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Dual-view Pyramid Network for Video Frame Interpolation
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(a) Overlay (b) EQVI [19] (c) ABME [26] (d) M2M-VFI [11] (e) ST-MFNet [7] (f) SVMV [21]

(g) BiFormer [24] (h) EMA-VFI [43] (i) LDMVFI [8] (j) DvP (k) DvP+ (l) GT

Figure 1: An example of video frame interpolation on DAVIS [28] dataset, containing complex mixture of camera and bicycle
riding motions as shown by the overlay of reference frames in (a). Previous methods yield blur or distortions at the limb of the
rider and in the background as shown in (b-i), while the proposed DvP and DvP+ model synthesize clear contents (j-k).

ABSTRACT
Video frame interpolation is a critical component of video stream-
ing, a vibrant research area dealing with requests of both service
providers and users. However, most existing methods cannot han-
dle changing video resolutions while improving user perceptual
quality. We aim to unleash the multifaceted knowledge yielded
by the hierarchical views at multiple scales in a pyramid network.
Specifically, we build a dual-view pyramid network by introducing
pyramidal dual-view correspondence matching. It compels each
scale to actively seek knowledge in view of both the current scale
and a coarser scale, conducting robust correspondence matching
by considering neighboring scales. Meanwhile, an auxiliary multi-
scale collaborative supervision is devised to enforce the exchange
of knowledge among current scale and a finer scale and thus reduce
error propagation from coarse to fine scales. Based on the robust
video dynamic caption of pyramidal dual-view correspondence
matching, we further develop a pyramidal refinement module that
formulates frame refinement as progressive latent representation
generations by developing flow-guided cross-scale attention for
feature fusion among neighboring frames. The proposed method
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achieves favorable performance on several benchmarks of varying
video resolutions with better user perceptual quality and a relatively
compact model size.

CCS CONCEPTS
• Computing methodologies→ Image and video acquisition.

KEYWORDS
Video Frame Interpolation, Dual-view Pyramid, Collaborative Su-
pervision

1 INTRODUCTION
Video frame interpolation analyzes video dynamics to synthesize
intermediate frames between reference frames [1]. As a critical
video processing technique, it has various applications in multime-
dia systems, such as video compression [14, 40], video on demand
streaming [29] and video editing [3, 4, 15, 34]. Recent years have
witnessed emergence of approaches leveraging deep learning al-
gorithms for video frame interpolation [8, 12, 43]. However, video
frame interpolation is still challenged by video dynamics that in-
volve complex occlusions and large motions [11, 12].

One way deployed by existing video frame interpolation meth-
ods to understand video dynamics is exploring motion cues like
optical flow among reference frames. Based on optical flow esti-
mates between reference frames and the intermediate frame to be
synthesized, reference frames at two time steps are sampled via
warping and fused to generate interpolation results at a time step in-
between [1]. Advances in optical flow estimation [2, 17, 36, 38] have
been leveraged to handle complex video dynamics in recent video

1
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frame interpolation methods [11, 19]. To mitigate degradation of
interpolation quality due to deficient quality of optical flow estima-
tion, asymmetric [26] and multiple flow fields estimations [7, 11, 21]
has been considered. But video frame interpolation for varying res-
olution videos remains difficult, where larger motions need to be
handled with longer-range correlation analysis while avoiding error
propagation in this process [24].

To tackle these difficulties, we propose to capture long-range
correlations among reference frames and intermediate frames to be
synthesized with pyramidal dual-view correspondence matching.
Our goal is to build a pyramid network that is capable of handling
complex occlusions and motions while preserving this capability
for varying video resolutions through unleashing the multifaceted
knowledge yielded by the hierarchical views at multiple scales. We
approach this by introducing dual-view correspondence matching
in a pyramidal network architecture that estimates multiple bidirec-
tional flow fields and their corresponding weights from coarse to
fine, where each scale considers neighboring scales for correspon-
dencematching. This enables knowledge in view of both the current
scale and a coarser scale coalesce into more robust correspondence
matching for analyzing long-range correlation. Unlike some other
multimedia tasks such as optical flow estimation [45] and video
object segmentation [10], the correspondence matching in video
frame interpolation is subject to the intermediate framewhich is not
available for the computation of correspondence matrix. As a result,
calibration of correspondence matching for this unknown frame
plays a critical role. Therefore the proposed pyramidal architec-
ture allows the dual-view correspondence matching to be gradually
calibrated according to the intermediate frame to be synthesized
through estimates of multiple bidirectional flow fields and their
corresponding weights across scales. As the calibration is operated
in RGB color space through the generation of intermediate frames
by directly sampling reference frames with estimates of multiple
bidirectional flow fields and their corresponding weights across
scales, the quality of supervision offered by downscaled ground
truth intermediate frames at coarser scales may not be sufficient to
calibrate the dual-view correspondence matching. For this reason,
we introduce an auxiliary multi-scale collaborative supervision to
enforce the exchange of knowledge among current scale and a finer
scale, thus reducing error propagation across scales.

Compared with existing attention-based video frame interpola-
tion methods [24, 43] that incorporate long-range correlation by
leveraging the capability of Transformer blocks for long-range con-
nectivity, we pay attention to the multifaceted knowledge yielded
by the hierarchical views of a pyramidal network architecture. Es-
tablishing robust dense correspondences among frames via the
proposed pyramidal dual-view correspondence matching instead
of Transformer blocks exhibits three potential advantages. Firstly,
pyramidal network architecture disseminates the burden of estab-
lishing long-range connectivity across scales, thus it facilitates the
design of a compact model, gradually building global connectiv-
ity across scales. Secondly, pyramidal dual-view correspondence
matching can utilize a broad range of supervisions from multi-
scale knowledge which are critical for model generalization among
varying video resolutions. Thirdly, we can enhance representa-
tion capability of the proposed pyramidal network architecture by
further incorporating latent representations of reference frames

and intermediate frames to be synthesized. This is achieved by
developing a refinement module, which only considers a relatively
small neighborhood to efficiently refine the synthesis of each pixel
utilizing the guidance of video dynamics captured by the pyra-
midal dual-view correspondence matching. To take advantage of
the robust video dynamics captured by pyramidal dual-view cor-
respondence matching in constructing latent representations, we
introduce a pyramidal refinement module that formulates frame
refinement as progressive latent representation generations. Latent
representations of reference frames are adaptively transformed to
establish the latent representation of the intermediate frame to be
synthesized by our proposed flow-guided cross-scale attention for
feature fusion among neighboring frames. We show the proposed
Dual-view Pyramid (DvP) network and its enhanced version DvP+
with our pyramidal refinement module are able to handle chang-
ing video resolutions while improving user perceptual quality. The
main contributions of this paper are summarized as follows:

• We introduce pyramidal dual-view correspondence match-
ing for video frame interpolation, which enables efficient
capture of long-range correlations to handle complex video
dynamics along with large motion by seeking knowledge
in view of both the current scale and a coarser scale.

• We propose an auxiliary multi-scale collaborative super-
vision for effective learning of pyramidal dual-view cor-
respondence matching, which reduces error propagation
across scales to improve video frame interpolation quality
for varying video resolutions.

• We combine designs above in building Dual-view Pyramid
(DvP) network for video frame interpolation, and intro-
duce a pyramidal refinement module to build DvP+ that
enhances representation capacity using latent representa-
tion generations through flow-guided cross-scale attention.

• We demonstrate that DvP network and its enhanced version
achieve favorable video frame interpolation performance
on several benchmarks with video resolutions ranging from
480p to 4K, while keeping a relatively compact model size.

2 RELATEDWORKS
2.1 Video frame interpolation
Video frame interpolation is a classical task in video processing [1,
42] that attracts increasing attention due to the emergence of
streaming services and a growing demand for better video sys-
tems. Existing methods leverage deep neural networks to improve
the performance of video frame interpolation on several bench-
marks [7, 8, 11, 12]. The majority of these approaches belong to the
flow-based paradigm [19, 22, 32] that estimates flow fields among
frames to synthesize intermediate frames and thus rely on high
quality flow estimates to mitigate corruption in output, and kernel-
based paradigm [18, 23] that predicts adaptive convolution kernels
to generate intermediate frames and may be vulnerable to blurry
output by lacking explicit flow guidance. Recently, progress has
been made by improving quality of flow estimation and compen-
sate imperfect estimates. This includes generating asymmetric or
multiple flow estimates [7, 11, 21, 26], deploying sophisticated en-
hancement, leveraging Transformer-based architecture [24, 43] and
latent diffusion model [8]. For example, ST-MFNet [7] introduces

2
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compensation with a multi-branch structure and a 3D convolution-
based enhancement network. However, these methods are still
deficient to handle large motion in complex video dynamics es-
pecially regarding improvement of perceptual quality [8], and are
limited by computational burden due to deployment of heavy en-
hancement module, Transformer or latent diffusion. As a result, we
propose to explore effective analysis of video dynamics via more ro-
bust correspondence matching approach, unleash the multifaceted
knowledge yielded by multiple scales in a pyramid network.

2.2 Correspondence matching
Establishing spatiotemporal correspondences among frames has
been widely studied for various multimedia applications. For ex-
ample, correspondence matching is involved in binocular stereo
to determine the disparity of pixels in stereo pair [30], and in fine-
grained action recognition to facilitate the capture of contextual de-
tails from multiple perspectives [37]. This technique is also applied
in optical flow estimation [45] and video object segmentation [10]
to estimate the motion of scene contents across frames. Acquiring
high quality correspondence matching is nontrivial, due to the ill-
posedness of the task. To this end, Patchmatch Stereo++ introduces
deep-learning-based continuous disparity optimization to tackle
edge ambiguity [30], MVFlow extracts pre-computed information in
video compression as a robust prior to mitigate ambiguities in opti-
cal flow estimation [45]. The ambiguities for correspondence match-
ing in video frame interpolation is distinguished by the absence
of intermediate frame to compute correspondences. BMBC [25]
and XVFI [32] devised respectively bilateral cost volume and com-
plementary flow reversal for correspondence matching in video
frame interpolation. These approaches are limited by linear motion
assumption, motivating ABME [26] and NCM [14] being devel-
oped to handle asymmetric motions and inaccurate flows. However,
video frame interpolation for varying resolution videos still chal-
lenges correspondencematching due to larger motions that requires
longer-range correlation analysis while avoiding error propagation
in this process. In this paper, we disseminate the burden of es-
tablishing long-range connectivity across scales by introducing
pyramidal dual-view correspondence matching, mitigating error
propagation through knowledge exchange while gradually building
global connectivity across scales.

3 METHODS
Figure 2 shows an overview of the proposed approach. The pyra-
midal video frame interpolation network composed of two sub-
networks. Given four consecutive reference frames {𝐼−1, 𝐼0, 𝐼1, 𝐼2},
the first subnetwork 𝐻1 establishes robust dense correspondences
among reference frames and intermediate frame 𝐼𝑡 , 𝑡 ∈ (0, 1) to be
synthesized between 𝐼0 and 𝐼1 with pyramidal dual-view correspon-
dence matching and an auxiliary multi-scale collaborative supervi-
sion, and the second subnetwork𝐻2 progressively constructs latent
representations to refine the synthesis of each pixel of 𝐼𝑡 through a
pyramidal refinement module with the guidance of video dynamics
generated by 𝐻1.

3.1 Pyramidal network with dual-view
correspondence matching

To capture complex video dynamics among {𝐼−1, 𝐼0, 𝐼1, 𝐼2} and 𝐼𝑡 , 𝑡 ∈
(0, 1) for video frame interpolation, the first subnetwork is devel-
oped to estimate𝑀 candidate pairs of flow fields {𝑢𝑘,𝑚0→𝑡 , 𝑢

𝑘,𝑚
1→𝑡 }

𝑀
𝑚=1

and their corresponding weights {𝑤𝑘,𝑚0 ,𝑤
𝑘,𝑚
1 }, which yield esti-

mate of intermediate flow fields 𝑢𝑘
𝑡→0, 𝑢

𝑘
𝑡→1 and 𝐼

𝑘
𝑡 for each level 𝑘

via direct sampling. Let 𝒑𝑡 and 𝒒0 denote pixel coordinates, the in-
termediate flow estimate 𝑢𝑘

𝑡→0 [𝒑𝑡 ] is computed through weighted
sampling of {𝑢𝑘,𝑚0→𝑡 }

𝑀
𝑚=1 as follows:∑𝑀

𝑚=1
∑
∀𝒒0∈𝐼𝑘0

𝑤
𝑘,𝑚
0 [𝒒0]𝐵(𝒒0 + 𝑢

𝑘,𝑚
0→𝑡 [𝒒0] − 𝒑𝑡 ) (−𝑢

𝑘,𝑚
0→𝑡 [𝒒0])∑𝑀

𝑚=1
∑
∀𝒒0∈𝐼𝑘0

𝑤
𝑘,𝑚
0 [𝒒0]𝐵(𝒒0 + 𝑢

𝑘,𝑚
0→𝑡 [𝒒0] − 𝒑𝑡 )

,

(1)
where 𝐵(·) denotes the bilinear interpolation kernel, and 𝑢𝑘,𝑚0→𝑡 is
parameterized with estimates of flow fields 𝑢𝑘,𝑚0→−1, 𝑢

𝑘,𝑚
0→1 using the

quadratic motion model [41]to accommodate nonlinear motion as:

𝑢
𝑘,𝑚
0→𝑡 = (𝑢

𝑘,𝑚
0→1 + 𝑢

𝑘,𝑚
0→−1)𝑡

2/2 + (𝑢𝑘,𝑚0→1 − 𝑢
𝑘,𝑚
0→−1)𝑡/2. (2)

By analogy, we compute the estimate of 𝑢𝑘
𝑡→1 [𝒑𝑡 ] via weighted

sampling of {𝑢𝑘,𝑚1→𝑡 }
𝑀
𝑚=1, and the estimate of intermediate frame

𝐼𝑘𝑡 [𝒑𝑡 ] via weighted sampling of {𝐼𝑘0 , 𝐼
𝑘
1 }. Such weighted sampling

warps and fuses pixels direcly in the RGB color space, thus the
estimation results are directly affected by the quality of estimates
of candidate pairs of flow fields and their corresponding weights.
However, acquiring estimates of sufficient quality is challenged by
video dynamics that involve complex and large motions [11, 12]. To
tackle this challenge, we propose pyramidal networkwith dual-view
correspondence matching to improve video frame interpolation
quality of complex video dynamics with varying video resolutions.

Based on the observation that large motion is easier to be cap-
tured at coarser scales while small object may only be observed
at finer scales in a pyramidal network, the core idea of pyramidal
dual-view correspondence matching is to simultaneously acquire
knowledge in view of both the current scale and a coarser scale
from coarse to fine. In detail, let 𝐻1 utilizes a 𝐾-level feature en-
coder 𝑓 [13] to extract pyramidal features {𝐹𝑘

𝑖
}𝐾
𝑘=1, 𝑖 ∈ {0,−1, 1} of

reference frames, to enable multifaceted knowledge yielded by the
hierarchical views at multiple scales to coalesce into more robust
correspondence matching for analyzing long-range correlation of
complex video dynamics, we compute the correspondences with
reference frames 𝐼𝑖 , 𝐼 𝑗 for a pixel through search grids at current
scale and a coarser scale 𝑐𝑘

𝑖→𝑗
(𝒒𝑖 , 𝜹𝑘 , 𝜹𝑘+1) as follows:

(𝐹𝑘𝑖 [𝒒𝑖 ] · 𝐹
𝑘
𝑗 [𝐵(𝒒𝑖 +

𝑀∑︁
𝑚=1

𝑤
𝑘,𝑚
𝑖
[𝒒𝑖 ]𝑢

𝑘,𝑚
𝑖→𝑗
[𝒒𝑖 ] + 𝜹𝑘 )])⊙ (3)

(𝐹𝑘𝑖 [𝒒𝑖 ] · 𝑆𝑘+1 (𝐹
𝑘
𝑗 ) [𝐵(𝒒𝑖/2 +

𝑀∑︁
𝑚=1

𝑤
𝑘,𝑚
𝑖
[𝒒𝑖 ]𝑢

𝑘,𝑚
𝑖→𝑗
[𝒒𝑖 ]/2 + 𝜹𝑘+1)])

where · and ⊙ refer to vector dot product and channel concatenation
respectively, 𝜹𝑘 , 𝜹𝑘+1 denotes the displacements in the correlation
search grid of size 𝐷2 at scale 𝑘 and a coaser scale 𝑘 + 1. 𝑆𝑘+1 (·)

3
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Figure 2: Overview of the Dual-view Pyramid (DvP) network with the auxiliary multi-scale collaborative supervision for
video frame interpolation. We give a concise demonstration using a 4-level multi-scale network. Each reference frame 𝐼𝑖 is
transformed into pyramidal features {𝐹𝑘

𝑖
}4
𝑘=1. Based on dual-view correspondence matching, the decoder at each level yields

estimates of multiple bidirectional flow fields and their corresponding weights which are utilized to compute intermediate
flow 𝑢𝑘

𝑡→𝑖 and direct sampling results 𝐼𝑘𝑡 . 𝐻2 synthesizes the intermediate frame 𝐼𝑡 through a pyramidal refinement module.
The dashed paths denotes knowledge exchange among estimators {𝐻𝑘1 }

4
𝑘=2 across scales.

conduct bilinear resizing to yield features with the same spatial
dimension of 𝐹𝑘+1.

Different from correspondence analysis through residual-based
single connectivity [21] or Transformer-based dense connectiv-
ity [24, 43], the proposed matching allows knowledge of correspon-
dences with different ranges being accessible and adaptable across
scales via dual-view-based sparse connectivity, so a compact model
is capable to handle complex scene dynamics to meet the need of
video frame interpolation for varying video resolutions.

3.2 Multi-scale collaborative supervision
Noting that the correspondence matching in video frame interpola-
tion is subject to the intermediate frame, which is different from
correspondence matching subject to only reference frames [36].
We propose to gradually calibrate the dual-view correspondence
matching across scales according to the intermediate frame to be
synthesized during training by generating its estimate with direct
sampling based on multiple bidirectional flow fields and their cor-
responding weights from coarse to fine.

As the calibration is operated in RGB color space through the
generation of intermediate frames by directly sampling, we develop
auxiliary multi-scale collaborative learning across scales to improve
the quality of supervision at coarser scales for better calibration

of the proposed pyramidal dual-view correspondence matching by
exchanging knowledge, and thus reducing error propagation across
scales.

To formulate the loss function, denote intermediate motion esti-
mations between the intermediate frame 𝐼𝑡 to be synthesized and
the input reference frames {𝐼0, 𝐼1} for level 𝑘 as:

𝑢𝑘𝑡→0 =𝐻
𝑘
1 (𝐼0, 𝐼−1, 𝐼1, 𝑡) = 𝐻

𝑘
1 (𝑥0→𝑡 ), (4)

𝑢𝑘𝑡→1 =𝐻
𝑘
1 (𝐼1, 𝐼2, 𝐼0, 1 − 𝑡) = 𝐻

𝑘
1 (𝑥1→𝑡 ), (5)

where a smaller 𝑘 represents a finer level. Considering subnetwork
𝐻1 being composed of 𝐾 − 1 nested estimators {𝐻𝑘1 }

𝐾
𝑘=2 with the

finest-scale estimator being 𝐻2
1 = 𝐻1, we conduct estimation of

{𝑢𝑘
𝑡→0}

𝐾
𝑘=2 with the proposed pyramidal dual-view correspondence

matching to establish robust correspondence among frames, using
feature pyramids generated in a similar way as LiteFlowNet [13].
We define the intermediate flow estimator for level 𝑘 as 𝐻𝑘1 =

𝐷𝑘 ◦𝐷𝑘+1 ◦ · · · ◦𝐷𝐾 ◦ 𝑓 where 𝐷𝑘 is composed of a motion decoder
𝐷𝑘𝑢 and a weight decoder 𝐷𝑘𝑤 . Leveraging robust correspondence
among frames, the motion decoder generates 𝑀 candidate flow
fields {𝑢𝑘,𝑚0→𝑡 }

𝑀
𝑚=1, and the weight decoder provides combination

weight 𝑤𝑘,𝑚 for each candidate. Both decoders are designed to
4
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generate upsampled estimates, i.e., estimates with the same spatial
resolution of level 𝑘 − 1 for an image pyramid {𝐼𝑘

𝑖
}𝐾
𝑘=1.

Given 𝑁 samples with the sample index 𝑛, we refer to respec-
tively 𝑥0→𝑡,𝑛 and 𝑥1→𝑡,𝑛 as regular inputs for the learning of the
intermediate flow estimations 𝑢𝑘

𝑡→0 and 𝑢𝑘
𝑡→1, and 𝑥

∗
𝑛 = 𝐼𝑡,𝑛 as

the privileged information. The question is that how we exploit
the privileged information to build better flow estimators {𝐻𝑘1 }

𝐾
𝑘=2

for test time. To this end, the proposed auxiliary multi-scale col-
laborative supervision jointly learns teacher 𝐻𝑇1 using the regular
input-privileged information pairs, computes the teacher output
𝑦𝑇
𝑡→𝑖,𝑛 = 𝑢𝑇

𝑡→𝑖,𝑛, 𝑖 ∈ {0, 1}, and learns student 𝐻𝑘1 using both the
regular input-privileged information pairs and the regular input-
teacher output pairs with imitation parameter 𝜆𝐼𝑀 ∈ [0, 1]. Accord-
ingly, the loss of auxiliary multi-scale collaborative supervision for
sample 𝑛 is computed as:

𝐿
𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦
𝑛 =

𝐾∑︁
𝑇=2

𝐾∑︁
𝑘=2

𝜆𝐼𝑀𝐿
𝐼𝑀,𝑇 ,𝑘
𝑛 + (1 − 𝜆𝐼𝑀 )𝐿𝑛𝑜𝑛−𝐼𝑀,𝑘𝑛 (6)

=

𝐾∑︁
𝑘=2
[(1 − 𝜆𝐼𝑀 ) (𝐾 − 1)𝐿𝑛𝑜𝑛−𝐼𝑀,𝑘𝑛 + 𝜆𝐼𝑀

𝐾∑︁
𝑇=2

𝐿
𝐼𝑀,𝑇 ,𝑘
𝑛 ],

𝐿
𝑛𝑜𝑛−𝐼𝑀,𝑘
𝑛 = 𝜆𝑃𝑅𝐿

𝑃𝑅,𝑘
𝑛 (𝑢𝑘𝑡→0,𝑛, 𝑢

𝑘
𝑡→1,𝑛) + 𝜌 (𝐼

𝑘
𝑡,𝑛, 𝐼

𝑘
𝑡,𝑛), (7)

where 𝐿𝐼𝑀,𝑇 ,𝑘𝑛 is the imitation loss for the errors of student 𝐻𝑘1
with respect to teacher 𝐻𝑇1 . 𝐿

𝑛𝑜𝑛−𝐼𝑀,𝑘
𝑛 is the non-imitation loss

for the errors of 𝐻𝑘1 , including the per-pixel minimum photomet-
ric reprojection loss 𝐿𝑃𝑅,𝑘𝑛 with parameter 𝜆𝑃𝑅 for the errors of
backward warped image pyramids of input frames {𝐼𝑘

𝑡←0,𝑛, 𝐼
𝑘
𝑡←1,𝑛}

according to the intermediate flow estimates with respect to the
true intermediate frame, and the errors of the direct sampling re-
sults with respect to the ground truth intermediate frame. 𝜌 denotes
the Charbonnier penalty.

We formulate the imitation loss by considering the error distri-
bution of teachers’ predictions. A teacher’s prediction is adaptively
chosen according to its reliability that is evaluated using the empir-
ical photometric reprojection error. We define the reliability 𝑟𝑘

𝑡→0,𝑛
of intermediate flow estimate 𝑢𝑘

𝑡→0,𝑛 to be 1 whenever the error of
𝐼𝑘
𝑡←0,𝑛 with respect to 𝐼𝑘𝑡,𝑛 is smaller than that of 𝐼𝑘

𝑡←1,𝑛 , and 0 oth-
erwise. The reliability 𝑟𝑘

𝑡→1,𝑛 of intermediate flow estimate 𝑢𝑘
𝑡→1,𝑛

is defined analogously to 𝑟𝑘
𝑡→0,𝑛 . The imitation loss is computed as:

𝐿
𝐼𝑀,𝑇 ,𝑘
𝑛 =

1∑︁
𝑖=0

𝑆𝑘 (𝑟𝑇𝑡→𝑖,𝑛)𝜌 (𝐻
𝑘
1 (𝑥𝑖→𝑡,𝑛), 𝑆𝑘 (𝑦

𝑇
𝑡→𝑖,𝑛)), (8)

where bilinear resizing 𝑆𝑘 (·) is used to ensure that the spatial di-
mension of teacher is the same as that of the student 𝐻𝑘1 . Let 𝐿

𝐼𝑁
𝑛

denote the interpolation loss of the second subnetwork, the total
loss for the first subnetwork that composed of a pyramidal network
with dual-view correspondence matching is formulated as follows.

𝐿 =
1
𝑁

𝑁∑︁
𝑛=1
(𝐿𝐼𝑁𝑛 + 𝐿

𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦
𝑛 ), (9)

𝐿𝐼𝑁𝑛 =𝜌 (𝐼𝑘𝑡,𝑛, 𝐼𝑘𝑡,𝑛) + 𝜆𝑉𝐺𝐺 ∥𝜙 (𝐼𝑘𝑡,𝑛), 𝜙 (𝐼𝑘𝑡,𝑛)∥1, (10)

where we use features of frames 𝜙 (·) extracted from 𝑐𝑜𝑛𝑣4_3 of a
pretrained VGG16 [33] to construct the perceptual loss with param-
eter 𝜆𝑉𝐺𝐺 .

3.3 Pyramidal refinement
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Figure 3: Overview of the pyramidal refinement module with
flow-guided cross-scale attention.

Since 𝐻1 estimates intermediate frame via direct sampling in
color space, its capability of representing complex dynamics may
be deficient due to low quality reference frames and flow estimates,
causing degradation of video frame interpolation quality. To ad-
dress this limitation, we develop subnetwork 𝐻2 that progressively
constructs latent representations to refine the estimate of 𝐼𝑡 with
direct sampling. 𝐻2 is formed by a pyramidal refinement module
that deploys the guidance of video dynamics yielded by 𝐻1. Instead
of using a convolution-based pyramidal network with each scale
operating under guidance of the intermediate flow estimation at
current scale [26], we propose to improve the capability of capturing
long-range correlations among reference frames and intermediate
frame estimates in latent space with flow-guided cross-scale atten-
tion. Specifically, to efficiently extract spatiotemporal dynamics
of scene contents among reference frames with a relatively small
neighborhood, each scale of the refinement module takes as input
both warped information guided by intermediate flow estimates of
current scale and a coarser scale. As shown in Figure 3, the extracted
scene contents are adaptively transformed according to intermedi-
ate flow guidance, based on which we formulate frame refinement
as progressive latent representation generations from coarse to fine
where attention-based feature fusion among neighboring frames is
conducted with Swin transformer blocks [20].

We deploy an interpolation loss similar to equation (10) to super-
vise the second subnetwork, enforcing smaller difference between
estimates of intermediate frame refined by the pyramidal refine-
ment module 𝐼𝑡 instead of 𝐼𝑡 and the ground truth intermediate
frame to be synthesized.
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4 EXPERIMENTS
4.1 Experimental Setup
The proposed method is implemented with Pytorch [27], using
publicly available datasets for training and testing. Our models are
trained on samples generated using a mixture of 64, 612 sequences
of 7 frames from the Vimeo90K-Septuplet training dataset [42] and
15, 029 sequences of 25 frames from the Adobe240 dataset [35, 41].
For a sequence from the Vimeo90K-Septuplet training dataset, we
learn to interpolate the 4𝑡ℎ frame using the 1𝑠𝑡 , 3𝑟𝑑 , 5𝑡ℎ and 7𝑡ℎ
frames. For a sequence from the Adobe240 dataset, we take the
1𝑠𝑡 , 9𝑡ℎ , 17𝑡ℎ and 25𝑡ℎ frames of each sequence as inputs and one
among the 10𝑡ℎ to 16𝑡ℎ frames randomly as target to synthesize. We
crop 448 × 256 patches and conduct image flipping and sequence
reversal randomly for data augmentation. The training utilizes
the Adam optimizer [16] and a batch size of 4, starting with a
learning rate of 10−4 which is reduced by half once for every 2×105
iterations, until convergence with around 6 × 105 iterations. We
use PSNR, SSIM [39] and LPIPS [44] as metrics to quantitively
evaluate the performance and additionally deploy tOF [6] as metric
to quantitively evaluate temporal consistency for multiple frame
interpolation, following [22, 32]. Higher PSNR and SSIM values
along with lower LPIPS and tOF values indicate better results.

4.2 Benchmarks
We evaluate the performance for single frame interpolation on
2, 849 sequences of 7 frames with a spatial resolution of 480p from
the DAVIS dataset [28] as [7, 41], 1, 164 sequences with spatial
resolution ranging from 640 × 368 to 1280 × 720 from the SNU-
FILM dataset that are divided into 4 settings, Easy, Medium, Hard
and Extreme, with varying difficulties defined by the temporal gap
between input frames as [5], 8 sequences of 100 frames with a
spatial resolution of 4K from the Xiph-4K dataset [22] as [24, 43].
To evaluate the performance for multiple frame interpolation, we
utilize the X-TEST benchmark that consists of 15 scenes of 4K
video resolution to interpolate 7 intermediate frames in-between
reference frames as [32].

4.3 Comparisons with State-of-the-art
For single frame video interpolation, we compare the proposed
approach against the state-of-the-art methods, including EQVI [19],
ABME [26],M2M-VFI [11], ST-MFNet [7], SVMV [21], BiFormer [24],
EMA-VFI [43] and LDMVFI [8]. For multiple frame interpolation,
we additionally included XVFI [32] for comparisons. Our enhanced
version DvP+ is different from DvP by deploying the proposed
pyramidal refinement module. Tables 2 and 3 show quantitative
results for single frame interpolation of varying video resolutions
on the SNU-FILM [5], DAVIS [28] and Xiph-4K [22] dataset. Our
approach achieves the best perceptual quality in terms of LPIPS [44]
on all datasets, while achieving competitive PSNR and SSIM with
a relatively compact model size. Compared with previous state-
of-the-art scheme ST-MFNet [7] that achieves the best PSNR and
SSIM score on most datasets, our DvP model reduces the average
LPIPS by 34.03% with 68.57% less number of parameters, our DvP+
model reduces the average LPIPS by 44.50% with 60.95% less num-
ber of parameters. Especially, our DvP and DvP+ models obtain

Table 1: Quantitative comparisons of video frame interpo-
lation results on the X-Test [32] dataset. The best and the
second-best results aremarked in bold andwith an underline,
respectively.

Methods X-Test

PSNR↑ / SSIM↑ / LPIPS↓ / tOF↓
EQVI [19] 28.15 / 0.8086 / 0.175 / 3.58
XVFI [32] 30.12 / 0.8344 / 0.089 / 2.15
ABME [26] 30.16 / 0.8479 / 0.147 / 2.54

M2M-VFI [11] 30.06 / 0.842 / 0.086 / 1.53
SVMV [21] 30.65 / 0.8549 / 0.131 / 2.78

BiFormer [24] 31.32 / 0.8618 / 0.121 / 1.90
EMA-VFI [43] 31.45 / 0.8574 / 0.163 / 3.05
LDMVFI [8] 23.34 / 0.6753 / 0.211 / 6.52

DvP 33.27 / 0.8972 / 0.068 / 1.48
DvP+ 33.35 / 0.8982 / 0.062 / 1.21

respectively 54.92% and 65.98% higher LPIPS compared with ST-
MFNet [7] on the challenging Xiph-4K [22] dataset that composed
of 4K videos, showing the capability of the proposed approach
to more effectively capturing complex and large motions in high-
resolution videos. This is likely due to the proposed approach is
capable of improving the quality of multiple intermediate flow esti-
mation by leveraging the multifaceted knowledge yielded by the
hierarchical views at multiple scales in a pyramid network. Com-
pared with recent perceptually-oriented video frame interpolation
scheme LDMVFI [8] that explores the power of latent diffusion
model [9, 31] in synthesizing perceptually-optimized frames, our
DvP+ model achieves average LPIPS reduction by 21.87%with num-
ber of parameters over 50 times less than that of LDMVFI [8], and
our DvP model achieves average LPIPS reduction by 5.86% with
number of parameters over 65 times less than that of LDMVFI [8].
This demonstrates that the proposed pyramidal refinement module
is able to efficiently deploy the representation capability of latent
space to facilitate frame synthesis in color space. The results of
quantitative comparisons are consists with the visual perceptual
comparisons in Figure 1 that contains complex mixture of camera
and object motions, and in Figures 4 that involves moving objects
with finer details. Our approach generates more visually pleasing
results with less artifacts and blurry details.

Tables 1 shows quantitative results for multiple frame interpola-
tion of 4K video resolution on the X-Test [32] dataset. Our approach
achieves the best perceptual quality in terms of LPIPS [44] and best
temporal consistency in terms of tOF [6] on all datasets, while
achieving the best PSNR and SSIM. Compared with previous state-
of-the-art scheme EMA-VFI [43] and BiFormer [24] that achieve
respectively the best PSNR and SSIM score, our DvP model reduces
the average LPIPS by 51.04% and average tOF by 36.80 with 1.89 dB
PSNR gain on average, our DvP+ model reduces the average LPIPS
by 55.36% average tOF by 48.33 with 1.97 dB PSNR gain on average.
The results demonstrate that the proposed approach can be better
extended to multiple frame interpolation of high video resolution
for favorable performance, illustrating the proposed scheme for
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Table 2: Quantitative comparisons of video frame interpolation results on the SNU-FILM [5] datasets. The best and the second-
best results are marked in bold and with an underline, respectively.

Methods FILM(Easy) FILM(Medium) FILM(Hard) FILM(Extreme)

PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓
EQVI [19] 38.75 / 0.9804 / 0.030 35.48 / 0.9667 / 0.050 30.65 / 0.9143 / 0.108 25.64 / 0.7968 / 0.197
ABME [26] 39.59 / 0.9827 / 0.022 35.77 / 0.9650 / 0.037 30.58 / 0.9001 / 0.066 25.11 / 0.7809 / 0.131

M2M-VFI [11] 39.61 / 0.9828 / 0.021 35.72 / 0.9651 / 0.035 30.30 / 0.8985 / 0.063 24.79 / 0.7746 / 0.127
ST-MFNet [7] 40.78 / 0.9850 / 0.019 37.11 / 0.9733 / 0.036 31.70 / 0.9213 / 0.073 25.81 / 0.8019 / 0.148
SVMV [21] 40.26 / 0.9836 / 0.017 37.14 / 0.9738 / 0.027 31.76 / 0.9244 / 0.059 25.76 / 0.8036 / 0.126

BiFormer [24] 36.58 / 0.9694 / 0.053 33.82 / 0.9500 / 0.069 29.71 / 0.8877 / 0.098 24.89 / 0.7722 / 0.151
EMA-VFI [43] 39.71 / 0.9834 / 0.019 35.95 / 0.9666 / 0.033 30.92 / 0.9043 / 0.060 25.40 / 0.7834 / 0.119
LDMVFI [8] 38.67 / 0.9784 / 0.014 34.00 / 0.9496 / 0.028 28.55 / 0.8665 / 0.060 23.71 / 0.7378 / 0.128

DvP 40.28 / 0.9835 / 0.014 37.21 / 0.9738 / 0.023 31.96 / 0.9243 / 0.051 25.85 / 0.8006 / 0.111
DvP+ 40.26 / 0.9834 / 0.012 37.22 / 0.9737 / 0.020 32.00 / 0.9250 / 0.041 25.79 / 0.7943 / 0.097

Table 3: Quantitative comparisons of video frame interpolation results on the DAVIS [28] and Xiph-4K [22] datasets. The best
and the second-best results are marked in bold and with an underline, respectively.

Methods DAVIS Xiph-4K Params(M)
PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓

EQVI [19] 27.64 / 0.8317 / 0.166 33.54 / 0.9003 / 0.221 25.4
ABME [26] 26.98 / 0.8052 / 0.145 33.96 / 0.9011 / 0.233 18.1

M2M-VFI [11] 27.28 / 0.8140 / 0.104 33.92 / 0.8991 / 0.212 7.6
ST-MFNet [7] 28.36 / 0.8438 / 0.123 34.93 / 0.9104 / 0.244 21.0
SVMV [21] 28.17 / 0.8411 / 0.099 34.58 / 0.9030 / 0.170 4.8

BiFormer [24] 26.36 / 0.7946 / 0.172 33.49 / 0.8952 / 0.212 11.2
EMA-VFI [43] 27.92 / 0.8264 / 0.099 34.67 / 0.9071 / 0.230 65.7
LDMVFI [8] 25.64 / 0.7594 / 0.103 31.39 / 0.8543 / 0.085 439.0

DvP 28.26 / 0.8406 / 0.084 34.41 / 0.8944 / 0.110 6.6
DvP+ 28.25 / 0.8394 / 0.072 34.26 / 0.8889 / 0.083 8.2

knowledge exchange among scales to succeed in the caption of
spatiotemporal video dynamics.

4.4 Ablation Study
To understand the effectiveness of the proposed pyramidal dual-
view correspondence matching, the auxiliary multi-scale collabora-
tive supervision and the pyramidal refinement module, we perform
an ablation study by gradually adding these components on two
baselines. The results are summarized in Table 4, where the pro-
posed model without and with a refinement module are compared
with corresponding variants in the top 5 rows and bottom 3 rows re-
spectively. The baseline without a refinement module, as shown in
line 1, computes the correspondences between neighboring frames
for each scale in view of current scale, using correlations among
image features at that scale. The baseline with a refinement module,
as shown in line 6, constructs each scale of a pyramidal module by
taking warped inputs guided by flow estimates of current scale.
Effectiveness of pyramidal dual-view correspondence match-
ing. For evaluation, the proposed dual-view correspondence match-
ing is gradually involved from the coarest level 6 to finer levels

in a pyramidal network architecture, yielding results of 3 variants
as shown in line 2 to 4 of Table 4. Compared with the baseline in
line 1 of Table 4, the three variants deployed the proposed dual-
view correspondence matching to seek knowledge in view of both
the current scale and a coarser scale instead of in view of only
current scale. As such, during decoding of video dynamics, there
is correspondence information among neighboring frames from
both current and coaser levels for each level. At the expense of a
slight increase in the numbers of model parameters, Line 1 to 4 of
Table 4 show that the video frame interpolation quality of the pyra-
midal network architecture increases as dual-view correspondence
matching is leveraged in more levels, especially for high video
resolution, i.e., 2.22 dB PSNR increase and 26.3% LPIPS drop on
X-Test. Accordingly, Figure 5 shows the network yields estimates of
intermediate frame and flow of lower quality when dropping auxil-
iary multi-scale collaborative supervision and pyramidal dual-view
correspondence matching, implying the proposed approach being
critical for more robust correspondence matching by considering
neighboring scales to handle large and complex motions.
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(a) Overlay (b) EQVI [19] (c) ABME [26] (d) M2M-VFI [11] (e) ST-MFNet [7] (f) SVMV [21]

(g) BiFormer [24] (h) EMA-VFI [43] (i) LDMVFI [8] (j) DvP (k) DvP+ (l) GT

Figure 4: An example of video frame interpolation on SNU-FILM [5] dataset, containing moving wings with feather texture.
The proposed DvP and DvP+ models are able to synthesize fine texture details, while previous methods yield artifacts.

Table 4: Ablation study on levels of dual-view correspondence matching, deployment of auxiliary multi-scale collaborative
supervision loss 𝐿𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 and construction of pyramidal refinement module. The best numbers are highlighted in bold.

Dual-view levels 𝐿𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 Refinement DAVIS X-Test (4K) Params(M)
PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓

× × × 28.03 / 0.8398 / 0.101 30.55 / 0.8549 / 0.133 5.6
6 × × 28.10 / 0.8399 / 0.099 31.16 / 0.8617 / 0.131 5.9
3-6 × × 28.18 / 0.8401 / 0.095 32.25 / 0.8782 / 0.128 6.4
2-6 × × 28.20 / 0.8402 / 0.089 32.77 / 0.8801 / 0.098 6.6
2-6

√ × 28.26 / 0.8406 / 0.084 33.27 / 0.8972 / 0.068 6.6

2-6
√ √

28.25 / 0.8392 / 0.082 32.98 / 0.8969 / 0.068 8.0
2-6

√
+ cross-scale guidance 28.27 / 0.8390 / 0.074 33.12 / 0.8978 / 0.066 8.0

2-6
√

+ attention-based fusion 28.26 / 0.8393 / 0.072 33.35 / 0.8982 / 0.062 8.2

(a) GT and Overlay               (b)  DvP                 (c)  w/o 𝐿𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦     (d)  w/o dual-view

Figure 5: Comparisons of frame (top) and flow (bottom) es-
timates w/ (b) and w/o auxiliary multi-scale collaborative
supervision (c) and dual-view correspondence matching (d).

Effectiveness of auxiliary multi-scale collaborative super-
vision. We study how the deployment of the proposed auxiliary
multi-scale collaborative supervision affects the video frame inter-
polation performance. To this end, we tested the same pyramidal
network architecture without and with the auxiliary multi-scale
collaborative supervision being deployed during training, for which
results are shown in line 4 and 5 of Table 4 respectively. Without
increasing model size, the performance improvements in terms

of PSNR, SSIM and LPIPS are shared by results on DAVIS and X-
Test. It shows the efficiency of knowledge exchange to reduce error
propagation across scales for varying video resolutions using the
proposed auxiliary multi-scale collaborative supervision.
Effectiveness of pyramidal refinement module. For evaluation,
we add cross-scale flow guidance and attention-based feature fusion,
in turn, to a baseline that constructs each scale of a pyramidal mod-
ule with flow guidance of current scale and convolution-based fea-
ture fusion. As shown in line 6 to 8 of Table 4, both cross-scale flow
guidance and attention-based feature fusion contribute to improve-
ments of video frame interpolation quality. Such improvements
is more obvious on X-Test, implying the eminence of enlarging
receptive field for high resolution videos.

5 CONCLUSION
In this paper, we propose a pyramidal dual-view correspondence
matching algorithm with an auxiliary multi-scale collaborative su-
pervision for video frame interpolation, which can capture complex
video dynamics, utilizing the multifaceted knowledge in a pyramid
network. The representation capacity of the network can be effec-
tively enhanced with the proposed pyramidal refinement module
where we introduce flow-guided cross-scale attention to generate
latent representations through efficient feature transform and fu-
sion. Experiments show the superiority of our model in achieving
favorable performance, especially perceptual quality.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Dual-view Pyramid Network for Video Frame Interpolation ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black, and

Richard Szeliski. 2011. A Database and Evaluation Methodology for Optical Flow.
International Journal of Computer Vision 92, 1 (2011), 1–31.

[2] Aviram Bar-Haim and Lior Wolf. 2020. ScopeFlow: Dynamic Scene Scoping
for Optical Flow. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 7998–8007.

[3] Tim Brooks and Jonathan T. Barron. 2019. Learning to Synthesize Motion Blur.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
6840–6848.

[4] Jiaben Chen and Huaizu Jiang. 2023. SportsSloMo: A New Benchmark
and Baselines for Human-centric Video Frame Interpolation. arXiv preprint
arXiv:2308.16876 (2023).

[5] Myungsub Choi, Heewon Kim, BohyungHan, Ning Xu, and KyoungMu Lee. 2020.
Channel Attention Is All You Need for Video Frame Interpolation. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34. 10663–10671.

[6] Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé, and Nils Thuerey. 2020.
Learning Temporal Coherence via Self-Supervision for GAN-Based Video Gen-
eration. ACM Transactions on Graphics 39, 4, Article 75 (2020), 13 pages.

[7] Duolikun Danier, Fan Zhang, and David Bull. 2022. ST-MFNet: A Spatio-Temporal
Multi-Flow Network for Frame Interpolation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 3521–3531.

[8] Duolikun Danier, Fan Zhang, and David Bull. 2024. LDMVFI: Video Frame
Interpolation with Latent DiffusionModels. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 38. 1472–1480.

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. In The Conference andWorkshop on Neural Information Processing Systems.
6840–6851.

[10] Lingyi Hong, Wei Zhang, Shuyong Gao, Hong Lu, and WenQiang Zhang. 2023.
SimulFlow: Simultaneously Extracting Feature and Identifying Target for Un-
supervised Video Object Segmentation. In Proceedings of ACM International
Conference on Multimedia. 7481–7490.

[11] Ping Hu, Simon Niklaus, Stan Sclaroff, and Kate Saenko. 2022. Many-to-Many
Splatting for Efficient Video Frame Interpolation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 3553–3562.

[12] Ping Hu, Simon Niklaus, Lu Zhang, Stan Sclaroff, and Kate Saenko. 2024. Video
Frame Interpolation With Many-to-Many Splatting and Spatial Selective Refine-
ment. IEEE Transactions on Pattern Analysis and Machine Intelligence 46, 2 (2024),
823–836.

[13] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. 2021. A Lightweight Optical
Flow CNN-Revisiting Data Fidelity and Regularization. IEEE Transactions on
Pattern Analysis and Machine Intelligence 43, 8 (2021), 2555–2569.

[14] Zhaoyang Jia, Yan Lu, and Houqiang Li. 2022. Neighbor Correspondence Match-
ing for Flow-based Video Frame Synthesis. In Proceedings of ACM International
Conference on Multimedia. 5389–5397.

[15] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-
Miller, and Jan Kautz. 2018. Super SloMo: High Quality Estimation of Multiple
Intermediate Frames for Video Interpolation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 9000–9008.

[16] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In International Conference on Learning Representations.

[17] Till Kroeger, Radu Timofte, Dengxin Dai, and Luc Van Gool. 2016. Fast Optical
Flow Using Dense Inverse Search. In European Conference on Computer Vision.
471–488.

[18] Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and
Sangyoun Lee. 2020. AdaCoF: Adaptive Collaboration of Flows for Video Frame
Interpolation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 5315–5324.

[19] Yihao Liu, Liangbin Xie, Li Siyao, Wenxiu Sun, Yu Qiao, and Chao Dong. 2020.
Enhanced quadratic video interpolation. In European Conference on Computer
Vision Workshops. 41–56.

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin Transformer: Hierarchical Vision Transformer
Using Shifted Windows. In Proceedings of the IEEE International Conference on
Computer Vision. 10012–10022.

[21] Yao Luo, Jinshan Pan, and Jinhui Tang. 2023. SVMV: Spatiotemporal Variance-
Supervised Motion Volume for Video Frame Interpolation. In IEEE International
Conference on Acoustics, Speech and Signal Processing. 1–5.

[22] Simon Niklaus and Feng Liu. 2020. Softmax Splatting for Video Frame Inter-
polation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 5437–5446.

[23] Simon Niklaus, Long Mai, and Feng Liu. 2017. Video Frame Interpolation via
Adaptive Convolution. In The IEEE Conference on Computer Vision and Pattern
Recognition. 2270–2279.

[24] Junheum Park, Jintae Kim, and Chang-Su Kim. 2023. BiFormer: Learning Bilateral
Motion Estimation via Bilateral Transformer for 4K Video Frame Interpolation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

1568–1577.
[25] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim. 2020. BMBC: Bilat-

eral Motion Estimation with Bilateral Cost Volume for Video Interpolation. In
European Conference on Computer Vision. 109–125.

[26] Junheum Park, Chul Lee, and Chang-Su Kim. 2021. Asymmetric Bilateral Motion
Estimation for Video Frame Interpolation. In Proceedings of the IEEE International
Conference on Computer Vision. 14539–14548.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic Differentiation in PyTorch. In The Conference and Workshop on
Neural Information Processing Systems. 8026–8037.

[28] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus
Gross, and Alexander Sorkine-Hornung. 2016. A Benchmark Dataset and Evalu-
ation Methodology for Video Object Segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 724–732.

[29] Reza Pourreza and Taco Cohen. 2021. Extending Neural P-Frame Codecs for
B-Frame Coding. In Proceedings of the IEEE International Conference on Computer
Vision. 6680–6689.

[30] Wenjia Ren, Qingmin Liao, Zhijing Shao, Xiangru Lin, Xin Yue, Yu Zhang, and
Zongqing Lu. 2023. Patchmatch Stereo++: Patchmatch Binocular Stereo with
Continuous Disparity Optimization. In Proceedings of ACM International Confer-
ence on Multimedia. 2315–2325.

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis With Latent Diffusion Models.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
10684–10695.

[32] Hyeonjun Sim, JihyongOh, andMunchurl Kim. 2021. XVFI: eXtremeVideo Frame
Interpolation. In Proceedings of the IEEE International Conference on Computer
Vision. 14489–14498.

[33] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations.

[34] Li Siyao, Shiyu Zhao, Weijiang Yu, Wenxiu Sun, Dimitris Metaxas, Chen Change
Loy, and Ziwei Liu. 2021. Deep Animation Video Interpolation in the Wild. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
6587–6595.

[35] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo Sapiro, Wolfgang Hei-
drich, and Oliver Wang. 2017. Deep video deblurring for hand-held cameras. In
The IEEE Conference on Computer Vision and Pattern Recognition. 237–246.

[36] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. 2018. PWC-Net: CNNs
for Optical Flow Using Pyramid, Warping, and Cost Volume. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 8934–8943.

[37] Hao Tang, Jun Liu, Shuanglin Yan, Rui Yan, Zechao Li, and Jinhui Tang. 2023.
M3Net: Multi-view Encoding, Matching, and Fusion for Few-shot Fine-grained
Action Recognition. In Proceedings of ACM International Conference on Multime-
dia. 1719–1728.

[38] Zachary Teed and Jia Deng. 2020. RAFT: Recurrent All-Pairs Field Transforms
for Optical Flow. In European Conference on Computer Vision. 402–419.

[39] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Im-
age Quality Assessment: from Error Visibility to Structural Similarity. IEEE
Transactions on Image Processing 13, 4 (2004), 600–612.

[40] Chao-Yuan Wu, Nayan Singhal, and Philipp Krähenbühl. 2018. Video Compres-
sion Through Image Interpolation. In European Conference on Computer Vision.
425–440.

[41] Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-Hsuan Yang. 2019. Qua-
dratic Video Interpolation. In The Conference andWorkshop on Neural Information
Processing Systems. 1647–1656.

[42] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. 2019.
Video Enhancement with Task-Oriented Flow. International Journal of Computer
Vision 127, 8 (2019), 1106–1125.

[43] Guozhen Zhang, Yuhan Zhu, Haonan Wang, Youxin Chen, Gangshan Wu, and
LiminWang. 2023. Extracting Motion and Appearance via Inter-Frame Attention
for Efficient Video Frame Interpolation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 5682–5692.

[44] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
586–595.

[45] Shili Zhou, Xuhao Jiang, Weimin Tan, Ruian He, and Bo Yan. 2023. MVFlow:
Deep Optical Flow Estimation of Compressed Videos with Motion Vector Prior.
In Proceedings of ACM International Conference on Multimedia. 1964–1974.

9


	Abstract
	1 INTRODUCTION
	2 RELATED WORKS
	2.1 Video frame interpolation
	2.2 Correspondence matching

	3 METHODS
	3.1 Pyramidal network with dual-view correspondence matching
	3.2 Multi-scale collaborative supervision
	3.3 Pyramidal refinement

	4 EXPERIMENTS
	4.1 Experimental Setup
	4.2 Benchmarks
	4.3 Comparisons with State-of-the-art
	4.4 Ablation Study

	5 CONCLUSION
	References

