

SSG: SCALED SPATIAL GUIDANCE FOR MULTI-SCALE VISUAL AUTOREGRESSIVE GENERATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032 **Figure 1: SSG provides a training-free generation quality improvement for next-scale prediction models at negligible cost**, yielding sharper detail, fewer artifacts, and preserved global coherence. Full input prompts and model specifications are in Appx. G.
033
034
035
036
037
038

ABSTRACT

039 Visual autoregressive (VAR) models generate images through next-scale prediction,
040 naturally achieving coarse-to-fine, fast, high-fidelity synthesis mirroring hu-
041 man perception. In practice, this hierarchy can drift at inference time, as limited
042 capacity and accumulated error cause the model to deviate from its coarse-to-fine
043 nature. We revisit this limitation from an information-theoretic perspective and de-
044 duce that ensuring each scale to contribute high-frequency content not explained
045 by earlier scales mitigates the train–inference discrepancy. With this insight, we
046 propose Scaled Spatial Guidance (SSG), a training-free, inference-time guidance
047 that steers generation toward the intended hierarchy while maintaining global co-
048 herence. SSG emphasizes target high-frequency signals, defined as the semantic
049 residual, isolated from a coarser prior. To obtain this prior, we leverage a prin-
050 cipled frequency-domain procedure, Discrete Spatial Enhancement (DSE), devised
051 to sharpen and better isolate the semantic residual through frequency-aware con-
052 struction. SSG applies broadly across VAR models leveraging discrete visual to-
053 kens, regardless of tokenization design or conditioning modality. Experiments
054 demonstrate SSG yields consistent gains in fidelity and diversity while preserving
055 low latency, revealing untapped efficiency in coarse-to-fine image generation.

054

1 INTRODUCTION

056 Visual Autoregressive (VAR) structured models generate images via a sequence of discrete visual
 057 tokens in a next-scale, coarse-to-fine paradigm, delivering highly competitive fidelity and diversity
 058 at substantial throughput (Tian et al., 2024; Tang et al., 2025; Han et al., 2025). Requiring only
 059 about a dozen inference steps, these models offer an efficient and conceptually grounded approach
 060 to visual synthesis that aligns with the hierarchical nature of human perception.

061 Improving VAR-structured models has been pursued along several axes: adding auxiliary refinement
 062 modules (Tang et al., 2025; Chen et al., 2025b; Kumbong et al., 2025), modifying the transformer
 063 architecture for generation (Voronov et al., 2025), modifying tokenization (Qu et al., 2025; Han
 064 et al., 2025), and replacing the native coarse-to-fine generation with flow matching (Ren et al.,
 065 2025; Liu et al., 2025). While these approaches push the boundary of VAR-structured models, they
 066 typically require costly retraining and introduce overhead, undermining the efficiency that motivates
 067 the VAR paradigm. Furthermore, they are susceptible to train-inference discrepancy caused by error
 068 accumulation. While several methods have been proposed to mitigate this issue (Chen et al., 2025b;
 069 Kumbong et al., 2025; Han et al., 2025), it remains a persistent challenge for VAR-structured models.

070 In this paper, we re-examine next-scale prediction in VAR from an information-theoretic perspective.
 071 Our analysis identifies a core principle that mitigates the train–inference discrepancy. Specifically,
 072 when each prediction step adds scale-appropriate novel information not captured by the previous
 073 scale, it reduces informative redundancy. This raises a central question *How can we guide the model*
 074 *to add the intended novel information at each step, realigning VAR with its coarse-to-fine nature?*

075 To address this challenge, we propose **Scaled Spatial Guidance** (SSG), a training-free guidance for
 076 VAR models with negligible overhead. SSG sets the target at each step to *semantic residual*, the
 077 high-frequency detail targeted to that scale. To isolate this residual from the coarse structure, we use
 078 a prior carrying that coarser structure from the preceding step. This prior is constructed via *Discrete*
 079 *Spatial Enhancement* (DSE), a frequency-domain interpolation that preserves structural integrity
 080 across scales. Together, these components promote principled progression from coarse structure to
 081 fine detail. SSG applies across VAR models with discrete visual tokens, independent of tokenization
 082 and conditioning, and significantly improves fidelity without additional data or fine-tuning.

083 We evaluate SSG on strong VAR baselines with varied tokenization (Tian et al., 2024; Tang et al.,
 084 2025; Han et al., 2025), achieving consistent gains on class- and text-conditional generation. Across
 085 different VAR scales, applying SSG yields consistently strong, competitive performance relative to
 086 recent diffusion (Yan et al., 2024; Hatamizadeh et al., 2024; Peebles & Xie, 2023; Alpha-VLLM,
 087 2024; Dhariwal & Nichol, 2021; Ho et al., 2022) and masked models (Chang et al., 2022; Li et al.,
 088 2024b), while preserving the low latency of VAR architectures.

089 Our contributions are as follows:

090 • We propose Scaled Spatial Guidance (SSG), a train-free guidance that enforces a coarse-to-fine
 091 hierarchy by prioritizing each step in generating novel, high-frequency information.

092 • We reinterpret VAR sampling from an information-theoretic perspective and analyze the per-step
 093 objective, identifying the priority at each step for robust generation.

094 • We demonstrate improvements in both fidelity and diversity with negligible latency overhead,
 095 enhancing VAR-structured models for discrete visual generation.

097

2 METHODS

098

2.1 PRELIMINARIES: NEXT-SCALE AUTOREGRESSIVE GENERATION

100 The Visual Autoregressive (VAR) framework (Tian et al., 2024) re-frames autoregressive visual
 101 generation from conventional “next-token prediction” to a hierarchical, coarse-to-fine “next-scale
 102 prediction.” This approach operates on an image represented as a sequence of hierarchical token
 103 maps, (r_1, r_2, \dots, r_K) (Esser et al., 2021; Lee et al., 2022; Tian et al., 2024), mirroring the human
 104 perceptual tendency to resolve global structures before fine-grained details.

105 Specifically, a feature map $f \in \mathbb{R}^{h \times w \times C}$ is quantized into K discrete token maps, (r_1, \dots, r_K) , of
 106 progressively finer resolutions. The generation of each map $r_k \in \{1, \dots, V\}^{h_k \times w_k}$ is conditioned

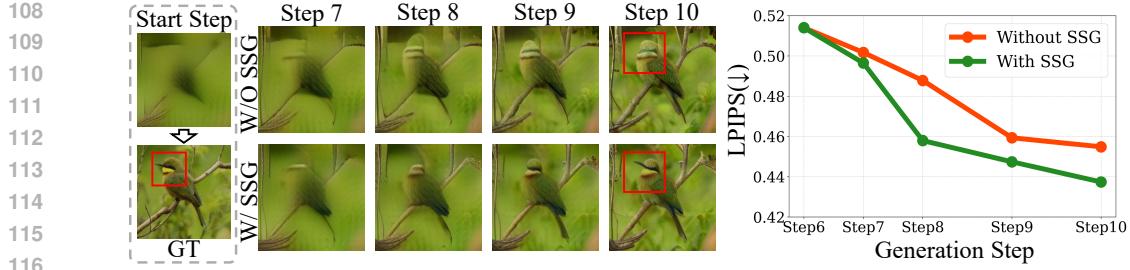


Figure 2: **SSG’s Impact on Image Completion (VAR-d30).** (Left) By amplifying the semantic residual, SSG correctly generates the high frequency details like bird’s beak (red box) while the baseline fails. (Right) The plot quantitatively validates this with a consistently better LPIPS score.

on the preceding maps $r_{<k} = (r_1, \dots, r_{k-1})$, where V is the codebook vocabulary size. The base map, r_1 , contains the global context and is predicted from initial class or text tokens. The joint probability distribution is then factorized autoregressively across these scales:

$$p(r_1, r_2, \dots, r_K) = p(r_1) \prod_{k=2}^K p(r_k | r_{<k}). \quad (1)$$

At each step k , a model \mathcal{M} generates a residual logit tensor $\ell_k \in \mathbb{R}^{h_k \times w_k \times V}$ conditioned on $r_{<k}$, which defines a categorical distribution at each spatial location from which r_k is sampled.

To synthesize an image, the generative process builds a final feature representation from the token maps (r_1, \dots, r_K) via residual de-quantization and accumulation (Lee et al., 2022; Tian et al., 2024). At each step k , the token map r_k is de-quantized into a continuous residual feature map, z_k , using its corresponding codebook embedding. Each residual z_k is then upsampled to the target resolution by an operator $U(\cdot)$ and added to an accumulated feature map: $\hat{f}_k = \hat{f}_{k-1} + U(z_k)$, with $\hat{f}_0 = \mathbf{0}$. Finally, the completed map \hat{f}_K is passed to a decoder to produce the output image.

While powerful, the effectiveness of this multi-scale generative process hinges on the model’s ability to faithfully learn the hierarchical structure of its token representation, such as that from a multi-scale VQVAE (Tian et al., 2024). This representation is structured such that ideally each subsequent generative step k exclusively models a new, higher-frequency band of details. In practice, however, a model’s limited capacity prevents strict adherence to this hierarchical frequency separation. This deviation from the ideal behavior becomes a primary source of the train-inference discrepancy.

Consequently, the model often fails its designated role at each inference step. Instead of introducing novel, finer details, it redundantly predicts lower-frequency information already established in previous steps. This inefficient misallocation of model capacity, a direct result of the train-inference discrepancy, leads to the structural degradation and spatial disorientation seen in the upper row of Fig. 2. Therefore, the central challenge is to guide the generative process at each step k to focus exclusively on synthesizing the novel, higher-frequency details appropriate for that step.

2.2 DERIVATION OF SCALED SPATIAL GUIDANCE

To analyze details added per step, we re-interpret VAR sampling as a variational optimization problem via the Information Bottleneck (IB) principle (Tishby et al., 2000; Alemi et al., 2017), to derive a principled guidance to enhance fidelity by mitigating train-inference discrepancy. The IB principle seeks a compressed representation \tilde{X} of an input X maximally informative about a target Y :

$$\mathcal{L}_{\text{IB}} = \min_{\tilde{X}} I(X; \tilde{X}) - \beta I(\tilde{X}; Y), \quad (2)$$

where $I(\cdot; \cdot)$ denotes mutual information. For VAR’s sequential generation, the IB principle is conceptually reversed: rather than compressing data, the goal at each step k is to generate a residual z_k adding new, finer details. Thus, the objective in Eq. (2) maximizes information about the final output \hat{f}_K while minimizing redundancy with the previous state \hat{f}_{k-1} , yielding the VAR-specific objective:

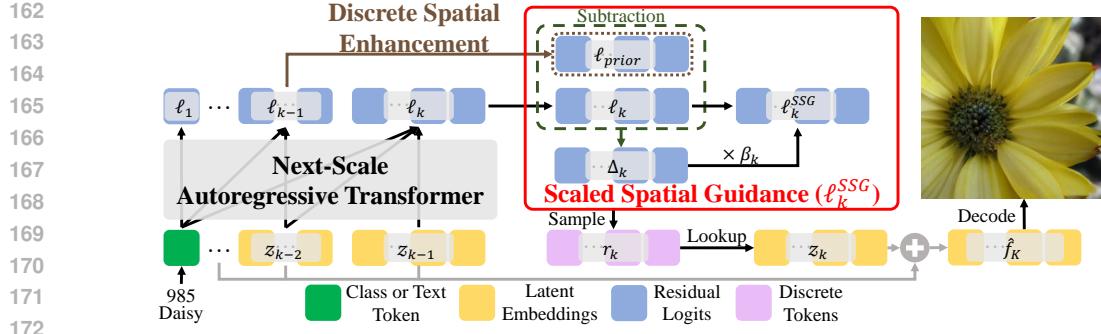


Figure 3: **Overview of a VAR-structured model** with our Scaled Spatial Guidance (SSG) module. At each step, the autoregressive transformer predicts residual logits, which SSG refines by using a DSE-enhanced prior to isolate and amplify the high-frequency semantic residual before sampling.

$$\mathcal{L}_{\text{VAR-IB}} = \max_{z_k} \beta I(z_k; \hat{f}_K | \hat{f}_{k-1}) - I(\hat{f}_{k-1}; z_k). \quad (3)$$

Expanding the conditional term via the chain rule of mutual information¹ yields:

$$\mathcal{L}_{\text{VAR-IB}} = \max_{z_k} \beta I(z_k; \hat{f}_K) - (\beta + 1) I(z_k; \hat{f}_{k-1}). \quad (4)$$

We further simplify this objective from a frequency-domain perspective. By decomposing the output \hat{f}_K via ideal low-pass (L) and high-pass (H) filters into its low-frequency ($L(\hat{f}_K) \approx \hat{f}_{k-1}$) and high-frequency ($H(\hat{f}_K)$) components, the objective reduces to an intuitive form:

$$\mathcal{L}_{\text{VAR-IB}} \approx \max_{z_k} \beta I(z_k; H(\hat{f}_K)) - I(z_k; L(\hat{f}_K)). \quad (5)$$

To translate Eq. (5) into practice, we work at the logit level: the model samples a residual token r_k from residual logits ℓ_k , whose codebook embedding yields z_k . We therefore construct an IB-inspired, Maximum a Posteriori (MAP)-style surrogate with two complementary parts:

Target-informativeness term ($\beta I(z_k; H(\hat{f}_K))$) promotes adding new, fine-scale detail. Here ℓ_{prior} is a coarse reference carrying information from the previous step, and ℓ' is the guided version of the step- k logits optimized for sampling. We encourage ℓ' to follow our proxy for high-frequency detail, the semantic residual $\Delta_k = \ell_k - \ell_{\text{prior}}$, via the dot-product surrogate $\beta (\ell')^\top \Delta_k$.

State-redundancy term ($-I(z_k; L(\hat{f}_K))$) limits deviation from established coarse structure. In practice, we use an L2 proximity regularizer that keeps the guided logits ℓ' close to the step- k base logits ℓ_k , adding the quadratic proximity term $-\frac{1}{2} \|\ell' - \ell_k\|_2^2$.

Combining these yields an objective conceptually aligned with the log-posterior of a MAP formulation (Appx. C). Optimizing this objective over the guided logits admits a closed-form solution:

$$\mathcal{L}(\ell') = \beta (\ell')^\top \Delta_k - \frac{1}{2} \|\ell' - \ell_k\|_2^2, \quad \ell' \in \mathbb{R}^{|\mathcal{V}|}, \quad (6)$$

where $\ell_k \in \mathbb{R}^{|\mathcal{V}|}$ is the residual logits at step k , $\Delta_k \in \mathbb{R}^{|\mathcal{V}|}$ is the semantic residual, and $\beta \geq 0$. This quadratic is strictly concave in ℓ' (Hessian $-I$) with unique maximizer

$$\ell_k^{\text{SSG}} = \ell_k + \beta \Delta_k. \quad (7)$$

Letting β be stepwise, β_k , yields **Scaled Spatial Guidance (SSG)** (full derivation in Appx. D).

$$\ell_k^{\text{SSG}} = \ell_k + \beta_k \Delta_k = \ell_k + \beta_k (\ell_k - \ell_{\text{prior}}). \quad (8)$$

¹The coarse-state approximation and deterministic conditioning for the chain rule: see Appx. A, B.

216 The scaling factor β_k controls the magnitude of the semantic residual Δ_k , trading off the injection
 217 of high-frequency detail against preservation of base-model coherence. Empirically, SSG refines
 218 detailed structures (e.g., the bird’s beak in Fig. 2) and yields consistently lower LPIPS across gen-
 219 eration steps (graph in Fig. 2), in line with emphasizing the target-informativeness term while sup-
 220 pressing the state-redundancy term in Eq. (5). Nonetheless, the effect depends on the quality of the
 221 transported prior ℓ_{prior} : if the prior is distorted, Δ_k can be misaligned and suppress essential detail.
 222 Thus, principled construction of ℓ_{prior} is critical to realizing the full benefit of SSG.
 223
 224

Algorithm 1 DSE formulation

```

225 1: Input: Previous logits  $\ell_{\text{prev}}$ ; target size  $S_k$ 
226 2: Output: Upsampled prior  $\ell_{\text{prior}}$ 
227 3: if  $\ell_{\text{prev}}$  is not None then
228 4:    $\ell'_{\text{interp}} \leftarrow \text{Interpolate}(\ell_{\text{prev}}, S_k);$ 
229 5:    $L_{\text{prev}} \leftarrow \text{DCT}(\ell_{\text{prev}});$ 
230 6:    $L'_{\text{interp}} \leftarrow \text{DCT}(\ell'_{\text{interp}});$ 
231 7:    $\tilde{L} \leftarrow L'_{\text{interp}};$ 
232 8:    $\tilde{L}[0 : \text{size}(L_{\text{prev}})] \leftarrow L_{\text{prev}};$ 
233 9:    $\ell_{\text{prior}} \leftarrow \text{IDCT}(\tilde{L});$ 
234 10:  return  $\ell_{\text{prior}};$ 
235 11: end if
236
  
```

Algorithm 2 SSG Formulation

```

238 1: Input: Raw logits  $\ell_k$ ; previous logits  $\ell_{\text{prev}}$ 
239 2: Hyperparameter: Guidance scale  $\beta_k$ 
240 3: Initialize: Guided logits  $\ell_k^{\text{SSG}}$ 
241 4: if  $k = 1$  then
242 5:    $\ell_k^{\text{SSG}} \leftarrow \ell_k;$ 
243 6: else
244 7:    $\ell_{\text{prior}} \leftarrow \text{DSE}(\ell_{\text{prev}}, \text{size}(\ell_k));$ 
245 8:    $\Delta_k \leftarrow \ell_k - \ell_{\text{prior}};$ 
246 9:    $\ell_k^{\text{SSG}} \leftarrow \ell_k + \beta_k \cdot \Delta_k;$ 
247 10: end if
248 11: return  $\ell_k^{\text{SSG}}$ 
  
```

2.3 PRIOR CONSTRUCTION IN THE FREQUENCY DOMAIN

242 We construct the prior ℓ_{prior} from the previous step’s logits ℓ_{k-1} . Because the hierarchy is relative,
 243 ℓ_{k-1} encodes a coarser, lower-frequency band than the details at step k , but its smaller spatial scale
 244 requires upsampling. Simple spatial interpolation is local and approximate: linear interpolation
 245 yields an overly smooth, attenuated prior, while nearest neighbor introduces blocky discontinuities
 246 and spurious high frequencies, contaminating the semantic residual. In contrast, a frequency-domain
 247 construction leverages orthonormal discrete transforms to provide a global, energy-preserving rep-
 248 resentation in which bands are independent and non-interfering. This independence affords two
 249 benefits: precise separation in the forward transform and exact, lossless reconstruction in the in-
 250 verse. As a result, coarse structure is preserved without distortion, enabling Δ_k to isolate the new
 251 information bandwidth required at step k .

252 To implement this, we introduce **Discrete Spatial Enhancement (DSE)**, a method that performs
 253 spectral fusion in the frequency domain. DSE first transforms two signals: the original coarse log-
 254 its ℓ_{k-1} and a simple upscaled version, ℓ'_{interp} . The low-frequency coefficients of the transformed
 255 ℓ_{k-1} serve as the ground-truth coarse structure, while the high-frequency coefficients of the trans-
 256 formed ℓ'_{interp} provide a plausible extrapolation of new details. We then construct a hybrid frequency
 257 spectrum by combining the low-frequency coefficients from the former with the high-frequency co-
 258 efficients from the latter. Applying the inverse transform to this fused spectrum yields a prior, ℓ_{prior} ,
 259 that rigorously preserves the verbatim coarse structure from the original logits while incorporating
 260 a plausible high-frequency extrapolation. The full process is detailed in Alg. 1. To implement, our
 261 algorithm uses the Discrete Cosine Transform (DCT) as the discrete frequency transform.

2.4 EFFICIENT INFERENCE-TIME IMPLEMENTATION

262 A key advantage of the SSG framework is its seamless integration into pretrained VAR-structured
 263 models at inference time. Our method operates directly on the residual logits, the model’s pre-
 264 activation outputs that define discrete token probabilities. This makes it agnostic to the underlying
 265 model architecture, requiring no modifications to model weights or the introduction of new branches.
 266 This makes it broadly applicable to any VAR-structured models that generate images with discrete
 267 tokens. Furthermore, its effectiveness is independent of the specific number of generative steps or
 268 the resolutions used, ensuring robust performance across diverse model configurations.

270 The computational overhead of this framework is negligible. As detailed in Alg. 2, DSE lever-
 271 ages the raw residual logit cached from the previous step, avoiding any extra forward passes. The
 272 entire SSG mechanism, consisting of the DSE step and a subsequent linear combination, can be
 273 implemented in just a few lines of code. With frequency domain operations adding only a minimal
 274 computational and memory cost, SSG enhances structural and semantic consistency while largely
 275 preserving the efficiency of the original pretrained model. This makes it a practical tool for improv-
 276 ing both class-conditional and text-conditional generation without compromising on speed.

278 3 RELATED WORK

280 **Autoregressive models** build on VAEs (Kingma & Welling, 2013) by modeling discrete image to-
 281 kens from tokenizers such as VQ-VAE (Van Den Oord et al., 2017) and VQGAN (Esser et al., 2021).
 282 Masked-prediction variants improve quality but incur significant inference compute cost (Li et al.,
 283 2024b). VAR (Tian et al., 2024) shifts from *next-token* to *next-scale* prediction, with progress in
 284 token design (hybrid (Tang et al., 2025), bit-wise (Han et al., 2025)), architecture (Li et al., 2025;
 285 Chen et al., 2025b; Voronov et al., 2025), and flow-matching integration (Ren et al., 2025; Liu
 286 et al., 2025). Despite these refinements, a core issue persists: a train–inference discrepancy whereby
 287 finite-capacity VAR generators fail to reliably realize the coarse-to-fine hierarchy implied by multi-
 288 scale tokenization at inference. Recent methods reduce this gap via refinement mechanisms, where
 289 CoDe (Chen et al., 2025b) adds a collaborative refiner, HMAR (Kumbong et al., 2025) performs
 290 multi-step masked prediction, and Infinity (Han et al., 2025) introduces bitwise self-correction with
 291 redefined tokenization, yet they require model modifications and retraining, increasing memory us-
 292 age or latency. In contrast, **SSG** addresses the train–inference discrepancy at inference time: it
 293 promotes scale-specific novel detail while preserving established coarse structure, aligning VAR
 with its coarse-to-fine hierarchy without architectural changes, additional data, or extra overhead.

294 **Visual guidance** improves generation by sharpening the predictive distribution—akin to lowering
 295 temperature in language models, which reduces entropy and increases faithfulness at the cost of
 296 diversity (Tumanyan et al., 2023). However, existing techniques incur distinct trade-offs. Classifier-
 297 free guidance (CFG) can miss fine spatial details (Ho & Salimans, 2021); auto-guidance requires
 298 a second model (Karras et al., 2024); and autoregressive strategies like CCA require costly fine-
 299 tuning (Chen et al., 2025a). A separate family of diffusion controls, including SAG (Hong et al.,
 300 2023), PAG (Ahn et al., 2024), SDG (Feng et al., 2023), and STG (Hyung et al., 2025), provides
 301 granular conditioning but is not tailored to the coarse-to-fine structure of VAR frameworks and typi-
 302 cally adds extra inference steps, increasing latency. In contrast, we introduce a training-free guidance
 303 tailored to VAR-structured models that uses no additional data and adds negligible overhead.

305 4 EXPERIMENTS

307 We evaluate SSG via four questions: (1) Does it improve VAR models across scales to be competitive
 308 with other leading generative families? (Sec. 4.2) (2) Is it robust across advanced tokenization
 309 schemes? (Sec. 4.3) (3) Does it enhance high-frequency detail, as motivated in Sec. 2.2? (Sec. 4.4)
 310 (4) **Are the enhanced details spectrally adhering and semantically meaningful? (Sec. 4.5)** (5) Is the
 311 frequency-domain DSE implementation effective, as discussed in Sec. 2.3? (Sec. 4.6)

313 Table 1: **Performance gains from SSG on VAR models across scales** on ImageNet 256×256.

Model	Res	FID \downarrow	sFID \downarrow	IS \uparrow	Pre \uparrow	Rec \uparrow	#Para	#Step	Time
VAR-d16	256	3.42	8.70	275.6	0.84	0.51	310M	10	0.5
+SSG (Ours)	256	3.27	8.39	285.3	0.85	0.50	310M	10	0.5
VAR-d20	256	2.67	7.97	299.8	0.83	0.55	600M	10	0.6
+SSG (Ours)	256	2.49	7.60	305.2	0.83	0.56	600M	10	0.6
VAR-d24	256	2.39	8.18	314.7	0.82	0.58	1.0B	10	0.7
+SSG (Ours)	256	2.20	6.95	324.0	0.83	0.59	1.0B	10	0.7
VAR-d30	256	2.02	8.52	302.9	0.82	0.60	2.0B	10	1.0
+SSG (Ours)	256	1.68	8.50	313.2	0.81	0.62	2.0B	10	1.0

324
 325 **Table 2: Visual Generative model comparison on ImageNet 256 × 256 benchmark.** Metrics in-
 326 clude Fréchet inception distance (FID), inception score (IS), precision (Pre), and recall (Rec). Model
 327 parameters (#Para), inference steps (#Step), and inference time relative to VAR-d30 are reported.
 328 †Taken from VAR (Tian et al., 2024). ‡Taken from HART (Tang et al., 2025). §Reproduced.

Type	Model	Res	FID↓	IS↑	Pre↑	Rec↑	#Para	#Step	Time
GAN	GigaGAN†	256	3.45	225.5	0.84	0.61	569M	1	—
	StyleGAN-XL†	256	2.30	265.1	0.78	0.53	166M	1	0.3
Diff.	LDM-4-G†	256	3.60	247.7	—	—	400M	250	—
	DiT-XL/2†	256	2.27	278.2	0.83	0.57	675M	250	45
	L-DiT-7B†	256	2.28	316.2	0.83	0.58	7.0B	250	> 45
	D _{IFFU} SSM-XL-G	256	2.28	259.1	0.86	0.56	660M	250	—
	DiffiT	256	<u>1.73</u>	276.5	0.80	0.62	561M	250	—
Mask.	MaskGIT†	256	6.18	182.1	0.80	0.51	227M	8	0.5
	MAR-B‡	256	2.31	281.7	—	—	208M	64	10.0
	MAR-H‡	256	1.78	296.0	—	—	479M	64	13.4
AR	VQGAN†	256	18.65	80.4	0.78	0.26	227M	256	19
	RQTransformer†	256	7.55	134.0	—	—	3.8B	68	21
	GIVT-Causal-L+A	256	2.59	—	0.81	0.57	304M	256	—
	LlamaGen-3B	256	2.18	267.7	<u>0.84</u>	0.54	3.1B	1	—
VAR	VAR-CoDe N=9	256	1.94	296	0.80	<u>0.61</u>	2.3B	10	—
	HMAR-d30	256	1.95	334.5	0.82	0.62	2.4B	14	—
	VAR-d30§	256	2.02	302.9	0.82	0.60	2.0B	10	1.0
	+SSG (Ours)	256	1.68	<u>313.2</u>	0.81	0.62	2.0B	10	1.0

4.1 EXPERIMENTAL SETTINGS

351 We evaluate class-conditional ImageNet generation at 256×256 and 512×512 (Deng et al., 2009),
 352 primarily using Fréchet Inception Distance (FID) (Heusel et al., 2017) to assess fidelity and diversity,
 353 along with Inception Score (IS) (Salimans et al., 2016) and spatial FID (sFID) (Nash et al., 2021).
 354 For text-to-image (T2I), we use the MJHQ-30K benchmark (Li et al., 2024a) and assess semantic
 355 fidelity and prompt alignment with FID (Heusel et al., 2017) and CLIPScore (Hessel et al., 2021).
 356 We also report inference latency to quantify SSG’s computational overhead across all models.

357 Our analysis focuses on VAR-structured models, which exemplify the next-scale paradigm (Tian
 358 et al., 2024; Tang et al., 2025; Han et al., 2025). To contextualize Tab. 2, we also compare against
 359 leading models from other paradigms: high-fidelity diffusion (D_{IFFU}SSM-XL-G (Yan et al., 2024),
 360 DiffiT (Hatamizadeh et al., 2024)), GANs (StyleGAN-XL (Sauer et al., 2022)), autoregressive
 361 (LlamaGen-3B (Sun et al., 2024)), and masked models (MAR-H (Li et al., 2024b)).

362 For a fair comparison, we report metrics with CFG enabled whenever supported. Reproducibility of
 363 VAR-family checkpoints posed challenges: for VAR (Tian et al., 2024), the released weights under-
 364 perform the paper’s numbers; for HART (Tang et al., 2025), public issues note difficulty matching
 365 reported scores; and Infinity lacks official MJHQ-30K results. To control for these factors, we re-
 366 evaluated all VAR baselines on a single NVIDIA A6000 under a unified protocol, and all gains are
 367 measured by applying SSG to these runs under identical settings. The SSG strength follows a linear
 368 decay, $\beta_k = \beta(1 - \frac{k-1}{K})$ (Sec. 2.2), where β is the initial scale and K the number of steps.

4.2 TRAINING-FREE ENHANCEMENT OF NEXT-SCALE GENERATIVE MODELS

371 Evaluating SSG across scaled VAR models reveals consistent performance gains that am-
 372 plify with model capacity (Tab. 1). On class-conditional ImageNet 256×256 , the FID
 373 reduction grows from 0.15 for VAR-d16 to a substantial 0.34 for larger VAR-d30. Cru-
 374 cially, these improvements are achieved without altering model parameters or increas-
 375 ing inference latency. This confirms SSG achieves a scalable enhancement, improving
 376 with the base model’s representational power. This scaling trend culminates in our re-
 377 sult on VAR-d30 (Tab. 2), where SSG achieves an FID of 1.68, surpassing competi-
 378 tors including DiffiT (1.73 at 256 steps) and MAR-H (1.78 at 64 steps; 13.4× slower).

378 While methods like HMAR-d30 achieve a
 379 higher IS through costly retraining and ar-
 380 chitectural modifications; SSG improves the
 381 baseline IS without modification to the pre-
 382 trained model. This demonstrates SSG’s pri-
 383 mary strength: achieving superior fidelity with
 384 significant efficiency by enhancing, not replac-
 385 ing, the original model.

386 SSG’s performance-efficiency trade-off extends
 387 to 512×512 resolution (Tab. 3), where it im-
 388 proves VAR-d36, reducing FID by 11.5% to
 389 2.39 while increasing IS by 10.3% to a class-
 390 leading 320.6. While MAR-L attains a lower
 391 FID (1.73), it does so at prohibitive cost, with
 392 an estimated inference time $\sim 214 \times$ longer than
 393 our model. This performance surpasses VAR
 394 enhancements like HMAR-d24 and diffusion
 395 baselines such as DiffiT. By mitigating the
 396 train-inference discrepancy and improving spa-
 397 tial coherence (Sec. 2.1), SSG offers a superior
 398 performance-efficiency trade-off.

4.3 GENERALIZATION ACROSS DIVERSE TOKEN ARCHITECTURES

401 To demonstrate SSG’s generalization, we first
 402 test it on a text-conditioned model with a dif-
 403 ferent token structure: HART-0.7B, which uses
 404 hybrid continuous-discrete tokens. As shown
 405 in Tab. 4, SSG improves FID by 13.9% while
 406 maintaining a stable CLIPScore. This confirms
 407 that our method enhances spatial fidelity with-
 408 out corrupting the model’s semantic alignment.

409 We further challenge SSG on Infinity-2B, a
 410 model with both bit-wise tokenization and a
 411 built-in bit-wise self-correction (BSC) mecha-
 412 nism to mitigate teacher-forcing. SSG still delivers a 3.3% FID improvement with a stable CLIP-
 413 Score. This result confirms SSG’s benefits are orthogonal to such model-specific corrections and
 414 validates its role in addressing the core train-inference discrepancy of VAR-structured models.

415 The versatility demonstrated on both hybrid and bit-wise tokens stems from SSG’s core design: it
 416 operates on the universal, pre-quantization logit space, making it agnostic to the token structure. By
 417 enhancing spatial fidelity while preserving semantic integrity across diverse architectures, SSG is a
 418 fundamental and broadly applicable enhancement to the coarse-to-fine generation paradigm.

4.4 ANALYZING THE SCALE-WISE REFINEMENT MECHANISM

422 We empirically assess SSG’s role as a scale-wise refinement mechanism by analyzing the spec-
 423 tra of residual logits from VAR-d16. Figure 4(a) plots the relative change in the log-magnitude
 424 of Fourier-transformed latents under SSG, revealing a threshold at the previous step’s Nyquist fre-
 425 quency. Above it, SSG increases spectral energy to synthesize novel high-frequency details; below
 426 it, SSG suppresses redundant low-frequency updates as the curve stays near or under zero (green
 427 line). This redistribution empirically supports the refinement mechanism in Sec. 2.2.

428 We evaluate SSG’s effect on the quality-diversity trade-off by sweeping sampling temperatures for
 429 VAR-d16 and plotting FID vs. IS (Fig. 4b). Across the sweep, SSG shows robustness by consisten-
 430 tly improving the Pareto frontier: at comparable IS it attains lower FID, and at comparable FID it attains
 431 higher IS, achieving both the lowest FID and the highest IS observed. This indicates that SSG
 improves peak fidelity and maximum diversity without degrading the trade-off.

Table 3: **ImageNet** 512×512 **conditional generation**. Inference time relative to VAR-d36 is re-
 ported \dagger : quoted from VAR. \ddagger : Estimated via linear scaling of steps ($4 \times$) and pixels ($4 \times$) from the
 256×256 model’s reported time. \S Reproduced.

Type	Model	FID \downarrow	IS \uparrow	Time
GAN	BigGAN \dagger	8.43	177.9	–
	DiT-XL/2 \dagger	3.04	240.8	81
	Diff. D _{IFFU} SSM-XL-G	3.41	255.1	–
Mask.	DiffiT	2.67	252.1	–
	MaskGIT \dagger	7.32	156.0	0.5
AR	MAR-L	1.73	279.9	214.4 \ddagger
	VQGAN \dagger	26.52	66.8	25
VAR	HMAR-d24	2.99	304.1	–
	VAR-d36 \S	2.70	290.6	1.0
	+SSG (Ours)	<u>2.39</u>	320.6	1.0

Table 4: **T2I Comparison using MJHQ30K**

Model	FID \downarrow	CLIP Score \uparrow	Time (s)
HART-0.7B	8.46	0.2819	1.06
	7.28	0.2834	1.07
Infinity-2B	10.01	0.2754	1.83
	9.68	0.2767	1.86

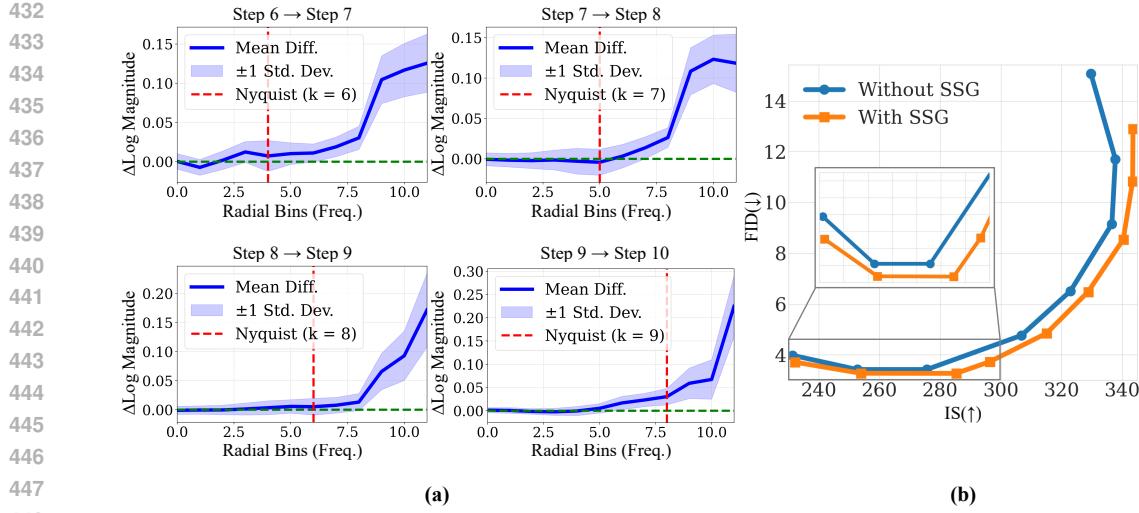


Figure 4: **SSG’s Refinement Mechanism and Performance.** (a) Analysis of the $\Delta \log \text{Magnitude}$ of Fourier transformed latent embeddings. SSG redistributes the model’s focus by suppressing redundant low-frequency spectral energy while selectively boosting the essential high-frequency energy beyond the Nyquist frequency (red line). (b) SSG achieves a consistently better FID vs. IS trade-off across sampling temperatures, indicating an improved quality-diversity profile. Please refer to Fig. 10 for the full trade-off graph over all evaluated sampling temperatures.

4.5 SPECTRAL FIDELITY AND HIGH-FREQUENCY ROBUSTNESS

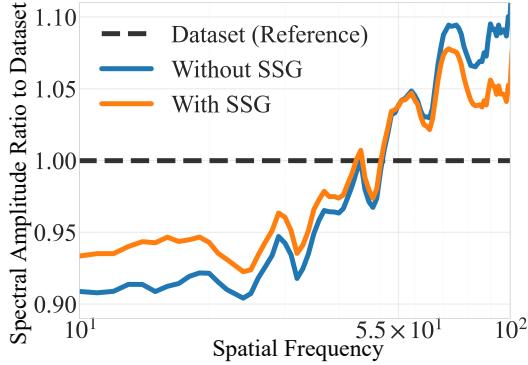


Figure 5: **Spectral Amplitude Ratio Analysis.** Images generated with SSG consistently adhere better to the distribution of the reference dataset.

noise. In contrast, SSG maintains tighter alignment with the reference dataset, demonstrating that it regulates the generation process to match the true distribution rather than blindly amplifying noise.

To rigorously verify the perceptual impact of SSG, we extended our analysis to the pixel level. We computed average spectral energy profiles using 50,000 samples generated by VAR-d16 with and without SSG, comparing them against the 10,000 ImageNet validation images used for metrics in Tab. 1 to ensure statistical robustness. The resulting spectral analysis in Fig. 5 focuses on the frequency range 10^1 to 10^2 , corresponding to meaningful fine textures rather than basic structure or extreme noise. In the band below 5.5×10^1 , SSG consistently exhibits higher spectral energy than the baseline, effectively enhancing fine details. Crucially, at frequencies beyond 5.5×10^1 , the baseline diverges from the reference curve, suggesting the possible amplification of artifacts or

Table 5: **Ablation of SSG on VAR-d16, covering expansion type and ℓ_{prior} formulation.**
†baseline without SSG implementation; ‡zero padding replaces extrapolation from L'_{interp} .

Expansion Type	ℓ_{prior} Formulation	β_k Decay Schedule	FID \downarrow	IS \uparrow	Relative Latency
Baseline [†]	N/A	N/A	3.42	275.6	1.0
Spatial	Nearest Neighbor	✓	4.02	229.1	1.0
Spatial	Linear	✓	3.79	234.8	1.0
Frequency	DSE [‡]	✓	3.34	277.6	1.0
Frequency	DSE	✗	3.63	287.8	1.0
Frequency	DSE (Ours)	✓	3.27	285.3	1.0

486
487

4.6 ABLATION STUDIES

488
489
490
491
492
493

Prior formulation. Tab. 5 contrasts no SSG (Baseline) with spatial- and frequency-domain formulations of ℓ_{prior} on VAR-d16. Spatial priors (nearest, linear) underperform the baseline in both FID and IS. Switching to frequency-domain DSE improves results: DSE † achieves FID 3.34 and IS 277.6, surpassing both baseline and spatial variants. Our full DSE prior yields the best balance (FID 3.27, IS 285.3) at unchanged latency, supporting the frequency-domain design.

494
495
496
497

Decay schedule. A fixed β_k (no decay) results in overguidance, producing exaggerated features recognizable to Inception yet off-distribution. This raises the IS to 287.8 while worsening the FID to 3.63. A linear decay schedule, however, stabilizes refinement and achieves a superior trade-off, yielding our best FID of 3.27 while maintaining a high IS of 285.3. Further β_k scaling in Appx. F

498
499

4.7 EXTENSION TO OTHER HIERARCHICAL GENERATIVE MODELS

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

While SSG is intentionally tailored for the explicit multiscale hierarchy of VAR, the underlying information-theoretic perspective introduced in Sec. 2.2 is not inherently restricted to this architecture; it holds potential for broader coarse-to-fine generative frameworks, such as diffusion and other autoregressive models. These paradigms, which progress from noisy to clean representations or accumulate semantic information hierarchically, present natural anchors for guidance analogous to SSG. To empirically explore this concept, we performed a preliminary case study by applying an SSG-inspired formulation directly to the pre-sampling space of VQ-Diffusion (Gu et al., 2022). Evaluating metrics over 10,000 samples across 1,000 ImageNet classes at 256×256 resolution, our initial results in Tab. 6 demonstrate performance improvements. Specifically, SSG integration yielded a 0.21 reduction in FID and an 7.5 increase in IS, all while incurring negligible overhead to inference time. Despite the marginal improvement due to the conceptual and preliminary nature of this application, these findings strongly suggest that the theoretical establishment of SSG can indeed benefit broader paradigms exhibiting coarse-to-fine behavior, encouraging further research in this direction.

518
519

5. CONCLUSION

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 6: **Preliminary Generalization of SSG to Other Architectures.** Generation quality (FID/IS) and inference efficiency (Steps/Time).

Model	FID \downarrow	IS \uparrow	Steps	Time (s)
VQ-Diffusion	9.39	158.3	100	7.3
+SSG(Adapted)	9.18	165.8	100	7.3

540
541 ETHICS STATEMENT542
543 Scaled Spatial Guidance (SSG) is an inference-time technique that enhances pretrained generative
544 models. While it can improve fidelity and controllability, the same capabilities could be misused by
545 unauthorized actors. Risks include making deceptive or misleading media more convincing, with
546 potential harms to privacy, reputation, and public trust.547
548 Because SSG operates on existing models, it inherits their capabilities and limitations, including
549 biases and harmful content patterns present in the underlying data. Our experiments therefore rely
550 on publicly available, well-established models that include safety filters and community-vetted usage
551 policies. SSG is not a safety filter itself; it should be deployed only alongside robust prompt and
552 output moderation, provenance signals where appropriate, and human oversight for sensitive uses.553
554 This work is intended for academic research and constructive applications. We explicitly prohibit
555 malicious or unethical use, including the generation of deceptive content or content intended to cause
556 harm. We encourage careful documentation of assumptions, adherence to model licenses and safety
557 settings, and the development of clear ethical guidelines to ensure the responsible advancement of
558 guidance methods and the broader generative modeling community.559
560 REPRODUCIBILITY STATEMENT561
562 We are committed to ensuring the reproducibility of our research. To facilitate this, we will make
563 our source code for Scaled Spatial Guidance (SSG) publicly available. The appendix provides com-
564 prehensive implementation details, including the architecture of the Discrete Spatial Enhancement
565 (DSE) module, hyperparameter settings for all experiments, and the specific publicly available pre-
566 trained models used in our evaluation.567
568 REFERENCES569
570 Donghoon Ahn, Hyoungwon Cho, Jaewon Min, Wooseok Jang, Jungwoo Kim, SeonHwa Kim,
571 Hyun Hee Park, Kyong Hwan Jin, and Seungryong Kim. Self-rectifying diffusion sampling with
572 perturbed-attention guidance. In *European Conference on Computer Vision*, pp. 1–17. Springer,
573 2024.574
575 Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
576 bottleneck. In *International Conference on Learning Representations*, 2017.577
578 Alpha-VLLM. Large-dit-imagenet. [https://github.com/Alpha-VLLM/](https://github.com/Alpha-VLLM/LLaMA2-Accessory/tree/f7fe19834b23e38f333403b91bb0330afe19f79e/)
579 Large-DiT-ImageNet, 2024.580
581 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
582 words: A vit backbone for diffusion models. In *Proceedings of the IEEE/CVF conference on*
583 *computer vision and pattern recognition*, pp. 22669–22679, 2023.584
585 Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dock-
586 horn, Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux. 1 kontext: Flow match-
587 ing for in-context image generation and editing in latent space. *arXiv e-prints*, pp. arXiv–2506,
588 2025.589
590 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
591 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
592 *recognition*, pp. 11315–11325, 2022.593
594 Huayu Chen, Hang Su, Peize Sun, and Jun Zhu. Toward guidance-free AR visual generation via
595 condition contrastive alignment. In *The Thirteenth International Conference on Learning Repre-*
596 *sentations*, 2025a.597
598 Junsong Chen, Jincheng YU, Chongjian GE, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
599 Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-\$\alpha\$: Fast training of diffusion transformer
600 for photorealistic text-to-image synthesis. In *The Twelfth International Conference on Learning*
601 *Representations*, 2024.

594 Zigeng Chen, Xinyin Ma, Gongfan Fang, and Xinchao Wang. Collaborative decoding makes visual
 595 auto-regressive modeling efficient. In *Proceedings of the Computer Vision and Pattern Recog-
 596 nition Conference*, pp. 23334–23344, 2025b.

597

598 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley-Interscience, 2nd
 599 edition, 2006.

600 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 601 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 602 pp. 248–255. Ieee, 2009.

603

604 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
 605 In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural
 606 Information Processing Systems*, 2021.

607

608 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 609 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
 610 tion*, pp. 12873–12883, 2021.

611

612 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 613 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 614 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 2024.

615

616 Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, Pradyumna Narayana,
 Sugato Basu, Xin Eric Wang, and William Yang Wang. Training-free structured diffusion guid-
 617 ance for compositional text-to-image synthesis. In *The Eleventh International Conference on
 618 Learning Representations*, 2023.

619

620 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 621 for evaluating text-to-image alignment. In *Thirty-seventh Conference on Neural Information Pro-
 622 cessing Systems Datasets and Benchmarks Track*, 2023. URL [https://openreview.net/
 623 forum?id=Wbr51vK331](https://openreview.net/forum?id=Wbr51vK331).

624

625 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
 Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of
 626 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10696–10706, 2022.

627

628 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaob-
 629 ing Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis.
 630 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15733–15744,
 2025.

631

632 Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. Diffit: Diffusion vision
 633 transformers for image generation. In *European Conference on Computer Vision*, pp. 37–55.
 Springer, 2024.

634

635 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 636 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

637

638 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 639 GANs trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances
 640 in Neural Information Processing Systems 30 (NIPS 2017)*, pp. 6626–6637, 2017.

641

642 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on
 Deep Generative Models and Downstream Applications*, 2021.

643

644 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 645 neural information processing systems*, 33:6840–6851, 2020.

646

647 Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Sal-
 648 imans. Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning
 649 Research*, 23(47):1–33, 2022.

648 Susung Hong, Gyuseong Lee, Wooseok Jang, and Seungryong Kim. Improving sample quality of
 649 diffusion models using self-attention guidance. In *Proceedings of the IEEE/CVF International*
 650 *Conference on Computer Vision*, pp. 7462–7471, 2023.

651

652 Junha Hyung, Kinam Kim, Susung Hong, Min-Jung Kim, and Jaegul Choo. Spatiotemporal skip
 653 guidance for enhanced video diffusion sampling. In *Proceedings of the Computer Vision and*
 654 *Pattern Recognition Conference*, pp. 11006–11015, 2025.

655

656 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 657 Guiding a diffusion model with a bad version of itself. In *The Thirty-eighth Annual Conference*
 658 *on Neural Information Processing Systems*, 2024.

659

660 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 661 *arXiv:1312.6114*, 2013.

662

663 Hermann Kumbong, Xian Liu, Tsung-Yi Lin, Ming-Yu Liu, Xihui Liu, Ziwei Liu, Daniel Y Fu,
 664 Christopher Re, and David W Romero. Hmar: Efficient hierarchical masked auto-regressive
 665 image generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 666 pp. 2535–2544, 2025.

667

668 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 669 generation using residual quantization. In *Proceedings of the IEEE/CVF conference on computer*
 670 *vision and pattern recognition*, pp. 11523–11532, 2022.

671

672 Daqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
 673 v2. 5: Three insights towards enhancing aesthetic quality in text-to-image generation. *arXiv*
 674 *preprint arXiv:2402.17245*, 2024a.

675

676 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image gener-
 677 ation without vector quantization. In *The Thirty-eighth Annual Conference on Neural Information*
 678 *Processing Systems*, 2024b.

679

680 Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Jiuxiang Gu, Bhiksha Raj, and Zhe Lin. Imagefolder:
 681 Autoregressive image generation with folded tokens. In *The Thirteenth International Conference*
 682 *on Learning Representations*, 2025.

683

684 Enshu Liu, Xuefei Ning, Yu Wang, and Zinan Lin. Distilled decoding 1: One-step sampling of
 685 image auto-regressive models with flow matching. In *The Thirteenth International Conference on*
 686 *Learning Representations*, 2025.

687

688 Bingqi Ma, Zhuofan Zong, Guanglu Song, Hongsheng Li, and Yu Liu. Exploring the role of large
 689 language models in prompt encoding for diffusion models. In *The Thirty-eighth Annual Confer-
 690 ence on Neural Information Processing Systems*, 2024.

691

692 Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
 693 sparse representations. pp. 7907–7917, 2021.

694

695 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 696 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

697

698 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 699 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

700

701 Liao Qu, Huichao Zhang, Yiheng Liu, Xu Wang, Yi Jiang, Yiming Gao, Hu Ye, Daniel K Du, Ze-
 702 huan Yuan, and Xinglong Wu. Tokenflow: Unified image tokenizer for multimodal understanding
 703 and generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 704 2545–2555, 2025.

705

706 Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. FlowAR:
 707 Scale-wise autoregressive image generation meets flow matching. In *Forty-second International*
 708 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=JfLgvNe1tj>.

702 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 703 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 704 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

705

706 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 707 Improved techniques for training GANs. In *Advances in Neural Information Processing Systems*,
 708 volume 29, 2016.

709 Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
 710 datasets. In *ACM SIGGRAPH 2022 conference proceedings*, pp. 1–10, 2022.

711

712 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 713 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 714 arXiv:2406.06525*, 2024.

715

716 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
 717 Han Cai, Yao Lu, and Song Han. HART: Efficient visual generation with hybrid autoregressive
 718 transformer. In *The Thirteenth International Conference on Learning Representations*, 2025.

719

720 Keyu Tian, Yi Jiang, Zehuan Yuan, BINGYUE PENG, and Liwei Wang. Visual autoregressive
 721 modeling: Scalable image generation via next-scale prediction. In *The Thirty-eighth Annual
 722 Conference on Neural Information Processing Systems*, 2024.

723

724 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. In
 725 *Proceedings of the 37th annual allerton conference on communication, control, and computing*,
 726 pp. 368–377, 2000.

727

728 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
 729 text-driven image-to-image translation. In *Proceedings of the IEEE/CVF conference on computer
 730 vision and pattern recognition*, pp. 1921–1930, 2023.

731

732 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 733 neural information processing systems*, 30, 2017.

734

735 Anton Voronov, Denis Kuznedelev, Mikhail Khoroshikh, Valentin Khrulkov, and Dmitry Baranchuk.
 736 Switti: Designing scale-wise transformers for text-to-image synthesis. In *Proceedings of the
 737 Computer Vision and Pattern Recognition Conference*, 2025.

738

739 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 740 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 741 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

742

743 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 744 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 745 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=JVzeOYEx6d>.

746

747

748

749

750

751

752

753

754

755

APPENDIX

A COARSE-STATE APPROXIMATION AND FREQUENCY HEURISTIC

We assume the established coarse structure satisfies $\hat{f}_{k-1} \approx L(\hat{f}_K)$ and that $I(z_k; \hat{f}_{k-1} | L(\hat{f}_K)) \leq \varepsilon$ for small ε (approximate stepwise sufficiency). The low/high-frequency split leveraging ideal low pass filter (L) and high pass filter (H) ($L + H = \text{Id}$) is used for intuition; by Data Processing Inequality (DPI), filtering can only reduce Mutual Information (MI).

B EXPANSION OF THE VAR-IB OBJECTIVE

Here, we provide a detailed derivation for the expansion of the VAR-specific Information Bottleneck objective. We begin with the objective as defined in the main text:

$$\mathcal{L}_{\text{VAR-IB}} = \max_{z_k} \beta I(z_k; \hat{f}_K | \hat{f}_{k-1}) - I(\hat{f}_{k-1}; z_k) \quad (9)$$

The simplification uses the expansion of the conditional mutual information term, $I(z_k; \hat{f}_K | \hat{f}_{k-1})$. We leverage the chain rule for mutual information (Cover & Thomas, 2006), which is expressed as:

$$I(A; B | C) = I(A; B, C) - I(A; C) \quad (10)$$

This expression is applicable when the variables form a Markov chain $A \rightarrow B \rightarrow C$. This condition implies that C is conditionally independent of A given B , which simplifies the joint mutual information term $I(A; B, C)$ to $I(A; B)$. In our context, the variables are $A = z_k$, $B = \hat{f}_K$, and $C = \hat{f}_{k-1}$. The required Markov chain is therefore $z_k \rightarrow \hat{f}_K \rightarrow \hat{f}_{k-1}$. This Markov condition holds if our coarse state term \hat{f}_{k-1} is a deterministic function of the final, high-resolution output \hat{f}_K (i.e., $\hat{f}_{k-1} = L(\hat{f}_K)$). This leads us to elaborate on deterministic conditioning.

Deterministic conditioning (exact chain rule). Let $C_k := L(\hat{f}_K)$ denote the low-pass projection of the final output. Since C_k is a deterministic function of \hat{f}_K , the chain rule holds *exactly*:

$$I(z_k; \hat{f}_K | C_k) = I(z_k; \hat{f}_K) - I(z_k; C_k). \quad (11)$$

Substituting C_k as the established coarse structure yields

$$\mathcal{L}_{\text{VAR-IB}} = \max_{z_k} \beta I(z_k; \hat{f}_K) - (\beta + 1) I(z_k; C_k).$$

To connect with the VAR state, we use the coarse-state approximation $\hat{f}_{k-1} \approx C_k$ (see Appx. A). With the low/high-frequency decomposition $\hat{f}_K = L(\hat{f}_K) + H(\hat{f}_K)$, where $L(\cdot)$ and $H(\cdot)$ are deterministic filters (hence $I(\cdot; L(\hat{f}_K))$ and $I(\cdot; H(\hat{f}_K))$ are well-defined and non-increasing by DPI), identifying $C_k = L(\hat{f}_K)$ yields the intuitive form used in the main text.

Therefore, using the exact identity in Eq. (11) and the coarse-state approximation $\hat{f}_{k-1} \approx L(\hat{f}_K)$ (Appx. A), the conditional term satisfies

$$I(z_k; \hat{f}_K | \hat{f}_{k-1}) \approx I(z_k; \hat{f}_K) - I(z_k; \hat{f}_{k-1}). \quad (12)$$

Substituting this back into the objective and collecting terms yields

$$\begin{aligned} \mathcal{L}_{\text{VAR-IB}} &\approx \max_{z_k} \beta \left(I(z_k; \hat{f}_K) - I(z_k; \hat{f}_{k-1}) \right) - I(\hat{f}_{k-1}; z_k) \\ &= \max_{z_k} \beta I(z_k; \hat{f}_K) - \beta I(z_k; \hat{f}_{k-1}) - I(z_k; \hat{f}_{k-1}) \\ &= \max_{z_k} \beta I(z_k; \hat{f}_K) - (\beta + 1) I(z_k; \hat{f}_{k-1}). \end{aligned}$$

810 C MAP INTERPRETATION OF THE SURROGATE
811812 C.1 STOCHASTIC-CHANNEL JUSTIFICATION OF THE DOT-PRODUCT SURROGATE
813814 **Where randomness enters.** At step k we sample $r_k \sim \text{Cat}(q')$ with $q' = \text{softmax}(\ell'/T)$; then
815 $z_k = \text{emb}(r_k)$ and $\hat{f}_k = g(\hat{f}_{k-1}, z_k)$ are deterministic. Hence shaping ℓ' shapes the stochastic node.
816817 **First-order IB-aligned ascent.** Consider the power-tilted contrast
818

819
$$\mathcal{C}_s(q') = (1+s) \mathbb{E}_{q'}[\log p_\theta(r | c_k)] - s \mathbb{E}_{q'}[\log p_{\text{prior}}(r | \hat{f}_{k-1})],$$

820

821 with logits ℓ_k and ℓ_{prior} for the two heads. Evaluated at $q' = \text{softmax}(\ell_k/T)$,
822

823
$$\nabla_{\ell'} \mathcal{C}_s(\text{softmax}(\ell'/T)) \Big|_{\ell'=\ell_k} = \frac{s}{T} \Delta_k \quad (\text{up to a mean shift removable by softmax invariance}),$$

824

825 so a small logit update δ obeys $\mathcal{C}_s \approx \text{const} + \frac{s}{T} \delta^\top \Delta_k$. Adding a quadratic proximity term $-\frac{1}{2} \|\delta\|_2^2$
826 yields
827

828
$$\max_{\delta} \frac{s}{T} \delta^\top \Delta_k - \frac{1}{2} \|\delta\|_2^2 \Rightarrow \delta^* = \frac{s}{T} \Delta_k, \quad \ell' = \ell_k + \beta \Delta_k \quad (\beta = s/T),$$

829

830 which is the SSG update. Thus the dot product $(\ell')^\top \Delta_k$ is the natural first-order ascent direction for
831 the categorical sampling channel.
832833 **Robustness to logit preprocessing (DSE, temperature).** In practice, the base/prior logits may
834 be obtained after deterministic preprocessing: $\tilde{\ell}_k = P_k(\ell_k)$, $\tilde{\ell}_{\text{prior}} = P_{k-1}(\ell_{\text{prior}})$, e.g., frequency-
835 aware interpolation (DSE) for the prior or temperature rescaling. Since sampling remains $r_k \sim$
836 $\text{Cat}(\text{softmax}(\tilde{\ell}'/T))$, stochasticity still enters only via the categorical, and the first-order derivation
837 applies with the processed novelty direction $\tilde{\Delta}_k = \tilde{\ell}_k - \tilde{\ell}_{\text{prior}}$. Scalar rescalings (temperature)
838 reparameterize β via $\beta = s/T$.
839840 More generally, for a locally linear map $\tilde{\ell}' \approx J \ell'$ around ℓ_k , the quadratic proximal step becomes
841

842
$$\max_{\delta} \frac{s}{T} \delta^\top J^\top \tilde{\Delta}_k - \frac{1}{2} \delta^\top M \delta, \quad M \succeq 0,$$

843

844 with solution $\delta^* = \frac{s}{T} M^{-1} J^\top \tilde{\Delta}_k$. Choosing $M = I$ (our L2 proximity) and $J \approx I$ recovers
845 $\ell' = \ell_k + \beta \tilde{\Delta}_k$. Thus DSE-based construction of ℓ_{prior} and temperature modify the effective direction
846 and step size but do not alter the stochastic-channel justification or the closed-form SSG update.
847848 C.2 PROXIMITY REGULARIZATION: L2 VS. DISTRIBUTIONAL TRUST REGIONS
849850 Our state-redundancy term uses an L2 proximity regularizer on logits, $-\frac{1}{2} \|\ell' - \ell_k\|_2^2$. Two remarks:
851852 **Tikhonov view.** This is a Tikhonov (weight-decay-style) trust region in logit space that stabilizes
853 updates and yields the closed-form solution $\ell' = \ell_k + \beta \Delta_k$.
854855 **Distributional alternative.** One can instead impose a distributional trust region via a KL penalty
856 between the base distribution $q_k = \text{softmax}(\ell_k/T)$ and the guided distribution $q' = \text{softmax}(\ell'/T)$,
857 e.g.,
858

859
$$-\lambda \text{KL}(q_k \| q') \quad \text{or} \quad -\lambda \text{KL}(q' \| q_k).$$

860 This aligns the constraint in probability space but generally eliminates the simple closed form for ℓ'
861 and requires iterative updates. For small steps, a second-order expansion of KL around ℓ_k reduces
862 to a quadratic in $\ell' - \ell_k$, recovering an L2-type proximal form (up to a positive semidefinite metric
863 induced by the softmax Fisher information). We adopt the L2 surrogate for its simplicity and closed-
form optimizer while noting KL-based trust regions as a compatible alternative.

864 C.3 MAP INTERPRETATION
865866 We then can view the guided logits ℓ' as obtained by MAP:
867

868
$$\log p(\ell' \mid \text{evidence}) = \underbrace{\beta(\ell')^\top \Delta_k}_{\text{log-likelihood surrogate}} + \underbrace{\log p(\ell')}_{\text{log prior}}, \quad p(\ell') \propto \exp\left(-\frac{1}{2}\|\ell' - \ell_k\|_2^2\right).$$

869

870 The likelihood surrogate $\propto \exp(\beta(\ell')^\top \Delta_k)$ rewards alignment with the novelty direction $\Delta_k =$
871 $\ell_k - \ell_{\text{prior}}$, while the Gaussian prior anchors ℓ' near the base logits ℓ_k . Maximizing the log-posterior
872 gives exactly
873

874
$$\mathcal{L}(\ell') = \beta(\ell')^\top \Delta_k - \frac{1}{2}\|\ell' - \ell_k\|_2^2,$$

875

876 D FULL DERIVATION OF SCALED SPATIAL GUIDANCE
877878 We begin with the Information Bottleneck (IB) objective, which seeks a compressed representation
879 \tilde{X} of an input X that is maximally informative about a target Y :
880

881
$$\mathcal{L}_{\text{IB}} = \min_{\tilde{X}} I(X; \tilde{X}) - \beta I(\tilde{X}; Y), \quad (13)$$

882

883 where $I(\cdot; \cdot)$ denotes mutual information and $\beta > 0$ trades off compression and relevance.
884885 **Instantiation for VAR at step k .** For sequential coarse-to-fine generation, set $X = \hat{f}_{k-1}$ (previous
886 state), $\tilde{X} = z_k$ (residual to be generated), and $Y = \hat{f}_K$ (final output). Since we care about *novel*
887 information about \hat{f}_K beyond \hat{f}_{k-1} , we use conditional mutual information, yielding
888

889
$$\mathcal{L}_{\text{VAR-IB}} = \max_{z_k} \beta I(z_k; \hat{f}_K \mid \hat{f}_{k-1}) - I(\hat{f}_{k-1}; z_k). \quad (14)$$

890

891 **Chain-rule simplification.** Under deterministic conditioning of the coarse state (Appx. A, B),
892 $I(A; B \mid C) = I(A; B) - I(A; C)$ with C a deterministic function of B . Since \hat{f}_{k-1} is an approxi-
893 mately deterministic low-pass of \hat{f}_K ,
894

895
$$\begin{aligned} \mathcal{L}_{\text{VAR-IB}} &= \max_{z_k} \beta [I(z_k; \hat{f}_K) - I(z_k; \hat{f}_{k-1})] - I(z_k; \hat{f}_{k-1}) \\ &= \max_{z_k} \beta I(z_k; \hat{f}_K) - (\beta + 1) I(z_k; \hat{f}_{k-1}). \end{aligned} \quad (15)$$

896

897 **Frequency-domain reduction.** Decompose the final output into ideal low- and high-frequency
898 components, $\hat{f}_K = L(\hat{f}_K) + H(\hat{f}_K)$. Approximating additivity of information across disjoint bands,
900 $I(z_k; \hat{f}_K) \approx I(z_k; L(\hat{f}_K)) + I(z_k; H(\hat{f}_K))$, and identifying the coarse state with the low-frequency
902 part, $\hat{f}_{k-1} \approx L(\hat{f}_K)$, we obtain the full intermediate steps:
903

904
$$\mathcal{L}_{\text{VAR-IB}} \approx \max_{z_k} \beta (I(z_k; L(\hat{f}_K)) + I(z_k; H(\hat{f}_K))) - (\beta + 1) I(z_k; L(\hat{f}_K)) \quad (16)$$

905

906
$$= \max_{z_k} \beta I(z_k; L(\hat{f}_K)) + \beta I(z_k; H(\hat{f}_K)) - \beta I(z_k; L(\hat{f}_K)) - I(z_k; L(\hat{f}_K)) \quad (17)$$

907

908
$$= \max_{z_k} \beta I(z_k; H(\hat{f}_K)) + (\beta - \beta - 1) I(z_k; L(\hat{f}_K)) \quad (18)$$

909

910
$$= \max_{z_k} \beta I(z_k; H(\hat{f}_K)) - I(z_k; L(\hat{f}_K)). \quad (19)$$

911

912 Thus, the ideal residual z_k should be informative about new high-frequency content while uninfor-
913 mative about already-established low-frequency structure.
914915 **Logit-level surrogate and closed-form guidance.** At step k , the model samples a residual token
916 r_k from residual logits $\ell_k \in \mathbb{R}^{|\mathcal{V}|}$; its embedding yields z_k . We construct a MAP-style surrogate
917 aligned with Eq. (19) with two parts: (i) a target-informativeness term that follows a proxy for high-
frequency detail, the *semantic residual* $\Delta_k := \ell_k - \ell_{\text{prior}}$, where ℓ_{prior} carries coarse information

918 from the previous step; and (ii) a state-redundancy penalty that keeps guided logits close to the base
 919 ℓ_k . For guided logits ℓ' ,
 920

$$921 \quad \mathcal{L}(\ell') = \beta (\ell')^\top \Delta_k - \frac{1}{2} \|\ell' - \ell_k\|_2^2, \quad \ell' \in \mathbb{R}^{|\mathcal{V}|}. \quad (20)$$

922 The objective is strictly concave in ℓ' (Hessian $-I$) and admits a unique maximizer obtained by
 923 setting the gradient to zero:
 924

$$925 \quad \nabla_{\ell'} \mathcal{L}(\ell') = \beta \Delta_k - (\ell' - \ell_k) = 0 \implies \ell' = \ell_k + \beta \Delta_k. \quad (21)$$

927 **Scaled Spatial Guidance.** Allowing the trade-off to vary by step, $\beta \mapsto \beta_k$, yields the SSG update
 928

$$929 \quad \ell_k^{\text{SSG}} = \ell_k + \beta_k \Delta_k = \ell_k + \beta_k (\ell_k - \ell_{\text{prior}}). \quad (22)$$

930 This closed-form guidance mirrors the high- vs. low-frequency information trade-off in
 931 Eq.(19)while incurring negligible overhead.
 932

933 **Table 7: Infinity Table**, latency measured for generating with batch size=1

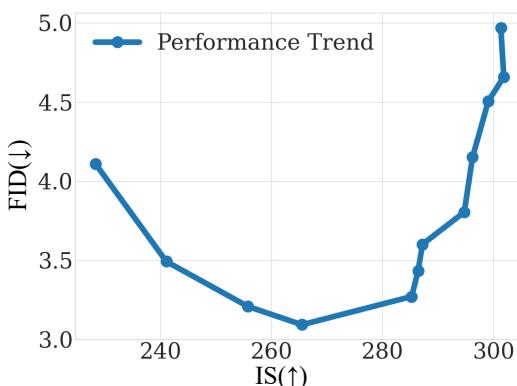
935 Method	936 FID ↓	937 ImageReward ↑	938 CLIP Score ↑	939 HPSv2.1 ↑	940 GenEval ↑	941 Latency(s)
936 Infinity-2B	937 10.01	938 0.952	939 0.275	940 30.46	941 0.683	942 1.83
937 +SSG (Ours)	938 9.68	939 0.964	940 0.277	941 30.61	942 0.690	943 1.86

940 E ADDITIONAL MODEL EVALUATION

942 In this section, we additionally report metrics that reflect human preference and prompt alignment:
 943 ImageReward (Xu et al., 2023), a reward model trained on human preferences; HPSv2.1 (Wu et al.,
 944 2023), a scorer for aesthetic quality and prompt alignment; and Geneval (Ghosh et al., 2023), a
 945 multi-dimensional benchmark for generative model evaluation. Also, we re-report FID and CLIP
 946 Score from Tab. 4. Overall, adding SSG to the baseline Infinity model provides overall improvement
 947 in all metrics, while adding only a minimal latency overhead. The detailed result is in Tab. 7.
 948

949 F ANALYSIS OF GUIDANCE PARAMETER SCALING

951 This section analyzes the trade-off between key generation metrics. We vary the guidance parameter
 952 β_k and plot the FID vs. IS to examine the balance between distribution fidelity and sample quality.
 953



954 **Metric Trade-offs.** The plot on the left reveals
 955 a clear trade-off between FID and IS. Initially,
 956 increasing the guidance strength improves both
 957 metrics, achieving an optimal point. However,
 958 further pushing for higher IS values beyond this
 959 point leads to a sharp degradation in FID, in-
 960 dicating a loss in overall sample diversity and
 961 fidelity. We test β_k values over the range [0.2,
 962 2.4] with a step size of 0.2.
 963

967 **Figure 6: The trade-off between FID and IS of the guidance parameter β_k .** The curve illustrates
 968 that optimizing solely for IS can be detrimental to the generation quality as measured by FID.
 969

970 The results in Fig. 6 were obtained by applying SSG to the VAR-d16 model. To ensure an optimal
 971 balance, we select the β_k from the point just before the FID score begins to degrade significantly.
 972

972	Artisan studio style. 'SSG' logo stamped into a small, imperfect ceramic tag, tied to the front of a clay-smudged canvas apron. Organic, wabi-sabi, handcrafted.	Grumpy cat as a boxer.	Infinity-2B-1024px	HART-7B-1024px								
980	A human palm with a coin	A photo of a teen girl walking on a city street at night, street photography, 4K, ultra HD, 3D shading beautiful, radiant, unity 3d, detailed, realistic, 3d shading, natural lighting.	Infinity-2B-1024px	HART-7B-1024px								
988	265, Toy poodle	953, Pineapple	281, Tabby Cat	360, Otter	441, Beer Glass	37, Box Turtle	VAR-d36	VAR-d36	VAR- d30	VAR- d24	VAR- d20	VAR- d16
990			417, Balloon	988, Acorn	386, African Elephant	562, Fountain			VAR- d30	VAR- d24	VAR- d20	VAR- d16

Prompt/Class Conditions**Models**

Figure 7: Prompt and class used to generate Fig. 1, and exact model used leveraging SSG per image.

G DETAILED PROMPTS AND SPECIFICATIONS FOR FIG. 1

This appendix provides the exact prompts and class conditions used to generate the images in Fig. 1. We report both class-conditional and text-conditional models, evaluated at resolutions from 256×256 to 1024×1024 . Model specifications are summarized in Fig. 7 for reproducibility. Display size in Fig. 1 is proportional to native resolution; a 256×256 image occupies one quarter of the area of a 1024×1024 image.

H ADDITIONAL RELATED WORKS

Diffusion models are a central paradigm for visual generation (Ho et al., 2020; Nichol & Dhariwal, 2021). Early work such as latent diffusion (Rombach et al., 2022) employed U-Net backbones to iteratively denoise latent representations. While U-Nets provide strong multi-scale feature extraction, capturing long-range dependencies can be challenging, motivating transformer-based designs, such as DiT and U-ViT (Peebles & Xie, 2023; Bao et al., 2023). Transformers offer improved global interaction modeling and scale effectively, yielding fidelity gains with model size (Chen et al., 2024; Ma et al., 2024; Li et al., 2024a). Recent rectified-flow methods aim for faster, few-/single-step generation (Esser et al., 2024; Batifol et al., 2025), yet iterative denoising remains a major computational bottleneck in common pipelines, with substantial inference costs in memory and time (Peebles & Xie, 2023; Rombach et al., 2022; Yan et al., 2024; Hatamizadeh et al., 2024).

I LATENCY COMPARISON

We report wall-clock inference time (Tab. 8 and relative latency (Tab. 1, Tab. 2, Tab. 3, Tab. 4, Tab. 5, and Tab. 6). Due to VRAM limits on our available GPU (NVIDIA A6000), all reproduced measurements use batch size 1. Accordingly, table entries marked \S (*reproduced*) are normalized to our locally measured VAR-d30 wall time at $bs=1$, while entries without \S use relative times taken from the literature, which are normalized to VAR-d30 as originally reported (typically at $bs=64$) (Tab. 2 and Tab. 3). Thus, each relative time is computed against a VAR-d30 baseline measured under the same conditions as its source. The exact numbers can be found in Tab. 8

1026
 1027 **Table 8: Latency Comparison of Models With and Without SSG.** \ddagger : Zero-padding replaces ex-
 1028 trapolation from L'_{interp} .

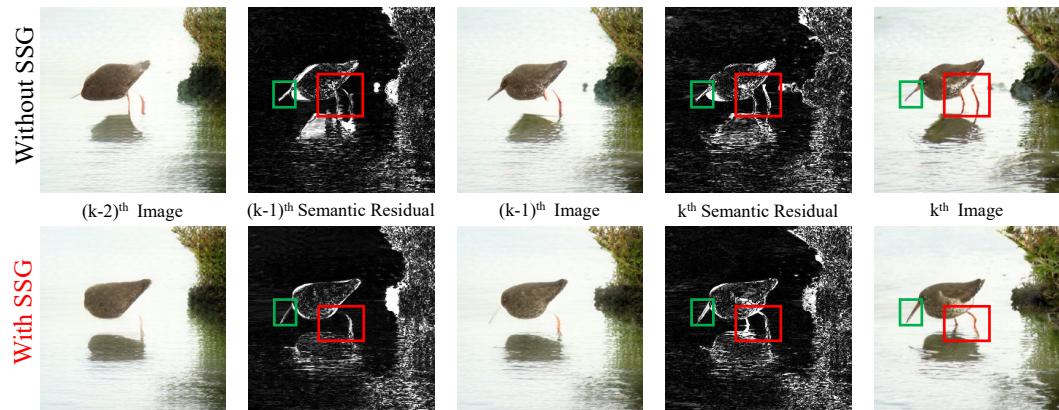
	Model	Without SSG			With SSG		
		mean	std	params	mean	std	params
256x256	VAR-d16	0.273	0.0303	310M	0.279	0.0313	310M
	VAR-d20	0.320	0.0398	601M	0.324	0.0288	601M
	VAR-d24	0.384	0.0288	1.0B	0.390	0.0279	1.0B
	VAR-d30	0.530	0.0346	2.0B	0.536	0.0372	2.0B
512x512	VAR-d36	1.28	0.0279	2.4B	1.29	0.0326	2.4B
T2I	HART-d20	1.06	0.0280	732M	1.07	0.0236	732M
	Infinity-2B	1.83	0.0136	2.2B	1.86	0.0125	2.2B
Ablations	VAR-d16(Nearest Neighbour)	—	—	—	0.278	0.0297	310M
	VAR-d16(Linear)	—	—	—	0.278	0.0278	310M
	VAR-d16(DSE \ddagger)	—	—	—	0.276	0.0317	310M
	VAR-d16(DSE with static β_k)	—	—	—	0.279	0.0332	310M
Extension	VQ-Diffusion	7.27	0.0893	594M	7.27	0.0829	594M

1046 Especially, note that $bs = 1$ is applied only to VAR (across scales) for internal comparisons and
 1047 for isolating the incremental cost of the SSG operation. This choice does not compromise validity:
 1048 all entries remain comparable because each is normalized to a VAR-d30 baseline measured under
 1049 matched conditions.

1050 Results are averaged over 100 runs, reporting the sample mean (mean), standard deviation (std), and
 1051 the model parameters (params) both before and after applying SSG.

1054 J REPRODUCTION NOTES FOR REPORTED TABLES

1056 We document the sources of all reported numbers. Unless otherwise noted, values in Tab. 1, Tab. 2,
 1057 Tab. 3, and Tab. 4 are taken from the original papers. The mark \ddagger reproduced denotes results we
 1058 computed due to issues with the released VAR pretrained weights (Tian et al., 2024); see Sec. 4.1
 1059 for details. For Tab. 4, all entries are our reproductions, due to problems detailed in Sec. 4.1.



1076 **Figure 8: Progressive Detail Enhancement with SSG.** Without SSG (top), semantic residuals lack
 1077 progressive detail, leading to artifacts like disconnected legs (red box). With SSG (bottom), the
 1078 k^{th} residual introduces finer, structurally coherent details, such as the clearer beak (green box) and
 1079 properly connected legs (red box) not present at $k - 1^{\text{st}}$, better realizing a coarse-to-fine nature.

1080
1081
1082
1083
1084
1085

K FURTHER QUALITATIVE COMPARISON ON FINE DETAIL GENERATION

1086
1087
1088
1089
1090
1091
1092
1093
This section provides a further qualitative examination of Fig. 8. Using SSG not only adds fine detail but also improves overall visual coherence by placing those details consistently within the object structure, yielding more complete and perceptually stable entities.

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
We present additional qualitative evaluations of VAR models from d16 to d36 at 256×256 and 512×512 in the class-conditional setting. The results in Fig. 11 show that SSG consistently enhances fine detail and completes entities across VAR scales.

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
27



Figure 10: **Full-Scale FID vs. IS Trade-off.** This plot extends Fig. 4 (b) by showing the complete trade-off curves, averaged over 5 runs with error bars for both FID and IS. The curve with SSG consistently demonstrates a better quality-diversity profile, achieving both a lower minimum FID and higher maximum IS compared to the baseline across the full range of evaluated temperatures.

M TEMPERATURE SCALING DETAILS

To ensure reproducibility for the results shown in Fig. 4 (b), we specify the temperature values used. For the baseline model (without SSG), we swept the temperature from 0.5 to 1.2. For our method (with SSG), we used a range of 0.7 to 1.5. Both evaluations were performed in increments of 0.1.

Figure 10 presents the full-scale FID vs. IS trade-off curve, which encompasses all data points used for Fig. 4 (b). This evaluation spans the temperature range from 0.5 to 1.5 in 0.1 increments, yielding 11 data points in total. This plot explicitly includes the average of $N = 5$ independent runs across random seeds, with the uncertainty of both the FID and IS metrics indicated by error bars. As clearly observed in the full-scale result, the case with SSG (orange) demonstrates a superior trade-off profile than the baseline (blue) across the entire operational spectrum. The points achieved with SSG successfully form the Pareto frontier, attaining both the lowest FID and the highest IS on the curves. Crucially, the best FID recorded by our SSG is lower than the baseline’s best FID, with this substantial improvement falling outside the error bar range of the baseline’s optimal point. Furthermore, for any comparable data points, SSG consistently yields a better FID and IS, which robustly substantiates our initial claim that SSG provides a consistently better FID vs. IS trade-off.

N LIMITATIONS

SSG operates in logit space. Therefore, architectures that do not expose logits at inference, such as autoregressive models that sample in feature space or decoders without a token head, require substantial modification to apply SSG, even though the idea still applies to the pre-sampling stage.

O THE USE OF LARGE LANGUAGE MODELS (LLMs)

We used LLMs solely for editorial assistance, to polish grammar mostly and converting paper-written mathematical expressions into \LaTeX (including formatting proofs in the appendix). The model did not generate ideas, claims, or experimental content, and it was not used for data analysis or code design beyond minor formatting. All technical statements, equations, and results were authored and verified by the authors.

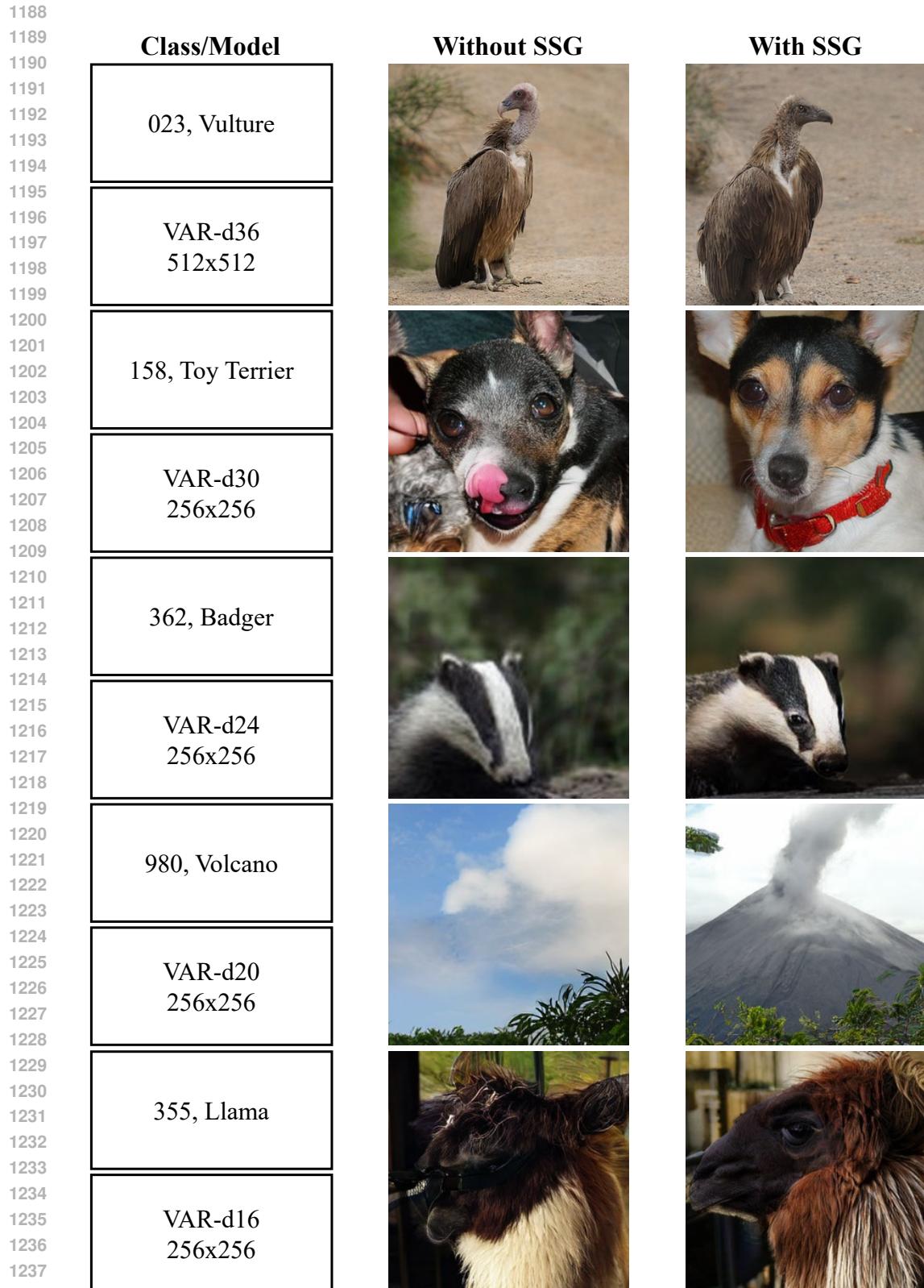


Figure 11: **Qualitative evaluation of VAR across scales.** Applying SSG enhances fine-detail generation consistently over multiple scales.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 12: **Qualitative Evaluation using HART.** The use of SSG not only improves the quality of the generated images but also results in a stronger alignment with the input prompt.

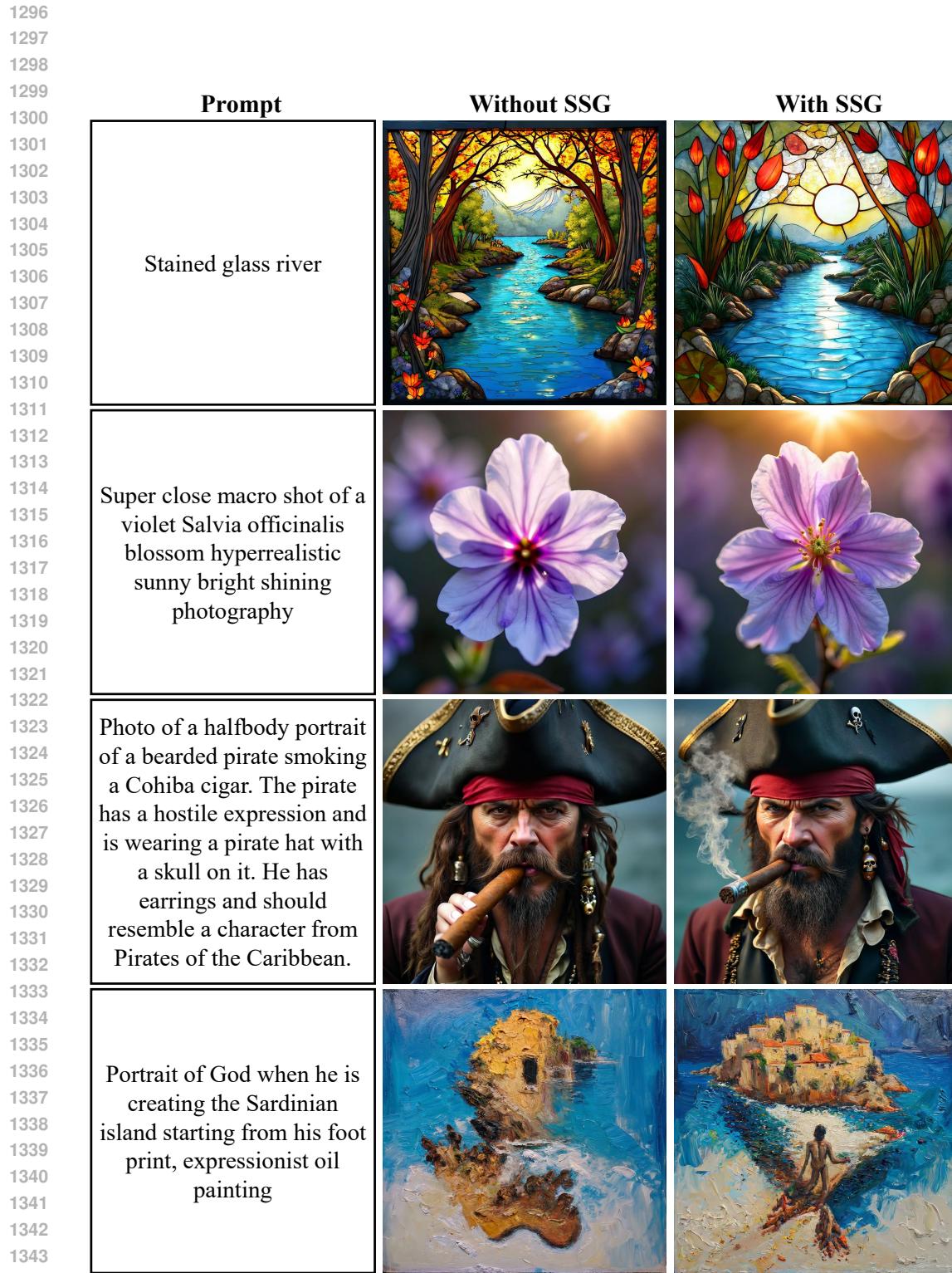


Figure 13: **Qualitative Evaluation using Infinity.** The use of SSG improves overall image quality, Most importantly, it captures the precise details depicted in the input prompt.

1345

1346

1347

1348

1349

1350
1351
1352
1353
1354
1355

1394
1395 **Figure 14: Qualitative Evaluation on Failure Cases.** SSG’s corrective capability is bounded by
1396 initial states or task ambiguity. **(a)** Cases where SSG cannot fully recover from poor initial states
1397 stemming from tokenization issues or weak text-prompt alignment. **(b)** Limitations due to prompts
1398 being highly specialized or ambiguous, or when objects are inherently fused with the background.

1399
1400
1401
1402
1403