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ABSTRACT

The primary objective of deep metric learning (DML) is to find an effective em-
bedding function that can map an image to a vector in the latent space. The quality
of this embedding is typically evaluated by ensuring that similar images are placed
close to each other. However, the evaluation step, which involves finding the sam-
ple and its neighbors and determining which neighbors share the same label, is
often overlooked in the current literature on DML, where most of the focus is
placed on training the embedding function. To address this issue, we propose
a mechanism that leverages the statistics of the nearest neighbors of a sample.
Our approach utilizes cross-attention to learn meaningful information from other
samples, thereby improving the local embedding of the image. This method can
be easily incorporated into DML approaches at a negligible additional cost dur-
ing inference. Experimental results on various standard DML benchmark datasets
demonstrate that our approach outperforms the state of the art.

1 INTRODUCTION

Deep metric learning (DML) is a powerful technique to learn compact image representations that
can generalize well so that transfer to previously unseen data distributions. The goal of DML is to
not only express semantic similarities between training samples but also to transfer them to unseen
classes. Thus, the primary objective is to find an embedding function that can map images to their
corresponding locations in an embedding space where the semantic similarity is implicitly captured
by the distance between samples. By doing so, we can ensure that positive images with the same
label are located close to each other while images with different labels are located far apart. This
is a crucial step in improving the performance of various visual perception tasks, such as image
retrieval Sohn (2016); Wu et al. (2017); Roth et al. (2019); Jacob et al. (2019), clustering Hershey
et al. (2016); Schroff et al. (2015a), and face/person identification Schroff et al. (2015b); Hu et al.
(2014); Liu et al. (2017); Deng et al. (2019).

Conventional deep metric learning approaches typically process each image independently of others.
This means that each image is fed into the neural network individually, and the model generates an
embedding in a latent space. However, during the evaluation stage, we retrieve the nearest neighbors
for each sample and check if they share the same label as the query image. Thus, we judge the model
on its ability to properly arrange points in the neighborhood.

Additionally, large discrepancy between the train and test sets often characterizes benchmark
datasets for transfer learning common for DML. In this challenging non-i.i.d. setting, computing
an embedding only for an individual query sample makes it difficult to adjust to the domain shift.
While there are approaches that can train in unsupervised way on the test set Sun et al. (2020) this is
not always possible. However, considering related samples when embedding a query point, we could
better discover and compensate for global domain shifts and focus on relations between samples in
the neighborhood. But what information from which other sample is meaningful for improving the
embedding of a query point? Our proposal is to learn how to extract informative characteristics
from the other samples in the neighborhood and combine this information with the query sample.
Similar to the approach described in the perceiver paper Jaegle et al. (2021), our method utilizes
cross-attention blocks to analyze the relationships between the sample and its neighbors.

We observe that sampling from the neighborhood of the query prioritizes meaningful samples. Here
the neighborhood is defined by whatever initial DML feature extractor is used prior to the embedding
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Figure 1: Our approach falls between the supervised and unsupervised scenarios. While there are
numerous works on conventional DML, which involve labeled training datasets and evaluation on
separate test datasets, there are also approaches on the right side of our approach that have access
to the test set in either a supervised or unsupervised form. These approaches can optimize their
models based on this test set in various ways. We propose fixing the evaluation function in a way
that allows our model to have access to the neighborhood of points during the evaluation stage. This
will enable our model to readjust the embedding of the query sample accordingly. Notably, our
model consistently outperforms the baselines when increasing the number of neighbors each sample
can contextualize.

that we want to learn. By focusing on relationships within the data, our approach is able to extract
more information from the available data. This ultimately results in enhanced embeddings and, as a
result, improved retrieval of nearest neighbors with the correct label.

Furthermore, our approach can be applied on top of the initial features or even the final embeddings
computed with any existing method, regardless of its complexity or the nature of the data being
analyzed. Our approach can better reflect the underlying structure of the data in the neighborhood of
a sample and henceforth improve the retrieval performance by a significant margin. To put it simple,
our approach can be seen as a mechanism that allows different samples to communicate with each
other and improve their embeddings based on the relationships that exist between them. This is
particularly useful when dealing with complex datasets, where the initial embeddings may not fully
capture the nuances and intricacies of the underlying structure.

In summary, we have designed an easy-to-apply approach that can refine precomputed embeddings
obtained with any vanilla DML approach. Our approach has the following characteristics:

– easy to incorporate into existing DML approaches
– adds negligible computation overhead at inference time
– targets the problem of a distribution shift in DML
– significantly outperforms state-of-the-art approaches on all main benchmark datasets used

in DML
– breaks the assumption of conventional approaches that images exist independently from

each other in the embedding space

2 RELATED WORK

Deep Metric Learning: DML is a prominent research field focusing on similarity learning and
its various applications such as image retrieval and search Sohn (2016); Wu et al. (2017); Roth
et al. (2019); Jacob et al. (2019), face recognition Schroff et al. (2015b); Hu et al. (2014); Liu et al.
(2017); Deng et al. (2019), zero-shot learning Bautista et al. (2016); Sanakoyeu et al. (2018); Büchler
et al. (2018), and clustering Hershey et al. (2016); Schroff et al. (2015a). The primary objective of
DML is to optimize the projections of individual images into an expressive embedding space so
that similarity relations between the images are captured by a given distance function. To achieve
this goal, numerous approaches for learning have been proposed, including surrogate ranking tasks
over tuples of images, ranging from simple pairs Hadsell et al. (2006) and triplets Wu et al. (2017);
Schroff et al. (2015b); Wang et al. (2017); Deng et al. (2019) to higher-order quadruplets Chen et al.
(2017) and more generic n-tuples Sohn (2016); Oh Song et al. (2016); Hermans et al. (2017); Wang
et al. (2019). The number of different combinations of tuples usually grows exponentially, but most
of them are uninformative. To tackle this issue, another stream of works in DML is focusing on
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various sampling strategies for mining informative tuples, including Wu et al. (2017); Schroff et al.
(2015b); Xuan et al. (2020); Ge (2018); Harwood et al. (2017); Roth et al. (2020). To circumvent the
sampling issue, some proxy-based Goldberger et al. (2005); Movshovitz-Attias et al. (2017); Kim
et al. (2020); Teh et al. (2020); Qian et al. (2019) or classification-based Deng et al. (2019); Zhai
& Wu (2018) methods are also proposed. Apart from these basic formulations, diverse extensions,
for instance, generating synthetic training samples Duan et al. (2018); Lin et al. (2018); Zheng et al.
(2019); Gu et al. (2021); Ko & Gu (2020), teacher-student approach Roth et al. (2021), leveraging
additional tasks and ensemble learning Opitz et al. (2017; 2018); Sanakoyeu et al. (2021); Roth
et al. (2019); Milbich et al. (2020); Kim et al. (2018), are proven to be effectively enhancing different
capabilities of DML models.

We argue that computing an embedding only locally for an individual query sample makes it
difficult to adjust the domain shift problem existing in many DML benchmark datasets and
real-world scenarios Milbich et al. (2021). In our work, we break with this paradigm by improving
the embeddings based on their surrounding context.

Utilizing contextual information: Intra-Batch Seidenschwarz et al. (2021) proposed to utilize the
contextual information contained in a training mini-batch by means of message passing networks.
However, this cannot be easily applied to test time, as the method is highly sensitive to the construc-
tion of the mini-batch (see discussion in their supplementary). STML Kim et al. (2022) proposed to
use contextualized semantic similarity by considering the overlap of the k-reciprocal nearest neigh-
bors of data in the embedding space for self-supervised metric learning, where the author perform
nearest neighbors searching to construct the training batch. To further exploit available datasets,
Frosst et al. (2019) introduces a trust score that measures the conformance between the classier
and k-nearest neighbors on a set of examples with known labels. Similarly, Karpusha et al. (2020)
calibrates their prediction based on nearest neighbors with labels in the held-out validation dataset
to improve generalization and robustness of deep metric learning models. Meanwhile, Roth et al.
(2022a) explores the contextual information (represented by top-k ImageNet pseudo-labels) in the
language domain by guiding the training process through KL-divergence between image and text
similarities defined by CLIP Radford et al. (2021), which is trained on 400 million image-text pairs.

On the other hand, our approach does not rely on test-batch construction, usage of data labels, or
module potentially posing a data leakage problem, but aims at leveraging the context information
contained in the very test set neighborhood and improving the embedding based on it. Additionally,
this also offers us a tool to diagnose how the image representation changes with its neighbors served
as the context. We showed related experiments in sec. 4.

Attention mechanisms: transformer architecture has revolutionized the field of natural language
processing Vaswani et al. (2017) and been gaining more and more focus in the vision domain as
well Dosovitskiy et al. (2021). It enables the model to attend to specific parts of their input Jader-
berg et al. (2015), feature representations Vaswani et al. (2017) or even output Jaegle et al. (2022).
Of particular relevance to DML, the model proposed in El-Nouby et al. (2021) simply replaced the
feature extractor with Vision Transfomer (ViT) and was trained with DML objectives, which led to
significant improvement over conventional backbones. In Seidenschwarz et al. (2021) a message-
passing network based on attentional principles was used to incorporate global structure of embed-
dings within a mini-batch during training. However the useful information is highly constrained by
the randomly sampled mini-batch.

Another attention mechanism that has proven to be a flexible in relating two arbitrary data
representations is cross attention Jaegle et al. (2021; 2022). The model is capable of scaling to
hundreds of thousands of inputs and leverages an asymmetric attention mechanism to distill inputs
into a tight bottleneck. In our work, we propose to utilize this flexibility to exchange information
among neighboring learned embeddings, thus refining the data representations.

3 APPROACH

The main goal of DML is to learn a similarity measure between any arbitrary pair of samples. The
measurement is defined as a similarity function s(Ii, Ij) over images Ii, Ij ∈ I parameterized by
a backbone network E extracting features E(Ii) and a function ϕ projecting data into the final
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Figure 2: Approach overview. Our approach works by iteratively improving an initial embedding
e0q to its final embedding eTq . For this, an initial neighborhood of close embeddings is gathered.
The neighbors are then used to update the current embedding etq by predicting missing, residual
information with cross-attention.

embedding ei = ϕ(E(Ii)). The embedding ei is usually normalized. In this learned metric space
the semantic similarity is usually represented by cosine similarity between samples.

With the similarity defined, the training loss Ldml for updating E and ϕ usually involves solving
a ranking problem between samples Wang et al. (2019); Wu et al. (2017); Qian et al. (2019) or
between samples and proxies Gu et al. (2021); Kim et al. (2020); Roth et al. (2022b). For instance,
in the simplest case, we have a triplet of samples, i.e. anchor xa, positive xp and negative xn with
their ground truth label ya = yp ̸= yn, and the model learns to ensure the dϕ(xa, xn) is larger than
dϕ(xa, xp) by a certain margin.

As the reader can notice, the embeddings ei are computed independently from each other. This
results in “approximately” good embeddings. That means that for any query embedding eq we can
compute the set of nearest neighbors from the set of all other embeddings ei with the similarity
measure s(·, ·). And this neighborhood always has a correct retrieval sample which may not be the
nearest neighbor to our query sample

Henceforth, our primary goal is to develop a model that can take a query embedding eq and its neigh-
borhood NN(eq) of independently embedded images and establish connection between them. Now
we want to refine positioning of those points relative to one another. Since conventional approaches
often achieve a good initial embedding, it makes sense to focus only on a small set of neighboring
images – thus embedding size can have fairly small size.

With this example in mind we aim to design a model that can take the embedding eq of a query
image Iq , along with contextual information from its nearest neighbors, and aggregate and process
it to refine the initial embedding eq .

Attention is a suitable mechanism for establishing correspondence between different objects. Specif-
ically, we want to learn an effective way to exchange information between the embedding eq ∈ Rd

of a query image Iq and the context set of neighboring embeddings Cq := NN(eq) ∈ Rk×d of k
images. The initial formulation suggested by Vaswani et al. (2017) can be applied to our data and
can be formulated as follows:

Attn(eq, Cq) := softmax

(
eqC

⊤
q√
d

)
∈ R1×k. (1)

This expression represents similarity between the query image and each of its k neighbors. If we
use it directly to aggregate information, we obtain a weighted sum of the embeddings of the nearest
neighbors. But, we want to extract diverse information from the nearest neighbors Cq = NN(eq) to
improve the embedding of the query image, instead of averaging the embeddings. Another limiting
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factor is that using Eq. 1, similarities stay the same as they were in the original embedding space.
However, we may want to focus on certain aspects of the embeddings more than others. This can
only be achieved by projecting the original space into a different subspace using, for example, linear
projection layers. This mechanism is implemented in the cross-attention layer, which takes three
inputs: queries q, keys k, and values v. The layer then projects them onto a new space with projection
layers Q, K, and V , and then assembles them back together:

CA(q, k, v) := softmax

(
Q(q)K(k)⊤√

d

)
V (v). (2)

Using the cross-attention mechanism, we can assign higher weights to meaningful elements than
to others. Given these attentions, we can merge the neighbor information with the query image
embedding eq . We treat this new information (output of the cross-attention block) as the residual to
the initial information contained in the query image embedding eq . Making the output residual to
the original input stabilizes the training. This process can be repeated multiple times to iteratively
improve the embedding of a query image using information about its nearest neighbors

etq := CAt(et−1
q , Cq, Cq) + et−1

q , t ∈ {1, .., T}. (3)

This design is needed, such that different cross-attention blocks will focus on different details of the
neighbors Cq . The iterative updating process is depicted in Fig. 2.

To train the weights of all our cross-attention blocks between neighbor information and the itera-
tively refined embedding eq , we need a loss function. We opt for a simple multi-similarity loss,
which uses ground truth labels provided by the dataset. Given ground-truth labels for each sample
eTi we can establish a subset of positives Pi and its negatives Ni in a minibatch of b samples. Now
we can compute similarities between eTi and its positives and eTi and negatives. Those are being fed
to the logexp function and summed together using hyperparameter α and β for balancing fraction
of positives and negatives in a batch:

L :=
1

b

b∑
q=1

 1

α
log

∑
k∈Pq

exp−α((eTq )⊤eTk −λ)

+
1

β
log

∑
k∈Nq

expβ((e
T
q )⊤eTk −λ)

 . (4)

To facilitate effective training we need to compute once all the initial embeddings for the whole
dataset using pretrained networks from conventional approaches. Now, since our method operates
on the neighborhoods of points it make sense to compute and store them at the very beginning of
training. In short form training and inference is formulated in Alg.1 and Alg.2.

4 EXPERIMENTS

4.1 DATASETS DESCRIPTION

Table 1: Additional metrics suggested in
Musgrave et al. (2020) were computed, R-
Precision(RP), Mean Average Precision at R
(MAP@R) and Mean Average Precision at 1000,
to provide extra insights on the performance of
our method.

Datasets RP mAP@R mAP
@1000

CUB 43.2 33.9 42.8
CARS 42.7 34.1 40.4
SOP 55.7 55.4 48.1

There are three main datasets that are used
to benchmark performance of the DML meth-
ods. Following conventional approach we train
our models on the train split and evaluate on
the test split: CUB200-2011 Wah et al. (2011)
contain 200 classes containing in total 11, 788
images of birds. Training set contains first
100 classes with 5, 864 images and test split
contains next 100 classes with 5, 924 images.
CARS196 Krause et al. (2013) has 16, 185 im-
ages across 196 different car brands. Train split
contains first 98 classes totalling 8, 054 images.
The remaining 98 classes with 8, 131 images
are used for testing. Stanford Online Products (SOP) Oh Song et al. (2016) consists of images
of eBay items for sale uploaded by both customers and stores. This dataset contains much bigger

5



Under review as a conference paper at ICLR 2024

Table 2: Comparison to the state-of-the-art methods on CUB200-2011, CARS196, and and SOP.
’BB’ denote the backbone architecture being used (’R50’=ResNet50 He et al. (2016), ’BNI’=BN-
InceptionNet Szegedy et al. (2015)). We report our results using both 512-dimensional and 2048-
dimensional space.

CUB200-2011 CARS196 SOP
Method BB R@1 R@2 NMI R@1 R@2 NMI R@1 R@10 NMI

Margin128Wu et al. (2017) R50 63.6 74.4 69.0 79.6 86.5 69.1 72.7 86.2 90.7
Multi-Sim512Wang et al. (2019) BNI 65.7 77.0 68.8 84.1 90.4 70.6 78.2 90.5 89.8
MIC128Roth et al. (2019) R50 66.1 76.8 69.7 82.6 89.1 68.4 77.2 89.4 90.0
HORDE512Jacob et al. (2019) BNI 66.3 76.7 - 83.9 90.3 - 80.1 91.3 -
Softtriple512Qian et al. (2019) BNI 65.4 76.4 69.3 84.5 90.7 70.1 78.3 90.3 92.0
XBM128 Wang et al. (2020) BNI 65.8 75.9 - 82.0 88.7 - 80.6 91.6 -
PADS128 Roth et al. (2020) R50 67.3 78.0 69.9 83.5 89.7 68.8 76.5 89.0 89.9
GroupLoss1024 Elezi et al. (2020) BNI 65.5 77.0 69.0 85.6 91.2 72.7 75.1 87.5 90.8
DIML512Zhao et al. (2021) R50 67.9 - - 87.0 - - 78.5 - -
ProxyAnchor512 Kim et al. (2020) BNI 68.4 79.2 - 86.1 91.7 - 79.1 90.8 -
D&C512Sanakoyeu et al. (2021) R50 68.2 - 69.5 87.8 - 70.7 79.8 - 89.7
SynProxy512 Gu et al. (2021) R50 69.2 79.5 - 86.9 92.4 - 79.8 90.9 -
DiVA512 Milbich et al. (2020) R50 69.2 79.3 71.4 87.6 92.9 72.2 79.6 91.2 90.6
Intra-Batch512 Seidenschwarz et al. (2021) R50 70.3 80.3 74.0 88.1 93.3 74.8 81.4 91.3 92.6
S2D2512 Roth et al. (2021) R50 70.1 79.7 71.6 89.5 93.9 72.9 80.0 91.4 90.8
Multi-Sim+PLG512 Roth et al. (2022a) R50 70.0 79.5 70.8 87.3 92.5 73.2 79.1 91.1 90.1
Ours512 R50 73.2 82.8 75.8 90.9 94.3 76.0 81.8 92.3 93.0
Ours2048 R50 74.8 83.8 76.9 91.4 94.5 77.6 82.3 92.7 93.4

number of images 120, 053 spread across 22, 634 product classes. Thus, this dataset is not only
bigger compared to the previous two, but also has on average fewer images per class. Training split
contains 59, 951 images of 11, 318 different products. Test split contains remaining 11, 316 products
of 60, 502 images in total.

4.2 COMPARISON TO STATE-OF-THE-ART

Table 3: Ablation of different training losses
combined with our method. We provide R@1
scores on three main datasets CUB200-2011,
CARS196, and and SOP. We repeat this evalua-
tion using different pretrained models: MS-Loss
model, Margin Loss , and ProxyAnchor

Training Loss (R50) CUB Cars SOP
MS-Loss 67.5 87.8 77.4
Ours (MS-Loss) 73.2 90.9 81.8
Margin512 63.1 82.1 74.8
Ours (Margin)512 67.9 86.9 77.3
ProxyAnchor512 66.4 84.9 77.5
Ours (ProxyAnchor)512 69.8 88.5 80.2

We evaluate our approach on aforementioned
three standard benchmark datasets and com-
pare it to the other state-of-the-art models uti-
lizing conventional ResNet-50 He et al. (2016)
or BN-Inception Szegedy et al. (2015) back-
bones. We use the Recall@k Jegou et al. (2011)
and NMI Manning et al. (2010) (Normalized
Mutual information) scores as our main metrics
to compare our approach to the state-of-the-art
methods, as summarized in Tab.2. We observe a
significant boost in performance when applying
our method on top of the conventional MS-Loss
Wang et al. (2019) approach. Our approach can
refine embeddings even starting from poor ini-
tial embeddings 4.

4.3 OTHER BASELINE METHODS

Our method is highly versatile and can be effectively applied to a wide range of baseline approaches
and networks, making it a valuable tool for many different applications. By leveraging initial em-
beddings of images computed using these baseline approaches, we are able to efficiently apply our
method and achieve significant improvements in performance.
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To test the effectiveness of our approach, we conducted experiments using multiple baseline ap-
proaches, including MS-Loss Wang et al. (2019), Margin Loss Wu et al. (2017) and ProxyAnchor
loss Kim et al. (2020), and evaluated performance using the Recall@1 score on three datasets: CUB,
Cars, and SOP. We provide the results of these experiments in Tab.3.

Our results demonstrate consistent and substantial improvement when using our method, indicat-
ing its potential to significantly enhance the performance by extracting information from the initial
imperfect embeddings.

4.4 ITERATIVE IMPROVEMENT OF EMBEDDINGS

Our model for improving image embeddings takes an initial image embedding e0q and its nearest
neighbors as context Cq . We then iteratively apply cross-attention blocks to improve the embed-
dings. To understand how the quality of the embeddings change at each iteration, we take a trained
model and compute the recalls at every level et, t ∈ {1, . . . , 8}. We then plot the results, which can
be seen in Fig. 3.

From the plot, we can see that there is a steady improvement in performance across all datasets, with
each iteration resulting in better embeddings. It is worth noting that the biggest improvements in
R@1 scores are seen in the earlier iterations. Therefore, our model demonstrates that by iteratively
applying cross-attention blocks, we can improve the quality of image embeddings and achieve better
performance across different datasets. This has an interesting implication that we can stop embed-
dings process at the earlier stage if we want to accelerate the computation.

4.5 MODEL ARCHITECTURE AND ABLATIONS

Our approach consists of two main components: the size of the neighborhood and the number of it-
eration steps, corresponding to the number of cross-attention blocks. To study the effect of these two
factors, we trained different models using the same initial embeddings computed with the pretrained
MS-Loss Wang et al. (2019) approach, but varying those two parameters. We observed consistent
improvement in performance when increasing both components. It is worth noting that increasing
only the number of cross-attention blocks while having only 2 neighbors in a neighborhood can
even degrade the performance. We assume this is caused by fast overfitting exacerbated by the large
number of parameters in cross-attention blocks. We also observed that going for a large number of
cross-attention blocks or a large number of neighbors has diminishing returns. For that reason, we
used a reasonably sized model with 8 cross-attention blocks and 8 nearest neighbors in a neighbor-
hood. This is the model used when reporting scores in Tab. 2. More detailed ablation study results
on this can be found in the Appendix.

We additionally ablated each component separately for our baseline model MS-Loss Wang et al.
(2019). In Tab. 4, we first report the initial performance reached by the baseline model. Then, we
add the cross-attention block, which has as its input for queries, keys and values the actual query
image embedding eq . We use 8 cross-attention blocks, which slightly improves the performance by
making the embedding function more powerful. Alternatively, we add information about the nearest
neighbors by averaging the embedding of a query point and 8 of its nearest neighbors. This does not
affect or even degrades the performance. Finally, in the last line of each block of Tab. 4, we add both
blocks - 8 nearest neighbors and 8 cross-attention blocks – and observe a significant improvement
in performance over the baseline method.

4.6 VISUALIZATION OF ITERATIVE IMPROVEMENT

Our method produces not only the final embedding eT , but also a sequence of intermediate embed-
dings et ∀t ∈ {1, . . . , T}. We visualize intermediate embeddings to further prove the validity of our
method.

First, we can show how the query embeddings eq change with respect to their nearest neigh-
bors NN(eq). To do this, we project eq and its neighbors from a d-dimensional space into a
2-dimensional plane using PCA and t-SNE Maaten & Hinton (2008). Next, we optimize the po-
sition of the projected eq point on the 2D plane to match similarities between NN(eq) and eq in
the original d-dimensional space. We visualize the embedding dynamics by projecting all e0i onto a
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Table 4: Ablation of the two main compo-
nents of our method: information from the
nearest neighbors, and cross-attention blocks
used for aggregation. We report R@1 scores
on three datasets. We evaluate different vari-
ants of model trained with MS-Loss.

Variant ((R50) CUB Cars SOP
MS-Loss 67.5 87.8 77.4
MS-Loss + CA 68.6 88.9 78.1
MS-Loss + NNs 67.4 84.6 77.1
Ours (CA + NNs) 73.2 90.9 81.8

Figure 3: Relative improvement with respect to
the initial embedding e0 obtain from a vanilla MS-
Loss approach. et denotes the embedding level
and e8 stands for a final embedding of a trained
model with 8 CA blocks.

(a) CUB Wah et al. (2011) dataset (b) Cars Krause et al. (2013) dataset

Figure 4: tSNE plot indicating movement between initial embedding and ultimate embedding. 500
images of each dataset are visualized. Best viewed on a monitor when zoomed in.

2-dimensional space using PCA and t-SNE, and then optimizing the positions of the 2D projections
to match similarities (eTi )

⊤ej of the original points in d-dimensional space at the final iteration. We
repeat this visualization for the CUB and Cars datasets which can be found in Figure 4. We observe
that not only are points with different labels (indicated in color frame) pushed apart, but we also
observe a contracting behavior for points with the same label.

In addition, we provide more examples of the embedding dynamics in section B of our Appendix,
where we show that query embeddings move in a direction where more embeddings with similar
features exist, even if those neighboring embeddings were initially far away.

4.7 SPEED, MEMORY AND NUMBER OF PARAMETERS

The majority of the computational burden comes from the computations in the cross-attention
blocks. This burden is twofold: an increase in the number of parameters and a reduction in in-
ference speed.

Our model with 8 cross-attention blocks and embedding size of 512 dimensions contains 12M pa-
rameters. In comparison, conventional approaches mostly consist of the weights of the ResNet-50
He et al. (2016) backbone and weights of a projection head, this totals about 25M parameters. If
we compare our model to a much larger baseline model, such as MS-Loss with the ResNet-101
backbone He et al. (2016), performance increases slightly, but the number of parameters is bigger

8



Under review as a conference paper at ICLR 2024

compared to our approach. R@1 scores are 71.8 and 86.4 on CUB and Cars, respectively, for the
baseline MS-Loss Wang et al. (2019) with ResNet-101 backbone and they are lower than our scores
of 73.2 and 90.9.

Regarding speed, our model can process 13K embeddings with nearest neighbors per second when
the dataset of embeddings and nearest neighbors is provided. The most computationally heavy extra
part is the computation of the matrix of all pairwise similarities, but it takes only 3.5 seconds on
each split of the SOP dataset (each has around 60K images). In comparison, a baseline method like
MS-Loss with the backbone encoder being ResNet-50 He et al. (2016), on images of size 224x224
and with embedding size 512, can only process 250 images per second. Thus, our approach, though
having many parameters, adds a negligible computational overhead to the baseline approach that
transforms an image Iq into the initial embedding e0q . Speed is measured using the TitanXP GPU.

Algorithm 1 Train

Require: E, ϕ - trained conventional DML ap-
proach, b - batch size, T - number of iterations,
k - neighborhood size. I - dataset with images
and class labels

1: Compute all initial embeddings e0i :=
ϕ(E(Ii)) ∀Ii ∈ I.

2: Precompute k nearest neighbors as context
NN(e0i ) ∀i.

3: Initialize E := {(e0i , NN(e0i ))}
4: Initialize weights of Qt,Kt, V t ∀t ∈ {1, .., T}

of CAt

5: while not converged do
6: Sample b pairs (e0i , NN(e0i )) ∈ E
7: for ∀i ∈ {1, .., b} do
8: Ci := NN(e0i )
9: for t = 1 to T do

10: eti = et−1
i +CAt(et−1

i , Ci, Ci)
11: Normalize eti = eti/||eti||2
12: end for
13: end for
14: Compute L with eTi ∀i
15: Backprop from L into θQt , θKt , θV t∀t.
16: end while

Algorithm 2 Inference

Require: E, ϕ - trained conventional DML
approach, T - number of iterations, k -
neighborhood size, CAt - trained cross-
attention blocks, I - dataset with test im-
ages

1: for ∀Ii ∈ I do
2: Compute all initial embeddings e0i :=

ϕ(E(Ii)).
3: end for
4: Precompute k nearest neighbors as con-

text NN(e0i ) ∀i.
5: Initialize E := {(e0i , NN(e0i ))}
6: for ∀i do
7: Ci := NN(e0i )
8: for t = 1 to T do
9: eti = et−1

i +CAt(et−1
i , Ci, Ci)

10: Normalize eti = eti/||eti||2
11: end for
12: end for
13: Compute sij = (eTi )

⊤eTj ∀i, j
14: Use sij to retrieve nearest neighbors.

5 CONCLUSION

Our approach covers a gap between the conventional approaches to DML that have no access to the
test distribution and the approaches utilizing self-supervised training or even partial labels informa-
tion at the inference stage. It takes neighboring points into account when embedding an image. By
using cross-attention to extract meaningful information from other samples, the method improves
the local embedding of the image, allowing it to also better adapt to domain shifts common in DML.
The proposed method outperforms the state of the art on common DML benchmark datasets. Our
approach can be easily incorporated into existing DML methods at a negligible additional cost dur-
ing inference, thus underlining its effectiveness and practicality.
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measure for deep metric learning. In ARXIV, 2020.

Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric
learning. In Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Self-taught metric learning without
labels. In CVPR, 2022.

Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee, and Keunjoo Kwon. Attention-based
ensemble for deep metric learning. In Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

Byungsoo Ko and Geonmo Gu. Embedding expansion: Augmentation in embedding space for
deep metric learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE International Conference on Computer Vision Work-
shops, 2013.

Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie Zhou. Deep variational metric learning.
In The European Conference on Computer Vision (ECCV), 2018.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 2008.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information re-
trieval. Natural Language Engineering, 2010.

Timo Milbich, Karsten Roth, Homanga Bharadhwaj, Samarth Sinha, Yoshua Bengio, Björn Ommer,
and Joseph Paul Cohen. Diva: Diverse visual feature aggregation for deep metric learning. In
Proceedings of the European Conference on Computer Vision (ECCV), 2020.

Timo Milbich, Karsten Roth, Biagio Brattoli, and Björn Ommer. Sharing matters for generalization
in deep metric learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

Timo Milbich, Karsten Roth, Samarth Sinha, Ludwig Schmidt, Marzyeh Ghassemi, and Bjorn Om-
mer. Characterizing generalization under out-of-distribution shifts in deep metric learning. Ad-
vances in Neural Information Processing Systems, 2021.

Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh. No
fuss distance metric learning using proxies. In Proceedings of the IEEE International Conference
on Computer Vision, 2017.

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In Proceedings
of the European Conference on Computer Vision (ECCV), 2020.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

11



Under review as a conference paper at ICLR 2024

Michael Opitz, Georg Waltner, Horst Possegger, and Horst Bischof. Bier-boosting independent
embeddings robustly. In Proceedings of the IEEE International Conference on Computer Vision,
2017.

Michael Opitz, Georg Waltner, Horst Possegger, and Horst Bischof. Deep metric learning with bier:
Boosting independent embeddings robustly. IEEE transactions on pattern analysis and machine
intelligence, 2018.

Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. Softtriple loss: Deep metric
learning without triplet sampling. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning.
PMLR, 2021.

Karsten Roth, Biagio Brattoli, and Bjorn Ommer. Mic: Mining interclass characteristics for im-
proved metric learning. In Proceedings of the IEEE International Conference on Computer Vision,
2019.

Karsten Roth, Timo Milbich, and Bjorn Ommer. Pads: Policy-adapted sampling for visual simi-
larity learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

Karsten Roth, Timo Milbich, Bjorn Ommer, Joseph Paul Cohen, and Marzyeh Ghassemi. Simul-
taneous similarity-based self-distillation for deep metric learning. In Proceedings of the 38th
International Conference on Machine Learning, 2021.

Karsten Roth, Oriol Vinyals, and Zeynep Akata. Integrating language guidance into vision-based
deep metric learning. In CVPR, 2022a.

Karsten Roth, Oriol Vinyals, and Zeynep Akata. Non-isotropy regularization for proxy-based deep
metric learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022b.

Artsiom Sanakoyeu, Miguel A Bautista, and Björn Ommer. Deep unsupervised learning of visual
similarities. Pattern Recognition, 2018.

Artsiom Sanakoyeu, Pingchuan Ma, V. Tschernezki, and Björn Ommer. Improving deep metric
learning by divide and conquer. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015a.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015b.

Jenny Seidenschwarz, Ismail Elezi, and Laura Leal-Taixé. Learning intra-batch connections for deep
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