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Abstract

Drug combinations have been shown to be an effective strategy for cancer therapy,
but identifying beneficial combinations through experiments is labor-intensive and
expensive [Mokhtari et al., 2017]. Machine learning (ML) systems that can propose
novel and effective drug combinations have the potential to dramatically improve
the efficiency of combinatoric drug design. However, the biophysical parameters
of drug combinations are degenerate, making it difficult to identify the ground truth
of drug interactions even given experimental data of the highest quality available.
Existing ML models are highly underspecified to meet this challenge, leaving them
vulnerable to producing parameters that are not biophysically realistic and harming
generalization. We have developed a new ML model, “ComboPath,” aimed at a
novel ML task: to predict interpretable cellular dose response surface of a two-drug
combination based on each drugs’ interactions with their known protein targets.
ComboPath incorporates a biophysically-motivated intermediate parameterization
with prior information used to improve model specification. This is the first ML
model to nominate beneficial drug combinations while simultaneously reconstruct-
ing the dose response surface, providing insight on both the potential of a drug
combination and its optimal dosing for therapeutic development. We show that our
models were able to accurately reconstruct 2D dose response surfaces across held
out combination samples from the largest available combinatoric screening dataset
while substantially improving model specification for key biophysical parameters.
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1 Introduction

Drug combinations have emerged as a key technique for cancer therapy, yet discovering advantageous
combinations through experimentation remains labor-intensive and costly. Biological testing of the
effects of individual drug candidates is difficult and expensive and it is exponentially moreso for
combinations. Computational approaches to increase the efficiency and effectiveness of combinatoric
drug generation have so far been focused on, 1) interpreting complex and noisy experimental
measurements for a given compound combination to infer the underlying bioactive properties of
the formulation (i.e. “synergy scoring”; Ma and Motsinger-Reif [2019]) and 2) to nominate novel
therapeutic combinations on the basis of known structure properties or biological effects of individual
compounds (i.e. “combinatoric design”; Stathias et al. [2018]).

Unfortunately, progress in this field is stymied by the biological complexity of the problem. Synergy
scoring and combinatoric design are both impacted by biophysical degeneracy expressed in experi-
mental data, which exacerbates problems of model underspecification. Experimental data on two-drug
combinations takes the form of 2D dose response data performed over a grid of doses; for example,
each cell in the 2D array may represent the response of a cell (such as cell death, cytotoxicity) that has
been exposed to a solution of each drug at a particular concentration. When the drugs are administered
at high dose, the cellular response may increase because of the efficacy of the first drug, or the efficacy
of the second drug, or a synergistic effect increasing the potency or cooperativity of the first drug
induced by the presence of the second [Wooten et al., 2021]. These distinct biophysical effects can
produce an equivalent, degenerate signal in the experimental dose response, and yet some are far
more mechanistically plausible (consistent with biophysical expectations and commonly observed)
than others and therefore likely to generalize well to new samples. Meanwhile, underspecification
occurs when equivalent predictive performance can be achieved with a wide range of trained model
configurations. This is a key challenge in ML that can lead to poor out of sample generalization
[D’Amour et al., 2022]. Little prior work engages with the dose-dependent nature of combinatoric
drug design, instead relying on point summaries of the dose response surface of drug combinations
and exacerbating model underspecification.

In this work, we unify the fields of synergy scoring and combinatoric design with a single ML
model, ComboPath, that has features addressing underspecification and data degeneracy. The key
contributions of this work are 1) to propose the prediction of interpretable drug combination dose
response surfaces as a novel ML task, 2) to introduce a new GNN-based model (ComboPath) capable
of performing this task, 3) achieving greater model specification by integrating a biophysically-
motivated model as an intermediate parameterization, and 4) leveraging domain knowledge to encode
prior information that helps address degeneracy in observational data. This method represents the
best in class tool for combinatorial drug design that can help investigators rapidly identify and screen
combination therapy candidates. It provides the best approach to inferring the biophysical effects
(synergy or antagonism) for denovo drug combinations and for optimizing dosing for a given cellular
response or other experimental readout.

We review related work in §2 and present the architecture, design, and datasets used for our combi-
natoric drug design model in §3. In §4, we describe the results of our experiments with this model,
showing the capability of our approach to simultaneously reconstruct dose response surfaces accu-
rately while also aligning its latent parameterization of synergistic properties to domain knowledge.
We conclude in §6.

2 Related Work

Our approach is inspired by the principles of AI that is explainable by design [Arrieta et al., 2020] and
guided by theory [Karpatne et al., 2017]. In the field of combination drug therapy, the MuSyC (multi-
dimensional synergy of combinations) model is a generalized, high dimensional Hill equation based
on the laws of mass-action often used to describe the dose response surface of drug combinations
[Wooten et al., 2021]. It uses 12 parameters to reconstruct the 2D dose response surface of a two-drug
combination and each of the parameters represents an interpretable biophysical property such as the
potency of the single agents or the synergy potential of the drug combination. Our model integrates
the MuSyC model as a parametric description for the drug combination dose response surface, and by
doing so, aligns the outputs of our high dimensional neural network to the interpretable biophysical
properties of compound combinations to produce a cellular response in vitro.
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Our work builds on top of recent advances in chemical representation learning. Owing to the graph-
structured nature of small molecule chemical compounds and stemming from work by Hamilton et al.
[2017], Mayr et al. [2018], Sun et al. [2019], Yang et al. [2019], and others, graph convolutional
models such as the message passing neural network have achieved success in embedding chemical
structure and predicting downstream tasks such as molecular properties and protein target binding
affinities [Li et al., 2022]. Myriad other chemical embedding strategies exist for small molecules,
such as transformers [Maziarka et al., 2020]. However, graph convolutional methods remain the most
widely used and most competitive architectures in the field Ying et al. [2021].

Several previous works have proposed computational systems for combinatoric drug design and
synergy prediction. The SynergySeq method of Stathias et al. [2018] calculates drug concordance
scores by aggregating transcriptomic data, but is not supervised with combination data and is not
capable of predicting dose response surfaces. Numerous supervised machine learning approaches
have been developed to predict the synergy score of a drug combination on the basis of various
characteristics of each drug [see for a detailed review Torkamannia et al., 2022]. Li et al. [2018]
leveraged multi-modal experimental data to train shallow learning models to predict synergy scores.
The Deepsynergy method of Preuer et al. [2018] applied a deep learning model to chemical descriptors
for each drug to predict synergy scores. Jiang et al. [2020] formulates a similar task, predicting links in
a graph of partially-known drug-drug interactions (where interaction edges reflect a binarized synergy
score) using a graph convolutional network. Rather than predict an averaged synergy score, the
model of Xia et al. [2018] predicts the specific cellular response at one particular dose combination;
whichever concentration was measured to be the most efficacious for a given combination. Because
these models are supervised with a one-dimensional summary of a dose response surface, they do not
predict dose-specific responses and are vulnerable to model underspecification. Julkunen et al. [2020],
Wang et al. [2021] have developed a system for predicting combination effects with flexible input
feature specifications via latent factorization machines and latent tensor reconstruction. This system
allows for prediction conditional on specific doses and supports imputation at doses not previously
sampled via, e.g., polynomial regression. However, it does not supply interpretable biophysical
parameters of the dose response surface and does not offer guarantees of regularization, particularly
when predicting significantly out of the domain of training doses.

The ComboPath model extends previous work in several ways. It is the first model to address the
novel ML task of interpretable dose response surface prediction. It is the first model to integrate a
biophysical dose response surface function into a deep learning model, aligning the model specifica-
tion to biophysically-interpretable parameterizations and regularizing to realistic response shapes.
And it is the first model in this field to incorporate biophysical prior information to improve inductive
biases, providing regularization on the dose response surface.

3 Methods

3.1 Problem formulation

We propose the novel ML task of 2D dose response surface prediction aligned to interpretable
biophysical parameters. For a given pair of drugs D1 and D2 administered at doses d1 and d2,
respectively, and a biological task T , we seek to predict the response surface, E(d1, d2, T ). E
represents any measurable biological response such as cytotoxicity or target-specific expression
modulation in a given cell line and is predicted as a function of drug features, f(Di) ∈ RM , and
biological task features, g(T ) ∈ RN . The drug features may be represented by an M -dimensional
molecular embedding of chemical structure, embedding of known drug-target interactions, or any
other featurization. The biological task may be any N -dimensional feature set encoding aspects of
the experimental model, such as the genetic profile of a cell line, and one-hot encoding to differentiate
between a variety of readouts, such as cytotoxicity or target-specific expression modulation. The ML
task is formulated as a multi-task problem, where a single model is trained across multiple biological
tasks.

3.2 Dose Response Datasets and Cross Validation

We trained our models on the drug combination cell viability screening data produced by O’Neil et al.
[2016]. which screened combinations of 38 oncology drugs on 39 cancer cell lines on a 4x4 dose
matrix with 4 replicates per dose combination, producing a total dataset size of 22K dose response
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surfaces and 1,475,332 individual cell viability measurements. We normalized each drug combination
to the untreated condition to obtain fractional viability at each dose combination, which was used
to fit the MuSyC parameters or directly train the model. In order to ensure symmetry during model
training, we augmented the training set by flipping the order of the drug combination; this doubles
the training set size and helps ensure equivalent predictions regardless of drug order. To test the
performance of the model on novel drug combinations, we created a 10 fold cross validation set by
leaving out drug pairs from the training data.

3.3 Compound and Cell Line Featurizations

Drug input to the model are featurized according to their known target interactions. Specifically, to
represent a drug combination, for each drug the targets are mapped to a protein-protein interaction
network and the perturbed pathways are inferred through a shared graph convolutional neural network.
Cell lines are featurized using their basal RNAseq expression. An experimentally validated human
protein-protein interaction network was extracted from the STRING database [Szklarczyk et al.,
2022] as described by Gonzalez et al. [2021]. The protein targets of each compound were extracted
from the STITCH database [Szklarczyk et al., 2016], CTDbase [Davis et al., 2021] and CHEMBL
[Gaulton et al., 2017]. Each compound is represented by a graph which encodes the protein-protein
interaction network. Each node on the graph denotes a protein on the protein-protein interaction
network and each edge denotes an interaction between the two connecting proteins. The binary
features of the node indicates whether the corresponding protein is targeted by the compound and as
such the protein targets of the compound were mapped to the protein-protein interaction network.

We compiled and processed RNAseq basal expression data for 1000 cell lines from the Cancer Cell
Line Encyclopedia data set [Ghandi et al., 2019]. We selected the 3,984 most diverse genes as the
cell line featurization set. If the exact cell line used in a given dose response assay was not available
in the DepMap dataset, the next closest cell line with according to cell type was selected.

3.4 Predictive Model Design

We develop two complementary implementations of our dose response surface prediction model
“ComboPath” which incorporate a biophysically-motivated parameterization of the dose response
surface to improves model specification. First, a “ComboPath-PS” model which is supervised on
inferred synergistic properties of drug combinations and, second, a “ComboPath-RS” model that
is supervised directly with individual dose response data points. These models are diagrammed in
Figure 1.

3.4.1 ComboPath-PS: Parameter Supervised

A set of 12 MuSyC parameters were individually fitted to each dose response surface via the procedure
of S3.5 and used as labels for training. Outputs from the compound graph convolution layers and cell
line features are passed separately into two fully connected neural networks to obtain the inferred
combination and cell line representations. These representations are then passed through a 3-layer
fully connected neural network to predict the 12 MuSyC parameters.

3.4.2 ComboPath-RS: Response Supervised

The compound features and cell line features were processed through two separate fully connected
layer sets as described in §3.4.1. Each of the inferred compound representations is combined with
the cell line representation and passed through a fully connected neural network (“single compound
processor”) to output the parameters describing single compound activity (C, h, and E). The
representations of two compounds are then combined along with the cell line representation to predict
interactive parameters (e.g.γ12) via a fully connected neural network ("combo processor"). These
12 parameters comprise the MuSyC representation and form the last hidden layer of the model and,
instead of becoming the primary output of the model or used directly for supervision, these dose
response surface model parameters are used to calculate the dose-specific effects of a combination
for a given cell line. As a result, the 2D dose response function effectively organizes the last hidden
layer in a biophysically meaningful way–each number in the last hidden layer is a parameter in
the MuSyC function that denotes properties of the combination such as the individual drug EC50
(C1/C2), combination cooperativity, and maximum effect (E3).
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Figure 1: Comparison of the ComboPath-PS and ComboPath-RS models. Both models take the same
combination of compound and cell line features as input. While the ComboPath-PS model outputs
the 12-dimensional parameterization of the 2D dose response surface, the ComboPath-RS model
directly outputs the predicted effect at given doses of the compounds.

Both the ComboPath-RS and ComboPath-PS models are explainable by design in that they generate
dose response surfaces via a directly interpretable parameterization, although this work does not
directly address the interpretation of the parameters of the graph representation learning layers of the
models.

3.4.3 Incorporation of Prior Information in ComboPath-RS

During model training, we imposed prior information on the intermediate biophysical parameteriza-
tion of the model by adding a NLL Gaussian penalty term to the loss integrating a Gaussian prior
distribution for each MuSyC parameter. We develop a set of Half-Gaussian priors for the MuSyC
parameters Ψ that reflect biophysical domain knowledge about combination dose responses surfaces,
specified in Table 1. We fix the E0 parameter at identically 1, reflecting the normalization that
untreated cells have no drug-induced cytotoxicity. We use a multivariate prior on the C1/C2 and
E1/E2 parameters, for which the 2D dose response function induces strong posterior covariance:

For the purpose of ablation testing, we also fit a version of ComboPath-RS without prior information.
These prior distributions were built and iterated on over time based on observations about the
goodness of posterior fits. In particular, we determined that informative priors were helpful to
regularize parameters that are not well-identified by the experimental data, such as slope parameters
that are effectively unobserved when a compound is ineffective within a given cell line.

3.5 Establishing ground truth biophysical parameters

To establish ground truth1 dose response surface parameters for compound combinations, we employ
a hierarchical Bayesian modeling methodology fit using a Hamiltonian Monte Carlo sampling

1Herein we use “ground truth” to refer to the biophysical dose response surface parameters that are inferred
by fitting the MuSyC model directly to experimental biological data, as opposed to those parameters predicted
for a de novo compound combination by the ComboPath model.
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technique [Hoffman et al., 2014]. We implement the 2D dose response surface function of the
MuSyC model in the Stan modeling language [Carpenter et al., 2017]. We apply a Gaussian
likelihood function for the model that compares this parameterized dose response function together
with a heteroskedastic variance parameter that is a function of the dose grid, Ec1,c2,l,r(d1, d2) ∼
N (MuSyC(Ψ, d1, d2), σ(d1, d2)), where E is the experimental measurement of a single biological
activity measurement (nominally ranging from 0 − 100%) corresponding to one combination of
compounds c1 and c2, for one cell line l, for one experimental readout r, at one dose pair d1 and
d2 defined in molar units; N represents the Gaussian distribution; MuSyC is the MuSyC dose
response surface model; Ψ is the vector of 12 biophysical parameters that specifies the dose response
surface; and σ is the variance parameter. In particular, we choose a step-function form of σ that
reduces the variance allowable for single-compound samples (where either d1 or d2 = 0) by a factor
of 9, reflecting the lower error that typically accompanies the less-experimentally-complex single
compound measurements. The prior distributions are specified in Table 1.

4 Results

4.1 Reconstruction of 2D response surface

We first tested if the ComboPath models can reproduce the experimental results at specific dose
combinations, i.e. to reconstruct the dose response surface of cytotoxic effects of held out drug
combinations reported by O’Neil et al. [2016]. To visualize the behavior of the model, we plotted the
experimental and predicted dose response surfaces from a random drug combination (lapatinib, x-axis,
and dasatinib, y-axis, on the cell line SKMES1). The experimental dose response surface is sparse in
the original dataset (Figure 2, “Experimental”). For comparison, we show the ground truth 2D dose
response surface interpolated from MuSyC parameters directly fitted to experimental dose response
surfaces (Figure 2, "Theoretical limit"). For the ComboPath-PS model, we used the predicted MuSyC
parameters to calculate the viability of the cells at a series of doses (Figure 2, “ComboPath-PS”) and,
for the ComboPath-RS model, we directly plotted the prediction from the model at the same given
doses with and without prior information applied during training (Figure 2, “ComboPath-RS no prior”
and “ComboPath-RS with prior”). In this example, the dose response surface reconstructed from
the ComboPath-PS model is an excellent match to the experimental data and the ground truth direct
fit, as is the ComboPath-RS model with priors applied. The ComboPath-RS model without priors
under-predicts the efficacy of the first drug (lapatinib), which leads it to also underpredict their joint
effect at maximal combined dose.

We evaluate the overall predictive performance of the ComboPath models by calculating the mean
absolute error (MAE) of the predicted bioactivity level across dose combinations for each drug
combination in Figure 3 (summary statistics are reported in Table 2). To reflect the theoretical
upper bound on predicted model performance, we display the results for models directly fitted
to the experimental data. Assuming the biophysically-motivated MuSyC model truly represents
the theoretical range of cellular responses to combinatoric therapies, these direct fits represent the
highest possible performance of our predictive models on held out combinations, with non-zero MAE
associated with only biological variability and experimental error. All three ComboPath models have
median MAE 13%, approaching the theoretical limit of 8%. We find that the ComboPath-PS model
achieves the lowest median MAE, but has the strongest tail and therefore the highest MAE standard
deviation. In other words, this model has the best predictive performance in the typical case, but
more often suffers from major predictive errors on some combinations than the other models. The
ComboPath-RS model without prior information performs similarly well in the typical case (similar
median), but has superior mean MAE of 14% versus 18% for ComboPath-PS (fewer major errors).The
ComboPath-RS model with prior information has very similar MAE distributional characteristics
to the ComboPath-RS model without prior information; in the next section we will consider its
parameter inference performance.

4.2 Improvement of model specification, regularization, and degeneracy

We compared the ground truth MuSyC parameters against the model-predicted parameters (Figure 4).
As expected because the ComboPath-PS model used the experimentally-fitted parameters as training
labels, the ComboPath-PS model showed the highest correlation between grund truth and predicted
parameters. The ComboPath-RS no prior model inferred values that poorly matched the experimental
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Experimental Direct Fit Disjoint End2End no prior End2End with priorTheoretical limitExperimental ComboPath-PS
ComboPath-RS

no prior
ComboPath-RS

with prior

Figure 2: Example reconstructed dose response surfaces. Color bar indicates fraction of viability
compared to untreated cells. Experimental: viability measurements at sparsely sampled doses reported
by O’Neil et al. [2016]; Theoretical limit: surfaces interpolated by directly fitting "ground truth"
MuSyC parameters to the experimental surfaces; ComboPath-PS: response surface reconstructed
from ComboPath-PS-predicted MuSyC parameters on the held out drug combination; ComboPath-RS
no prior: the predicted effects at densely sampled doses for the held out combination produced by the
ComboPath-RS model without prior information used in model training; ComboPath-RS with priors:
the predicted effects for the held out combination predicted by the ComboPath-RS model with prior
information imposed on the MuSyC parameters.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
mae

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

it
y

theoretical limit
ComboPath-PS
ComboPath-RS no prior
ComboPath-RS with prior

Figure 3: Overall performance of ComboPath models. The Mean Absolute Error (MAE) between
the predicted and experimental dose response surface was calculated for each pair. The density plots
showed the distribution of the MAE in the test set. Y axis shows the MAE of fraction viability
compared to untreated cells. Black distribution indicates the theoretical maximal performance as it is
the distribution of the MAE by directly fitting a set of parameter to the experimental surface.

parameters; it sometimes yields extreme intermediate parameters that may reproduce observed dose
response samples, but fail to generalize.

When prior information was imposed, the correlation on logC1 (which reflects the potency of an
individual compound within the combination) increased from 0.36 in the ComboPath-RS no prior
model to 0.78 in the ComboPath-RS with prior model. Figure 4 shows that the ComboPath-RS
with prior model improved the correlation by fixing a bias in the ComboPath-RS no prior model
which consistently underestimates the values of this parameter (and, equivalently for logC2. We note
also that the performance on logC and other individual compound parameters (maximal efficacy,
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E1 & E2, and individual cooperativity, h1 & h2) is high across all models, due to memorization
of individual compound effects as the models have seen some compounds from the test set during
training in combination with other compounds.

The models were more challenged in predicting interactive parameters. The ComboPath-RS models
have lower performance than ComboPath-PS in predicting E3 (the maximal effect of the combination)
and γ12 (cooperativity of the combination), yielding correlations ≲ 0.3 versus ∼ 0.7. As the models
still achieved good performance in reconstructing the dose response surfaces, this reflects degeneracy
in the interactive parameters: disparate parameter values that can generate similar dose-specific
effects. For some parameters, ComboPath-RS with priors effectively circumvents this degeneracy
by marginalizing over the intermediate parameterization with prior information about parameter
values. In particular, ComboPath-RS with priors achieves better reconstruction of the γ12 parameter
(correlation ∼ 0.3), whereas the ComboPath-RS model without prior results in zero correlation and
infers extreme values (γ12 ∼ 5) that do not exist in the ground truth results.

ComboPath-PS
ComboPath-RS

no prior
ComboPath-RS

with prior

Figure 4: Scatter plots of ComboPath-predicted MuSyC parameters for held out combinations (y-axis)
vs. ground truth MuSyC parameters directly fitted to experimental dose response surfaces (x-axis).
The facet titles report the Pearson correlation.
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5 Discussion

We developed a new ML model, ComboPath, to solve the novel task of predicting interpretable 2D
dose response surfaces for drug combinations that has superior model specification. Investigators can
prioritize and nominate drug combinations for experimental validation based on ComboPath-predicted
effects at any optimal dose, or based on any summary metric (such as ZIP, Lowe, CI, or MuSyC
β). Although this work presents results on large scale public oncology datasets, the model can be
applied in other disease areas such as immunological, infectious, and metabolic diseases where the
combination data is more limited, because of its data efficiency and improved model specification,
and could also be generalized to 1D or K > 2 dimensional dose response spaces.

The model is data efficient as it can incorporate data from across experiments while learning from
every datapoint. Drug response, compound-protein interaction, and combinatoric effect prediction
require diverse data to supervise training across several dimensions: chemical space, chemical
interactions (combinations), dose, and biological tasks (e.g. cell lines and cellular responses). This
high dimensionality makes dense experimental sampling impossible. ComboPath’s versatility is a new
strategy for combinatoric modeling, integrating disparate datasets with different experimental setups
and training simultaneously across multiple dimensions, thereby improving generalization. For a
given biological task, ComboPath can train simultaneously on 1) small combinatoric datasets densely
(or sparsely) sampling dose response surfaces on lead molecules and 2) public high throughput
screening (HTS) datasets generated at fixed dose on the same assay. And ComboPath can train across
multiple biological tasks simultaneously, providing better sampling of biological task space. Whereas
previous synergy prediction approaches collapse information across all samples onto one data point
(e.g. an average ZIP score), ComboPath leverages data from every dose sample and replicate.

ComboPath has regularizing effects suitable for small datasets. The adoption of the parametric
form of the dose response surface improves model specification and prevents the prediction of non-
physical dose response surface shapes. For example, dose “hotspots” that may appear due to aleatoric
noise in experimental data that make one dose combination appear significantly more effective
than neighboring doses are smoothed out in our fitted models. While there is some risk of model
mis-specification that could enhance epistemic uncertainty when using the parametric intermediate
[Kato et al., 2022], a response shape resembling a 2D generalization of the Hill curve is widely
observed in combinatoric drug screening [see e.g. Lehár et al., 2007, Wooten et al., 2021, Ianevski
et al., 2022]. The model is additionally trained with experimental replicate-level data, supervising
with the measurement label distribution, which provides implicit regularization [Song et al., 2022].

While the model presented here leverages a 2D dose response curve to predict combination effects,
this parametric approach can be easily generalized to the activation/inhibition effect on a protein target
or other dose response of K = 1 (single compound) or K > 2 (multiple compound) combinations.

6 Conclusion

We have introduced ComboPath, a novel GNN-based ML model for designing drug combination
therapies and demonstrated its potential using a combinatoric screen of cancer therapeutics. We have
shown that our approach to improving model specification by incorporating biophysically-meaningful
parameterizations and prior information is effective at aligning synergistic properties inferred by
the model to biophysical domain knowledge, while achieving high predictive accuracy at the novel
task of reconstructing dose response surfaces with interpretable parameters. ComboPath represents
a new ML approach to accelerate drug design, increasing the efficiency of combinatoric search in
therapeutic discovery.
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A Prior distributions over MuSyC parameters

We developed a set of Half-Gaussian priors for the MuSyC parameters Ψ that reflect biophysical
domain knowledge about combination dose responses surfaces, specified in Table 1. These are used
directly to regularize the ComboPath-RS model as well as in establishing the ground truth parameter
values used to supervise the ComboPath-PS model, as discussed in more detail in §3.5 and §3.4.3.

Table 1: Half-Gaussian prior distributions adopted for MuSyC parameters

MuSyC
parameter Prior mean Prior std. dev. Annotation

σ0 0 0.1 Response variance parameter
E3 0 1 Maximal efficacy of the combi-

nation drugs 1 and 2
h1, h2 0 5 Hill coefficients for 1D dose-

reponse curve of drug 1 and 2
isolation

log(α12),
log(α21)

0 1 Log fold change in the potency
drug 2 by drug 1, log fold change
in the potency drug 1 by drug 2

log(γ12),
log(γ21)

0 1 Log fold change in the potency
drug 2 by drug 1, log fold change
in the potency drug 1 by drug 2

(log(C1), E1),
(log(C2), E2)

[
log(100)

0

] [
log(100) −0.75
−0.75 1

]
Multivariate prior over: E, Max-
imum efficacy of drug 1 and 2 in
isolation and C, Concentration
of drug need to achieve 50% of
maximum effect (AC50).
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B Model performance summary

We report the performance statistics from our tested models in tabular form in Table 2. All reported
values are statistics of the MAE (mean absolute error) distribution shown in Figure 3 for the predicted
cytotoxicity response across compound combinations, cell lines (lower is better). Results are truncated
to the typical precision of the SEM (standard error of the mean).

Table 2: Performance summary for ComboPath models.

mean median std SEM
Model

ComboPath-PS 0.1841 0.1252 0.1268 0.0022
ComboPath-RS no prior 0.1360 0.1306 0.0468 0.0008
ComboPath-RS with prior 0.1499 0.1333 0.0632 0.0011
Theoretical limit 0.0803 0.0775 0.0212 0.0003
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