 2020)) is given in Algorithm 1. It is an alternating (cyclic) optimization of the channel
parameters and the autoencoder (encoder and decoder) parameters. The reason this type of alternating
optimization is required is because the empirical expectation of the CE loss Eq. (16) is valid only
when the channel conditional density (i.e., θc) is fixed. The training algorithm can be summarized
as follows. First, the channel model is trained for Nce epochs using data sampled from the channel
with an initial encoder constellation (e.g., M-QAM). With the channel model parameters fixed, the
parameters of the encoder and decoder networks are optimized for one epoch of mini-batch SGD
updates (using any adaptive learning rate algorithm e.g., Adam (Kingma & Ba, 2015)). Since the
channel model is no longer optimal for the updated encoder constellation, it is retrained for Nce
epochs using data sampled from the channel with the updated constellation. This alternate training of
the encoder/decoder and the channel networks is repeated for Nae epochs or until convergence.

Algorithm 1 End-to-end training of the autoencoder with a generative channel model

1: Inputs: Message size m; Encoding dimension d; Initial constellation {E0(1s), ∀s ∈ S};
Number of optimization epochs for the autoencoder Nae and channel Nce.

2: Output: Trained network parameters θe,θc,θd.
3: Initialize the encoder, channel, and decoder network parameters.
4: Sample training data D(0)

c from the channel using the initial constellation.
5: Train the channel model for Nce epochs to minimize Lch(θc ;D(0)

c ).
6: for epoch t = 1, · · · , Nae:
7: Freeze the channel model parameters θc.
8: Perform a round of mini-batch SGD updates of θe and θd with respect to Lauto(θ ;Y).
9: Sample training dataD(t)

c from the channel with the updated constellation {Eθe(1s), ∀s ∈ S}.

10: Train the channel model for Nce epochs to minimize Lch(θc ;D(t)
c ).

11: Return θe,θc,θd.

Finally, we observe some interesting nuances of the communication autoencoder learning task that is
not common to other domains such as images. 1) The size of the input space is finite, equal to the
number of distinct messages m. Because of the stochastic nature of the channel transfer function,
the same input message results in a different autoencoder output each time. 2) There is theoretically
no limit on the number of samples that can be generated for training and validating the autoencoder.
These two factors make the autoencoder learning less susceptible to overfitting, that is a common
pitfall with neural network training.

A.4 A PRIMER ON DOMAIN ADAPTATION

We provide a brief review of domain adaptation (DA) and discuss the key differences of our problem
setting from that of standard DA. In the traditional learning setting, training and test data are assumed
to be sampled independently from the same distribution P (x, y), where x and y are the input vector
and target respectively 6. In many real world settings, it can be hard or impractical to collect a large
labeled dataset D`t for a target domain where the machine learning model (e.g., a DNN classifier)
is to be deployed. On the other hand, it is common to have access to a large unlabeled dataset Dut

6The notation used in this section is different from the rest of the paper, but consistent with the statistical
learning literature.
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from the target domain, and a large labeled dataset D`s from a different but related source domain 7.
Both D`s and Dut are much larger than D`t , and in most cases there is no labeled data from the
target domain (referred to as unsupervised DA). For the target domain, the unlabeled dataset (and
labeled dataset if any) are sampled from an unknown target distribution, i.e., x ∈ Dut ∼ Pt(x) and
(x, y) ∈ D`t ∼ Pt(x, y) . For the source domain, the labeled dataset is sampled from an unknown
source distribution, i.e., (x, y) ∈ D`s ∼ Ps(x, y) . The goal of DA is to leverage the available labeled
and unlabeled datasets from the two domains to learn a predictor, denoted by the parametric function
ŷ = fθ(x), such that the following risk function w.r.t the target distribution is minimized:

Rt[fθ] = E(x,y)∼Pt
[`(fθ(x), y)] =

∑
y

∫
x

Pt(x, y) `(fθ(x), y) dx,

where `(ŷ, y) is a loss function that penalizes the prediction ŷ for deviating from the true value y
(e.g., cross-entropy or hinge loss). In a similar way, we can define the risk function w.r.t the source
distribution Rs[fθ]. A number of seminal works in DA theory (Ben-David et al., 2006; Blitzer et al.,
2007; Ben-David et al., 2010) have studied this learning setting and provide bounds on Rt[fθ] in
terms of Rs[fθ] and the divergence between source and target domain distributions. Motivated by
this foundational theory, a number of recent works (Ganin & Lempitsky, 2015; Ganin et al., 2016;
Long et al., 2018; Saito et al., 2018; Zhao et al., 2019; Johansson et al., 2019) have proposed using
DNNs for adversarially learning a shared representation across the source and target domains such
that a predictor using this representation and trained using labeled data from only the source domain
also generalizes well to the target domain. An influential work in this line of DA is the domain
adversarial neural network (DANN) proposed by (Ganin & Lempitsky, 2015) and later by (Ganin
et al., 2016). The key idea behind the DANN approach is to adversarially train a label predictor NN
and a domain discriminator NN in order to learn a feature representation for which i) the source and
target inputs are nearly indistinguishable to the domain discriminator, and ii) the label predictor has
good generalization performance on the source domain inputs.

Special Cases of DA. While the general DA problem addresses the scenario where Ps(x, y) and
Pt(x, y) are different, certain special cases of DA have also been explored. One such special case
is covariate shift (Sugiyama et al., 2007; Sugiyama & Kawanabe, 2012), where only the marginal
distribution of the inputs changes (i.e., Pt(x) 6= Ps(x)), but the conditional distribution of the target
given the input does not change (i.e., Pt(y |x) ≈ Ps(y |x)). Another special case is the so-called
label shift or class-prior mismatch (Saerens et al., 2002; Du Plessis & Sugiyama, 2014), where only
the marginal distribution of the label changes (i.e., Pt(y) 6= Ps(y)), but the conditional distribution
of the input given the target does not change (i.e., Pt(x | y) ≈ Ps(x | y)). Prior works have proposed
targeted theory and methods for these special cases of DA.

B MDN TRAINING AND SAMPLE GENERATION

In this section, we provide details on the MDN training, followed by a discussion on the sampling
function of an MDN, and how to make the sampling function differentiable to enable backpropagation-
based training of the autoencoder. Given a dataset of input-output pairs sampled from the channel
Dc = {(xn,yn), n = 1, · · · , Nc}, the MDN is trained to minimize the negative conditional log-
likelihood (CLL) of the data given by

Lch(θc ;Dc) = − 1

Nc

Nc∑
n=1

logPθc(yn |xn). (17)

With a large Nc, the MDN can learn a sufficiently-complex parametric density model of the channel.
The negative CLL objective can be interpreted as the sample estimate of the Kullback-Leibler
divergence between the true (unknown) conditional density P (y |x) and the conditional density
modeled by the MDN Pθc(y |x). Therefore, minimizing the negative CLL finds the MDN parameters
θc that lead to a close approximation of the true conditional density. Standard SGD-based optimization
methods such as Adam (Kingma & Ba, 2015) can be applied to find the MDN parameters θc that
(locally) minimize the negative CLL.

After the MDN is trained, new simulated samples from the channel distribution can be generated
from the Gaussian mixture using the following stochastic sampling method:

7One could have multiple source domains in practice; we consider the single source domain setting.
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1. Randomly select a channel input x from the categorical prior distribution {p(x), x ∈ X}.
2. Randomly select a component K = i according to the mixture weights {π1(x), · · · , πk(x)}.
3. Randomly sample z from the standard d-dimensional Gaussian density z ∼ N(· |0, Id).
4. Generate the channel output as y = σ2

i (x)� z + µi(x).

Recall that � refers to the element-wise product of two vectors. The channel transfer or sampling
function for a Gaussian MDN can thus be expressed as

y = hθc(x, z) =

k∑
i=1

1(K = i) (σ2
i (x)� z + µi(x)), (18)

where K ∼ Cat(π1(x), · · · , πk(x)) and z ∼ N(· |0, Id). Note that this transfer function is not
differentiable w.r.t parameters πi(x) and the MDN weights predicting it, because of the indicator
function. As such, it is not directly suitable for SGD (backpropagation) based end-to-end training
of the autoencoder. We next propose a differentiable approximation of the MDN transfer function
based on the Gumbel softmax reparametrization (Jang et al., 2017), which is used in our autoencoder
implementation.

B.1 DIFFERENTIABLE MDN TRANSFER FUNCTION

Consider the transfer function of the MDN in Eq. (18). We would like to replace sampling from
the categorical mixture prior Cat(π1(x), · · · , πk(x)) with a differentiable function that closely
approximates it. We apply the Gumbel-Softmax reparametrization (Jang et al., 2017) which solves
this exact problem. First, recall that the component prior probabilities can be expressed in terms of
the prior logits as:

πi(x) =
eαi(x)∑k
j=1 e

αj(x)
, ∀i ∈ [k].

Consider k iid standard Gumbel random variables G1, · · · , Gk
iid∼ Gumbel(0, 1) . It can be shown

that, for any x ∈ X , the random variable
S(x) = argmax

i∈[k]
Gi + αi(x) (19)

follows the categorical distribution Cat(π1(x), · · · , πk(x)). This standard result is known as the
Gumbel-max transformation. While Eq. (19) can be directly used inside the indicator function in
Eq. (18), the argmax will still result in the transfer function being non-differentiable. Therefore, we
use the following temperature-scaled softmax function as a smooth approximation of the argmax

Ŝi(x ; τ) =
exp[(Gi + αi(x)) / τ ]∑k
j=1 exp[(Gj + αj(x)) / τ ]

, ∀i ∈ [k], (20)

where τ > 0 is a temperature constant. For small values of τ , the temperature-scaled softmax will
closely approximate the argmax, and the vector [Ŝ1(x ; τ), · · · , Ŝk(x ; τ)] will closely approximate
the one-hot vector [1(S(x) = 1), · · · ,1(S(x) = k)].

Applying this Gumbel softmax reparametrization in Eq. (18), we define a modified differentiable
transfer function for the Gaussian MDN as

y = ĥθc(x, z) =

k∑
i=1

Ŝi(x ; τ) (σ2
i (x)� z + µi(x)). (21)

With this transfer function, it is straightforward to compute gradients with respect to the prior logits
αi(x), ∀i. Another neat outcome of this approach is that the stochastic components (Gumbel random
variables Gi) are fully decoupled from the deterministic parameters αi(x) in the gradient calculations
with respect to Ŝi(x ; τ). In our experiments, we used this Gumbel-softmax based smooth transfer
function while training the autoencoder, but during prediction (inference), we use the exact argmax
based transfer function. We found τ = 0.01 to be a good choice for all the experiments.

C ADDITIONAL DETAILS ON THE PROPOSED METHOD

In this section we provide additional details on the proposed method that were omitted from the main
paper (sections 3 and 4).
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C.1 TRANSFORMATION BETWEEN MULTIVARIATE GAUSSIANS

We discuss the feature and parameter transformations between any two multivariate Gaussians. This
result was applied in § 3 to formulate the MDN adaptation. Consider first the standard transformation
from y ∼ N(· |µ,Σ) to ŷ ∼ N(· | µ̂, Σ̂) given by:

• Apply a whitening transformation z = D−1/2 UT (y − µ) such that z ∼ N(· |0, I).
• Transform z into the new Gaussian density using ŷ = Û D̂1/2 z + µ̂.

We have denoted the eigen-decomposition of the covariance matrices by Σ = UDUT and Σ̂ =

ÛD̂ÛT , where U and Û are the orthogonal eigenvector matrices, and D and D̂ are the diagonal
eigenvalue matrices. Combining the two steps, the overall transformation from y to ŷ is given by

ŷ = Û D̂1/2 D−1/2 UT (y − µ) + µ̂.

Suppose we define the matrix C = Û D̂1/2 D−1/2 UT , then it is easily verified that the covariance
matrices are related by Σ̂ = C Σ CT . In general, the mean vector and covariance matrix of any two
Gaussians can be related by the following parameter transformations:

µ̂ = Aµ + b and Σ̂ = C Σ CT ,

with parameters A ∈ Rd×d, b ∈ Rd, and C ∈ Rd×d. Substituting the above parameter transforma-
tions into the feature transformation, we get

ŷ = C (y − µ) + Aµ + b.

C.2 DIVERGENCE BETWEEN THE SOURCE AND TARGET GAUSSIAN MIXTURES

Referring to § 3.2, we provide a detailed derivation of the KLD between the source and target
Gaussian mixtures under the assumption of one-to-one association between the components.

D(Pθc , Pθ̂c
) = EPθc

[
log

Pθc(y,K |x)

P
θ̂c

(y,K |x)

]

=
∑
x∈X

p(x)
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∫
Rd

Pθc(y,K = i |x) log
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∫
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)
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=
∑
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p(x)
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+
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(
N
(
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i (x)
)
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(
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i (x)
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. (22)

The second term in the final expression involves the KLD between two Gaussian densities, which
(for general covariances) is given by

DKL

(
N(· |µ,Σ), N(· | µ̂, Σ̂)

)
=

1

2
log

det(Σ̂)

det(Σ)
+

1

2
tr(Σ̂−1 Σ)

+
1

2
(µ̂ − µ)T Σ̂−1 (µ̂ − µ) − d

2
.
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Applying this result to the KLD term in Eq. (22), which has diagonal covariances, we get

DKL

(
N
(
· |µi(x),σ2

i (x)
)
, N
(
· | µ̂i(x), σ̂2

i (x)
))

=
1

2

d∑
j=1

[
log c2ij +

1

c2ij
+

1

c2ij σ
2
ij(x)

(
aij µij(x) + bij − µij(x)

)2]− d

2
. (23)

The other term in Eq. (22) involving the KLD between the component prior probabilties can be
expressed as a function of the adaptation parameters [β1, γ1, · · · , βk, γk] as follows:

k∑
i=1

πi(x) log
πi(x)

π̂i(x)
=

k∑
i=1

eαi(x)

z(x)

[
log

eαi(x)

z(x)
− log

eβi αi(x)+ γi

ẑ(x)

]

= log(

k∑
i=1

eβi αi(x)+ γi) − log(

k∑
i=1

eαi(x)) +

k∑
i=1

eαi(x)

z(x)
(αi(x) − βi αi(x) − γi) , (24)

where z(x) =
∑k
j=1 e

αj(x) and ẑ(x) =
∑k
j=1 e

βj αj(x)+ γj are the normalization terms in the
softmax function. Substituting Eqs. (23) and (24) into the last step of Eq. (22) gives the KLD between
the source and target distributions as a function of the adaptation parameters ψ.

C.3 VALIDATION METRIC AND SELECTION OF λ

The choice of λ in the adaptation objective (Eqs. (7) and (8)) is crucial as it sets the amount of
regularization most suitable for the target domain distribution. We propose a validation metric for
selecting λ based on the CLL of the inverse-affine-transformed target dataset with respect to the
source mixture density. The reasoning is that, if the adaptation finds a solution ψ that is a good fit
for the target dataset, then the inverse feature transformations based on that solution should produce
a transformed target dataset that has a high CLL with respect to the source mixture density. The
validation metric is the negative CLL of the inverse-transformed target dataset, given by

Lval(ψ ;D(t)
c ) =

−1

N
(t)
c

N(t)
c∑

n=1

logPθc( g−1
x
(t)
n i

(t)
n

(y(t)
n ) | x(t)

n ). (25)

Here i(t)n is the best component assignment for the sample (x
(t)
n ,y

(t)
n ), given by

i(t)n = argmax
i∈[k]

P
θ̂c

(K = i |x(t)
n ,y(t)

n ). (26)

The above equation is simply the maximum-a-posteriori (MAP) rule applied to the component
posterior of the target Gaussian mixture defined as

P
θ̂c

(K = i |x,y) =
π̂i(x)N(y | µ̂i(x), σ̂2

i (x))∑k
j=1 π̂j(x)N(y | µ̂j(x), σ̂2

j (x))
, ∀i ∈ [k].

Note that the validation metric (25) is based on the source Gaussian mixture (with parameters θc),
but the MAP component assignment for each target domain sample Eq. (26) is based on the target
Gaussian mixture (with parameters θ̂c). The adaptation objective is minimized with λ varied over a
range of values, and in each case the adapted solution ψ is evaluated using the validation metric. The
pair of λ and ψ resulting in the smallest validation metric is chosen as the final adapted solution.

C.4 COMPLEXITY ANALYSIS

We provide an analysis of the computational complexity of the proposed adaptation methods.

MDN Adaptation.

The number of free parameters being optimized in the MDN adaptation objective (Eqs. 7 or 8) is
given by |ψ| = k (d2 + 2 d+ 2). This is much smaller than the number of parameters in a typical
MDN, even considering only the final fully-connected layer (see Table 2 for a comparison). Each step
of the BFGS optimization involves computing the objective function, its gradient, and an estimate
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of its inverse Hessian. The cost of one step of BFGS can thus be expressed as O(N
(t)
c k d2 |ψ|2).

Suppose BFGS runs for a maximum of T iterations and the optimization is repeated for L values of
λ, then the overall cost of adaptation is given by O(LT N

(t)
c k d2 |ψ|2). Note that the optimization

for different λ values can be easily solved in parallel.

Test-time adaptation at the decoder.

The computational cost of the proposed adaptation methods (for processing a single input) at the
decoder are only slightly different from each other. The affine transformation method of § 4.1
computes the posterior distribution Pθ̂c(x, i |y) over the set of symbols and components (of size
mk). Computation of each exponent factor in the posterior distribution requires O(d3) operations
for the full-covariance case, and O(d) operations for the diagonal covariance case. This corresponds
to calculation of the log of the Gaussian density. Therefore, computation of the maximum of the
posterior distribution requires O

(
km (kmd3)

)
= O

(
k2m2 d3

)
operations for the full-covariance

case (and similarly for the diagonal case).

The MAP symbol estimation method of § 4.2 computes the posterior distribution Pθ̂c(x |y) over
the set of symbols (of size m). Computation of each exponent factor in the posterior distribution
requires O(k d3) operations for the full covariance case, and O(k d) operations for the diagonal
covariance case. This corresponds to calculation of the log of the Gaussian mixture density with
k components. Therefore, computation of the maximum of this posterior distribution requires
O
(
m (mk d3)

)
= O

(
km2 d3

)
operations for the full-covariance case.

Therefore, the computational complexity of the affine transformation method is larger than that of the
MAP SE method by a factor of k. Usually k is not large. However, the computational cost of both
methods can be relatively high for large modulation orders (e.g., m = 256 or 1024 symbols).

A key advantage of the proposed adaptation is that it is very computationally efficient to implement at
the receiver end of a communication system. Typically, d is very small for communication problems,
and d = 2 coincides with standard modulation techniques (e.g., QPSK). The number of symbols or
messages m can vary from 4 to 1024 in powers of 2. The number mixture components k can be any
positive integer, but is usually not more than a few tens to keep the size of the MDN practical.

C.5 MAP SYMBOL ESTIMATION AUTOENCODER

In this section, we discuss some details of the adapted decoder with MAP symbol estimation that
were not addressed in § 4.2. The MAP SE method for adapting the decoder introduced the following
transformation layer prior to the decoder in order to estimate the channel input x from the channel
output y:

X̂map(y) = argmax
x∈X

Pθc(x |y) = argmax
x∈X

logPθc(y |x) + log p(x).

As discussed in § 4.2, the presence of the non-differentiable argmax poses a problem for
backpropagation-based training of the autoencoder. We propose to address this using a temperature-
scaled softmax approximation to the argmax, similar to the method discussed in Appendix B.1.

Consider the posterior distribution of the channel input given the channel output

Pθc(x |y) =
p(x)Pθc(y |x)∑

x′∈X p(x′)Pθc(y |x′)
=

exp(qθc(x,y))∑
x′∈X exp(qθc(x′,y))

, (27)

where qθc(x,y) = logPθc(y |x) + log p(x) is defined for convenience. Let us introduce a
temperature constant τ > 0 in the softmax function, and define the temperature-scaled posterior
distribution

P
(τ)
θc

(x |y) =
exp(qθc(x,y) / τ)∑

x′∈X exp(qθc(x′,y) / τ)
. (28)

For large τ , the above posterior approaches a uniform distribution. For small τ it approaches a
distribution with probability 1 for x corresponding to the maximum exponent, and 0s elsewhere.
Based on this observation, we define the following smooth approximation of the MAP SE layer

X̂soft(y) =
∑
x∈X

P
(τ)
θc

(x |y) x (29)
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This can be interpreted as the conditional expectation of x given y with respect to the temperature-
scaled posterior distribution (28). We can show that this smooth MAP estimate approaches the true
MAP estimate in the limit as τ approaches 0, i.e.,

lim
τ→0

∑
x∈X

P
(τ)
θc

(x |y) x = argmax
x∈X

Pθc(x |y).

Training Based on Temperature Annealing.

The MAP symbol estimation autoencoder uses the smooth MAP estimate (29) during training, and the
exact MAP estimate during inference. In order to have good convergence and to prevent the training
from getting stuck at poor solutions, we do not fix the temperature τ to a small value throughout.
Instead, we decrease τ according to a temperature annealing schedule during training. Specifically, τ
is initialized to a reasonably large value (e.g., τi = 1), and it is decreased by an exponential factor
η ∈ (0, 1) at the end of every r ≥ 1 epochs. The solution (autoencoder parameters) at the end of
r epochs for the current temperature is used to initialize the training at the next lower temperature.
This process is continued until a small final temperature τf is reached. In our experiments, we set the
constants related to temperature annealing as follows: τi = 1, τf = 0.05, r = 10, η = 0.7169. This
choice of η ensures that there are 10 temperature steps including the initial and final values.

D ADDITIONAL EXPERIMENTS

D.1 EXPERIMENTAL SETUP

Table 4: Architecture of the Encoder, MDN channel,
and Decoder neural networks. FC - fully connected
(dense) layer; ⊕ denotes layer concatenation; ELU -
exponential linear unit; m - number of messages; d -
encoding dimension; k - number of mixture components;
nh - size of a hidden layer.

Network Layer Activation

Encoder
FC, m× nh ReLU
FC, nh × d Linear
Normalization (avg. power) None

MDN
FC, d× nh ReLU
FC, nh × nh ReLU
FC, nh × kd (means)
⊕ FC, nh × kd (variances)
⊕ FC, nh × k (prior logits)

Linear
ELU + 1 + ε
Linear

Decoder FC, d× nh ReLU
FC, nh ×m Softmax

We implemented the mixture density network
and communication autoencoder models
using TensorFlow (Abadi et al., 2015)
and TensorFlow Probability. We used the
BFGS optimizer implementation available
in TensorFlow Probability. The code base
for our work can be found at https:
//anonymous.4open.science/r/
domain_adaptation-7C0D/. All the
experiments were run on a Macbook Pro laptop
with 16 GB memory and 8 CPU cores. Table 4
summarizes the architecture of the encoder,
MDN (channel model), and decoder neural
networks. Note that the output layer of the
MDN is a concatenation (denoted by⊕) of three
fully-connected layers predicting the means,
variances, and mixing prior logit parameters of
the Gaussian mixture. The size of the hidden
layers nh was set to 100.

The parameters ψ of the proposed adaptation method are initialized as follows for each component i:

Ai = Id, bi = 0, Ci = Id, βi = 1, γi = 0,

where Id is the d× d identity matrix. This initialization ensures that the target Gaussian mixture is
always initialized with the source Gaussian mixture. The regularization constant λ in the adaptation
objective was varied over 16 equally-spaced values on the log-scale (base 10) with range 10−5 to 100.
The λ value and ψ corresponding to the smallest validation metric are selected as the final solution.

We used the Adam optimizer (Kingma & Ba, 2015) with a fixed learning rate of 0.001, batch size of
128, and 100 epochs for training the MDN. For adaptation of the MDN using the baseline methods
transfer and transfer-last-layer, Adam is used with the same learning rate for 200 epochs. The batch
size is set as b = max{10, 0.1N

(t)
c }, where N (t)

c is number of adaptation samples in the target
domain. For training the autoencoder using Algorithm 1, we found that stochastic gradient descent
(SGD) with Nesterov momentum (constant 0.9), and an exponential learning rate schedule between
0.1 and 0.005 works better than Adam.
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D.2 DETAILS ON THE FPGA EXPERIMENT

Referring to the experiment in § 5.3, for the real and over-the-air traces we used the platform from
Lacruz et al. (2021). This ultra-wide-band mm-wave transceiver baseband memory-based design is
developed on top of an ZCU111 RFSoC FPGA. This evaluation board features a Zynq Ultrascale +
ZCU28DR. This FPGA is equipped with 8× 8 AD/DA converters with giga-sampling capabilities,
which make it ideal for RF system development; the 4 GB DDR4 memories contain RF-ADCs with
up to 4 GSPS of sampling rate, and RF-DACs with up to 6.544 GSPS. This board also includes a
quad-core ARM Cortex-A53 and a dual-core ARM Cortex-R5 real-time processor.

For the radio frequency, we used 60 GHz RF front-end antennas. These kits include a 16 + 16 TRX
patch array antenna plus the RF module with up/down conversion from baseband to I/Q channels,
and TX/RX local oscillator (LO) frequency control. The antennas use 57 − 71 GHz, a range of
frequencies that cover the unlicensed 60 GHz band for mm-wave channels, and are managed from a
PC Host via USB.

(a) AWGN channel. (b) Uniform fading channel. (c) Ricean fading channel.

Figure 8: Plot of different simulated channel models with a 16-QAM constellation as the channel
input for an SNR of 14 dB.

(a) AWGN channel. (b) Uniform fading channel. (c) Ricean fading channel.

Figure 9: The symbol constellation learned by the autoencoder on different channel distributions.
Starting from the 16-QAM constellation (red circles), the autoencoder learns a custom constellation
(black triangles).

We implemented a hardware on the loop training. For the experimentation on real traces, we use
Matlab as a central axis. The PC host running Matlab is connected to the platform via Ethernet.
The FPGA can transmit different custom waveforms like 16-QAM frames from the 802.11ad and
802.11ay standards, with 2 GHz of bandwidth. The frames are sent over-the-air via 60 GHz radio
frequency kits, and the samples are stored at the FPGA DDR memory. We decode the received data
from the transmission, removing the preamble and header fields and extracting the symbols to train
the MDN. We add a preamble to the generated constellation from the MDN for packet detection
purposes, and we transmit again the new waveforms over-the-air. Finally, the adaptation is performed
offline with the decoded symbols from the custom autoencoder-learned constellation.

Source and Target Domains.

For the experiment in § 5.3, we introduced distribution changes via IQ imbalance based distortions
to the symbol constellation, and evaluated the adaptation performance as a function of the level of
imbalance. The source domain would be the original channel, the over-the-air link between the
transmitter and receiver on which the training data is collected. This source domain data is used
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for training the channel and the autoencoder. The target domain would be a modification of the
source domain where the symbols used by the transmitter (e.g., 16-QAM) are distorted by modifying
the in-phase and quadrature-phase (IQ) components of the RF signal. This causes a change in
the distribution observed by the receiver (decoder), leading to a drop in performance without any
adaptation.

D.3 COMPARISON WITH A BENCHMARK RETRAINED AUTOENCODER

For the experiment setting of § 5.2, we include an additional benchmark comparison with a fully-
retrained autoencoder. The retrained autoencoder’s performance would be the best-case achievable
performance by any adaptation method, given that retraining uses plenty of labeled training data and
trains for much longer. Note that when we say the autoencoder is retrained using Algorithm 1, it is
implied that the MDN channel model is also retrained.

Recall that for the adaptation methods, the autoencoder is trained once using channel data from a
source distribution A, at an SNR of 14 dB. The adaptation methods use a small target dataset from
a target distribution B, whose SNR is varied from 8 dB to 20 dB. The following protocol is used
for retraining the autoencoder. Suppose we are adapting from a source distribution A to a target
distribution B, the autoencoder is retrained only on data from the target distribution B for each SNR
from 8 dB to 20 dB. We used 25, 000 samples for training the MDN channel and 300, 000 samples
for training the autoencoder. The MDN channel is optimized for 100 epochs during a single outer
epoch of optimizing the autoencoder (encoder and decoder networks). The iterative training of the
autoencoder and MDN channel is repeated for 20 outer epochs (which we found to be sufficient for
convergence).

The performance comparison with a retrained autoencoder for the proposed adaptation methods i)
affine transformation and ii) MAP symbol estimation are given in Fig. 10 and Fig. 11 respectively.
Note that the plots for the proposed and baseline methods are exactly the same as in Fig. 4 and Fig. 5.
Only the retrained autoencoder (labeled “Retrained autoenc”) has been added to the plots. As one
might expect, the retrained autoencoder has a significantly lower BLER than the other methods. In
scenarios such as adaptation from AWGN to Uniform fading, the distribution change can be so large
(see Fig. 8) that it may not be sufficient to just adapt the channel model in order to close the gap. It
may be necessary to also optimize the encoder’s constellation and the decoder for the target channel
distribution.

Figure 9 shows the optimal constellation learned by the autoencoder (in black) for different channel
distributions at 14 dB SNR. The constellation for Uniform fading resembles an M-PSK (phase-shift
keying) modulation, while the constellation for AWGN is very different. This implies that the optimal
constellation for an AWGN channel is very different from that of a Uniform fading channel.

(a) AWGN to Ricean fading. (b) AWGN to Uniform fading. (c) Ricean fading to Uniform fading.

Figure 10: Comparison of the affine transformation based adaptation to a fully-retrained autoencoder.

D.4 COMPARISON BETWEEN THE PROPOSED DECODER ADAPTATION METHODS

In this experiment we compare the performance of the proposed decoder adaptation methods in
§ 4.1 and § 4.2 on simulated channel variations. Figures 12, 13, and 14 compare the performance
of the two methods on different source/target channels using 20, 40, and 60 samples per symbol for
adaptation. We observe that in most cases, the MAP SE method outperforms the affine transformation
based method. This could be due to the fact that MAP SE has an optimal transformation from the

25



Under review as a conference paper at ICLR 2022

(a) AWGN to Ricean fading. (b) AWGN to Uniform fading. (c) Ricean fading to Uniform fading.

Figure 11: Comparison of the MAP SE based adaptation to a fully-retrained autoencoder.

channel output y to the most probable input x, which better compensates for changes in the channel
distribution.

(a) 20 samples per symbol. (b) 40 samples per symbol. (c) 60 samples per symbol.

Figure 12: Comparison of the affine transformation and MAP SE adaptation methods when the
source channel is AWGN and the target channel is Uniform fading. 16-QAM is included simply as
a reference.

(a) 20 samples per symbol. (b) 40 samples per symbol. (c) 60 samples per symbol.

Figure 13: Comparison of the affine transformation and MAP SE adaptation methods when the source
channel is AWGN and the target channel is Ricean fading.

D.5 PERFORMANCE UNDER NO DISTRIBUTION CHANGE

We studied the performance of the MDN adaptation method when the source and target domains
are the same, and compared with the two baselines using 50 randomly generated Gaussian mixture
datasets. Figure 15 illustrates one such randomly generated training, adaptation, and test data set
(the source and target distribution are not the same in this figure). The results in terms of conditional
log-likelihood are shown in Table 5 (second line). Compared to the results when the source and target
domains are different, we find that our method has a significant better performance compared to the
baselines when the source and target domains. This demonstrates that the proposed MDN adaptation
is capable of handling well scenarios where the distribution does not change, or changes minimally.
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(a) 20 samples per symbol. (b) 40 samples per symbol. (c) 60 samples per symbol.

Figure 14: Comparison of the affine transformation and MAP SE adaptation methods when the source
channel is Ricean fading and the target channel is Uniform fading.

Figure 15: Training, adaptation, and test dataset generated from different random Gaussian mixtures for the
source and target domains.

D.6 PERFORMANCE WHEN THE NUMBER OF COMPONENTS ARE MISMATCHED

We also studied how much impact is introduced if the number of components is mismatched in the
ground truth source and target Gaussian mixtures. Using 50 randomly-generated Gaussian mixture
datasets, these results are summarized in Table 5 (third line). Comparing the results with that of
the case when the number of components are matched, we find that although the performance is
slightly worse than the case when the number of components are matched, the performance drop is
not significant.

D.7 SELECTION OF THE HYPER-PARAMETER λ

We investigated the sensitivity of the proposed automatic selection of λ (using the validation metric)
by comparing the performance of automatic selection with that of using different fixed λ values. These
results are summarized in Table 6. Note that the automatic selection searches over 16 log-spaced
λ values ranging from 1e-5 to 100. From the table, we observe that the conditional log-likelihood
corresponding to automatic selection of λ is sometimes worse than that of other fixed values of λ.
However, the results are better than those when λ is 0 (except for Ricean fading to uniform fading).
Therefore, by setting a non-zero λ, the proposed adaptation method increases the final conditional
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Table 5: Conditional log-likelihood of the MDN adaptation methods on test data from the target
domain. The source and target domain datasets are generated from random, class-conditional
Gaussian mixtures. Same GMM refers to the special case where there is no distribution change. For
the case #components mismatched, the number of components in the source and target Gaussian
mixtures is different.

Source / Target
distribution

#Target
samples

Proposed Transfer Transfer-last-layer

median 95% CI median 95% CI median 95% CI

Different GMMs

80 0.78 (-0.44, 1.07) -2.45 (-5.83, -0.49) -2.87 (-7.14, -0.52)
160 1.16 (0.86, 1.37) 0.80 (-0.01, 1.34) 0.66 (-0.28, 1.06)
240 1.30 (1.05, 1.51) 1.41 (0.98, 1.63) 1.32 (1.01, 1.58)
320 1.44 (1.15, 1.68) 1.63 (1.31, 1.79) 1.57 (1.33, 1.76)

Same GMM 160 2.11 (1.94, 2.31) 0.91 (0.06, 1.39) 0.54 (-0.53, 1.26)

Different GMMs,
#component mismatched 160 0.99 (-0.83, 1.36) 0.61 (-0.58, 1.18) 0.40 (-0.83, 1.04)

Table 6: Conditional log-likelihood of the proposed MDN adaptation for different fixed values of
the hyper-parameter λ. This is compared with the automatic selection of λ based on the validation
metric.

Source
channel

Target
channel

λ
values

Proposed

median 95% CI

0 -0.47 (-2.21, 0.48)
1e-5 -0.87 (-2.26, -0.47)

AWGN Uniform fading

1e-4 -0.06 (-1.30, -0.56)
1e-3 -0.29 (-1.90, 0.64)
1e-2 0.17 (-0.79, 0.61)
1e-1 -0.12 (-1.37, 0.59)

1 -0.74 (-1.97, 0.03)
auto -0.29 (-1.97, 0.58)

0 1.21 (1.02, 1.38)
1e-5 1.23 (1.03, 1.37)

AWGN Ricean fading

1e-4 1.21 (1.02, 1.37)
1e-3 1.26 (1.01, 1.38)
1e-2 1.25 (1.10, 1.35)
1e-1 1.30 (-1.06, 1.38)

1 0.87 (-0.18, 1.29)
auto 1.24 (0.80, 1.38)

0 -0.14 (-1.89, 0.64)
1e-5 -0.14 (-1.86, 0.61)

Ricean fading Uniform fading

1e-4 -0.30 (-1.52, 0.66)
1e-3 -0.12 (-1.36, 0.62)
1e-2 0.12 (-1.08, 0.65)
1e-1 -0.11 (-0.87, 0.70)

1 -0.54 (-1.43, 0.53)
auto -0.41 (-4.24, 0.70)

log-likelihood in most cases. A more extensive study exploring some alternate methods for selecting
λ would be beneficial.

E SIMULATED CHANNEL VARIATION MODELS

We provide details of the mathematical models used to create simulated channel variations in our
experiments. These models are frequently used in the study of wireless channels (Goldsmith, 2005).
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E.1 UNIFORM FADING MODEL

The channel output y ∈ Rd for this model as a function of the channel input (modulated symbol
vector) x ∈ Rd is given by

y = Ax + n,

where A ∼ Unif[0, a] is a uniformly-distributed scale factor, and n ∼ N (· |0, σ2
0 Id) is an additive

Gaussian noise vector. Both A and n are assumed to be independent of each other and x. The average
power in the signal component of y is given by

p̃avg := E[‖Ax‖22] = E[A2]E[‖x‖22]

=
a2

3
pavg,

where pavg denotes the average power in the channel input x. The noise power in this case is given
by E[‖n‖22] = σ2

0 . The signal-to-noise ratio (SNR) for this model is therefore given by

Eb
N0

=
E[‖Ax‖22]

2RE[‖n‖22]
=

a2 pavg

6Rσ2
0

,

where R is the communication rate of the system in bits/channel use. We select the fading factor a
such that the channel output has a target SNR value using the following equation:

a =

√
6Rσ2

0 (Eb/N0)

pavg
. (30)

E.2 RICEAN AND RAYLEIGH FADING MODELS

The channel output for the Ricean fading model is given by

y = A x + n,

where A is a diagonal matrix with the diagonal elements a1, · · · , ad
iid∼ Rice(· | ν, σ2

a) following a
Rice distribution, and n ∼ N (· |0, σ2

0 Id) is an additive Gaussian noise vector. It is assumed that n
and A are independent of each other and of x. Note that Rayleigh fading is a special case of Ricean
fading when the parameter ν = 0. For this model, the average power in the signal component of y is
given by

p̃avg := E[‖A x‖22] =

d∑
i=1

E[a2i x
2
i ] =

d∑
i=1

E[a2i ]E[x2i ]

= (2σ2
a + ν2)E[‖x‖22] = (2σ2

a + ν2) pavg,

where pavg denotes the average power in the channel input x. We used the fact that the second
moment of the Rice distribution is given by E[a2i ] = 2σ2

a + ν2. It is useful to consider the derived
parameters K = ν2 / 2σ2

a which corresponds to the ratio of power along the line-of-sight (LoS)
path to the power along the remaining paths, and Ω = 2σ2

a + ν2 which corresponds to the total
power received along all the paths. The SNR for this model is given by

Eb
N0

=
E[‖A x‖22]

2RE[‖n‖22]
=

(2σ2
a + ν2) pavg

2Rσ2
0

.

For a given input average power and target SNR, the parameters of the Rice distribution can be set
using the equation

2σ2
a + ν2 =

2Rσ2
0 (Eb/N0)

pavg
.

To create channel variations of different SNR, we fix the variance σ2
a and vary the power of the LoS

component ν2. Suppose the smallest SNR value considered is Smin, we set σ2
a using

2σ2
a =

2Rσ2
0 Smin

pavg
, (31)
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and set ν to achieve a target SNR Eb/N0 using

ν2 =
2Rσ2

0 (Eb/N0 − Smin)

pavg
. (32)

For this choice of parameters, the power ratio of LoS to non-LoS components is given by

K =
Eb /N0

Smin
− 1.

The K-factor for Rician fading in indoor channel environments with an unobstructed line-of-sight
is typically in the range 4 dB to 12 dB (Linnartz, 2001). Rayleigh fading is obtained for K = 0 (or
ν = 0).

Finally, note that the vector x is composed of one or more pairs of in-phase and quadrature (IQ)
components of the encoded signal (dimension can be expressed as d = 2m). Since each IQ
component is transmitted as a single RF signal, the Ricean amplitude scale is kept the same for
successive pairs of IQ components in x. In other words, the amplitude scales are chosen to be
a1, a1, · · · , am, am. This does not change any of the above results.
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