
Published in Transactions on Machine Learning Research (05/2025)

Link Prediction with Relational Hypergraphs

Xingyue Huang xingyue.huang@cs.ox.ac.uk
Department of Computer Science, University of Oxford, UK

Miguel Romero mgromero@uc.cl
Department of Computer Science, Universidad Católica de Chile, Chile

Pablo Barceló pbarcelo@uc.cl
Institute for Mathematics and Comp. Engineering, Universidad Católica de Chile & IMFD, Chile

Michael M. Bronstein michael.bronstein@cs.ox.ac.uk
Department of Computer Science, University of Oxford, UK

İsmail İlkan Ceylan ismail.ceylan@cs.ox.ac.uk
Department of Computer Science, University of Oxford, UK

Reviewed on OpenReview: https: // openreview. net/ forum? id= S6fe4aH6YA

Abstract

Link prediction with knowledge graphs has been thoroughly studied in graph machine learn-
ing, leading to a rich landscape of graph neural network architectures with successful appli-
cations. Nonetheless, it remains challenging to transfer the success of these architectures to
inductive link prediction with relational hypergraphs, where the task is over k-ary relations,
substantially harder than link prediction on knowledge graphs with binary relations only. In
this paper, we propose a framework for link prediction with relational hypergraphs, empow-
ering applications of graph neural networks on fully relational structures. Theoretically, we
conduct a thorough analysis of the expressive power of the resulting model architectures via
corresponding relational Weisfeiler-Leman algorithms and logical expressiveness. Empiri-
cally, we validate the power of the proposed architectures on various relational hypergraph
benchmarks. The resulting model architectures substantially outperform every baseline for
inductive link prediction and also lead to competitive results for transductive link prediction.

1 Introduction

Hawking Oxford

BA Physics

Nobel

StudyDegree Awarded

Figure 1: A relational hypergraph over the
relations StudyDegree and Awarded. The facts
StudyDegree(Hawking,Oxford,Physics,BA) and
Awarded(Physics,Nobel,Oxford) are ordered hy-
peredges, where the order of entities in each fact
is denoted by dashed arrows.

Knowledge graphs consist of facts (or, edges) represent-
ing different relations between pairs of nodes. Knowl-
edge graphs are inherently incomplete (Ji et al., 2020;
Wang et al., 2017) which motivated a large litera-
ture on link prediction with knowledge graphs (Wang
et al., 2014; Schlichtkrull et al., 2018; Sun et al., 2019;
Teru et al., 2020; Vashishth et al., 2020; Liu et al.,
2021a; Zhu et al., 2021). This task amounts to pre-
dicting missing facts in the knowledge graph and has
led to a rich landscape of graph neural network archi-
tectures (Schlichtkrull et al., 2018; Teru et al., 2020;
Vashishth et al., 2020; Zhu et al., 2021). Our under-
standing of these architectures is supported by theoret-
ical studies quantifying their expressive power (Barceló
et al., 2022; Zhang et al., 2021; Huang et al., 2023; Qiu
et al., 2024).
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In this work, we are interested in link prediction on fully relational data, where every relation is between k
nodes, for any relation-specific choice of k. Relational data can encode rich relationships between entities;
e.g., consider a relationship between four entities: “Hawking went to Oxford to study Physics and received
a BA degree”. This can be represented with a fact StudyDegree(Hawking,Oxford,Physics,BA). Clearly,
relational data can be represented via relational hypergraphs, where each ordered, relational hyperedge in
the hypergraph corresponds to a relational fact (see Figure 1).

Motivation. Given the prevalence of relational data, link prediction with relational hypergraphs has
been widely studied in the context of shallow embedding models (Wen et al., 2016; Abboud et al., 2020;
Fatemi et al., 2020; 2023), where the idea is to generalize knowledge graph embedding methods to rela-
tional hypergraphs. The key limitation of these approaches is that they are all transductive: they cannot
be directly used to make predictions between nodes that are not seen during training. The same limi-
tation has motivated the development of graph neural network architectures for inductive link prediction
on knowledge graphs — enabling for predictions between nodes that are not seen during training (Teru
et al., 2020) — which eventually led to very strong architectures such as NBFNets (Zhu et al., 2021).

t
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v

Figure 2: Unary encoders cannot dis-
tinguish the query facts r(u, v, t) and
r(u,w, t), drawn in green.

In the same spirit, graph neural networks have been extended for
inductive link prediction on relational hypergraphs (Yadati, 2020;
Zhou et al., 2023), but these approaches do not enjoy the same
level of success. This can be attributed to multiple, related fac-
tors. In essence, link prediction with relational hypergraphs is
a k-ary task (for k varying depending on the relation), which
is much more challenging than a binary prediction task and re-
quires dedicated approaches. On the other hand, existing proposals
are simple extensions of relational graph neural networks (such as
RGCNs (Schlichtkrull et al., 2018)), which cannot adequately cap-
ture k-ary tasks. In fact, these architectures are unary encoders
that are used for k-ary predictions, which is known to be a fun-
damental limitation (Zhang et al., 2021; Huang et al., 2023). To
make these points concrete, let us consider the example shown in
Figure 2. In this example, regardless of the choice of the unary
encoder, it is not possible to distinguish between the query facts
r(u,w, t) and r(u, v, t), because the nodes w and v are isomorphic
in the hypergraph. However, an appropriate ternary encoder can

easily differentiate these facts using the information that the distance between the nodes u and w differs
from the distance between the nodes u and v. These limitations along with a lack of an established theory
motivates our study.

Approach. We first investigate the expressive power of existing graph neural networks proposed for rela-
tional hypergraphs — such as G-MPNNs (Yadati, 2020) and RD-MPNNs (Zhou et al., 2023) — to rigor-
ously identify their limitations. This is achieved by studying the framework of hypergraph relational message
passing neural networks (HR-MPNNs) which subsumes these architectures. To address the limitations of
HR-MPNNs, we introduce hypergraph conditional message passing neural networks (HC-MPNNs) as a frame-
work for inductive link prediction inspired by the conditional message passing paradigm studied for knowledge
graphs (Zhu et al., 2021; Huang et al., 2023). We conduct a systematic expressiveness study showing that
HC-MPNNs can compute richer properties of nodes — dependent on k other nodes — when compared to
HR-MPNNs.

Specifically, our study for expressive power answers the following questions:

1. Which nodes can be distinguished by an architecture? To answer this question, we generalize existing
results given for graph neural networks on knowledge graphs (Barceló et al., 2022; Huang et al., 2023)
using Weisfeler-Leman algorithms designated for relational hypergraphs.

2. What properties of nodes can be uniformly expressed by an architecture? To answer this question, we
investigate logical expressiveness which situates the class of node properties that can be expressed
by an architecture within an appropriate logical fragment.
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Contributions. Our main contributions can be summarized as follows:

• We rigorously identify the expressive power and limitations of HR-MPNNs that encompass most of the
existing architectures for link prediction with relational hypergraphs (Section 4).

• We introduce the novel framework of HC-MPNNs, which includes more expressive architectures, such as
HCNets, and addresses the core limitations of HR-MPNNs (Section 5).

• We present a detailed empirical analysis to validate our theoretical findings (Section 6). Experiments for
inductive and transductive link prediction with relational hypergraphs show that a simple HC-MPNNs
architecture surpasses all existing baselines leading to competitive results. Our ablation studies on differ-
ent model components justify the importance of our model design choices. We supplement the real-world
experiments with a synthetic experiment inspired by the example from Figure 2 to validate the expressive
power of HC-MPNNs (Section 6.5).

2 Related work

Knowledge graphs. Link prediction with knowledge graphs has been studied extensively in the literature.
Early literature is dominated by knowledge graph embedding models including TransE (Bordes et al., 2013),
RotatE (Sun et al., 2019), ComplEx (Trouillon et al., 2016), TuckER (Balazevic et al., 2019), and BoxE
(Abboud et al., 2020), which are all restricted to the transductive regime. In the space of graph neural
networks, RGCN (Schlichtkrull et al., 2018) and CompGCN (Vashishth et al., 2020) emerged as architectures
extending standard message passing neural networks (Gilmer et al., 2017) to knowledge graphs using a
relational message passing scheme. GraIL (Teru et al., 2020) is the first architecture explicitly designed
to operate in the inductive regime, but it suffers from a high computational complexity. Zhu et al. (2021)
proposed NBFNets as an architecture that subsumes previous methods such as NeuralLP (Yang et al., 2017)
and DRUM (Sadeghian et al., 2019). NBFNets perform strongly and have better computational complexity
thanks to their high parallelizability (Zhu et al., 2021). Recently, A*Net (Zhu et al., 2023) is proposed to scale
NBFNets further with the usage of a neural priority function. NBFNets are shown to fall under the framework
of conditional message passing neural networks (C-MPNNs) (Huang et al., 2023), as they compute node
representations “conditioned” pairwise on other node representations, making these architectures suitable
for link prediction tasks and explaining their superior performance. The success of conditional message
passing on knowledge graphs serves as a motivation for our work on relational hypergraphs.

Relational hypergraphs. Link prediction with relational hypergraphs has been widely studied in the
context of shallow embedding models (Wen et al., 2016; Abboud et al., 2020; Fatemi et al., 2020; 2023). To
score facts of the form r(u1, · · · , uk), some methods extend the scoring function (i.e., decoder) of existing
knowledge graph embedding methods to consider multiple entities. For example, m-TransH (Wen et al.,
2016) is an extension of TransH (Wang et al., 2014) designed to handle multiple entities jointly. Similarly,
GETD (Liu et al., 2020) builds on the bilinear embedding method TuckER (Balazevic et al., 2019) to handle
higher-arity relations. Fatemi et al. (2020) proposed HSimplE and HypE that disentangle the position and
relation embedding. BoxE (Abboud et al., 2020) is an embedding model that encodes each relation using
box embeddings, and naturally applies to k-ary relations while achieving strong results on transductive
benchmarks. Fatemi et al. (2023) explores the connection between relational algebra and relational hyper-
graph embeddings and proposes ReAlE. Recently, Li et al. (2024a) proposed HJE that jointly considers 3D
convolution and relation-aware 2D convolution, whereas Li et al. (2024b) utilizes 3D circular convolutional
neural network and the alternate mask stack strategy to enhance feature extraction. In the space of graph
neural networks, Feng et al. (2018) and Yadati et al. (2019) leverage message-passing methods on undi-
rected hypergraphs. Subsequently, StarE (Galkin et al., 2020) was introduced as a message-passing neural
network specifically designed for hyper-relational knowledge graphs, providing a different approach to rep-
resent high-arity facts, while Ali et al. (2021) further studied different inductive settings for hyper-relational
knowledge graph completion. Georgiev et al. (2022) also incorporates a transformer into message passing for
hyper-relational knowledge graphs. The first approach that is tailored to relational hypergraphs is G-MPNN
(Yadati, 2020), which operates by relational message passing. RD-MPNNs (Zhou et al., 2023) builds on this
approach and additionally incorporates the positional information of entities in their respective relations
during message passing, which is critical for relational facts since the order of nodes in each edge clearly
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matters. G-MPNN and RD-MPNNs represent the closest related works to the present study and we show
that these architectures are instances of HR-MPNNs and hence are subject to the same limitations.

3 Link prediction with relational hypergraphs

Relational hypergraphs. A relational hypergraph G = (V,E,R, c) consists of a set V of nodes, a set E
of hyperedges (or simply edges or facts) of the form e = r(u1, . . . , uk) ∈ E where r ∈ R is a relation type,
u1, . . . , uk ∈ V are nodes, and k = ar(r) is the arity of the relation r. We consider labeled hypergraphs,
where the labels are given by a coloring function on nodes c : V → D. If the range of this coloring satisfies
D = Rd, we say c is a d-dimensional feature map and use the notation x. We write ρ(e) as the relation r ∈ R
of the hyperedge e ∈ E, and e(i) to refer to the node in the i-th arity position of the hyperedge e. We define
E(v) = {(e, i) | e(i) = v, e ∈ E, 1 ≤ i ≤ ar(ρ(e))} as the set of edge-position pairs of a node v. Intuitively, this
set captures all occurrences of node v in different hyperedges and arity positions. We also define the positional
neighborhood of a hyperedge e with respect to a position i as Ni(e) = {(e(j), j) | j ̸= i, 1 ≤ j ≤ ar(ρ(e))}.
This set represents all nodes that co-occur with the node at position i in a hyperedge e, along with their
positions. A knowledge graph is a relational hypergraph where for all r ∈ R, ar(r) = 2.

Link prediction on hyperedges. Given a relational hypergraph G = (V,E,R, c), and a query
q(u1, ..., ut−1, ?, ut+1..., uk), where q ∈ R is the query relation and “?” is the querying position, link pre-
diction is the problem of scoring all the hyperedges obtained by substituting nodes v ∈ V in place of “?”.
We denote a k-tuple (u1, . . . , uk) by u and the tuple (u1, . . . , ut−1, ut+1, . . . , uk) by ũ. For convenience, we
commonly write a query as a tuple q = (q, ũ, t).

Isomorphisms. An isomorphism from a relational hypergraph G = (V,E,R, c) to a relational hypergraph
G′ = (V ′, E′, R, c′) is a bijection f : V → V ′ such that c(v) = c′(f(v)) for all v ∈ V , and r(u1, · · · , uk) ∈ E
if and only if r(f(u1), · · · , f(uk)) ∈ E′, for all r ∈ R and u1, · · · , uk ∈ V .

Invariants. For k ≥ 1, we define a k-ary relational hypergraph invariant as a function ξ associating with
each relational hypergraph G = (V,E,R, c) a function ξ(G) with domain V k such that for all relational
hypergraphs G,G′, all isomorphisms f from G to G′, and for all k-tuples of nodes u ∈ V k, we have
ξ(G)(u) = ξ(G′)(f(u)).

Refinements. Given two relational hypergraph invariants ξ and ξ′, we say a function ξ(G) : V k → D
refines a function ξ′(G) : V k → D, denoted as ξ(G) ⪯ ξ′(G), if for all u,u′ ∈ V k, ξ(G)(u) = ξ(G)(u′)
implies ξ′(G)(u) = ξ′(G)(u′). In addition, we call such functions equivalent, denoted as ξ(G) ≡ ξ′(G),
if ξ(G) ⪯ ξ′(G) and ξ′(G) ⪯ ξ(G). A k-ary relational hypergraph invariant ξ refines a k-ary relational
hypergraph invariant ξ′, if ξ(G) refines ξ′(G) for all relational hypergraphs G. Similarly for equivalence.

4 Hypergraph relational MPNNs

We first introduce HR-MPNNs, which capture existing architectures tailored for relational hypergraphs, such
as G-MPNN (Yadati, 2020) and RD-MPNN (Zhou et al., 2023) (Appendix B.1).

Let G = (V,E,R,x) be a relational hypergraph, where x is a feature map that yields the initial features
xv = x(v) for all nodes v ∈ V . For ℓ ≥ 0, an HR-MPNN iteratively computes a sequence of feature maps
h(ℓ) : V 7→ Rd(ℓ), where the representations h

(ℓ)
v := h(ℓ)(v) are given by:

h(0)
v = xv,

h(ℓ+1)
v = Up

(
h(ℓ)

v ,Agg
(
h(ℓ)

v , {{Msgρ(e)
(
{(h(ℓ)

w , j) | (w, j) ∈ Ni(e)}
)

| (e, i) ∈ E(v)}}
))
,

where Up, Agg, and Msgρ(e) are differentiable, update, aggregation, and relation-specific message functions,
respectively. These functions are layer-specific, but we omit the superscript (ℓ) for brevity. An HR-MPNN
has a fixed number of layers L ≥ 0 and the final representations of nodes are given by the function h(L) :
V → Rd(L). We can then use a k-ary decoder decq : Rd(L)×k → R, to produce a score for the likelihood of
q(u) for q ∈ R,u ∈ V k.
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HR-MPNNs contain architectures designed for single-relational, undirected hypergraphs, such as HGNN
(Feng et al., 2018) and HyperGCN (Yadati et al., 2019) (see Appendix B.2). Furthermore, HR-MPNNs
capture relational message passing neural networks (Huang et al., 2023), as a special case (see Appendix B.3).

MPNNs are well-understood both in terms of their ability to distinguish graph nodes (Morris et al., 2019;
Xu et al., 2019) and in terms of their capacity to capture logical node properties (Barceló et al., 2020). This
line of work has been extended to relational architectures (Barceló et al., 2022; Huang et al., 2023). In the
next subsections, we provide similar characterizations for HR-MPNNs.

4.1 A Weisfeiler-Leman test for HR-MPNNs

We formally characterize the ability of HR-MPNNs to distinguish nodes in relational hypergraphs via a
variant of the 1-dimensional Weisfeiler-Leman test, namely the hypergraph relational 1-WL test, denoted by
hrwl1. The test hrwl1 is a natural generalization of rwl1 (Barceló et al., 2022) to relational hypergraphs.
Given a relational hypergraph G = (V,E,R, c), for ℓ ≥ 0, hrwl1 updates the node colorings as:

hrwl(0)
1 (v) = c(v),

hrwl(ℓ+1)
1 (v) = τ

(
hrwl(ℓ)

1 (v),{{
(
{(hrwl(ℓ)

1 (w), j) | (w, j) ∈ Ni(e)}, ρ(e)
)

|(e, i)∈E(v)}}
)
.

The function τ is an injective mapping that maps the above pair to a unique color that has not been used
in previous iterations: hrwl(ℓ)

1 defines a valid node invariant on relational hypergraphs for all ℓ ≥ 0.

As it turns out, hrwl1 has the same expressive power as HR-MPNNs in terms of distinguishing nodes over
relational hypergraphs:
Theorem 4.1. Let G = (V,E,R, c) be a relational hypergraph, then the following statements hold:

1. For all initial feature maps x with c ≡ x, all HR-MPNNs with L layers, and for all 0 ≤ ℓ ≤ L, it holds
that hrwl(ℓ)

1 ⪯ h(ℓ).

2. For all L ≥ 0, there is an initial feature map x with c ≡ x and an HR-MPNN with L layers, such that
for all 0 ≤ ℓ ≤ L, we have hrwl(ℓ)

1 ≡ h(ℓ).

Intuitively, item (1) states that hrwl1 upper bounds the power of any HR-MPNN: if the test cannot distinguish
two nodes, then HR-MPNNs cannot either. On the other hand, item (2) states that HR-MPNNs can be
as expressive as hrwl1: for any L, there is an HR-MPNN that simulates L iterations of the test. In our
proof, we explicitly construct this HR-MPNN using a simple architecture: the proof requires a very delicate
construction to ensure the HR-MPNN synthetizes the information around a node v (given by its neighborhood
E(v)), in the same way hrwl1 does (see Appendix C).

4.2 Logical expressiveness of HR-MPNNs

The previous WL characterization of HR-MPNNs is non-uniform in the sense that it holds for a given
relational hypergraph G. We now turn our attention to a uniform analysis of the power of HR-MPNNs
and study the problem of which (node) properties can be expressed as HR-MPNNs, which is well-suited for
the inductive setup. Following Barceló et al. (2020), we investigate logical classifiers, i.e., those that can be
defined in the formalism of first-order logic (FO). Briefly, a first-order formula ϕ(x) with one free variable x
defines a logical classifier that assigns value true to node u in relational hypergraph G whenever G |= ϕ(u).
A logical classifier ϕ(x) is captured by a HR-MPNN A if for every relational hypergraph G the nodes u that
are classified as true by ϕ and A are the same.

Graded modal logic on hypergraphs. Barceló et al. (2020) showed that a logical classifier is captured
by an MPNN over single-relational undirected graphs if and only if it can be expressed in graded modal logic
(de Rijke, 2000; Lutz et al., 2001). This result is extended to knowledge graphs by Huang et al. (2023). We
consider a variant of graded modal logic for hypergraphs. Fix a set of relation types R and a set of node
colors C. The hypergraph graded modal logic (HGML) is the fragment of FO containing the following unary

5



Published in Transactions on Machine Learning Research (05/2025)

a b

c d

e
r1 r2

Hypergraph G
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r1 r2

zq + p3 zq + p1

0
Init of q(b, ?, a)
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c d

e
r1 r2

Message Passing

dec( ) 7→ R

Figure 3: Given a relational hypergraph G with V = {a, b, c, d, e}, E = {r1(a, b, d, c), r2(d, e, b)}, R = {r1, r2}
and a query q(b, ?, a), HCNet conditions on the nodes a and b and then applies message passing to compute
the score for q(b, e, a). Here, zq is the learnable relation vector for query relation, and pi is the positional
encoding of the i-th arity position.

formulas. Firstly, a(x) for a ∈ C is a formula. Secondly, if φ(x) and φ′(x) are HGML formulas, then ¬φ(x)
and φ(x) ∧ φ′(x) also are. Thirdly, for r ∈ R, 1 ≤ i ≤ ar(r) and N ≥ 1:

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ Ψ(ỹ)

)
is a HGML formula, where ỹ = (y1, . . . , yi−1, yi+1, . . . , yar(r)) and Ψ(ỹ) is a Boolean combination of HGML
formulas having free variables from ỹ. Intuitively, the formula expresses that x participates in at least N
edges e at position i, where the remaining nodes in e satisfy condition Ψ.
Example 4.2. Consider the set of relations from Figure 1 and the property: “x is a person who obtained a
degree y of a subject z at a university m that has been awarded less than two prices p of some subject w.”
This can be expressed as the following formula:

ϕ(x) = Person(x) ∧ ∃y, z,m
(

StudyDegree(x, y, z,m) ∧ ¬∃≥2p, w (Awarded(w, p,m))
)

It is easy to verify that ϕ(x) is indeed a HGML formula. ⋄

For any property expressed in HGML, such as ϕ(x), does there exist an HR-MPNN that captures this
property on all relational hypergraphs with a shared relational vocabulary R and node colors C? Indeed, we
show that HR-MPNNs are as powerful as HGML:
Theorem 4.3. Each hypergraph graded modal logic classifier is captured by a HR-MPNN.

For the proof, we first show a simple normal form for HGML formulas, and then carefully translate formulas
of this form into HR-MPNNs. See Appendix D for further discussion regarding HGML.

5 Hypergraph conditional MPNNs

In this section, we propose hypergraph conditional message passing networks (HC-MPNNs), a generalization
of C-MPNNs (Huang et al., 2023) to relational hypergraphs.

Let G = (V,E,R,x) be a relational hypergraph, where x is a feature map. Given a query q = (q, ũ, t), for
ℓ ≥ 0, an HC-MPNN computes a sequence of feature maps h

(ℓ)
v|q as follows:

h
(0)
v|q = Init(v, q),

h
(ℓ+1)
v|q = Up

(
h

(ℓ)
v|q,Agg

(
h

(ℓ)
v|q, {{Msgρ(e)

(
{(h(ℓ)

w|q, j) | (w, j) ∈ Ni(e)}, q
)

| (e, i) ∈ E(v)}}
))
,

where Init, Up, Agg, and Msgρ(e) are differentiable initialization, update, aggregation, and relation-specific
message functions, respectively. An HC-MPNN has a fixed number of layers L ≥ 0, and the final conditional
node representations are given by h

(L)
v|q . We denote by h

(ℓ)
q : V → Rd(ℓ) the function h

(ℓ)
q (v) := h

(ℓ)
v|q.
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To ensure that HC-MPNNs compute k-ary representations (see Appendix H), we impose a generalized
version of target node distinguishability proposed by Huang et al. (2023). An initialization function1 satisfies
generalized target node distinguishability if for all q = (q, ũ, t):

Init(u, q) ̸= Init(v, q),∀u ∈ ũ, v /∈ ũ and Init(ui, q) ̸= Init(uj , q),∀ui, uj ∈ ũ, ui ̸= uj

Differently from message passing on simple hypergraphs, we need to consider the relation type of each edge
(multi-relational) and the relative position of each node (directed) in the edges on relational hypergraphs.
Hence, the message function Msgρ(e) needs to be relation-specific while also keeping track of the positions
j of nodes w in their respective neighborhoods Ni(e). We can then obtain the scores of query q applying a
unary decoder dec on h

(L)
v|q .

5.1 Hypergraph conditional networks

We define a basic HC-MPNN, which we call hypergraph conditional networks (HCNets). For a query q =
(q, ũ, t), an HCNet computes the following representations for all ℓ ≥ 0:

h
(0)
v|q =

∑
i ̸=t

1v=ui
∗ (pi + zq),

h
(ℓ+1)
v|q = σ

(
W (ℓ)

[
h

(ℓ)
v|q

∥∥∥ ∑
(e,i)∈E(v)

g
(ℓ)
ρ(e),q

(
⊙j ̸=i (α(ℓ)h

(ℓ)
e(j)|q+ (1 − α(ℓ))pj)

)]
+ b(ℓ)

)
,

where g(ℓ)
ρ(e),q is learnable message function, σ is an activation function, W (ℓ) is a learnable weight matrix,

b(ℓ) as learnable bias term per layer, zq is the learnable query vector for q ∈ R, and 1C is the indicator
function that returns 1 if condition C is true, and 0 otherwise. As usual, ∗ is scalar multiplication, and ⊙
is element-wise multiplication of vectors. We write α to refer to a learnable scalar and pi to refer to the
positional encoding at position i, which is sinusoidal positional encoding (Vaswani et al., 2017).

In particular, we set g(ℓ)
ρ(e),q to be a query-dependent diagonal linear map Diag(Wrzq) where Wr is a learnable

matrix for each relation r. Alternatively, we can adopt a query-independent map by replacing Wrzq with
learnable vector wr for each relation r.

Intuitively, the model initialization ensures that all source nodes (i.e., nodes that appear in ũ) are initialized
to their respective positions in the query edge, and all other nodes are initialized as the zero vector 0
satisfying generalized target node distinguishability, shown in Figure 3.

5.2 A Weisfeiler-Leman test for HC-MPNNs

To analyze the expressive power of HC-MPNNs for distinguishing nodes, we can still use the hrwl1 test
provided we restrict ourselves to initial colorings c that respect the given query q. Formally, given a query
q = (q, ũ, t) on a relational hypergraph G = (V,E,R, c), we say that the coloring c satisfies generalized target
node distinguishability with respect to q if:

c(u) ̸= c(v) ∀u ∈ ũ, v /∈ ũ and c(ui) ̸= c(uj) ∀ui, uj ∈ ũ, ui ̸= uj .

Note that initial colorings satisfying this property are equivalent to the initializations of HC-MPNNs. As a
direct consequence of Theorem 4.1 we obtain:
Theorem 5.1. Let G = (V,E,R, c) be a relational hypergraph and q = (q, ũ, t) be a query such that c
satisfies generalized target node distinguishability with respect to q. Then the following statements hold:

1. For all HC-MPNNs with L layers and initialization Init with Init ≡ c, 0 ≤ ℓ ≤ L, we have hrwl(ℓ)
1 ⪯ h

(ℓ)
q .

2. For all L ≥ 0, there is an HC-MPNN with L layers s.t. 0 ≤ ℓ ≤ L, hrwl(ℓ)
1 ≡ h

(ℓ)
q holds.

1HC-MPNNs can also take into account node features with slight modification. See detail discussions in Appendix L.
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Theorem 5.1 tells us that HC-MPNNs are stronger than HR-MPNNs due to the initialization: HC-MPNNs
can initialize nodes differently based on the query q, whereas HR-MPNNs always assign the same initial-
ization for all queries. In fact, the ternary edges from Figure 2 cannot be distinguished by HR-MPNNs but
they can be distinguished by HC-MPNNs.

5.3 Logical expressiveness of HC-MPNNs

We remark that Theorem 4.3 can be translated to HC-MPNNs by slightly modifying the logic. We consider
symbolic queries q = (q, b̃, t), where now each b ∈ b̃ is a constant symbol. Our vocabulary contains relation
types r ∈ R and node colors C, as before, and additionally the constants b ∈ b̃. We define hypergraph graded
modal logic with constants (HGMLc) as HGML but, as atomic cases, we additionally have formulas of the
form φ(x) = (x = b) for some constant b (see Appendix F for details). This allows us to identify variables
with individual constants.
Example 5.2. Now that we have a richer vocabulary with constants, we can now represent more formulas
“conditioned” on the constants appearing in the query. For instance, given a symbolic query with b̃ =
(Physics,BA) , we can express a more complex formula ψ(x) that represents “x is a person with a BA degree
of Physics at some University m, where less than two prizes p in total have been awarded in Physics.” as
follows:

ψ(x) = Person(x) ∧ ∃y, z,m
(

StudyDegree(x, y, z,m) ∧ (z = Physics) ∧ (y = BA)

∧ ¬
(
∃≥2p, w (Awarded(w, p,m) ∧ (w = Physics))

) )
Note that this formula ψ(x) cannot be expressed as an HGML formula but it can be as an HGMLc formula,
due to the additional introduction of constants. ⋄

We prove the following result showing that HC-MPNNs can capture richer k-ary node properties:
Theorem 5.3. Each HGMLc classifier can be captured by a HC-MPNN over valid relational hypergraphs.

6 Experimental evaluation

We evaluate HCNet on a broad range of experiments:

• Inductive experiments (Section 6.1): We evaluate HCNet for inductive link prediction with relational
hypergraphs and report very substantial improvements reflecting on our theoretical findings.

• Transductive experiments (Section 6.2): We evaluate HCNet for transductive link prediction with
relational hypergraphs and report competitive results.

• Knowledge graph experiments (Section 6.3): HCNet can handle knowledge graphs as a special case
and our evaluation shows that it can match the performance of models such as NBFNets.

• Ablation on initialization and positional encoding (Section 6.4): We conduct ablation studies on
the choice of initialization and positional encoding in HCNets.

• Expressiveness evaluation (Section 6.5): We conduct a synthetic experiment on HyperCycle dataset,
building on the counter-example in Figure 2 to showcase the expressivity differences between HR-MPNNs
and HC-MPNNs.

Experimental setups. In all experiments, we consider a 2-layer MLP as the decoder and adopt layer
normalization and dropout in all layers before applying ReLU activation and skip-connection. During the
training, we remove edges that are currently being treated as positive tuples to prevent overfitting for each
batch. We choose the best checkpoint based on its evaluation of the validation set. In terms of evaluation,
we adopt filtered ranking protocol. For each test edge q(u1, . . . , uk) where k = ar(q), and for each position
t ∈ {1, ..., k}, we replace the t-th entities by all other possible entities such that the query after replacement
is not in the graph. We consider the query-independent message function for all datasets except WikiPeople.
We report Mean Reciprocal Rank (MRR), Hits@1, and Hits@3 for inductive experiments and MRR, Hits@1,
and Hits@10 for transductive experiments as evaluation metrics and provide averaged results of five runs
on different seeds. We reported standard deviations and execution time & memory used along with all
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Table 1: Results of inductive link prediction experiments on WP-IND, JF-IND, and MFB-IND.

WP-IND JF-IND MFB-IND
MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

HGNN 0.072 0.045 0.112 0.102 0.086 0.128 0.121 0.076 0.114
HyperGCN 0.075 0.049 0.111 0.099 0.088 0.133 0.118 0.074 0.117
G-MPNN-sum 0.177 0.108 0.191 0.219 0.155 0.236 0.124 0.071 0.123
G-MPNN-mean 0.153 0.096 0.145 0.112 0.039 0.116 0.241 0.162 0.257
G-MPNN-max 0.200 0.125 0.214 0.216 0.147 0.240 0.268 0.191 0.283
RD-MPNN 0.304 0.238 0.328 0.402 0.308 0.453 0.122 0.082 0.125
HCNet 0.414 0.352 0.451 0.435 0.357 0.495 0.368 0.223 0.417

other experiment details in Appendix N. Furthermore, we provide a detailed discussion of computational
complexity between HR-MPNNs and HC-MPNNs in Appendix I, and a discussion of the impact of relational
hypergraphs’ density on the performance in Appendix M. We ran all experiments on a single NVIDIA V100
GPU. The code for experiments is provided in https://github.com/HxyScotthuang/HC-MPNN.

6.1 Inductive experiments

Datasets. Yadati (2020) constructed three inductive datasets, WP-IND, JF-IND, and MFB-IND from
existing transductive datasets on relational hypergraphs: WikiPeople (Guan et al., 2019), JF17K (Wen
et al., 2016), and M-FB15K (Fatemi et al., 2020), with their statistics in Table 8.

Baselines. We compare with the baseline models HGNN (Feng et al., 2018), HyperGCN (Yadati et al.,
2019), and three variants of G-MPNN (Yadati, 2020) with different aggregation functions. Since HGNN
and HyperGCN are designed for simple hypergraphs, Yadati (2020) tested them on transformed relational
hypergraphs where the relations are ignored. In addition, Yadati (2020) initialized nodes with given node
features, whereas we ignore the node feature and initialize each node with the respective initialization defined
in HCNets. We modify RD-MPNNs (Zhou et al., 2023) by replacing learned entity embeddings to be all one
vector 1d to enable inductive link prediction. We adopt the batching trick (Zhu et al., 2021) on MFB-IND.
Hyper-parameters are reported in Table 10.

Results. We report the inductive experiments results in Table 1, and observe that HCNet outperforms all the
existing baseline methods by a large margin, doubling the metric on WP-IND and JF-IND and substantially
increasing on MFB-IND. Notably, we emphasize that HCNet does not utilize the provided node features
whereas other baseline models do, further highlighting the effectiveness of HCNet in generalizing to entirely
new graphs in the absence of node features. This is because HCNet is more expressive by computing query-
dependent k-ary invariants instead of query-agnostic unary invariants in HR-MPNNs such as RD-MPNNs
and G-MPNNs with different aggregation functions. Overall, these results perfectly align with the main
theoretical findings presented in this paper.

6.2 Transductive experiments

Datasets & Baselines. We evaluate HCNets on the link prediction task with relational hypergraphs,
namely the publicly available FB-AUTO, MFB15K, (Fatemi et al., 2020), WikiPeople (Guan et al., 2021),
and JF17K2 (Wen et al., 2016). These datasets include facts of different arities up to 9. We have taken the
result of embedding methods m-DistMult, m-CP, m-TransH from Wen et al. (2016), RAE from Zhang et al.
(2018), NaLP from Guan et al. (2019), tNaLP+ from Guan et al. (2021), HINGE from Rosso et al. (2020),
NeuInfer from Guan et al. (2020), HypE from Fatemi et al. (2020), BoxE from Abboud et al. (2020), RAM
from Liu et al. (2021b), HyperMLN from Chen et al. (2022), HyConvE from Wang et al. (2023), ReAIE
from Fatemi et al. (2023), HJE from (Li et al., 2024a), HyCubE, HyPlanE from (Li et al., 2024b) and GNN

2Note that we include JF17K for comparing with literature, even though JF17K suffers from redundant entries and severe
test leakages (Galkin et al., 2020).
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Table 2: Transductive link prediction experiments on FB-AUTO, WikiPeople, JF17K, and MFB15K

FB-AUTO WikiPeople JF17K MFB15K
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

m-DistMult 0.784 0.745 0.845 - - - 0.463 0.372 0.634 0.705 0.633 0.844
m-CP 0.752 0.704 0.837 - - - 0.392 0.303 0.560 0.680 0.605 0.828
m-TransH 0.728 0.727 0.728 - - - 0.444 0.370 0.581 0.623 0.531 0.809
RAE 0.703 0.614 0.854 0.253 0.118 0.463 0.396 0.312 0.561 - - -
NaLP 0.672 0.611 0.774 0.338 0.272 0.466 0.366 0.290 0.516 - - -
tNaLP+ 0.729 0.645 0.826 0.339 0.269 0.473 0.449 0.370 0.598 - - -
HINGE 0.678 0.630 0.765 0.333 0.259 0.477 0.473 0.397 0.618 - - -
NeuInfer 0.737 0.700 0.805 0.350 0.282 0.467 0.451 0.373 0.604 - - -
HypE 0.804 0.774 0.856 0.263 0.127 0.486 0.494 0.408 0.656 0.777 0.725 0.881
RAM 0.830 0.803 0.876 0.363 0.271 0.500 0.539 0.463 0.690 - - -
BoxE 0.844 0.814 0.898 - - - 0.560 0.472 0.722 0.761 0.702 0.877
HyperMLN 0.831 0.803 0.877 - - - 0.556 0.482 0.717 - - -
HyConvE 0.847 0.820 0.901 0.362 0.275 0.501 0.590 0.478 0.729 - - -
ReAIE 0.873 0.852 0.909 - - - 0.559 0.482 0.705 0.801 0.755 0.901
RD-MPNN 0.810 0.714 0.888 - - - 0.512 0.445 0.685 - - -
HJE 0.872 0.848 0.903 0.450 0.375 0.582 0.590 0.507 0.729 - - -
HyCubE 0.881 0.860 0.918 0.448 0.368 0.592 0.584 0.508 0.730 - - -
HyPlanE 0.866 0.843 0.909 0.402 0.323 0.549 0.569 0.496 0.708 - - -

HCNet 0.871 0.842 0.922 0.421 0.344 0.565 0.540 0.440 0.730 0.759 0.693 0.884

method RD-MPNN from Zhou et al. (2023). The statistics of the datasets are reported in Table 9, and the
hyper-parameter choices in Table 11. The full tables are in Tables 15 and 16 which additionally report H@3.

Results. We summarize the results for the transductive link prediction tasks and report them in Table 2.
HCNet is competitive even comparing with existing embedding methods specifically designed for transductive
link prediction tasks. This demonstrates the effectiveness of HCNets also on transductive datasets.

6.3 Knowledge graphs experiments

In addition, to evaluate the model’s performance on knowledge graphs—a specific instance of relational
hypergraphs—we conduct inductive experiments on knowledge graphs, where every edge has an arity of 2,
and compare the outcomes with those of current state-of-the-art models.

Setup. We evaluate HCNet on 4 standard inductive splits of WN18RR (Bordes et al., 2013) and FB15k-237
(Dettmers et al., 2018), which was proposed in Teru et al. (2020). We provide the details of the datasets
in Table 17. Contrary to the standard experiment setting (Zhu et al., 2021; 2023) on knowledge graph
G = (V,E,R,x) where for each relation r(u, v) ∈ E, an inverse-relation r−1 is introduced as a fresh relation
symbol and r−1(v, u) is added in the knowledge graph, in our setup we do not augment inverse edges for
HCNet. This makes the task more challenging. We compare HCNet with models designed only for inductive
binary link prediction task with knowledge graphs, namely GraIL (Teru et al., 2020), NeuralLP (Yang et al.,
2017), DRUM (Sadeghian et al., 2019), NBFNet (Zhu et al., 2021), RED-GNN (Zhang & Yao, 2022), and
A*Net (Zhu et al., 2023), and we take the results provided in Zhu et al. (2023) for comparison.

Results. We report the results in Table 3. We observe that HCNets are highly competitive even compared
with state-of-the-art models specifically designed for link prediction with knowledge graphs. HCNets reach
the top 3 for 7 out of 8 datasets, and obtain a very close result for the final dataset. Note here that the top 2
models are NBFNet (Zhu et al., 2021) and A*Net (Zhu et al., 2023), which share a similar idea of HCNet and
are all based on conditional message passing. The difference in results lies in the different message functions,
which are further supported in Table 1 of Huang et al. (2023).

However, we highlight that HCNet does not augment with inverse relation edges, as described in the set-up of
the experiment. HCNet can recognize the directionality of relational edges and pay respect to both incoming
and outgoing edges during message passing. No current link prediction model based on message passing can
explicitly take care of this without edge augmentation. In fact, Theorem G.4 implies that all current models
based on conditional message passing, including NBFNets, need inverse relation augmentation to match the
expressive power of HCNet. Theoretically speaking, this allows us to claim that HCNet is strictly more
powerful than all other models in the baseline that are based on conditional message passing, assuming all
considered models are expressive enough to match their corresponding relational WL test.
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Table 3: Binary inductive experiment on knowledge graph for Hits@10 result. The best result is in bold,
and second/third best in underline.

Method FB15k-237 WN18RR
v1 v2 v3 v4 v1 v2 v3 v4

GraIL 0.429 0.424 0.424 0.389 0.760 0.776 0.409 0.687
NeuralLP 0.468 0.586 0.571 0.593 0.772 0.749 0.476 0.706
DRUM 0.474 0.595 0.571 0.593 0.777 0.747 0.477 0.702
NBFNet 0.574 0.685 0.637 0.627 0.826 0.798 0.568 0.694
RED-GNN 0.483 0.629 0.603 0.621 0.799 0.780 0.524 0.721
A*Net 0.589 0.672 0.629 0.645 0.810 0.803 0.544 0.743
HCNet 0.566 0.646 0.614 0.610 0.822 0.790 0.536 0.724

Table 4: Ablation on Initialization

Init WP-IND JF-IND
zq pi MRR Hits@3 MRR Hits@3
- - 0.388 0.421 0.390 0.451
✓ - 0.387 0.421 0.392 0.447
- ✓ 0.394 0.430 0.393 0.456
✓ ✓ 0.414 0.451 0.435 0.495

Table 5: Ablation on Positional Encoding

PE WP-IND JF-IND
MRR Hits@3 MRR Hits@3

Constant 0.393 0.426 0.356 0.428
One-hot 0.395 0.428 0.368 0.432

Learnable 0.396 0.425 0.416 0.480
Sinusoidal 0.414 0.451 0.435 0.495

6.4 Ablation studies on the impact of initialization and positional encoding

To assess the contribution of each model component, we conduct ablation studies mainly on different choices
of positional encodings and initialization functions on WP-IND and JF-IND datasets with the same empirical
setup described in Section 6.1. Complete results are reported in Appendix N.

Initialization. We conduct experiments to validate the impact of different initialization by evaluating all
combinations of whether including positional encoding pi or learnable query vectors zq. From Table 4, we
observe that both positional encoding pi and the relation zq are essential in the initialization, as removing
either of them worsens the overall performance of HCNet. A closer look reveals that the removal of the
positional encoding is more detrimental compared to removing relational embedding since the model could
deduce the relation types based on implicit information such as the arity of the query relation.

Positional encoding. We also examine the importance of the choice of positional encodings, which serves
as an indicator of which position the given entities lie in a hyperedge. We provide experiments on multiple
choices of positional encodings and report the results in Table 5. Empirically, we notice that the sinusoidal
positional encoding produces the best results due to its ability to measure sequential dependency between
neighboring entities, compared with one-hot positional encoding which assumes orthogonality among each
position. We also notice that learnable embeddings do not produce better results since it is generally hard to
learn a suitable embedding that respects the order of the nodes in a relation based on random initialization.
Finally, constant embedding evidently performs the worst as it pays no respect to position information and
treats all hyperedges with the same set of nodes in the same way regardless of the order of the nodes in these
edges.

6.5 Expressiveness evaluation

We carry out a synthetic experiment with a custom-built dataset HyperCycle to showcase that HC-MPNNs
are more expressive than HR-MPNNs in the task of link prediction with relational hypergraphs.

Dataset. We construct HyperCycle, a synthetic dataset that consists of multiple relational hypergraphs with
relation R = {r0, r1, r2}. Each relational hypergraph G is parameterized by 2 hyper-parameters: the number
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of nodes n which is always a multiple of 4, and the arity of each edge k. We construct a directed hyper-edge
of arity k with alternating relations between r1 and r2 for all k consecutive nodes in this cycle. We present
one example of such relational hypergraph in Figure 4, where n = 8 and k = 3. We generate the dataset by
choosing n = {8, 12, 16, 20} and k = {3, 4, 5, 6, 7}. We then randomly pick 70% of the generated graphs as
the training set and the remaining 30% as the testing set. (See details in Appendix J).

Objective. The objective of this task is for each node to identify the node that is located at the “opposite
point” in the cycle of the given node as true. Formally speaking, for a relational hypergraph G(n, k), we want
to predict a 2-ary (hyper-)edge of relation r0 between any node xi and its “opposite point” x(i+n/2 mod n)
for all 1 ≤ i ≤ n, i.e., classify r0(xi, x(i+n/2) mod n) as true. The negative sample is generated by considering
the r0 relation (hyper-)edges that connect the “2-hop” neighboring node, i.e., classify r0(xi, x(i+2) mod n) as
false. Note that since n ̸= 4, we will never have (i+ n/2) mod n ≡ (i+ 2) mod n.

r0

r0

Figure 4: Example relational hypergraph from
dataset HyperCycle with n = 8 and k = 3: r1
is blue, r2 is red, and the objective is to classify
the black edge as true and the gray edge as false.

Design & Result. We claim that HC-MPNN can cor-
rectly predict all the testing triplets, whereas HR-MPNN
fails to learn this pattern and will only achieve 50% ac-
curacy, which is no better than random guessing. This is
exactly due to the lack of expressiveness of HR-MPNNs
by relying on a k-ary decoder for link prediction. The-
oretically, all nodes of the relational hypergraphs in
HyperCycle, due to their rotational symmetry introduced
by alternating relation types r1, r2, can be partitioned
into two sets. Since the nodes within each set are isomor-
phic to each other, it is impossible for any HR-MPNNs
to distinguish between these nodes by only computing
its unary invariant. Thus HR-MPNNs cannot possibly
solve this task, as whenever they classify the target “op-
posite point” node to be true, they also have to classify
the “2-hop” node to be true, and vice versa. Empiri-
cally, we observe that HR-MPNN always fails to learn
anything meaningful, reaching an accuracy of 50%.

However, HR-MPNN can bridge this gap by introducing
the relevant notion of “distance”. As HR-MPNN carries
out message-passing after identifying the source node,
the relative distance between the source node and the
target “opposite point” node will be different than the one with the “2-hop” node. Thus, by keeping track
of the distance from the source node, HCNet will compute a different embedding for the positive triplet and
the negative triplet, effectively solving this task. Empirically, we observe that HCNet easily reaches 100%
accuracy, consistent with our theory.

7 Summary, discussions, and limitations

We investigated two frameworks of relational message-passing neural networks on the task of link prediction
with relational hypergraphs, namely HR-MPNNs and HC-MPNNs. Furthermore, we studied the expressive
power of these two frameworks in terms of relational WL and logical expressiveness. We then proposed a
simple yet powerful model instance of HC-MPNNs called HCNet and presented its superior performance on
inductive link prediction tasks, which is further supported by additional transductive link prediction and
synthetic experiments. One limitation lies in the potentially high computational complexity of our approach
when applied to large relational hypergraphs. Our approach is also limited to link prediction and a potential
future avenue is to investigate complex query answering on fully relational data. Our study extends the
success of link prediction with knowledge graphs to relational hypergraphs where higher-arity relations can
be effectively modeled with GNNs, advancing their applications to fully relational structures.
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Broader impact

This work mainly focused on link prediction with relational hypergraphs, which has a wide range of ap-
plications and thus many potential societal impacts. One potential negative impact is the enhancement of
malicious network activities like phishing or pharming through the use of powerful link prediction models.
We encourage further studies to mitigate these issues.
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A R-MPNNs and C-MPNNs

In this section, we follow Huang et al. (2023) and define relational message passing neural networks (R-
MPNNs) and conditional message passing neural networks (C-MPNNs). For ease of presentation, we omit
the discussion regarding history functions and readout functions from Huang et al. (2023).

R-MPNNs. Let G = (V,E,R,x) be a knowledge graph, where x is a feature map. A relational message
passing neural network (R-MPNN) computes a sequence of feature maps h(ℓ) : V → Rd(ℓ), for ℓ ≥ 0. For
simplicity, we write h

(ℓ)
v instead of h(ℓ)(v). For each node v ∈ V , the representations h

(ℓ)
v are iteratively

computed as:

h(0)
v = xv

h(ℓ+1)
v = Up

(
h(ℓ)

v ,Agg({{Msgr(h(ℓ)
w )| w ∈ Nr(v), r ∈ R}})

)
,

where Up, Agg, and Msgr are differentiable update, aggregation, and relation-specific message functions,
respectively, Nr(v) := {u | r(u, v) ∈ E} is the neighborhood of a node v ∈ V relative to a relation r ∈ R. An
R-MPNN has a fixed number of layers L ≥ 0, and then, the final node representations are given by the map
h(L) : V → Rd(L). The final representations can be used for node-level predictions. For link-level tasks, we
use a binary decoder decq : Rd(L) × Rd(L) → R, which produces a score for the likelihood of the fact q(u, v),
for q ∈ R.

C-MPNNs. Let G = (V,E,R,x) be a knowledge graph, where x is a feature map. A conditional message
passing neural network (C-MPNN) iteratively computes pairwise representations, relative to a fixed query
q ∈ R and a fixed node u ∈ V , as follows:

h
(0)
v|u,q = Init(u, v, q)

h
(ℓ+1)
v|u,q = Up

(
h

(ℓ)
v|u,q,Agg({{Msgr(h(ℓ)

w|u,q, zq)| w ∈ Nr(v), r ∈ R}})
)
,

where Init, Up, Agg, and Msgr are differentiable initialization, update, aggregation, and relation-specific
message functions, respectively.

We denote by h
(ℓ)
q : V × V → Rd(ℓ) the function h

(ℓ)
q (u, v) := h

(ℓ)
v|u,q, and denote zq to be a learnable

vector representing the query q ∈ R. A C-MPNN has a fixed number of layers L ≥ 0, and the final pair
representations are given by h

(L)
q . To decode the likelihood of the fact q(u, v) for some q ∈ R, we simply use

a unary decoder dec : Rd(L) → R, parameterized by a 2-layer MLP. In addition, we require Init(u, v, q) to
satisfy target node distinguishability: for all q ∈ R and v ̸= u ∈ V , it holds that Init(u, u, q) ̸= Init(u, v, q).

Nevertheless, we provide a full literature review on link prediction with a hyper-relational knowledge graph
and n-ary relational graph for the sake of completeness.

B HR-MPNNs subsume existing models

In this section, we provide further details on how the proposed framework HR-MPNNs subsumes existing
models as claimed.

B.1 HR-MPNNs subsume G-MPNNs and RD-MPNNs

To see why HR-MPNNs subsume RD-MPNNs (Zhou et al., 2023) and G-MPNNs (Yadati, 2020), which
are prominent examples of message passing model on relational hypergraphs in the literature, it suffices to
instantiate some components of HR-MPNNs with particular functions.

An RD-MPNN can be seen as an instance of an HR-MPNN that uses summation as Agg, and a relation-
specific message function Msgr which, for each relation r, applies summation followed by a linear map with
non-linearity. The update function Up is a one-layer Multi-layer Perceptron (MLP).
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Similarly, a G-MPNN instance can be seen as an HR-MPNN that uses either summation, mean, or max as
Agg, and a message function Msgr which, for each relation r, applies a Hadamard product of the relational
embedding.

B.2 HR-MPNNs subsuming HGNNs and HyperGCNs

To see why HR-MPNNs generalize HGNNs (Feng et al., 2018) and HyperGCNs (Yadati et al., 2019) on
simple, undirected hypergraph, first note that (i) these models are single-relational - no relation types - so
they are a special case in this sense and (ii) the hyperedges in these undirected hypergraphs are unordered.

To recover HGNN, we can set the message function Msgr to be mean, ignoring the relation types r, and
ignore the relative position in the formula (as there is no ordering in simple, undirected hypergraph). Then,
we can choose the Agg function to be symmetrically normalized mean, similar to the aggregation in GCN
(Kipf & Welling, 2017).

To recover HyperGCN, we set Agg to be the symmetrically normalized mean, and Msgr function to be
wi,j ∗ arg maxhj

|hi − hj |, with some weight wi,j (again ignoring the relation r and position i), provided that
the message function has access to the feature of considered node hi.

B.3 HR-MPNNs subsume R-MPNNs

We formally show that the R-MPNNs framework is subsumed by the HR-MPNNs framework when applied
to the knowledge graph.

Theorem B.1. Let G = (V,E,R,x) be a knowledge graph, then given any R-MPNN instance A with L layer
parameterized by Agg(ℓ)

A , Up(ℓ)
A , and MsgAr for 0 < ℓ ≤ L, r ∈ R, there exists a HR-MPNN instance B with

L layer, parameterized by Agg(ℓ)
B , Up(ℓ)

B , and MsgBr, such that for all v ∈ V , we have h
(ℓ)
A,G(v) = h

(ℓ)
B,G(v)

for all 0 ≤ ℓ ≤ L.

Proof. Given an R-MPNN instance A with L layer, we can have that for 0 ≤ ℓ ≤ L, we have

h
(0)
A,G(v) = x(v)

h
(ℓ+1)
A,G (v) = Up(ℓ)

A

(
h

(ℓ)
A,G(v),Agg(ℓ)

A ({{MsgAr(h(ℓ)
A,G(w))| w ∈ Nr(v), r ∈ R}})

)
,

Note that we can now rewrite the updating formula in the following form:

h
(ℓ+1)
A,G (v) = Up(ℓ)

A

(
h

(ℓ)
A,G(v),Agg(ℓ)

A
(
{{MsgAρ(e)

(
{(h(ℓ)

A,G(w), j) |(w, j) ∈ Ni(e)}
)

|(e, i) ∈ E(v), i = 2}}
))

We then parameterize a HR-MPNN instance B with L layer of the following form:

h
(0)
B,G(v) = x(v)

h
(ℓ+1)
B,G (v) = Up(ℓ)

B

(
h

(ℓ)
B,G(v),Agg(ℓ)

B
(
h

(ℓ)
B,G(v), {{MsgBρ(e)

(
{(h(ℓ)

B,G(w), j) |(w, j) ∈ Ni(e)}
)

|(e, i) ∈ E(v)}}
))

where we have for all 0 < ℓ ≤ L, r ∈ R, Up(ℓ)
B := Up(ℓ)

A , Agg(ℓ)
B (x, S) := Agg(ℓ)

A (S), for some vector x and
some (multi-)set S, and

MsgBρ(e)({(h(ℓ)(w), j) |(w, j) ∈ Ni(e)}) := MsgAρ(e)({(h(ℓ)(w), j) |(w, j) ∈ Ni(e), j = 1})

We argue that MsgBρ(e) can be achieved by applying a filtering function on each element of the set to check
if the second argument of the tuple is 1 or not.
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Now we are ready to prove the theorem by induction. First notice that the base case ℓ = 0 trivially holds. For
the inductive case, assume that for all v ∈ V , we have h

(ℓ)
A,G(v) = h

(ℓ)
B,G(v). Then, notice that for 0 < ℓ ≤ L:

h
(ℓ+1)
A,G (v) = Up(ℓ)

A

(
h

(ℓ)
A,G(v),Agg(ℓ)

A
(
{{MsgAρ(e)

(
{(h(ℓ)

A,G(w), j) |(w, j) ∈ Ni(e)}
)

|(e, i) ∈ E(v), i = 2}}
))

= Up(ℓ)
A

(
h

(ℓ)
A,G(v),Agg(ℓ)

A
(
{{MsgAρ(e)

(
{(h(ℓ)

A,G(w), j) |(w, j) ∈ Ni(e), j = 1}
)

|(e, i) ∈ E(v), i = 2}}
))

= Up(ℓ)
B

(
h

(ℓ)
B,G(v),Agg(ℓ)

B
(
h

(ℓ)
B,G(v), {{MsgBρ(e)

(
{(h(ℓ)

B,G(w), j) |(w, j) ∈ Ni(e)}
)

|(e, i) ∈ E(v)}}
))

= h
(ℓ+1)
B,G (v)

Remark B.2. Note that analogously we can show that HC-MPNNs subsumes C-MPNNs by noticing gener-
alized target node distinguishability in HC-MPNNs degrades to target node distinguishability in the context
of knowledge graph. See further detailed discussion in Appendix G.

C Proof of Theorem 4.1

Theorem 4.1. Let G = (V,E,R, c) be a relational hypergraph, then the following statements hold:

1. For all initial feature maps x with c ≡ x, all HR-MPNNs with L layers, and for all 0 ≤ ℓ ≤ L, it holds
that hrwl(ℓ)

1 ⪯ h(ℓ).

2. For all L ≥ 0, there is an initial feature map x with c ≡ x and an HR-MPNN with L layers, such that
for all 0 ≤ ℓ ≤ L, we have hrwl(ℓ)

1 ≡ h(ℓ).

Proof. First, for simplicity of notation, we define m
(ℓ)
e,i = Msgρ(e)

(
{(h(ℓ)

w , j) | (w, j) ∈ Ni(e)}
)

for edge e,
position 1 ≤ i ≤ ar(ρ(e)), and ℓ ≥ 0.

To prove item (1), we first take an initial feature map x with c ≡ x and a HR-MPNN with L layers. We
apply induction on ℓ. The base case where ℓ = 0 follows directly as hrwl(0)

1 ≡ c ≡ x ≡ h(0). For the inductive
case, assume hrwl(ℓ+1)

1 (u) = hrwl(ℓ+1)
1 (v) for some node pair u, v ∈ V and for some ℓ ≥ 1. By injectivity of

τ , it follows that hrwl(ℓ)
1 (u) = hrwl(ℓ)

1 (v) and

{{({(hrwl(ℓ)
1 (w), j) | (w, j) ∈ Ni(e)}, ρ(e)) | (e, i) ∈ E(u)}} =

{{({(hrwl(ℓ)
1 (w), j) | (w, j) ∈ Ni′(e′)}, ρ(e′)) | (e′, i′) ∈ E(v)}}

By inductive hypothesis, we have h
(ℓ)
u = h

(ℓ)
v and

{{({(h(ℓ)
w , j) | (w, j) ∈ Ni(e)}, ρ(e)) | (e, i) ∈ E(u)}} =

{{({(h(ℓ)
w , j) | (w, j) ∈ Ni′(e′)}, ρ(e′)) | (e′, i′) ∈ E(v)}}.

Thus we have

{{Msg(ℓ)
ρ(e)

(
{(h(ℓ)

w , j) | (w, j) ∈ Ni(e)}
)

| (e, i) ∈ E(u)}} =

{{Msg(ℓ)
ρ(e′)

(
{(h(ℓ)

w , j) | (w, j) ∈ Ni′(e′)}
)

| (e′, i′) ∈ E(v)}}

and then:

{{m
(ℓ)
e,i | (e, i) ∈ E(u)}} = {{m

(ℓ)
e′,i′ | (e′, i′) ∈ E(v)}}.
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We thus conclude that

h(ℓ+1)
u = Up(ℓ)

(
h(ℓ)

u ,Agg
(

h(ℓ)
u , {{m

(ℓ)
e,i | (e, i) ∈ E(u)}}

))
= Up(ℓ)

(
h(ℓ)

v ,Agg
(

h(ℓ)
v , {{m

(ℓ)
e′,i′ | (e′, i′) ∈ E(v)}}

))
= h(ℓ+1)

v .

Now we proceed to show item (2). We use a model of HR-MPNN in the following form and show that any
iteration of hrwl1 can be simulated by a specific layer of such instance of HR-MPNN:

h(0)
v = xv

h(ℓ+1)
v = f (ℓ)

([
h(ℓ)

v

∥∥∥ ∑
(e,i)∈E(v)

g
(ℓ)
ρ(e)

(
⊙j ̸=i (h(ℓ)

e(j) + pj)
)])

.

Here, f (ℓ)(z) = sign(W (ℓ)z − b) where W (ℓ) is a parameter matrix, b is the bias term, in this case the
all-ones vector b = (1, . . . , 1)T , and as non-linearity we use the sign function sign. For a relation type r ∈ R,
the function g(ℓ)

r has the form g
(ℓ)
r (z) = Y

(ℓ)
r sign(W (ℓ)

r z − b), where W
(ℓ)
r and Y

(ℓ)
r are parameter matrices

and b is the all-ones bias vector. Recall that ⊙ denotes element-wise multiplication and pj is the positional
encoding at position j, which in this case is a parameter vector.

We shall use the following lemma shown in Morris et al. (2019)[Lemma 9]. The matrix J denotes the all-ones
matrix (with appropriate dimensions).

Lemma C.1 ((Morris et al., 2019)). Let B ∈ Ns×t be a matrix whose columns are pairwise distinct. Then
there is a matrix X ∈ Rt×s such that the matrix sign(XB − J) ∈ {−1, 1}t×t is non-singular.

For a matrix B, we denote by Bi its i-th column. Let n = |V | and without loss of generality assume
V = {1, . . . , n}. Let m be the maximum arity over all edges of G. We will write feature maps h : V → Rd

for G = (V,E,R, c) also as matrices H ∈ Rd×n, where the column Hv corresponds to the d-dimensional
feature vector for node v.

Let F ts be the following nm× n matrix:

F ts =



−1 −1 · · · −1 −1
...

...
...

...
...

−1 −1 · · · −1 −1
1 −1 · · · −1 −1
...

...
...

...
...

1 −1 · · · −1 −1
... . . . . . . . . . ...
1 1 · · · 1 −1
...

...
...

...
...

1 1 · · · 1 −1


That is, (F ts)ij = −1 if m × j ≥ i, and (F ts)ij = 1 otherwise. We shall use the columns of F ts as node
features in our simulation. The following lemma is a simple variation of Lemma A.5 from Huang et al.
(2023), which in turn is a variation of Lemma C.1 above.

Lemma C.2. Let B ∈ Ns×t be a matrix such that t ≤ n, and all the columns are pairwise distinct and
different from the all-zeros column. Then there is a matrix X ∈ Rnm×s such that the matrix sign(XB−J) ∈
{−1, 1}nm×t is precisely the sub-matrix of F ts given by its first t columns.

Proof. Let z = (1, k + 1, (k + 1)2, . . . , (k + 1)s−1) ∈ N1×s, where k is the largest entry in B, and b =
zB ∈ N1×t. By construction, the entries of b are positive and pairwise distinct. Without loss of generality,
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we assume that b = (b1, b2, . . . , bt) for b1 > b2 > · · · > bt > 0. As the bi are ordered, we can choose
numbers x1, . . . , xt ∈ R such that bi · xj < 1 if i ≥ j, and bi · xj > 1 if i < j, for all i, j ∈ {1, . . . , t}.
Let x = (x1, . . . , xt, 2/bt, . . . , 2/bt)T ∈ Rn×1. Note that (2/bt) · bi > 1, for all i ∈ {1, . . . , t}. Let x′ =
(x1, . . . ,x1,x2, . . . ,x2, . . . ,xn, . . . ,xn)T ∈ Rnm×1 be the vector obtained from x by replacing each entry xi

with m consecutive copies of xi. Then sign(x′b − J) is precisely the sub-matrix of F ts given by its first t
columns. We can choose X = x′z ∈ Rnm×s.

We conclude item (2) by showing the following lemma:

Lemma C.3. There exist a family of feature maps {h(ℓ) : V → Rnm | 0 ≤ ℓ ≤ L}, family of matrices
{W (ℓ) | 0 ≤ ℓ < L} and {{W

(ℓ)
r ,Y

(ℓ)
r } | 0 ≤ ℓ < L, r ∈ R}, and positional encodings {pj | 1 ≤ j ≤ m} such

that:

• h(ℓ) ≡ hrwl(ℓ)
1 for all 0 ≤ ℓ ≤ L.

• h
(ℓ)
v ∈ Rnm is a column of F ts for all 0 ≤ ℓ ≤ L and v ∈ V .

• h
(ℓ+1)
v = f (ℓ)

([
h

(ℓ)
v

∥∥∥ ∑
(e,i)∈E(v) g

(ℓ)
ρ(e)

(
⊙j ̸=i (h(ℓ)

e(j) + pj)
)])

for all 0 ≤ ℓ < L and v ∈ V , where f (ℓ) and

g
(ℓ)
r are defined as above, i.e. f (ℓ)(z) = sign(W (ℓ)z − b) and g

(ℓ)
r (z) = Y

(ℓ)
r sign(W (ℓ)

r z − b) (vector b
is the all-ones vector).

Proof. We proceed by induction on ℓ. Suppose that the node coloring hrwl(0)
1 ≡ c with colors 1, . . . , p, for

p ≤ n. Then we choose h(0) such that h
(0)
v = F tsc(v), i.e., h

(0)
v is the c(v)-th column of F ts. Thus, h(0)

satisfies the required conditions.

For the inductive case, assume that h(ℓ) ≡ hrwl(ℓ)
1 for 0 ≤ ℓ < L and that h

(ℓ)
v is a column of F ts for all

v ∈ V . We shall define parameter matrices W (ℓ) and {{W
(ℓ)
r ,Y

(ℓ)
r } | r ∈ R} and positional encodings

{pj | 1 ≤ j ≤ m} such that the conditions of the lemma are satisfied.

For 1 ≤ j ≤ m, the positional encoding pj is independent of ℓ. Let p̃j = 4b + 8ej ∈ Rm, where b is the
m-dimensional all-ones vector and ej is the m-dimensional one-hot encoding of j. In other words, all entries
of p̃j are 4 except for the j-th entry which is 12. We define pj = (p̃j , . . . , p̃j) ∈ Rnm to be the concatenation
of n copies of p̃j .

Let r ∈ R and define Epos
r = {(e, i) | e ∈ E, ρ(e) = r, 1 ≤ i ≤ ar(r)}. For (e, i) ∈ Epos

r , define

o
(ℓ)
e,i = ⊙j ̸=i(h(ℓ)

e(j) + pj) c̃ol
(ℓ)
e,i = {(hrwl(ℓ)

1 (w), j) | (w, j) ∈ Ni(e)}.

We claim that for (e, i), (e′, i′) ∈ Epos
r , we have

o
(ℓ)
e,i = o

(ℓ)
e′,i′ if and only if c̃ol

(ℓ)
e,i = c̃ol

(ℓ)
e′,i′ .

Suppose first that c̃ol
(ℓ)
e,i = c̃ol

(ℓ)
e′,i′ . By inductive hypothesis, we have

{(h(ℓ)
w , j) | (w, j) ∈ Ni(e)} = {(h(ℓ)

w , j) | (w, j) ∈ Ni′(e′)}.

It follows that o
(ℓ)
e,i = o

(ℓ)
e′,i′ . Suppose now that c̃ol

(ℓ)
e,i ̸= c̃ol

(ℓ)
e′,i′ . We consider two cases. Assume first i ̸= i′.

Then o
(ℓ)
e,i and o

(ℓ)
e′,i′ differ on the i-th coordinate, that is, (o(ℓ)

e,i)i ̸= (o(ℓ)
e′,i′)i. Indeed, note that the entries of

vectors of the form h
(ℓ)
w +pj are always prime numbers in {3, 5, 11, 13} (the entries of h

(ℓ)
w are always in {−1, 1}

by inductive hypothesis). The i-th coordinate of all the vector factors in the product o
(ℓ)
e,i = ⊙j ̸=i(h(ℓ)

e(j) + pj)
has value 3, and hence (o(ℓ)

e,i)i = 3ar(r)−1. On the other hand, there exists a vector factor in the product
o

(ℓ)
e′,i′ = ⊙j ̸=i′(h(ℓ)

e′(j) +pj) (the factor h
(ℓ)
e′(i) +pi), whose i-th coordinate is 11. Hence (o(ℓ)

e,i)i and (o(ℓ)
e′,i′)i have
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different prime factorizations and then they are distinct. Now assume i = i′. Since c̃ol
(ℓ)
e,i ̸= c̃ol

(ℓ)
e′,i′ , there

must be a position j∗ such that hrwl(ℓ)
1 (e(j∗)) ̸= hrwl(ℓ)

1 (e′(j∗)). By inductive hypothesis, h
(ℓ)
e(j∗) ̸= h

(ℓ)
e′(j∗).

Again by inductive hypothesis, we know that h
(ℓ)
e(j∗) and h

(ℓ)
e′(j∗) are columns of F ts, say w.l.o.g. the k-th

and k′-th columns, respectively, for 1 ≤ k < k′ ≤ n. By construction of F ts, all the m entries of h
(ℓ)
e(j∗)

from coordinates {km+ 1, . . . , km+m} are 1, while these are −1 for h
(ℓ)
e′(j∗). We claim that o

(ℓ)
e,i and o

(ℓ)
e′,i′

differ on the (km + j∗)-th coordinate. Consider the product o
(ℓ)
e,i = ⊙j ̸=i(h(ℓ)

e(j) + pj). The (km + j∗)-th
coordinate of the factor h

(ℓ)
e(j∗) + pj∗ is 13, while it is in {3, 5} for the remaining factors. For the product

o
(ℓ)
e′,i′ = ⊙j ̸=i′(h(ℓ)

e′(j) + pj), the (km+ j∗)-th coordinate of the factor h
(ℓ)
e′(j∗) + pj∗ is 11, while it is in {3, 5}

for the remaining factors. Hence (o(ℓ)
e,i)km+j∗ and (o(ℓ)

e′,i′)km+j∗ have different prime factorizations and then
they are distinct.

Let r ∈ R. It follows from the previous claim that if we interpret o(ℓ) and c̃ol
(ℓ)

as colorings for Epos
r ,

then these two colorings are equivalent (i.e., the produce the same partition). Let sr be the number of
colors involved in these colorings, and let o1, . . . ,osr

∈ Rnm be an enumeration of the distinct vectors
appearing in {o

(ℓ)
e,i | (e, i) ∈ Epos

r }. Let Sr be the (nm × sr)-matrix whose columns are o1, . . . ,osr . Fix
an enumeration r1, . . . , r|R| of R and define s =

∑
r∈R sr. Now we are ready to define our sought matrices

W
(ℓ)
r and Y

(ℓ)
r , for r ∈ R. We define W

(ℓ)
r to be the (sr × nm)-matrix obtained from applying Lemma C.1

to the matrix Sr. Let Ỹ
(ℓ)

r ∈ Rsr×sr be the inverse matrix of sign(W (ℓ)
r Sr − J). Suppose r = rk for

1 ≤ k ≤ |R|. Then, the matrix Y
(ℓ)

r is the (s × sr)-matrix defined as the vertical concatenation of the
following |R| matrices: Nr1 , . . . ,Nrk−1 , Ỹ

(ℓ)
r , Nrk+1 , . . . ,Nr|R| , where Nr′ is the all-zeros (sr′ × sr)-matrix.

By construction, Y
(ℓ)

r sign(W (ℓ)
r Sr −J) is the vertical concatenation of Nr1 , . . . ,Nrk−1 , Ir, Nrk+1 , . . . ,Nr|R| ,

where Ir is the sr × sr identity matrix. In particular, if we consider g(ℓ)
r (z) = Y

(ℓ)
r sign(W (ℓ)

r z − b) as
in the statement of the lemma, then for each (e, i) ∈ Epos

r , the vector m
(ℓ)
e,i = g

(ℓ)
r (o(ℓ)

e,i) has the form
m

(ℓ)
e,i = (0r1 , . . . ,0rk−1 , c

(ℓ)
e,i ,0rk+1 , . . . ,0r|R|)T ∈ {0, 1}s, where 0r′ is the all-zeros vector of dimension sr′ and

c
(ℓ)
e,i ∈ {0, 1}sr is a one-hot encoding of edge color o

(ℓ)
e,i , or equivalently, of edge color c̃ol

(ℓ)
e,i . It follows that

the vector

f (ℓ)
v =

∑
(e,i)∈E(v)

g
(ℓ)
ρ(e)(o

(ℓ)
e,i) =

∑
r∈R

∑
(e,i)∈E(v)∩Epos

r

g(ℓ)
r (o(ℓ)

e,i)

has the form f
(ℓ)
v = (ar1 , . . . ,ar|R|)T ∈ Ns, where ar is the sr-dimensional vector whose entry (ar)j , for 1 ≤

j ≤ sr, is the number of elements (e, i) in E(v)∩Epos
r with color j, that is, such that o

(ℓ)
e,i = oj . In particular,

ar is an encoding of the multiset {{c̃ol
(ℓ)
e,i | (e, i) ∈ E(v) ∩Epos

r }} and hence f
(ℓ)
v is an encoding of the multiset

{{(c̃ol
(ℓ)
e,i , ρ(e)) | (e, i) ∈ E(v)}}. Note that this multiset is precisely the multiset {{col(ℓ)(e, i) | (e, i) ∈ E(v)}}

from the definition of the update rule of the hypergraph relational 1-WL test. Hence, the feature map given
by the concatenation [h(ℓ)

v || f
(ℓ)
v ], for all v ∈ V , is equivalent to hrwl(ℓ+1)

1 .

It remains to define the function f (ℓ), given by the parameter matrix W (ℓ), so that the feature map h(ℓ+1)

satisfies the conditions of the lemma. Since the columns of F ts are independent, there exists a matrix
M ∈ Rn×nm such that MF ts is the n × n identity matrix. Since each h

(ℓ)
v , with v ∈ V , is a column

of F ts, then Mh
(ℓ)
v ∈ {0, 1}n corresponds to a one-hot encoding of the column or color h

(ℓ)
v . Let M ′ be

the (n + s) × (nm + s) matrix with all entries 0 except for the upper-left (n × nm)-submatrix which is
M , and the lower-right (s × s)-submatrix which is the (s × s) identity matrix. By construction, we have
M ′[h(ℓ)

v || f
(ℓ)
v ] = [Mh

(ℓ)
v || f

(ℓ)
v ] ∈ Nn+s. Let z1, . . . ,zq, with q ≤ n, be the distinct vectors of the form

[Mh
(ℓ)
v || f

(ℓ)
v ] and let B be the ((n+ s) × q)-matrix whose columns are precisely z1, . . . ,zq. We can apply

Lemma C.2 to B to obtain a matrix X ∈ Rnm×(n+s) such that sign(XB − J) is the matrix given by the
first q columns of F ts. We define our sought matrix W (ℓ) to be W (ℓ) = XM ′.
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D HGML and proof of Theorem 4.3

D.1 HGML formulas

Fix a set of relation types R and a set of node colors C. The hypergraph graded modal logic (HGML) is the
fragment of FO containing the following unary formulas. Firstly, a(x) for a ∈ C is a formula. Secondly, if
φ(x) and φ′(x) are HGML formulas, then ¬φ(x) and φ(x) ∧φ′(x) also are. Thirdly, for r ∈ R, 1 ≤ i ≤ ar(r)
and N ≥ 1:

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ Ψ(ỹ)

)
is a HGML formula, where ỹ = (y1, . . . , yi−1, yi+1, . . . , yar(r)) and Ψ(ỹ) is a boolean combination of HGML
formulas having free variables from ỹ. Intuitively, the formula expresses that x participates in at least N
edges e at position i, such that the remaining nodes in e satisfies Ψ.

Let G = (V,E,R, c) be a relational hypergraph where the range of the node coloring c is C. Next, we
define the semantics of HGML. We define when a node v of G satisfies a HGML formula φ(x), denoted by
G |= φ(v), recursively as follows:

• if φ(x) = a(x) for a ∈ C, then G |= φ(v) iff a is the color of v in G, i.e., c(v) = a.

• if φ(x) = ¬φ′(x), then G |= φ(v) iff G ̸|= φ′(v).

• if φ(x) = φ′(x) ∧ φ′′(x), then G |= φ(v) iff G |= φ′(v) and G |= φ′′(v).

• if φ(x) = ∃≥N ỹ (r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ Ψ(ỹ)) then G |= φ(v) iff there exists at least N
tuples (w1, . . . wi−1, wi+1, . . . , war(r)) of nodes of G such that r(w1, . . . , wi−1, v, wi+1, . . . , war(r)) holds in
G and the boolean combination Ψ(w1, . . . wi−1, wi+1, . . . , war(r)) evaluates to true.

As an example, consider the set of relations from Figure 1, that is, relations
{Person(x),StudyDegree(x, y, z,m),Awarded(w, p,m)}. Consider the property: “x is a person who
obtained a degree y of a subject z at a university m that has been awarded less than two prices p of some
subject w.” This can be expressed as the following HGML formula:

ϕ(x) = Person(x) ∧ ∃y, z,m
(

StudyDegree(x, y, z,m) ∧ ¬∃≥2p, w (Awarded(w, p,m))
)

Observe that HGML formulas have a restricted form and hence they are not able to represent all logical
queries, which hints at the fundamental limitations of our studied models. For instance, formulas in HGML
can only express local properties of nodes. That is, properties of the form “a node is connected (via hyper-
edges) to other nodes satisfying other (local) properties”. This is illustrated in the example above as the
variables y, z,m are forced to appear together with x in the hyper-edge StudyDegree(x, y, z,m). Another
limitation of HGML is that once we quantify over the neighboring variables for x (in the example y, z,m),
we can only check (local) HGML properties separately for the neighboring variables and combine them via
Boolean combinations. In the example above, we check the property “m has been awarded less than two
prices p of some subject w” for university m via the HGML formula α(m) = ¬∃≥2p, w (Awarded(w, p,m)).
In particular, we cannot check properties that involve simultaneously two or more neighboring variables, as
these properties would not be HGML properties (they would not even be unary). As an example, consider
the property “x is a person who obtained a degree y of a subject z at a university m that has been awarded
less than two prices p in subject z.” Now we do not impose that m has less than two prices in any subject,
but less than two prices in the particular subject z (the same related with person x). This can be expressed
as:

ϕ(x) = Person(x) ∧ ∃y, z,m
(

StudyDegree(x, y, z,m) ∧ ¬∃≥2p (Awarded(z, p,m))
)

Note that this is not an HGML formula as β(m, z) = ¬∃≥2p (Awarded(z, p,m)) checks a condition that
involves two neighboring variables (m and z). This violates exactly the requirement discussed above.
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D.2 Proof of Theorem 4.3

Before showing Theorem 4.3, we need to prove an auxiliary result. We define a restriction of HGML, denoted
by HGMLr, as follows. HGMLr is defined as HGML, except for the inductive case

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ Ψ(ỹ)

)
where now we impose Ψ(ỹ) to be a conjunction of HGML formulas with different free variables, that is,

Ψ(ỹ) = φ1(y1) ∧ · · · ∧ φi−1(yi−1) ∧ φi+1(yi+1) ∧ · · · ∧ φar(r)(yar(r)).

We have that HGML is actually equivalent to HGMLr.
Proposition D.1. Every HGML formula can be translated into an equivalent HGMLr formula.

Proof. We apply induction to the formulas in HGML. The only interesting case is when the formula has the
form

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ Ψ(ỹ)

)
for r ∈ R, 1 ≤ i ≤ ar(r), N ≥ 1 and a boolean combination Ψ(ỹ) of HGML formulas. We can write Ψ(ỹ) in
disjunctive normal form and since negation and conjunction are part of HGML, we can assume that Ψ(ỹ)
has the form:

Ψ(ỹ) =
∨

1≤k≤q

φk
1(y1) ∧ · · · ∧ φk

i−1(yi−1) ∧ φk
i+1(yi+1) ∧ · · · ∧ φk

ar(r)(yar(r)).

For 1 ≤ k ≤ d and a subset T ⊆ {1, . . . , i− 1, i+ 1, . . . , ar(r)}, we denote by ϕk
T the formula

ϕk
T (y1, . . . , yi−1, yi+1, . . . , yar(r)) =

∧
a∈T

¬φk
a(ya) ∧

∧
a/∈T

φk
a(ya).

Note that ϕk
T expresses that for the k-th disjunct of Ψ, the conjuncts φk

a(ya) that are false are precisely those
for which a ∈ T . In particular the k-th disjunct of Ψ corresponds to ϕk

∅.

For S ⊆ {1, . . . , d}, and a vector T = (Tk ⊆ {1, . . . , i − 1, i + 1, . . . , ar(r)} : Tk ̸= ∅, k /∈ S), we denote by
ΨS,T the formula:

ΨS,T (y1, . . . , yi−1, yi+1, . . . , yar(r)) =
∧

k∈S

ϕk
∅ ∧

∧
k /∈S

ϕk
Tk
.

ΨS,T expresses that exactly the k-th disjuncts for k ∈ S are true, and each of the remaining false disjuncts
for k /∈ S are being falsified by making false precisely the conjuncts φk

a(ya), with a ∈ Tk. Since HGML
contains negation and conjunction, we can write ΨS,T as a conjunction of HGML formulas with different
free variables, that is:

ΨS,T (y1, . . . , yi−1, yi+1, . . . , yar(r)) = α1(y1) ∧ · · · ∧ αi−1(yi−1) ∧ αi+1(yi+1) ∧ · · · ∧ αar(r)(yar(r)).

Define

F := {ΨS,T | S ⊆ {1, . . . , d}, S ̸= ∅, T = (Tk ⊆ {1, . . . , i− 1, i+ 1, . . . , ar(r)} | Tk ̸= ∅, k /∈ S)}.

Then by construction, we have that Φ is true iff exactly one of the formulas in F is true. It follows that

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ Ψ(ỹ)

)
is equivalent to the HGMLr formula∨

(NS,T ∈N|ΨS,T ∈F)∑
S,T

NS,T =N

∧
ΨS,T ∈F

∃≥NS,T ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ Ψ̃S,T (ỹ)

)
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where

Ψ̃S,T (y1, . . . , yi−1, yi+1, . . . , yar(r)) = α̃1(y1) ∧ · · · ∧ α̃i−1(yi−1) ∧ α̃i+1(yi+1) ∧ · · · ∧ α̃ar(r)(yar(r)).

where α̃a(ya) is the translation to HGMLr of the formula αa(ya), which we already have by induction.

Now we are ready to prove Theorem 4.3.
Theorem 4.3. Each hypergraph graded modal logic classifier is captured by a HR-MPNN.

Proof. We follow a similar strategy than the logic characterizations from Barceló et al. (2020); Huang et al.
(2023). Let φ(x) be a formula in HGML, where the vocabulary contains relation types R and node colors
C. By Proposition D.1, we can assume that φ(x) belongs to HGMLr. Let φ1, . . . , φL be an enumeration of
the subformulas of φ such that if φi is a subformula of φj , then i ≤ j. In particular, φL = φ. We shall
define an HR-MPNN Bφ with L layers computing L-dimensional features in each layer. The idea is that
at layer ℓ ∈ {1, . . . , L}, the ℓ-th component of the feature h

(ℓ)
v is computed correctly and corresponds to 1

if φℓ is satisfied in node v, and 0 otherwise. We add an additional final layer that simply outputs the last
component of the feature vector.

We use models of HR-MPNNs of the following form:

h(ℓ+1)
v = f (ℓ)

([
h(ℓ)

v

∥∥∥ ∑
(e,i)∈E(v)

g
(ℓ)
ρ(e)

(
⊙j ̸=i (pj − h

(ℓ)
e(j))

)])
.

Here, f (ℓ)(z) = σ(W (ℓ)z + b) where W (ℓ) is a parameter matrix, b is the bias term and σ is a non-linearity.
For a relation type r ∈ R, the function g

(ℓ)
r has the form g

(ℓ)
r (z) = ar − σ(W (ℓ)

r z), where W
(ℓ)
r is a

parameter matrix and ar is a parameter vector. Recall that ⊙ denotes element-wise multiplication and pj is
the positional encoding at position j, which in this case is a parameter vector. The parameter matrix W (ℓ)

will be a (L × 2L)-matrix of the form W (ℓ) = [W (ℓ)
0 I], where W

(ℓ)
0 is a (L × L) parameter matrix and I

is the (L× L) identity matrix. The parameter matrices W
(ℓ)
0 and W

(ℓ)
r are actually layer independent and

hence we omit the superscripts. Therefore, our models are of the following form:

h(ℓ+1)
v = σ

(
W0h(ℓ)

v +
∑
r∈R

∑
(e,i)∈E(v)

ρ(e)=r

(
ar − σ(Wr ⊙j ̸=i (pj − h

(ℓ)
e(j)))

)
+ b

)
.

For the non-linearity σ we use the truncated ReLU function σ(x) = min(max(0, x), 1). Let m be the
maximum arity of the relations in R. For 1 ≤ j ≤ m, the positional encoding pj is defined as follows. The
dimension of pj must be L (the same as for feature vectors). We define a set of positions Ij ⊆ {1, . . . , L} as
follows: k ∈ Ij iff there exists a subformula of φ of the form

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ α1(y1)

∧ · · · ∧ αi−1(yi−1) ∧ αi+1(yi+1) ∧ · · · ∧ αar(r)(yar(r))
)
.

such that j ∈ {1, . . . , i − 1, i + 1, . . . , ar(r)} and αj is the k-th subformula in the enumeration φ1, . . . , φL.
Then we define pj such that (pj)k = 1 if k ∈ Ij and (pj)k = 3 otherwise.

Now we define the parameter matrices W0 ∈ RL×L and Wr ∈ RL×L, for r ∈ R, together with the bias vector
b. For 0 ≤ ℓ < L, the ℓ-row of W0 and Wr, and the ℓ-th entry of ar and b are defined as follows (omitted
entries are 0):

1. If φℓ(x) = a(x) for a color a ∈ C, then (W0)ℓℓ = 1.

2. If φℓ(x) = ¬φk(x) then (W0)ℓk = −1, and bℓ = 1.
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3. If φℓ(x) = φj(x) ∧ φk(x) then (W0)ℓj = 1, (W0)ℓk = 1 and bℓ = −1.

4. If

φℓ(x) = ∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ φk1(y1)

∧ · · · ∧ φki−1(yi−1) ∧ φki+1(yi+1) ∧ · · · ∧ φkar(r)(yar(r))
)

then (Wr)ℓkj
= 1 for j ∈ {1, . . . , i− 1, i+ 1, . . . , ar(r)} and (ar)ℓ = 1 and bℓ = −N + 1.

Let G = (V,E,R, c) be a relational hypergraph with node colors from C. In order to apply Bφ to G, we
choose initial L-dimensional features h

(0)
v such that (h(0)

v )ℓ = 1 if φℓ = a(x) and a is the color of v, and
(h(0)

v )ℓ = 0 otherwise. In other words, the L-dimensional initial feature h
(0)
v is a one-hot encoding of the

color of v. To conclude the theorem we show by induction the following statement:

(†) For all 1 ≤ ℓ ≤ L, all 1 ≤ p ≤ ℓ, all v ∈ V , we have (h(ℓ)
v )p = 1 if and only if G |= φp(v).

We start by showing the following:

(⋆) For all 1 ≤ ℓ ≤ L, all v ∈ V , and all 1 ≤ p ≤ L such that φp(x) = a(x) for some a ∈ C, we have
(h(ℓ)

v )p = 1 if and only if G |= φp(v).

We apply induction on ℓ. For the base case assume ℓ = 1. Take v ∈ V and 1 ≤ p ≤ L such that φp(x) = a(x)
for some a ∈ C. By construction, we have that:

(h(1)
v )p = σ

(
(h(0)

v )p

)
= (h(0)

v )p.

By definition of h(0), we obtain that (h(1)
v )p = 1 if and only if G |= φp(v). For the inductive case, suppose

ℓ > 1 and take v ∈ V and 1 ≤ p ≤ L such that φp(x) = a(x) for some a ∈ C. We have that:

(h(ℓ)
v )p = σ

(
(h(ℓ−1)

v )p

)
= (h(ℓ−1)

v )p.

By inductive hypothesis we know that (h(ℓ−1)
v )p = 1 if and only if G |= φp(v). It follows that (h(ℓ)

v )p = 1 if
and only if G |= φp(v).

We now prove statement (†). We start with the base case ℓ = 1. Take v ∈ V . It must be the case that p = 1
and hence φp(x) = a(x) for some a ∈ C. The result follows from (⋆).

For the inductive case, take ℓ > 1. Take v ∈ V and 1 ≤ p ≤ ℓ. We consider several cases:

• Suppose φp(x) = a(x) for some color a ∈ C. Then the result follows from (⋆).

• Suppose that φp(x) = ¬φk(x). We have that:

(h(ℓ)
v )p = σ

(
− (h(ℓ−1)

v )k + 1
)

= −(h(ℓ−1)
v )k + 1.

We obtain that (h(ℓ)
v )p = 1 iff (h(ℓ−1)

v )k = 0. Since k ≤ ℓ − 1, we have by inductive hypothesis that
(h(ℓ−1)

v )k = 1 iff G |= φk(v). It follows that (h(ℓ)
v )p = 1 iff G |= φp(v).

• Suppose that φp(x) = φj(x) ∧ φk(x). Then:

(h(ℓ)
v )p = σ

(
(h(ℓ−1)

v )j + (h(ℓ−1)
v )k − 1

)
.

We obtain that (h(ℓ)
v )p = 1 iff (h(ℓ−1)

v )j = 1 and (h(ℓ−1)
v )k = 1. Since j, k ≤ ℓ− 1, we have by inductive

hypothesis that (h(ℓ−1)
v )j = 1 iff G |= φj(v) and (h(ℓ−1)

v )k = 1 iff G |= φk(v). It follows that (h(ℓ)
v )p = 1

iff G |= φp(v).
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• Suppose that

φp(x) =∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ φk1(y1)

∧ · · · ∧ φki−1(yi−1) ∧ φki+1(yi+1) ∧ · · · ∧ φkar(r)(yar(r))
)
.

Then:

(h(ℓ)
v )p = σ

( ∑
(e,q)∈E(v)

ρ(e)=r

(
1 − σ

( ∑
j ̸=i

⊙t̸=q(pt − h
(ℓ−1)
e(t) )kj

))
−N + 1

)
.

We say that a pair (e, q) ∈ E(v), with ρ(e) = r, is good if q = i and G |= φkj
(e(j)) for all j ∈ {1, . . . , i−

1, i + 1, . . . , ar(r)}. We claim that
∑

j ̸=i ⊙t ̸=q(pt − h
(ℓ−1)
e(t) )kj

= 0 if (e, q) is good and
∑

j ̸=i ⊙t ̸=q(pt −
h

(ℓ−1)
e(t) )kj

> 1 otherwise. Suppose (e, q) is good. Then q = i. Take j ̸= i. We have that ⊙t ̸=i(pt −
h

(ℓ−1)
e(t) )kj

= 0 since the factor (pt − h
(ℓ−1)
e(t) )kj

= 0 when t = j. Indeed, by construction, (pj)kj
= 1.

Also, since kj ≤ ℓ − 1, we have by inductive hypothesis that (h(ℓ−1)
e(j) )kj

= 1 iff G |= φkj
(e(j)). Since

(e, q) is good, it follows that (h(ℓ−1)
e(j) )kj

= 1. Hence (pj − h
(ℓ−1)
e(j) )kj

= 0. Suppose now that (e, q) is
not good. Assume first that q = i. Then there exists j ̸= i such that G ̸|= φkj

(e(j)). We have that
⊙t ̸=i(pt − h

(ℓ−1)
e(t) )kj

> 1. If t = j, then we have (pt)kj
= 1. Since kj ≤ ℓ− 1, by inductive hypothesis we

have that (h(ℓ−1)
e(j) )kj

= 1 iff G |= φkj
(e(j)). It follows that (pt − h

(ℓ−1)
e(t) )kj

= 1 when t = j. If t /∈ {i, j},
then (pt)kj

= 3 and then (pt − h
(ℓ−1)
e(t) )kj

> 1. Hence ⊙t ̸=i(pt − h
(ℓ−1)
e(t) )kj

> 1. Suppose now that q ̸= i.
Then we can choose j = q and obtain that ⊙t ̸=q(pt − h

(ℓ−1)
e(t) )kj

> 1. Indeed, we have (pt)kq
= 3 for all

t ̸= q. Hence all the factors of ⊙t ̸=q(pt − h
(ℓ−1)
e(t) )kq

are > 1 and then the product is > 1.
As a consequence of the previous claim, we have that:

(h(ℓ)
v )p = σ

(
|{(e, i) ∈ E(v) | ρ(e) = r, (e, i) is good}| −N + 1

)
.

By definition G |= φp(v) iff |{(e, i) ∈ E(v) | ρ(e) = r, (e, i) is good}| ≥ N . Hence G |= φp(v) iff
(h(ℓ)

v )p = 1.

E Proof of Theorem 5.1

Theorem 5.1. Let G = (V,E,R, c) be a relational hypergraph and q = (q, ũ, t) be a query such that c
satisfies target node distinguishability with respect to q. Then the following statements hold:

1. For all HC-MPNNs with L layers and initialization Init with Init ≡ c, 0 ≤ ℓ ≤ L, we have hrwl(ℓ)
1 ⪯

h
(ℓ)
q .

2. For all L ≥ 0, there is an HC-MPNN with L layers s.t. 0 ≤ ℓ ≤ L, hrwl(ℓ)
1 ≡ h

(ℓ)
q holds.

Proof. Note that given G and q, each HC-MPNN A with L layers can be translated into a HR-MPNN B with
L layers that produce the same node features in each layer: for B we choose as initial features, the features
obtained from the initialization function of A, and use the same architecture of A (functions Up,Agg,Msg).
On the other hand, each HR-MPNN B with L layers whose initial features define a coloring that satisfies
generalized target node distinguishability with respect to q can be translated into a HC-MPNN A with L
layers that compute the same node features in each layer: we can define the initialization function of A so
that we obtain the initial features of B and then use the same architecture of B.
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Item (1) is obtained by translating the given HC-MPNN into its correspondent HR-MPNN and then invoking
Theorem 4.1. Similarly, item (2) is obtained by applying Theorem 4.1 to obtain an equivalent HR-MPNN
and then translate it to a HC-MPNN.

F Proof of Theorem 5.3

We consider symbolic queries q = (q, b̃, t), where each b ∈ b̃ is a constant symbol. We consider vocabularies
containing relation types r ∈ R, node colors C, and the constants b ∈ b̃. In this case, we work with relational
hypergraphs G = (V,E,R, c, (vb)b∈b̃), where the range of the coloring c is C and vb is the interpretation of
constant b. We only focus on valid relational hypergraphs, that is, G = (V,E,R, c, (vb)b∈b̃) such that for all
b, b′ ∈ b̃, b ̸= b′ implies vb ̸= vb′ .

We define hypergraph graded modal logic with constants (HGMLc) as HGML but, as atomic cases, we addi-
tionally have formulas of the form φ(x) = (x = b) for some constant b. As expected, we have that HC-MPNNs
can capture HGMLc classifiers.
Theorem 5.3. Each HGMLc classifier can be captured by a HC-MPNNs over valid relational hypergraphs.

Proof. The theorem follows by applying the same construction as in the proof of Theorem 4.3. Now we
have extra base cases of the form φ(x) = (x = b) but the same arguments apply. Note that now we need to
define the initial features h(0) via the initialization function of the HC-MPNN. Since we are focusing on valid
relational hypergraphs, this can be easily done while satisfying generalized target node distinguishability.

G Link prediction with knowledge graphs

An interesting observation is that when we restrict relational hypergraphs to have hyperedges of arity exactly
2, we recover the class of knowledge graphs. C-MPNNs (Huang et al., 2023) are tailored for knowledge
graphs and their expressive power has been recently studied extensively, with a focus on their capability
for distinguishing pairs of nodes (for a formal definition see Appendix A). In this section, we compare
HC-MPNNs and C-MPNNs, and hence we are interested in the expressive power of HC-MPNNs in terms of
distinguishing pairs of nodes. Note however that, in principle, HC-MPNNs do not compute binary invariants.
Indeed, for q ∈ R and a pair of nodes u, v we can obtain two final features depending on whether we pose the
query q(u, ?) or q(?, v). As a convention, we shall define the final feature of the pair u, v as the result of the
query q(u, ?). When a HC-MPNN computes binary invariants under this convention, we say the HC-MPNN
is restricted to tail predictions.

We proceed to show that HC-MPNNs restricted to tail predictions have the same expressive power in terms
of distinguishing pairs of nodes as the rawl+2 test proposed in Huang et al. (2023). This test is an extension
of rawl2, which in turn, matches the expressive power of C-MPNNs. It follows then that HC-MPNNs are
strictly more powerful than C-MPNNs over knowledge graphs. We show this by first defining a variant of the
relational WL test which upper bound the expressive power of HC-MPNNs restricting to tail predictions.

Given a knowledge graph G = (V,E,R, c, η), where η : V × V 7→ D is a pairwise coloring satisfying target
node distinguishability, i.e. ∀u ̸= v, η(u, u) ̸= η(u, v), we define a relational hypergraph conditioned local
2-WL test, denoted as hcwl2. hcwl2 iteratively updates binary coloring η as follow for all ℓ ≥ 0:

hcwl(0)
2 = η(u, v)

hcwl(ℓ+1)
2 (u, v) = τ

(
hcwl(ℓ)

2 (u, v), {{
(
{(hcwl(ℓ)

2 (u,w), j) |(w, j)∈Ni(e)}, ρ(e)
)

| (e, i) ∈ E(v)}}
)

Note that indeed, hcwl(ℓ)
2 computes a binary invariants for all ℓ ≥ 0. First, we show that HC-MPNN restricted

on only tails prediction is indeed characterized by hcwl2. The proof idea is very similar to Theorem 5.1 in
Huang et al. (2023).
Theorem G.1. Let G = (V,E,R,x, η) be a knowledge graph where x is a feature map and η is a pairwise
node coloring satisfying target node distinguishability. Given a query with q = (q, ũ, 2), then we have:

27



Published in Transactions on Machine Learning Research (05/2025)

1. For all HC-MPNNs restricted on tails prediction with L layers and initializations Init with Init ≡ η,
and 0 ≤ ℓ ≤ L , we have hcwl(ℓ)

2 ⪯ h
(ℓ)
q

2. For all L ≥ 0 , there is an HC-MPNN restricted on tails prediction with L layers such that for all
0 ≤ ℓ ≤ L , we have hcwl(ℓ)

2 ≡ h
(ℓ)
q .

Proof. We first rewrite the HC-MPNN restricted on tails predictions in the following form. Given a query
q = (q, ũ, t), we know that since G is a knowledge graph, ũ only consists of a single node, which we denote
as u. In addition, since we only consider the case of tail prediction, then we always have t = 2. With this
restriction, we restate the HC-MPNN restricted on tails prediction on the knowledge graph as follows:

h
(0)
v|q = Init(v, q),

h
(ℓ+1)
v|q = Up

(
h

(ℓ)
v|q,Agg

(
h

(ℓ)
v|q, {{Msgρ(e)({(h(ℓ)

w|q, j) | (w, j) ∈ Ni(e)}), | (e, i) ∈ E(v)}}
))

Now, we follow a similar idea in the proof of C-MPNN for binary invariants (Huang et al., 2023). Let
G = (V,E,R, c, η) be a knowledge graph where η is a pairwise coloring. Construct the auxiliary knowledge
graph G2 = (V × V,E′, R, cη) where E′ = {r((u,w), (u, v)) | r(w, v) ∈ E, r ∈ R} and cη is the node
coloring cη((u, v)) = η(u, v). Similar to Theorem 5.1, If A is a HC-MPNN and B is an HR-MPNN, we write
h

(ℓ)
A,G(u, v) := h

(ℓ)
(q,(u),2)(v) and h

(ℓ)
B,G2((u, v)) := h(ℓ)((u, v)) for the features computed by A and B over G

and G2, respectively. We sometimes write N G
r (e) and EG(v) to emphasize that the positional neighborhood

within a hyperedge and set of hyperedges including node v is taken over the knowledge graph G, respectively.
Finally, we say that an initial feature map y for G2 satisfies generalized target node distinguishability if
y((u, u)) ̸= y((u, v)) for all u ̸= v. Note here that the generalized target node distinguishability naturally
reduced to target node distinguishability proposed in Huang et al. (2023) since ũ is a singleton. Thus, we have
the following equivalence between HR-MPNN and HC-MPNN restricted on tail prediction on the knowledge
graph.

Proposition G.2. Let G = (V,E,R,x, η) be a knowledge graph where x is a feature map, and η is a pairwise
coloring. Let q ∈ R, then:

1. For every HC-MPNN A with L layers, there is an initial feature map y for G2 an HR-MPNN B with
L layers such that for all 0 ≤ ℓ ≤ L and u, v ∈ V , we have h

(ℓ)
A,G(u, v) = h

(ℓ)
B,G2((u, v)).

2. For every initial feature map y for G2 satisfying generalized target node distinguishability and every
HR-MPNN B with L layers, there is a HC-MPNN A with L layers such that for all 0 ≤ ℓ ≤ L and
u, v ∈ V , we have h

(ℓ)
A,G(u, v) = h

(ℓ)
B,G2((u, v)).

Proof. We proceed to show item (1) first. Consider the HR-MPNN B with the same relational-specific
message Msgr, aggregation Agg, and update functions Up as A for all the L layers. The initial feature
map y is defined as y((u, v)) = Init(v, (q, (u), 2)), where Init is the initialization function of A. Then,
by induction on number of layer ℓ, we have that for the base case ℓ = 0, h

(0)
A (u, v) = Init(v, (q, (u), 2)) =

y((u, v)) = h
(0)
B ((u, v)). For the inductive case, assume h

(ℓ)
A (u, v) = h

(ℓ)
B ((u, v)), then

h
(ℓ+1)
A (u, v) = Up

(
h

(ℓ)
A (u, v),Agg

(
h

(ℓ)
A (u, v),

{{Msgρ(e)

(
{(h(ℓ)

A (u,w), j) | (w, j) ∈ N G
i (e)}

)
| (e, i) ∈ EG(v)}}

))
= Up

(
h

(ℓ)
B ((u, v)),Agg

(
h

(ℓ)
B ((u, v)),

{{Msgρ(e)

(
{(h(ℓ)

B ((u,w)), j) |(w, j) ∈ N G2

i (e)}
)

|(e, i) ∈ EG2
(v)}}

))
= h

(ℓ+1)
B ((u, v)).
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To show item (2), we consider A with the same relational-specific message Msgr, aggregation Agg,
and update functions Up as B for all the L layers. We also take initialization function Init such that
Init(v, (q, (u), 2)) = y((u, v)). Then, we can follow the same argument for the equivalence as item (1).

We then show the equivalence in terms of the relational WL algorithms:

Proposition G.3. Let G = (V,E,R, c, η) be a knowledge graph where η is a pairwise coloring. For all
ℓ ≥ 0 and u, v ∈ V , we have that hcwl(ℓ)

2 (u, v) computed over G coincides with hrwl(ℓ)
1 ((u, v)) computed over

G2 = (V × V,E′, R, cη).

Proof. For ℓ = 0, we have hcwl(0)
2 (G, u, v) = η(u, v) = cη((u, v)) = hrwl(0)

1 (G2, (u, v)). For the inductive case,
we have that

hcwl(ℓ+1)
2 (G, u, v) = τ

(
hcwl(ℓ)

2 (G, u, v), {{
(
{(hcwl(ℓ)

2 (G, u,w), j) | (w, j) ∈ N G
i (e)}, ρ(e)

)
| (e, i) ∈ EG(v)}}

)
= τ

(
hrwl(ℓ)

1 (G2, (u, v)),

{{
(
{(hrwl(ℓ)

1 (G2, (u,w)), j) | (w, j) ∈ N G2

i (e)}, ρ(e)
)

| (e, i) ∈ EG2
(v)}}

)
= hrwl(ℓ+1)

1 (G2, (u, v)).

Now we are ready to show the proof for Theorem G.1. For G = (V,E,R,x, η), we consider G2 = (V ×
V,E′, R, cη). We start with item (1). Let A be a HC-MPNN with L layers and initialization Init satisfying
Init ≡ η and let 0 ≤ ℓ ≤ L. Let y be an initial feature map for G2 and B be an HR-MPNN with L layers in
Proposition G.2, item (1). For the initialization we have y ≡ cη since y((u, v)) = Init(v, (q, (u), 2)). Thus,
we can proceed and apply Theorem 4.1, item (1) to G2, y, and B and show that hrwl(ℓ)

1 ⪯ h
(ℓ)
B,G2 , which in

turns shows that hcwl(ℓ)
2 ⪯ h

(ℓ)
A,G.

We then proceed to show item (2). Let L ≥ 0 be an integer representing a total number of layers. We apply
Theorem 4.1, item (2) to G2 and obtain an initial feature map y with y ≡ cη and an HR-MPNN B with L

layer such that hrwl(ℓ)
1 ≡ h

(ℓ)
B,G2 for all 0 ≤ ℓ ≤ L. We stress again that y and η both satisfied generalized

target node distinguishability. Now, let A be the HC-MPNN from Proposition G.2, item (2). We finally
have that hcwl(ℓ)

2 ≡ h
(ℓ)
A,G as required. Note that the item (2) again holds for HCNet.

We are ready to prove the claim that HC-MPNN is more powerful than C-MPNN by showing the strict
containment of their corresponding relational WL test, that is, hcwl2 and rawl2. In particular, we show
that the defined hcwl2 is equivalent to rawl+2 defined in Huang et al. (2023), via Theorem G.4. Then, by
Proposition A.17 in Huang et al. (2023), we have that rawl+2 ≺ rawl2.

The intuition of Theorem G.4 is that for each updating step, hcwl2 aggregates over all the neighboring edges,
which contain both incoming edges and outgoing edges. In addition, hcwl2 can differentiate between them
via the position of the entities in the edge. This is equivalent to aggregating incoming relation and outgoing
inversed-relation in rawl+2 .

Theorem G.4. For all knowledge graph G = (V,E,R, c), let hcwl(0)
2 (G) ≡ rawl+2

(0)(G), then hcwl(ℓ)
2 (G) ≡

rawl+2
(ℓ)(G) for all ℓ ≥ 0.

Proof. First we restate the definition of hcwl2(G) and rawl+2 (G) for convenience. Given that the query is
always a tail query, i.e., k = 2, and given a knowledge graph G = (V,E,R, c), we have that the updating
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formula for hcwl2(G) is

hcwl(ℓ+1)
2 (G, (u, v)) = τ(hcwl(ℓ)

2 (G, (u, v)), {{({(hcwl(ℓ)
2 (G, (u,w)), j) | (w, j) ∈ Ni(e)}, ρ(e)) | (e, i) ∈ E(v)}})

= τ(hcwl(ℓ)
2 (G, (u, v)), {{(hcwl(ℓ)

2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v)}})

Note here that the second equation comes from the fact that the maximum arity is always 2. Then, recall
the definition of rawl2. Given a knowledge graph G = (V,E,R, c, η), where η is a pairwise coloring only, we
have

rawl(ℓ+1)
2 (G, (u, v)) = τ

(
rawl(ℓ)

2 (G, (u, v)), {{(rawl(ℓ)
2 (G, (u,w)), r) | w ∈ Nr(v), r ∈ R)}}

)
where Nr(v) is the relational neighborhood with respect to relation r ∈ R, i.e., w ∈ Nr(v) if and only if
r(v, w) ∈ E. Equivalently, we can rewrite rawl2 in the following form:

rawl(ℓ+1)
2 (G, (u, v)) = τ

(
rawl(ℓ)

2 (G, (u, v)), {{(rawl(ℓ)
2 (G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}}

)
since we only want to obtain the node w as the tails entities in an edge, and thus the second argument of
the (only) element in Ni(e) will always be 2.

For a test T, we sometimes write T(G,u), or T(G, u, v) in case of binary tests, to emphasize that the test
is applied over G, and T(G) for the pairwise/k-ary coloring given by the test. Let G = (V,E,R, c, η) be
a knowledge graph. The, note that G+ = (V,E+, R+) is the augmented knowledge graph where R+ is the
disjoint union of R and {r− | r ∈ R}, and

E− = {r−(v, u) | r(u, v) ∈ E, u ̸= v}

E+ = E ∪ E−

We can then define

E(v) = {(e, i) | e(i) = v, e ∈ E}
E+(v) =

{
(e, i) | e(i) = v, e ∈ E+}

E−(v) =
{

(e, i) | e(i) = v, e ∈ E−}
.

Finally, recall the definition of rawl+2 (G, u, v) = rawl2(G+, u, v). We can write this in the equivalent form:

rawl+2
(ℓ+1)(G, (u, v)) = τ

(
rawl+2

(ℓ)(G, (u, v)), {{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E+(v), i = 1}}

)
= τ

(
rawl+2

(ℓ)(G, (u, v)), {{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}}

∪ {{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E−(v), i = 1}}

)
Now we are ready to show the proof. First we show that hcwl(ℓ)

2 (G) ≡ rawl+2
(ℓ)(G). We prove by induction

the number of layers ℓ by showing that for some u, v ∈ V and for some ℓ,

hcwl(ℓ+1)
2 (G, (u, v)) = hcwl(ℓ+1)

2 (G, (u′, v′)) ≡ rawl+2
(ℓ)(G, (u, v)) = rawl+2

(ℓ)(G, (u′, v′))

By assumption, we know the base case holds. Assume that hcwl(ℓ)
2 (G) ≡ rawl+2

(ℓ)(G) for some ℓ ≥ 0, for a
pair of node-pair (u, v), (u′, v′) ∈ V 2, Given that

hcwl(ℓ+1)
2 (G, (u, v)) = hcwl(ℓ+1)

2 (G, (u′, v′))

By definition, we have that

τ(hcwl(ℓ)
2 (G, (u, v)), {{(hcwl(ℓ)

2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v)}}) =

τ(hcwl(ℓ)
2 (G, (u′, v′)), {{(hcwl(ℓ)

2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′)}})
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Conditioning on i ∈ {1, 2}, we can further decompose the set.

τ(hcwl(ℓ)
2 (G, (u, v)),{{(hcwl(ℓ)

2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}},

∪ {{(hcwl(ℓ)
2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 2}}) =

τ(hcwl(ℓ)
2 (G, (u′, v′)),{{(hcwl(ℓ)

2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 1}},

∪ {{(hcwl(ℓ)
2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 2}})

Assume τ is injective, the three arguments in τ must match, i.e., hcwl(ℓ)
2 (G, (u, v)) = hcwl(ℓ)

2 (G, (u′, v′)), and

{{(hcwl(ℓ)
2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(hcwl(ℓ)
2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 1}}

We also have

{{(hcwl(ℓ)
2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 2}} =

{{(hcwl(ℓ)
2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 2}}

By inductive hypothesis, we have that rawl+2
(ℓ)(G, (u, v)) = rawl+2

(ℓ)(G, (u′, v′)). Thus, we have that

{{(rawl+2
(ℓ)(G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(rawl+2
(ℓ)(G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 1}}

and also

{{(rawl+2
(ℓ)(G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 2}} =

{{(rawl+2
(ℓ)(G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 2}}

First, for the first equation, we notice that

{{(rawl+2
(ℓ)(G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(rawl+2
(ℓ)(G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 1}}

if and only if

{{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(rawl+2
(ℓ)(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 1}}

since the filtered set of pair (w, j) are the same, and the (rawl+2
(ℓ)(G, (u,w)), ρ(e))

and (rawl+2
(ℓ)(G, (u′, w)), ρ(e′)) matches if and only if (rawl+2

(ℓ)(G, (u,w)), 2, ρ(e)) and
(rawl+2

(ℓ)(G, (u′, w)), 2, ρ(e′)) matches. This is because we simply augment an additional position
indicator 2 in the tuple as we fixed i = 1, which does not break the equivalence of the statements.

Then, for the second equation, we note that

{{(rawl+2
(ℓ)(G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 2}} =

{{(rawl+2
(ℓ)(G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 2}}

if and only if

{{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E−(v), i = 1}} =

{{(rawl+2
(ℓ)(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E−(v′), i = 1}}
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since this time the filtered set of pair (w, j) also matches, but for the inverse relation. For any edge e ∈ E(v)
where (w, 1) ∈ Ne(v), the edge will be in form ρ(e)(w, v) as w is placed in the first position. Thus, there
will be a corresponding reversed edge ρ(e)−1(v, w) ∈ E− by definition. Then, by the same argument as in
the second equation above, adding such an additional position indicator 1 on every tuple will not break the
equivalence of the statement.

An important observation is that since the inverse relations are freshly created, we will never mix up these
inverse edges in both tests. For rawl+2 , we can distinguish these edges by checking the freshly created relation
symbols r−1 ∈ R+\R, whereas in hcwl2, the neighboring nodes from these edges are identified with the
position indicator 1 in the tuple.

Thus, we have that

{{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(rawl+2
(ℓ)(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 1}}

and also

{{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E−(v), i = 1}}

)
=

{{(rawl+2
(ℓ)(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E−(v′), i = 1}}

)
Since τ is injective, this is equivalent to

τ
(
rawl+2

(ℓ)(G, (u, v)),{{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}}

∪ {{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E−(v), i = 1}}

)
=

τ
(
rawl+2

(ℓ)(G, (u′, v′)),{{(rawl+2
(ℓ)(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E(v′), i = 1}}

∪ {{(rawl+2
(ℓ)(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E−(v′), i = 1}}

)
and thus, we have

τ
(
rawl+2

(ℓ)(G, (u, v)),{{(rawl+2
(ℓ)(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E+(v), i = 1}}

)
=

τ
(
rawl+2

(ℓ)(G, (u′, v′)),{{(rawl+2
(ℓ)(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e′), (e′, i) ∈ E+(v′), i = 1}}

)
and finally

rawl+2
(ℓ+1)(G, (u, v)) = rawl+2

(ℓ+1)(G, (u′, v′))

Note that since all arguments apply for both directions, the converse holds.

Remark G.5. We remark that the idea of HC-MPNNs restricted to tail predictions can be extended to
arbitrary relational hypergraphs in order to compute k-ary invariants for any k. See Appendix H for a
discussion.

H Computing k-ary invariants

In this section, we present a canonical way to construct a valid k-ary invariants. We start by introducing a
construction of a valid k-ary invariants termed as atomic types, following the convention by Grohe (2021).

H.1 Atomic types

Given a relational hypergraph G = (V,E,R, c) with l labels and a tuple u = (u1, ..., uk) ∈ V k, where k > 1,
we define the atomic type of u in G as a vector:

atpk(G)(u) ∈ {0, 1}lk+(k
2)+m2+|R|km

,
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where l is the number of colors and m is the arity of the relation with maximum arity. We use the first lk
bits to represent the color of the k nodes in u, another

(
k
2
)

bits to indicate whether node ui is identical to uj .
We then represent the order of these nodes using m2 bits and finally represent the relation with additional
|R|km bits.

Atomic types are k-ary relational hypergraph invariants as they satisfy the property that atpk(G)(u) =
atpk(G′)(u′) if and only if the mapping u1 7→ u′

1, . . ., uk 7→ u′
k is an isomorphism from the induced

subgraph G[{u1, · · · , uk}] to G′[{u′
1, · · · , u′

k}].

H.2 Relational hypergraph conditioned local k-WL test

Now we are ready to show the k-ary invariants. Similarly to hcwl2, we can restrict HC-MPNN to only carry
out a tail prediction with relational hypergraphs to make sure it directly computes k-ary invariants. Here,
we introduce Relational hypergraph conditioned local k-WL test, dubbed hcwlk, which naturally generalized
hcwl2 to relational hypergraph. Given ũ ∈ V k−1 and a relational hypergraph G = (V,E,R, c, ζ) where
ζ : V k 7→ D is a k-ary coloring that satisfied generalized target node distinguishability, i.e.,

ζ(ũ, u) ̸= ζ(ũ, v) ∀u ∈ ũ, v /∈ ũ,

ζ(ũ, ui) ̸= ζ(ũ, uj) ∀ui, uj ∈ ũ, ui ̸= uj .

hcwlk updates k-ary coloring ζ for ℓ ≥ 0:

hcwl(0)
k = ζ(ũ, v)

hcwl(ℓ+1)
k (ũ, v) = τ

(
hcwl(ℓ)

k (ũ, v), {{
(
{(hcwl(ℓ)

k (ũ, w), j) |(w, j) ∈ Ni(e)}, ρ(e)
)

|(e, i)∈E(v)}}
)

Again, we notice that hcwl(ℓ)
k computes a valid k-ary invariants. We can also show that HC-MPNN restricted

on tails prediction, i.e., for each query q = (q, ũ, j) where j = k, is characterized by hcwlk.
Theorem H.1. Let G = (V,E,R,x, ζ) be a relational hypergraphs where x is a feature map and ζ is a k-ary
node coloring satisfying generalized target nodes distinguishability. Given a query with q = (q, ũ, k), then
we have that:

1. For all HC-MPNNs restricted on tails prediction with L layers and initializations Init with Init ≡ η,
and 0 ≤ ℓ ≤ L , we have hcwl(ℓ)

k ⪯ h
(ℓ)
q

2. For all L ≥ 0 , there is an HC-MPNN restricted on tails prediction with L layers such that for all
0 ≤ ℓ ≤ L , we have hcwl(ℓ)

k ≡ h
(ℓ)
q .

Proof. The proof is very similar to that in Theorem G.1. Note that we sometimes write a k-ary tuple
v = (u1, · · · , uk) ∈ V k by (u, uk) where u = (u1, · · · , uk−1) with a slight abuse of notation. We build an
auxiliary relational hypergraph Gk = (V k, E′, R, cζ) where E′ = {r((ũ, v1), · · · , (ũ, vm)) | r(v1, · · · , vm) ∈
E, r ∈ R}, and cζ is a node coloring cζ((ũ, v)) = ζ(ũ, v). If A is a HC-MPNN and B is an HR-MPNN, we
write h

(ℓ)
A,G(ũ, v) := h

(ℓ)
q (v) and h

(ℓ)
B,Gk ((ũ, v)) := h(ℓ)((ũ, v)) for the features computed by A and B over G

and Gk, respectively. Again, we write N G
r (e) and E(v)G to emphasize that the positional neighborhood, as

well as the hyperedges containing node v, is taken over the relational hypergraph G, respectively. Finally,
we say that an initial feature map y for Gk satisfies generalized target node distinguishability if

y((ũ, u)) ̸= y((ũ, v)) ∀u ∈ ũ, v /∈ ũ,

y((ũ, ui)) ̸= y((ũ, uj)) ∀ui, uj ∈ ũ, ui ̸= uj .

As a result, we have the following equivalence between HR-MPNN and HC-MPNN restricted on tail predic-
tion with the relational hypergraph.

Proposition H.2. Let G = (V,E,R,x, ζ) be a knowledge graph where x is a feature map, and ζ is a k-ary
nodes coloring. Let q ∈ R, then:
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1. For every HC-MPNN A with L layers, there is an initial feature map y for Gk an HR-MPNN B with
L layers such that for all 0 ≤ ℓ ≤ L and u, v ∈ V , we have h

(ℓ)
A,G(ũ, v) = h

(ℓ)
B,G2((ũ, v)).

2. For every initial feature map y for Gk satisfying generalized target node distinguishability and every
HR-MPNN B with L layers, there is a HC-MPNN A with L layers such that for all 0 ≤ ℓ ≤ L and
(ṽu, v) ∈ V k, we have h

(ℓ)
A,G(ũ, v) = h

(ℓ)
B,Gk ((ũ, v)).

Proof. We first show item (1). Consider the HR-MPNN B with the same relational-specific message Msgr,
aggregation Agg, and update functions Up as A for all the L layers. The initial feature map y is defined as
y((ũ, v)) = Init(v, q), where Init is the initialization function of A. Then, by induction on number of layer
ℓ, we have that for the base case ℓ = 0, h

(0)
A (ũ, v) = Init(v, q) = y((ũ, v)) = h

(0)
B ((ũ, v)).

For the inductive case, assume h
(ℓ)
A (ũ, v) = h

(ℓ)
B ((ũ, v)), then

h
(ℓ+1)
A (ũ, v) = Up

(
h

(ℓ)
A (ũ, v),Agg

(
h

(ℓ)
A (ũ, v),

{{Msgρ(e)

(
{(h(ℓ)

A (ũ, w), j) | (w, j) ∈ N G
i (e)}

)
| (e, i) ∈ EG(v)}}

))
= Up

(
h

(ℓ)
B ((ũ, v)),Agg

(
h

(ℓ)
B ((ũ, v)),

{{Msgρ(e)

(
{(h(ℓ)

B ((ũ, w)), j) |(w, j) ∈ N Gk

i (e)}
)

|(e, i) ∈ EGk

(v)}}
))

= h
(ℓ+1)
B ((ũ, v)).

To show item (2), we consider A with the same relational-specific message Msgr, aggregation Agg, and
update functions Up as B for all the L layers. We also take initialization function Init such that Init(v, q) =
y((ũ, v)). Then, we can follow the same argument for the equivalence as item (1).

Similarly, we can show the equivalence in terms of the relational WL algorithms with hcwlk:

Proposition H.3. Let G = (V,E,R, c, ζ) be a relational hypergraph where ζ is a k-ary node coloring. For
all ℓ ≥ 0 and (ũ, v) ∈ V k, we have that hcwl(ℓ)

k (ũ, v) computed over G coincides with hrwl(ℓ)
1 ((ũ, v)) computed

over Gk = (V k, E′, R, cζ).

Proof. For ℓ = 0, we have hcwl(0)
k (G, ũ, v) = ζ(ũ, v) = cζ((ũ, v)) = hrwl(0)

1 (Gk, (ũ, v)).

For the inductive case, we have that

hcwl(ℓ+1)
k (G, ũ, v) = τ

(
hcwl(ℓ)

k (G, ũ, v), {{
(
{(hcwl(ℓ)

2 (G, ũ, w), j) | (w, j) ∈ N G
i (e)}, ρ(e)

)
| (e, i) ∈ EG(v)}}

)
= τ

(
hrwl(ℓ)

1 (Gk, (ũ, v)),

{{
(
{(hrwl(ℓ)

1 (Gk, (ũ, w)), j) |(w, j) ∈ N Gk

i (e)}, ρ(e)
)

|(e, i) ∈ EGk

(v)}}
)

= hrwl(ℓ+1)
1 (Gk, (ũ, v)).

Now we are ready to show the proof for Theorem H.1. For a relational hypergraph G = (V,E,R,x, ζ), we
consider Gk = (V k, E′, R, cζ) as defined earlier. We start with item (1). Let A be a HC-MPNN with L
layers and initialization Init satisfying Init ≡ ζ and let 0 ≤ ℓ ≤ L. Let y be an initial feature map for Gk

and B be an HR-MPNN with L layers in Proposition H.2, item (1). For the initialization we have y ≡ cζ

since y((ũ, v)) = Init(v, q). Thus, we can proceed and apply Theorem 4.1, item (1) to Gk, y, and B and
show that hrwl(ℓ)

1 ⪯ h
(ℓ)
B,Gk , which in turns shows that hcwl(ℓ)

k ⪯ h
(ℓ)
A,G.
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Table 6: Model asymptotic runtime complexities.

Model Complexity of a forward pass Amortized complexity of a query

HR-MPNNs O(L(m|E|d+ |V |d2)) O(L( m|E|d
|R||V |2 + d2

|R||V | + d))
HC-MPNNs O(L(m|E|d+ |V |d2)) O(L( m|E|d

|V | + d2))

We then proceed to show item (2). Let L ≥ 0 be an integer representing a total number of layers. We
apply Theorem 4.1, item (2) to Gk and obtain an initial feature map y with y ≡ cζ and an HR-MPNN
B with L layer such that hrwl(ℓ)

1 ≡ h
(ℓ)
B,Gk for all 0 ≤ ℓ ≤ L. We stress again that y and ζ both satisfy

generalized target node distinguishability. Now, let A be the HC-MPNN from Proposition H.2, item (2).
Thus, hcwl(ℓ)

k ≡ h
(ℓ)
A,G as required. Again, we note that the item (2) holds for HCNet.

I Complexity analysis

In this section, we discuss the asymptotic time complexity of HR-MPNN and HC-MPNN. For HC-MPNN,
we consider the model instance of HCNet with g

(ℓ)
r being a query-independent diagonal linear map. For

HR-MPNN, we consider the model instance with the same updating function Up and relation-specific message
function Msgr as the considered HCNet model instance, referred to as HRNet:

h(0)
v = 1d

h(ℓ+1)
v = σ

(
W (ℓ)

[
h(ℓ)

v

∥∥∥ ∑
(e,i)∈E(v)

(
⊙j ̸=i (α(ℓ)h

(ℓ)
e(j)+ (1 − α(ℓ))pj) ⊙ w(ℓ)

r

)]
+ b(ℓ)

)
.

Notation. Given a relational hypergraph G = (V,E,R, c), we denote |V |, |E|, |R| to be the size of vertices,
edges, and relation types. d is the hidden dimension and m is the maximum arity of the edges. Additionally,
we denote L to be the total number of layers, and k to be the arity of the query relation q ∈ R in the query
q = (q, ũ, t).

Analysis. Given a query q = (q, ũ, t), the runtime complexity of a single forward pass of HCNet is
O(L(m|E|d+ |V |d2)) since for each message, we need O(d) for the relation-specific transformation, and we
have m|E| total amount of message in each layer. During the updating function, we additionally need a
linear transformation for each aggregated message as well as a self-transformation, which costs O(d2) for
each node. Adding them up, we have O(m|E|d+ |V |d2) cost for each layer, and thus O(L(m|E|d+ |V |d2))
in total.

Note that this is the same as the complexity of HRNet since the only differences lie in initialization methods,
which is O(|V |d) cost for HCNet. In terms of computing a single query, the amortized complexity of HCNet
is O(L( m|E|d

|V | + d2)) since in each forward pass, |V | number of queries are computed at the same time. In
contrast, HRNet computes |V |k query as once it has representations for all nodes in the relational hypergraph,
it can compute all possible hyperedges by permuting the nodes and feeding them into the k-ary decoder. We
summarize the complexity analysis in Table 6.

Discussion with space complexity of positional encoding. Note that models designed for inductive
inference over knowledge graphs, such as NBFNet (Zhu et al., 2021), typically augments the original knowl-
edge graph edges with their inverses by introducing inverse relations (i.e., for each r(a, b), an edge of the
form r−1(b, a) is added). This is to ensure that messages flow in both directions between two nodes.

To simply extend this idea to relational hyperedges, we need the full set of directional interactions in a
hyperedge of arity k, which requires enumerating all k! permutations of the node ordering, resulting in k!−1
additional hyperedges per original one. If each permutation is treated as a distinct “augmented” relation,
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the model must store a separate relation embedding for each of these permutations. Assuming uniform arity
k and an embedding dimension d, this leads to a space complexity of |R|k!d.

Note that such an approach is only practical when k = 2, as in traditional knowledge graphs, where it
doubles the number of embeddings. For relational hypergraphs with larger k, however, this introduces an
exponential increase in storage and quickly becomes infeasible.

In contrast, our method avoids this explosion by employing positional encodings to distinguish among node
permutations within a hyperedge. This allows us to retain a single relation embedding per relation, with an
additional k-length positional embedding shared across all relations, resulting in a total space complexity of
|R|d+kd. This scales linearly with k, enabling efficient modeling of high-arity hyperedges without sacrificing
expressive power.

J Details in synthetic experiments

Dataset construction. We construct HyperCycle, a synthetic dataset that consists of multiple relational
hypergraphs with relation R = {r0, r1, r2}. Each relational hypergraph G is parameterized by 2 hyperpa-
rameters: the number of nodes n which is always a multiple of 4, and the arity of each edge k. Given such
(n, k) pair, we generate the relational hypergraph G(n, k) = (V (n, k), E(n, k), R(n, k)) where

V (n, k) = {x1, · · · , xn}
E(n, k) = {r(i mod 2)+1(x(i+j) mod n | 0 ≤ j < k) | 1 ≤ i ≤ n}
R(n, k) = {r0, r1, r2}

We generate the dataset by choosing n = {8, 12, 16, 20} and k = {3, 4, 5, 6, 7}. We then randomly pick 70%
of the generated graphs as the training set and the remaining 30% as the testing set.

Model architectures. We considered two model architectures, namely an HC-MPNN instance HCNet:

h
(0)
v|q =

∑
i ̸=t

1v=ui
∗ (pi + zq)

h
(ℓ+1)
v|q = σ

(
W (ℓ)

[
h

(ℓ)
v|q

∥∥∥ ∑
(e,i)∈E(v)

(
⊙j ̸=i (α(ℓ)h

(ℓ)
e(j)|q+ (1 − α(ℓ))pj) ⊙ w(ℓ)

r

)]
+ b(ℓ)

)
.

and a corresponding HR-MPNNs instance called HRNet that shares the same update, aggregate, and relation-
specific message functions as in HCNet, defined as follow:

h(0)
v = 1d

h(ℓ+1)
v = σ

(
W (ℓ)

[
h(ℓ)

v

∥∥∥ ∑
(e,i)∈E(v)

(
⊙j ̸=i (α(ℓ)h

(ℓ)
e(j)+ (1 − α(ℓ))pj) ⊙ w(ℓ)

r

)]
+ b(ℓ)

)
.

Note that σ stands for the ReLU activation function in both models. We additionally use a binary MLP
decoder for HRNet, which takes the concatenation of the final representation for each entity in the query,
together with the learnable query vector zq to obtain the final probability.

Experimental details. For both models, we use 7 layers, each with 32 hidden dimensions. We configure
the learning rate to be 1e-3 for both models and train them for 100 epochs.

K Scalability and custom Triton kernel

Scalability is generally a concern for inductive link prediction since link prediction between a given pair of
nodes relies heavily on the structural properties of these nodes (due to the lack of node features) which
necessitates strong encoders that go beyond the power of 1-WL. This is more dramatic for relational hyper-
graphs since the prediction now relies on the structural properties of k nodes and any model will suffer from
scalability issues if k becomes large. With that being said, our approach remains feasible for the benchmark
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Table 7: Average degree of relational hypergraphs in the experiments.

WP-IND JF-IND MFB-IND FB-AUTO WikiPeople
Average degree 1.03 1.36 104.5 2.16 6.06

datasets, but we think it is important for future work to scale up these models for larger datasets, much like
it has been done for classical GNNs (Hamilton et al., 2017; Zhu et al., 2023).

To resolve this empirically, we have included custom implementation via Triton kernel 3 in our codebase
to account for the message passing process on relational hypergraphs, which on average halved the training
times and dramatically reduced the space usage of the algorithm (5 times reduction on average). The idea
is to not materialize all the messages explicitly as in PyTorch geometric (Fey & Lenssen, 2019), but directly
write the neighboring features into the corresponding memory addresses. Compared with materializing all
hyperedge messages which takes O(k|E|) where k is the maximum arity, computing with Triton kernel only
is O(|V |) in memory. This will enable fast and scalable message passing on relational hypergraphs, both on
HR-MPNNs and HC-MPNNs.

L On adding node features

On the surface, it seems that HC-MPNNs does not directly take node features into account. This is because
in the task of link prediction on relational hypergraphs, no node features are explicitly provided to begin
with, and thus we did not assume the presence of node features in this particular task setting. However, it is
relatively straightforward to account for node features by simply concatenating the node feature xv on top of
the current representation hv to obtain h∗

v = [hv∥xv]. Indeed, the only requirement for HC-MPNNs in the
initialization is to satisfy generalized target node distinguishability, and thus concatenating node features
will preserve this property. As a result, all theoretical results can be directly applied to HC-MPNNs with
node features. It is worth noting that this concatenating technique has already been applied in Zhang et al.
(2021) on knowledge graphs with node features and has proven to be successful. Additionally, this technique
is also mentioned in Galkin et al. (2024) for link prediction with knowledge graphs using conditional message
passing.

M Impact on the density of the relational hypergraphs

To further analyze the impact on the structure and density, we present the average degree of (training)
datasets in Table 7. Observe that even though MFB-IND is a very dense hypergraph, HCNets can still
manage to double the metrics compared to existing models. Furthermore, we highlight the performance of
HCNets in sparse hypergraph settings, which are more representative of many real-world scenarios. Remark-
ably, HCNets maintain competitive performance even under these challenging conditions, underscoring their
adaptability and effectiveness across a wide range of graph density regimes. These findings highlight the
versatility of HCNets in handling diverse hypergraph structures.

N Further experiment details

We report the details of the experiment carried out in the body of the paper in this section. In particular,
we report the dataset statistics of the inductive link prediction task in Table 8 and of the transductive
link prediction task in Table 9. We also report the hyperparameter used for HCNet in the inductive link
prediction task at Table 10 and transductive link prediction task at Table 11, respectively.

We present the dataset statistics and hyperparameter choices in Table 17 and Table 18, respectively. We also
show the complete tables for the ablation study mentioned in Table 13 and Table 14, the detailed definitions
of initialization and positional encoding considered in Table 19 and Table 20, respectively.

3https://github.com/triton-lang/triton
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Table 8: Dataset statistics of inductive link prediction task with relational hypergraph.

Dataset # seen
vertices

# train
hyper-
edges

# unseen
vertices

#
relations

#
features

# max
arity

WP-IND 4,463 4,139 100 32 37 4
JF-IND 4,685 6,167 100 31 46 4
MFB-IND 3,283 336,733 500 12 25 3

Finally, we report the execution time and GPU usages for 1 epochs of HCNets on all datasets considered in the
paper with corresponding hyperparameters in Table 21. See further discussion of scalability in Appendix K.
For the RD-MPNNs training, we consider a learning rate of 0.1, a dimension of 200, and 10 negative samples
for training on all inductive datasets. In the experiments, all relational hypergraphs do not contain node
features. We present a detailed discussion and strategy in Appendix L for HC-MPNNs to be applied on
relational hypergraphs with node features.

We adopt the partial completeness assumption (Galárraga et al., 2013) on relational hypergraphs, where we
randomly corrupt the t-th position of a k-ary fact q(u1, · · · , uk) each time for 1 ≤ t ≤ k. HCNets minimize
the negative log-likelihood of the positive fact presented in the training graph, and the negative facts due
to corruption. We represent query q = (q, ũ, t) as the fact q(u1, · · · , uk) given corrupting t-th position, and
represent its conditional probability as p(v|q) = σ(f(h(L)

v|q )), where v ∈ V is the considered entity in the
t-th position, L is the total number of layer, σ is the sigmoid function, and f is a 2-layer MLP. We then
adopt self-adversarial negative sampling (Sun et al., 2019) by sampling negative triples from the following
distribution:

L(v | q) = − log p(v | q) −
n∑

i=1
wi,α log(1 − p(v′

i | q))

where α is the adversarial temperature as part of the hyperparameter, n is the number of negative samples
for the positive sample and v′

i is the i-th corrupted vertex of the negative sample. Finally, wi is the weight
for the i-th negative sample, given by

wi,α := Softmax
(

log(1 − p(v′
i | q))

α

)
.

Table 9: Dataset statistics of transductive link prediction task with relational hypergraph on FB-AUTO,
WikiPeople, JF17K, and MFB15K with respective arity.

Dataset FB-AUTO WikiPeople JF17K MFB15K
|V | 3,410 47,765 29,177 10,314
|R| 8 707 327 71
#train 6,778 305,725 61,104 415,375
#valid 2,255 38,223 15,275 39,348
#test 2,180 38,281 24,915 38,797
# arity= 2 3,786 337,914 56,322 82,247
# arity= 3 0 25,820 34,550 400,027
# arity= 4 215 15,188 9,509 26
# arity≥ 5 7,212 3,307 2,267 11,220
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Table 10: Hyperparameters for inductive experiments of HCNet.

Hyperparameter WP-IND JF-IND MFB-IND

GNN Layer Depth(L) 5 5 4
Hidden Dimension 128 256 32

Decoder Layer Depth 2 2 2
Hidden Dimension 128 256 32

Optimization Optimizer Adam Adam Adam
Learning Rate 5e-3 1e-2 5e-3

Learning

Batch size 32 32 1
#Negative Sample 10 10 10
Epoch 20 20 10
#Batch Per Epoch - - 10000
Adversarial Temperature 0.5 0.5 0.5
Dropout 0.2 0.2 0
Accumulation Iteration 1 1 32

Table 11: Hyperparameters for transductive experiments of HCNet.

Hyperparameter FB-AUTO WikiPeople JF17K MFB15K

GNN Layer Depth(L) 4 5 6 6
Hidden Dimension 128 64 64 64

Decoder Layer Depth 2 2 2 2
Hidden Dimension 128 64 64 64

Optimization Optimizer Adam Adam Adam Adam
Learning Rate 1e-3 1e-3 5e-3 1e-3

Learning

Batch size 32 16 1 32
#Negative Sample 32 32 50 32
Epoch 20 6 6 4
#Batch Per Epoch − 5000 − −
Adversarial Temperature 0.5 0.5 0.5 0.5
Dropout 0.2 0.2 0.2 0.2
Accumulation Iteration 1 1 32 1

Table 12: Results of inductive link prediction experiments. We report averaged MRR, Hits@1, and Hits@3
(higher is better) on test sets together with its standard deviation.

WP-IND JF-IND MFB-IND
MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

HGNN 0.072 0.045 0.112 0.102 0.086 0.128 0.121 0.076 0.114
HyperGCN 0.075 0.049 0.111 0.099 0.088 0.133 0.118 0.074 0.117
G-MPNN-sum 0.177 0.108 0.191 0.219 0.155 0.236 0.124 0.071 0.123
G-MPNN-mean 0.153 0.096 0.145 0.112 0.039 0.116 0.241 0.162 0.257
G-MPNN-max 0.200 0.125 0.214 0.216 0.147 0.240 0.268 0.191 0.283
RD-MPNN 0.304 0.238 0.328 0.402 0.308 0.453 0.122 0.082 0.125
HCNet 0.414

±
0.005

0.352
±

0.004

0.451
±

0.005

0.435
±

0.017

0.357
±

0.023

0.495
±

0.014

0.368
±

0.015

0.223
±

0.014

0.417
±

0.022
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Table 13: Results of ablation study experiments on initialization. We report MRR, Hits@1, and Hits@3
(higher is better) on test sets.

Init WP-IND JF-IND
zq pi MRR Hits@1 Hits@3 MRR Hits@1 Hits@3
- - 0.388 0.324 0.421 0.390 0.295 0.451
✓ - 0.387 0.321 0.421 0.392 0.302 0.447
- ✓ 0.394 0.329 0.430 0.393 0.300 0.456
✓ ✓ 0.414 0.352 0.451 0.435 0.357 0.495

Table 14: Results of ablation study experiments on positional encoding. We report MRR, Hits@1, and
Hits@3 (higher is better) on test sets.

PE WP-IND JF-IND
MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

Constant 0.393 0.328 0.426 0.356 0.247 0.428
One-hot 0.395 0.334 0.428 0.368 0.275 0.432

Learnable 0.396 0.335 0.425 0.416 0.335 0.480
Sinusoidal 0.414 0.352 0.451 0.435 0.357 0.495

Table 15: Transductive link prediction experiments on FB-AUTO and WikiPeople

FB-AUTO WikiPeople
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

m-DistMult 0.784 0.745 0.815 0.845 - - - -
m-CP 0.752 0.704 0.785 0.837 - - - -
m-TransH 0.728 0.727 0.728 0.728 - - - -
RAE 0.703 0.614 0.764 0.854 0.253 0.118 0.343 0.463
NaLP 0.672 0.611 0.712 0.774 0.338 0.272 0.362 0.466
tNaLP+ 0.729 0.645 0.748 0.826 0.339 0.269 0.369 0.473
HINGE 0.678 0.630 0.706 0.765 0.333 0.259 0.361 0.477
NeuInfer 0.737 0.700 0.755 0.805 0.350 0.282 0.381 0.467
HypE 0.804 0.774 0.823 0.856 0.263 0.127 0.355 0.486
RAM 0.830 0.803 0.851 0.876 0.363 0.271 0.455 0.500
BoxE 0.844 0.814 0.863 0.898 - - - -
HyperMLN 0.831 0.803 0.851 0.877 - - - -
HyConvE 0.847 0.820 0.872 0.901 0.362 0.275 0.388 0.501
ReAIE 0.873 0.852 0.886 0.909 - - - -
RD-MPNN 0.810 0.714 0.870 0.888 - - - -
HJE 0.872 0.848 0.886 0.903 0.450 0.375 0.487 0.582
HyCubE 0.881 0.860 0.894 0.918 0.448 0.368 0.490 0.592
HyPlanE 0.866 0.843 0.880 0.909 0.402 0.323 0.443 0.549

HCNet 0.871
± 0.005

0.842
± 0.007

0.892
± 0.003

0.922
± 0.004

0.421
± 0.004

0.344
± 0.005

0.457
± 0.005

0.565
± 0.007
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Table 16: Transductive link prediction experiments on JF17K and MFB15K

JF17K MFB15K
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

m-DistMult 0.463 0.372 0.510 0.634 0.705 0.633 0.740 0.844
m-CP 0.392 0.303 0.441 0.560 0.680 0.605 0.715 0.828
m-TransH 0.444 0.370 0.475 0.581 0.623 0.531 0.669 0.809
RAE 0.396 0.312 0.433 0.561 - - - -
NaLP 0.366 0.290 0.334 0.516 - - - -
tNaLP+ 0.449 0.370 0.484 0.598 - - - -
HINGE 0.473 0.397 0.490 0.618 - - - -
NeuInfer 0.451 0.373 0.484 0.604 - - - -
HypE 0.494 0.408 0.538 0.656 0.777 0.725 0.800 0.881
RAM 0.539 0.463 0.573 0.690 - - - -
BoxE 0.560 0.472 0.604 0.722 0.761 0.702 0.791 0.877
HyperMLN 0.556 0.482 0.597 0.717 - - - -
HyConvE 0.590 0.478 0.610 0.729 - - - -
ReAIE 0.559 0.482 0.594 0.705 0.801 0.755 0.823 0.901
RD-MPNN 0.512 0.445 0.573 0.685 - - - -
HJE 0.590 0.507 0.613 0.729 - - - -
HyCubE 0.584 0.508 0.616 0.730 - - - -
HyPlanE 0.569 0.496 0.600 0.708 - - - -

HCNet 0.540
± 0.002

0.440
± 0.001

0.595
± 0.007

0.730
± 0.006

0.759
± 0.003

0.693
± 0.002

0.796
± 0.005

0.884
± 0.007

Table 17: Dataset statistics for the inductive relation prediction experiments. #Query* is the number of
queries used in the validation set. In the training set, all triplets are used as queries.

Dataset #Relation Train & Validation Test
#Nodes #Triplet #Query* #Nodes #Triplet #Query

WN18RR

v1 9 2,746 5,410 630 922 1,618 188
v2 10 6,954 15,262 1,838 2,757 4,011 441
v3 11 12,078 25,901 3,097 5,084 6,327 605
v4 9 3,861 7,940 934 7,084 12,334 1,429

FB15k-237

v1 180 1,594 4,245 489 1,093 1,993 205
v2 200 2,608 9,739 1,166 1,660 4,145 478
v3 215 3,668 17,986 2,194 2,501 7,406 865
v4 219 4,707 27,203 3,352 3,051 11,714 1,424
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Table 18: Hyperparameters for binary inductive experiments with HCNet.

Hyperparameter WN18RR FB15k-237

GNN Layer Depth(L) 6 6
Hidden Dimension 32 32

Decoder Layer Depth 2 2
Hidden Dimension 64 64

Optimization Optimizer Adam Adam
Learning Rate 5e-3 5e-3

Learning

Batch size 32 32
#Negative Samples 32 32
Epoch 30 30
#Batch Per Epoch − −
Adversarial Temperature 0.5 0.5
Dropout 0.2 0.2
Accumulation Iteration 1 1

Table 19: Definition of Init in the ablation study of initialization. Here, q = (q, ũ, t), and d is the hidden
dimension before passing to the first layer.

Init
h

(0)
v|qzq pi

- -
∑

i ̸=t 1v=ui
∗ 1d

✓ -
∑

i ̸=t 1v=ui
∗ pi

- ✓
∑

i ̸=t 1v=ui
∗ zq

✓ ✓
∑

i ̸=t 1v=ui ∗ (pi + zq)

Table 20: Definition of pi in the ablation study of positional encoding. Here, Id
i is the one-hot vector of d

dimension where only the index i has entry 1 and the rest 0. Note that d is the hidden dimension before
passing to the first layer. p̂ is a d-dimensional learnable vectors. pi,j is the j-th index of position encoding
pi, and d is the dimension of the vector pi.

PE
Constant pi = 1d

One-hot pi = Id
i

Learnable pi = p̂i

Sinusoidal pi,2j = sin
(

i
100002j/d

)
; pi,(2j+1) = cos

(
i

100002j/d

)
Table 21: Comparison of the execution time of 1 epoch for inductive and transductive link prediction task
with relational hypergraph using a single A10 GPU. Note that we use batch size = 1 during the testing for
all models, and 10k steps for MFB-IND during the training of HCNets.

WP-IND JF-IND MFB-IND FB-AUTO WikiPeople
Train Test Train Test Train Test Train Test Train Test

RD-MPNN 2sec 3.5min 2sec 3min 14min 38min 3sec 35min - -
HCNet 3.5min 18sec 8min 10sec 80min 3.5min 4.5min 4min 3hr 2hr

42


	Introduction
	Related work
	Link prediction with relational hypergraphs
	Hypergraph relational MPNNs
	A Weisfeiler-Leman test for HR-MPNNs
	Logical expressiveness of HR-MPNNs

	Hypergraph conditional MPNNs
	Hypergraph conditional networks
	A Weisfeiler-Leman test for HC-MPNNs
	Logical expressiveness of HC-MPNNs

	Experimental evaluation
	Inductive experiments
	Transductive experiments
	Knowledge graphs experiments
	Ablation studies on the impact of initialization and positional encoding
	Expressiveness evaluation

	Summary, discussions, and limitations
	R-MPNNs and C-MPNNs
	HR-MPNNs subsume existing models
	HR-MPNNs subsume G-MPNNs and RD-MPNNs
	HR-MPNNs subsuming HGNNs and HyperGCNs
	HR-MPNNs subsume R-MPNNs

	Proof of thm: HRMPNN
	HGML and proof of thm:hrmpnn-logic
	HGML formulas
	Proof of thm:hrmpnn-logic

	Proof of thm: HCMPNN
	Proof of thm:HGMLc
	Link prediction with knowledge graphs
	Computing k-ary invariants
	Atomic types
	Relational hypergraph conditioned local k-WL test

	Complexity analysis
	Details in synthetic experiments
	Scalability and custom Triton kernel
	On adding node features
	Impact on the density of the relational hypergraphs
	Further experiment details

