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SSG: SCALED SPATIAL GUIDANCE FOR MULTI-SCALE
VISUAL AUTOREGRESSIVE GENERATION

Anonymous authors
Paper under double-blind review

Without SSG With SSG

Figure 1: SSG provides a training-free generation quality improvement for next-scale predic-
tion models at negligible cost, yielding sharper detail, fewer artifacts, and preserved global coher-
ence. Full input prompts and model specifications are in Appx. G.

ABSTRACT

Visual autoregressive (VAR) models generate images through next-scale predic-
tion, naturally achieving coarse-to-fine, fast, high-fidelity synthesis mirroring hu-
man perception. In practice, this hierarchy can drift at inference time, as limited
capacity and accumulated error cause the model to deviate from its coarse-to-fine
nature. We revisit this limitation from an information-theoretic perspective and de-
duce that ensuring each scale to contribute high-frequency content not explained
by earlier scales mitigates the train–inference discrepancy. With this insight, we
propose Scaled Spatial Guidance (SSG), a training-free, inference-time guidance
that steers generation toward the intended hierarchy while maintaining global co-
herence. SSG emphasizes target high-frequency signals, defined as the semantic
residual, isolated from a coarser prior. To obtain this prior, we leverage a princi-
pled frequency-domain procedure, Discrete Spatial Enhancement (DSE), devised
to sharpen and better isolate the semantic residual through frequency-aware con-
struction. SSG applies broadly across VAR models leveraging discrete visual to-
kens, regardless of tokenization design or conditioning modality. Experiments
demonstrate SSG yields consistent gains in fidelity and diversity while preserving
low latency, revealing untapped efficiency in coarse-to-fine image generation.
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1 INTRODUCTION

Visual Autoregressive (VAR) structured models generate images via a sequence of discrete visual
tokens in a next-scale, coarse-to-fine paradigm, delivering highly competitive fidelity and diversity
at substantial throughput (Tian et al., 2024; Tang et al., 2025; Han et al., 2025). Requiring only
about a dozen inference steps, these models offer an efficient and conceptually grounded approach
to visual synthesis that aligns with the hierarchical nature of human perception.

Improving VAR-structured models has been pursued along several axes: adding auxiliary refinement
modules (Tang et al., 2025; Chen et al., 2025b; Kumbong et al., 2025), modifying the transformer
architecture for generation (Voronov et al., 2025), modifying tokenization (Qu et al., 2025; Han
et al., 2025), and replacing the native coarse-to-fine generation with flow matching (Ren et al.,
2025; Liu et al., 2025). While these approaches push the boundary of VAR-structured models, they
typically require costly retraining and introduce overhead, undermining the efficiency that motivates
the VAR paradigm. Furthermore, they are susceptible to train-inference discrepancy caused by error
accumulation. While several methods have been proposed to mitigate this issue (Chen et al., 2025b;
Kumbong et al., 2025; Han et al., 2025), it remains a persistent challenge for VAR-structured models.

In this paper, we re-examine next-scale prediction in VAR from an information-theoretic perspective.
Our analysis identifies a core principle that mitigates the train–inference discrepancy. Specifically,
when each prediction step adds scale-appropriate novel information not captured by the previous
scale, it reduces informative redundancy. This raises a central question How can we guide the model
to add the intended novel information at each step, realigning VAR with its coarse-to-fine nature?

To address this challenge, we propose Scaled Spatial Guidance (SSG), a training-free guidance for
VAR models with negligible overhead. SSG sets the target at each step to semantic residual, the
high-frequency detail targeted to that scale. To isolate this residual from the coarse structure, we use
a prior carrying that coarser structure from the preceding step. This prior is constructed via Discrete
Spatial Enhancement (DSE), a frequency-domain interpolation that preserves structural integrity
across scales. Together, these components promote principled progression from coarse structure to
fine detail. SSG applies across VAR models with discrete visual tokens, independent of tokenization
and conditioning, and significantly improves fidelity without additional data or fine-tuning.

We evaluate SSG on strong VAR baselines with varied tokenization (Tian et al., 2024; Tang et al.,
2025; Han et al., 2025), achieving consistent gains on class- and text-conditional generation. Across
different VAR scales, applying SSG yields consistently strong, competitive performance relative to
recent diffusion (Yan et al., 2024; Hatamizadeh et al., 2024; Peebles & Xie, 2023; Alpha-VLLM,
2024; Dhariwal & Nichol, 2021; Ho et al., 2022) and masked models (Chang et al., 2022; Li et al.,
2024b), while preserving the low latency of VAR architectures.

Our contributions are as follows:

• We propose Scaled Spatial Guidance (SSG), a train-free guidance that enforces a coarse-to-fine
hierarchy by prioritizing each step in generating novel, high-frequency information.

• We reinterpret VAR sampling from an information-theoretic perspective and analyze the per-step
objective, identifying the priority at each step for robust generation.

• We demonstrate improvements in both fidelity and diversity with negligible latency overhead,
enhancing VAR-structured models for discrete visual generation.

2 METHODS

2.1 PRELIMINARIES: NEXT-SCALE AUTOREGRESSIVE GENERATION

The Visual Autoregressive (VAR) framework (Tian et al., 2024) re-frames autoregressive visual
generation from conventional “next-token prediction” to a hierarchical, coarse-to-fine “next-scale
prediction.” This approach operates on an image represented as a sequence of hierarchical token
maps, (r1, r2, . . . , rK) (Esser et al., 2021; Lee et al., 2022; Tian et al., 2024), mirroring the human
perceptual tendency to resolve global structures before fine-grained details.

Specifically, a feature map f ∈ Rh×w×C is quantized into K discrete token maps, (r1, . . . , rK), of
progressively finer resolutions. The generation of each map rk ∈ {1, . . . , V }hk×wk is conditioned
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Figure 2: SSG’s Impact on Image Completion (VAR-d30). (Left) By amplifying the semantic
residual, SSG correctly generates the high frequency details like bird’s beak (red box) while the
baseline fails. (Right) The plot quantitatively validates this with a consistently better LPIPS score.

on the preceding maps r<k = (r1, . . . , rk−1), where V is the codebook vocabulary size. The base
map, r1, contains the global context and is predicted from initial class or text tokens. The joint
probability distribution is then factorized autoregressively across these scales:

p(r1, r2, . . . , rK) = p(r1)

K∏
k=2

p(rk | r<k). (1)

At each step k, a modelM generates a residual logit tensor ℓk ∈ Rhk×wk×V conditioned on r<k,
which defines a categorical distribution at each spatial location from which rk is sampled.

To synthesize an image, the generative process builds a final feature representation from the token
maps (r1, . . . , rK) via residual de-quantization and accumulation (Lee et al., 2022; Tian et al., 2024).
At each step k, the token map rk is de-quantized into a continuous residual feature map, zk, using
its corresponding codebook embedding. Each residual zk is then upsampled to the target resolution
by an operator U(·) and added to an accumulated feature map: f̂k = f̂k−1 + U(zk), with f̂0 = 0.
Finally, the completed map f̂K is passed to a decoder to produce the output image.

While powerful, the effectiveness of this multi-scale generative process hinges on the model’s ability
to faithfully learn the hierarchical structure of its token representation, such as that from a multi-
scale VQVAE (Tian et al., 2024). This representation is structured such that ideally each subsequent
generative step k exclusively models a new, higher-frequency band of details. In practice, however,
a model’s limited capacity prevents strict adherence to this hierarchical frequency separation. This
deviation from the ideal behavior becomes a primary source of the train-inference discrepancy.

Consequently, the model often fails its designated role at each inference step. Instead of introduc-
ing novel, finer details, it redundantly predicts lower-frequency information already established in
previous steps. This inefficient misallocation of model capacity, a direct result of the train-inference
discrepancy, leads to the structural degradation and spatial disorientation seen in the upper row of
Fig. 2. Therefore, the central challenge is to guide the generative process at each step k to focus
exclusively on synthesizing the novel, higher-frequency details appropriate for that step.

2.2 DERIVATION OF SCALED SPATIAL GUIDANCE

To analyze details added per step, we re-interpret VAR sampling as a variational optimization prob-
lem via the Information Bottleneck (IB) principle (Tishby et al., 2000; Alemi et al., 2017), to derive
a principled guidance to enhance fidelity by mitigating train-inference discrepancy. The IB principle
seeks a compressed representation X̃ of an input X maximally informative about a target Y :

LIB = min
X̃

I(X; X̃)− βI(X̃;Y ), (2)

where I(·; ·) denotes mutual information. For VAR’s sequential generation, the IB principle is con-
ceptually reversed: rather than compressing data, the goal at each step k is to generate a residual zk
adding new, finer details. Thus, the objective in Eq. (2) maximizes information about the final output
f̂K while minimizing redundancy with the previous state f̂k−1, yielding the VAR-specific objective:

3
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Figure 3: Overview of a VAR-structured model with our Scaled Spatial Guidance (SSG) module.
At each step, the autoregressive transformer predicts residual logits, which SSG refines by using a
DSE-enhanced prior to isolate and amplify the high-frequency semantic residual before sampling.

LVAR-IB = max
zk

βI(zk; f̂K |f̂k−1)− I(f̂k−1; zk). (3)

Expanding the conditional term via the chain rule of mutual information1 yields:

LVAR-IB = max
zk

βI(zk; f̂K)− (β + 1)I(zk; f̂k−1). (4)

We further simplify this objective from a frequency-domain perspective. By decomposing the output
f̂K via ideal low-pass (L) and high-pass (H) filters into its low-frequency (L(f̂K) ≈ f̂k−1) and
high-frequency (H(f̂K)) components, the objective reduces to an intuitive form:

LVAR-IB ≈ max
zk

βI(zk;H(f̂K))− I(zk;L(f̂K)). (5)

To translate Eq. (5) into practice, we work at the logit level: the model samples a residual token
rk from residual logits ℓk, whose codebook embedding yields zk. We therefore construct an IB-
inspired, Maximum a Posteriori (MAP)-style surrogate with two complementary parts:

Target-informativeness term
(
β I(zk;H(f̂K))

)
promotes adding new, fine-scale detail. Here ℓprior

is a coarse reference carrying information from the previous step, and ℓ′ is the guided version of
the step-k logits optimized for sampling. We encourage ℓ′ to follow our proxy for high-frequency
detail, the semantic residual ∆k = ℓk − ℓprior, via the dot-product surrogate β (ℓ′)⊤∆k.

State-redundancy term
(
− I(zk;L(f̂K))

)
limits deviation from established coarse structure. In

practice, we use an L2 proximity regularizer that keeps the guided logits ℓ′ close to the step-k base
logits ℓk, adding the quadratic proximity term − 1

2∥ℓ
′ − ℓk∥22.

Combining these yields an objective conceptually aligned with the log-posterior of a MAP formula-
tion (Appx. C). Optimizing this objective over the guided logits admits a closed-form solution:

L(ℓ′) = β (ℓ′)⊤∆k − 1
2∥ℓ

′ − ℓk∥22, ℓ′ ∈ R|V|, (6)

where ℓk ∈ R|V| is the residual logits at step k, ∆k ∈ R|V| is the semantic residual, and β ≥ 0. This
quadratic is strictly concave in ℓ′ (Hessian −I) with unique maximizer

ℓSSG
k = ℓk + β∆k. (7)

Letting β be stepwise, βk, yields Scaled Spatial Guidance (SSG) (full derivation in Appx. D).

ℓSSG
k = ℓk + βk ∆k = ℓk + βk (ℓk − ℓprior). (8)

1The coarse-state approximation and deterministic conditioning for the chain rule: see Appx. A, B.
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The scaling factor βk controls the magnitude of the semantic residual ∆k, trading off the injection
of high-frequency detail against preservation of base-model coherence. Empirically, SSG refines
detailed structures (e.g., the bird’s beak in Fig. 2) and yields consistently lower LPIPS across gen-
eration steps (graph in Fig. 2), in line with emphasizing the target-informativeness term while sup-
pressing the state-redundancy term in Eq. (5). Nonetheless, the effect depends on the quality of the
transported prior ℓprior: if the prior is distorted, ∆k can be misaligned and suppress essential detail.
Thus, principled construction of ℓprior is critical to realizing the full benefit of SSG.

Algorithm 1 DSE formulation
1: Input: Previous logits ℓprev; target size Sk

2: Output: Upsampled prior ℓprior
3: if ℓprev is not None then
4: ℓ′interp ← Interpolate(ℓprev, Sk);
5: Lprev ← DCT(ℓprev);
6: L′

interp ← DCT(ℓ′interp);
7: L̃← L′

interp;
8: L̃[0 : size(Lprev)]← Lprev;
9: ℓprior ← IDCT(L̃);

10: return ℓprior;
11: end if

Algorithm 2 SSG Formulation
1: Input: Raw logits ℓk; previous logits ℓprev
2: Hyperparameter: Guidance scale βk

3: Initialize: Guided logits ℓSSG
k

4: if k = 1 then
5: ℓSSG

k ← ℓk;
6: else
7: ℓprior ← DSE(ℓprev, size(ℓk));
8: ∆k ← ℓk − ℓprior;
9: ℓSSG

k ← ℓk + βk ·∆k;
10: end if
11: return ℓSSG

k

2.3 PRIOR CONSTRUCTION IN THE FREQUENCY DOMAIN

We construct the prior ℓprior from the previous step’s logits ℓk−1. Because the hierarchy is relative,
ℓk−1 encodes a coarser, lower-frequency band than the details at step k, but its smaller spatial scale
requires upsampling. Simple spatial interpolation is local and approximate: linear interpolation
yields an overly smooth, attenuated prior, while nearest neighbor introduces blocky discontinuities
and spurious high frequencies, contaminating the semantic residual. In contrast, a frequency-domain
construction leverages orthonormal discrete transforms to provide a global, energy-preserving rep-
resentation in which bands are independent and non-interfering. This independence affords two
benefits: precise separation in the forward transform and exact, lossless reconstruction in the in-
verse. As a result, coarse structure is preserved without distortion, enabling ∆k to isolate the new
information bandwidth required at step k.

To implement this, we introduce Discrete Spatial Enhancement (DSE), a method that performs
spectral fusion in the frequency domain. DSE first transforms two signals: the original coarse log-
its ℓk−1 and a simple upscaled version, ℓ′interp. The low-frequency coefficients of the transformed
ℓk−1 serve as the ground-truth coarse structure, while the high-frequency coefficients of the trans-
formed ℓ′interp provide a plausible extrapolation of new details. We then construct a hybrid frequency
spectrum by combining the low-frequency coefficients from the former with the high-frequency co-
efficients from the latter. Applying the inverse transform to this fused spectrum yields a prior, ℓprior,
that rigorously preserves the verbatim coarse structure from the original logits while incorporating
a plausible high-frequency extrapolation. The full process is detailed in Alg. 1. To implement, our
algorithm uses the Discrete Cosine Transform (DCT) as the discrete frequency transform.

2.4 EFFICIENT INFERENCE-TIME IMPLEMENTATION

A key advantage of the SSG framework is its seamless integration into pretrained VAR-structured
models at inference time. Our method operates directly on the residual logits, the model’s pre-
activation outputs that define discrete token probabilities. This makes it agnostic to the underlying
model architecture, requiring no modifications to model weights or the introduction of new branches.
This makes it broadly applicable to any VAR-structured models that generate images with discrete
tokens. Furthermore, its effectiveness is independent of the specific number of generative steps or
the resolutions used, ensuring robust performance across diverse model configurations.
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The computational overhead of this framework is negligible. As detailed in Alg. 2, DSE lever-
ages the raw residual logit cached from the previous step, avoiding any extra forward passes. The
entire SSG mechanism, consisting of the DSE step and a subsequent linear combination, can be
implemented in just a few lines of code. With frequency domain operations adding only a minimal
computational and memory cost, SSG enhances structural and semantic consistency while largely
preserving the efficiency of the original pretrained model. This makes it a practical tool for improv-
ing both class-conditional and text-conditional generation without compromising on speed.

3 RELATED WORK

Autoregressive models build on VAEs (Kingma & Welling, 2013) by modeling discrete image to-
kens from tokenizers such as VQ-VAE (Van Den Oord et al., 2017) and VQGAN (Esser et al., 2021).
Masked-prediction variants improve quality but incur significant inference compute cost (Li et al.,
2024b). VAR (Tian et al., 2024) shifts from next-token to next-scale prediction, with progress in
token design (hybrid (Tang et al., 2025), bit-wise (Han et al., 2025)), architecture (Li et al., 2025;
Chen et al., 2025b; Voronov et al., 2025), and flow-matching integration (Ren et al., 2025; Liu
et al., 2025). Despite these refinements, a core issue persists: a train–inference discrepancy whereby
finite-capacity VAR generators fail to reliably realize the coarse-to-fine hierarchy implied by multi-
scale tokenization at inference. Recent methods reduce this gap via refinement mechanisms, where
CoDe (Chen et al., 2025b) adds a collaborative refiner, HMAR (Kumbong et al., 2025) performs
multi-step masked prediction, and Infinity (Han et al., 2025) introduces bitwise self-correction with
redefined tokenization, yet they require model modifications and retraining, increasing memory us-
age or latency. In contrast, SSG addresses the train–inference discrepancy at inference time: it
promotes scale-specific novel detail while preserving established coarse structure, aligning VAR
with its coarse-to-fine hierarchy without architectural changes, additional data, or extra overhead.

Visual guidance improves generation by sharpening the predictive distribution—akin to lowering
temperature in language models, which reduces entropy and increases faithfulness at the cost of
diversity (Tumanyan et al., 2023). However, existing techniques incur distinct trade-offs. Classifier-
free guidance (CFG) can miss fine spatial details (Ho & Salimans, 2021); auto-guidance requires
a second model (Karras et al., 2024); and autoregressive strategies like CCA require costly fine-
tuning (Chen et al., 2025a). A separate family of diffusion controls, including SAG (Hong et al.,
2023), PAG (Ahn et al., 2024), SDG (Feng et al., 2023), and STG (Hyung et al., 2025), provides
granular conditioning but is not tailored to the coarse-to-fine structure of VAR frameworks and typi-
cally adds extra inference steps, increasing latency. In contrast, we introduce a training-free guidance
tailored to VAR-structured models that uses no additional data and adds negligible overhead.

4 EXPERIMENTS

We evaluate SSG via four questions: (1) Does it improve VAR models across scales to be competitive
with other leading generative families? (Sec. 4.2) (2) Is it robust across advanced tokenization
schemes? (Sec. 4.3) (3) Does it enhance high-frequency detail, as motivated in Sec. 2.2? (Sec. 4.4)
(4) Are the enhanced details spectrally adhering and semantically meaningful? (Sec. 4.5) (5) Is the
frequency-domain DSE implementation effective, as discussed in Sec. 2.3? (Sec. 4.6)

Table 1: Performance gains from SSG on VAR models across scales on ImageNet 256×256.

Model Res FID↓ sFID↓ IS↑ Pre↑ Rec↑ #Para #Step Time

VAR-d16 256 3.42 8.70 275.6 0.84 0.51 310M 10 0.5
+SSG (Ours) 256 3.27 8.39 285.3 0.85 0.50 310M 10 0.5

VAR-d20 256 2.67 7.97 299.8 0.83 0.55 600M 10 0.6
+SSG (Ours) 256 2.49 7.60 305.2 0.83 0.56 600M 10 0.6

VAR-d24 256 2.39 8.18 314.7 0.82 0.58 1.0B 10 0.7
+SSG (Ours) 256 2.20 6.95 324.0 0.83 0.59 1.0B 10 0.7

VAR-d30 256 2.02 8.52 302.9 0.82 0.60 2.0B 10 1.0
+SSG (Ours) 256 1.68 8.50 313.2 0.81 0.62 2.0B 10 1.0
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Table 2: Visual Generative model comparison on ImageNet 256×256 benchmark. Metrics in-
clude Fréchet inception distance (FID), inception score (IS), precision (Pre), and recall (Rec). Model
parameters (#Para), inference steps (#Step), and inference time relative to VAR-d30 are reported.
†Taken from VAR (Tian et al., 2024). ‡Taken from HART (Tang et al., 2025). §Reproduced.

Type Model Res FID↓ IS↑ Pre↑ Rec↑ #Para #Step Time

GAN GigaGAN† 256 3.45 225.5 0.84 0.61 569M 1 –
StyleGAN-XL† 256 2.30 265.1 0.78 0.53 166M 1 0.3

Diff.

LDM-4-G† 256 3.60 247.7 – – 400M 250 –
DiT-XL/2† 256 2.27 278.2 0.83 0.57 675M 250 45
L-DiT-7B† 256 2.28 316.2 0.83 0.58 7.0B 250 > 45
DIFFUSSM-XL-G 256 2.28 259.1 0.86 0.56 660M 250 –
DiffiT 256 1.73 276.5 0.80 0.62 561M 250 –

Mask.
MaskGIT† 256 6.18 182.1 0.80 0.51 227M 8 0.5
MAR-B‡ 256 2.31 281.7 – – 208M 64 10.0
MAR-H‡ 256 1.78 296.0 – – 479M 64 13.4

AR

VQGAN† 256 18.65 80.4 0.78 0.26 227M 256 19
RQTransformer† 256 7.55 134.0 – – 3.8B 68 21
GIVT-Causal-L+A 256 2.59 – 0.81 0.57 304M 256 –
LlamaGen-3B 256 2.18 267.7 0.84 0.54 3.1B 1 –

VAR

VAR-CoDe N=9 256 1.94 296 0.80 0.61 2.3B 10 –
HMAR-d30 256 1.95 334.5 0.82 0.62 2.4B 14 –
VAR-d30§ 256 2.02 302.9 0.82 0.60 2.0B 10 1.0

+SSG (Ours) 256 1.68 313.2 0.81 0.62 2.0B 10 1.0

4.1 EXPERIMENTAL SETTINGS

We evaluate class-conditional ImageNet generation at 256× 256 and 512× 512 (Deng et al., 2009),
primarily using Fréchet Inception Distance (FID) (Heusel et al., 2017) to assess fidelity and diversity,
along with Inception Score (IS) (Salimans et al., 2016) and spatial FID (sFID) (Nash et al., 2021).
For text-to-image (T2I), we use the MJHQ-30K benchmark (Li et al., 2024a) and assess semantic
fidelity and prompt alignment with FID (Heusel et al., 2017) and CLIPScore (Hessel et al., 2021).
We also report inference latency to quantify SSG’s computational overhead across all models.

Our analysis focuses on VAR-structured models, which exemplify the next-scale paradigm (Tian
et al., 2024; Tang et al., 2025; Han et al., 2025). To contextualize Tab. 2, we also compare against
leading models from other paradigms: high-fidelity diffusion (DIFFUSSM-XL-G (Yan et al., 2024),
DiffiT (Hatamizadeh et al., 2024)), GANs (StyleGAN-XL (Sauer et al., 2022)), autoregressive
(LlamaGen-3B (Sun et al., 2024)), and masked models (MAR-H (Li et al., 2024b)).

For a fair comparison, we report metrics with CFG enabled whenever supported. Reproducibility of
VAR-family checkpoints posed challenges: for VAR (Tian et al., 2024), the released weights under-
perform the paper’s numbers; for HART (Tang et al., 2025), public issues note difficulty matching
reported scores; and Infinity lacks official MJHQ-30K results. To control for these factors, we re-
evaluated all VAR baselines on a single NVIDIA A6000 under a unified protocol, and all gains are
measured by applying SSG to these runs under identical settings. The SSG strength follows a linear
decay, βk = β

(
1− k−1

K

)
(Sec. 2.2), where β is the initial scale and K the number of steps.

4.2 TRAINING-FREE ENHANCEMENT OF NEXT-SCALE GENERATIVE MODELS

Evaluating SSG across scaled VAR models reveals consistent performance gains that am-
plify with model capacity (Tab. 1). On class-conditional ImageNet 256 × 256, the FID
reduction grows from 0.15 for VAR-d16 to a substantial 0.34 for larger VAR-d30. Cru-
cially, these improvements are achieved without altering model parameters or increas-
ing inference latency. This confirms SSG achieves a scalable enhancement, improving
with the base model’s representational power. This scaling trend culminates in our re-
sult on VAR-d30 (Tab. 2), where SSG achieves an FID of 1.68, surpassing competi-
tors including DiffiT (1.73 at 256 steps) and MAR-H (1.78 at 64 steps; 13.4× slower).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: ImageNet 512 × 512 conditional gen-
eration. Inference time relative to VAR-d36 is re-
ported †: quoted from VAR. ‡: Estimated via lin-
ear scaling of steps (4×) and pixels (4×) from the
256×256 model’s reported time. §Reproduced.
Type Model FID↓ IS↑ Time
GAN BigGAN† 8.43 177.9 –

Diff.
DiT-XL/2† 3.04 240.8 81
DIFFUSSM-XL-G 3.41 255.1 –
DiffiT 2.67 252.1 –

Mask. MaskGIT† 7.32 156.0 0.5
MAR-L 1.73 279.9 214.4‡

AR VQGAN† 26.52 66.8 25

VAR
HMAR-d24 2.99 304.1 –
VAR-d36§ 2.70 290.6 1.0

+SSG (Ours) 2.39 320.6 1.0

While methods like HMAR-d30 achieve a
higher IS through costly retraining and ar-
chitectural modifications; SSG improves the
baseline IS without modification to the pre-
trained model. This demonstrates SSG’s pri-
mary strength: achieving superior fidelity with
significant efficiency by enhancing, not replac-
ing, the original model.

SSG’s performance-efficiency trade-off extends
to 512×512 resolution (Tab. 3), where it im-
proves VAR-d36, reducing FID by 11.5% to
2.39 while increasing IS by 10.3% to a class-
leading 320.6. While MAR-L attains a lower
FID (1.73), it does so at prohibitive cost, with
an estimated inference time∼214× longer than
our model. This performance surpasses VAR
enhancements like HMAR-d24 and diffusion
baselines such as DiffiT. By mitigating the
train–inference discrepancy and improving spa-
tial coherence (Sec. 2.1), SSG offers a superior
performance-efficiency trade-off.

4.3 GENERALIZATION ACROSS DIVERSE TOKEN ARCHITECTURES

Table 4: T2I Comparison using MJHQ30K
Model FID↓ CLIP

Score↑
Time (s)

HART-0.7B 8.46 0.2819 1.06
+SSG (Ours) 7.28 0.2834 1.07

Infinity-2B 10.01 0.2754 1.83
+SSG (Ours) 9.68 0.2767 1.86

To demonstrate SSG’s generalization, we first
test it on a text-conditioned model with a dif-
ferent token structure: HART-0.7B, which uses
hybrid continuous-discrete tokens. As shown
in Tab. 4, SSG improves FID by 13.9% while
maintaining a stable CLIPScore. This confirms
that our method enhances spatial fidelity with-
out corrupting the model’s semantic alignment.

We further challenge SSG on Infinity-2B, a
model with both bit-wise tokenization and a
built-in bit-wise self-correction (BSC) mecha-
nism to mitigate teacher-forcing. SSG still delivers a 3.3% FID improvement with a stable CLIP-
Score. This result confirms SSG’s benefits are orthogonal to such model-specific corrections and
validates its role in addressing the core train-inference discrepancy of VAR-structured models.

The versatility demonstrated on both hybrid and bit-wise tokens stems from SSG’s core design: it
operates on the universal, pre-quantization logit space, making it agnostic to the token structure. By
enhancing spatial fidelity while preserving semantic integrity across diverse architectures, SSG is a
fundamental and broadly applicable enhancement to the coarse-to-fine generation paradigm.

4.4 ANALYZING THE SCALE-WISE REFINEMENT MECHANISM

We empirically assess SSG’s role as a scale-wise refinement mechanism by analyzing the spec-
tra of residual logits from VAR-d16. Figure 4(a) plots the relative change in the log-magnitude
of Fourier-transformed latents under SSG, revealing a threshold at the previous step’s Nyquist fre-
quency. Above it, SSG increases spectral energy to synthesize novel high-frequency details; below
it, SSG suppresses redundant low-frequency updates as the curve stays near or under zero (green
line). This redistribution empirically supports the refinement mechanism in Sec. 2.2.

We evaluate SSG’s effect on the quality–diversity trade-off by sweeping sampling temperatures for
VAR-d16 and plotting FID vs. IS (Fig. 4b). Across the sweep, SSG strong robustness by consistently
improving the Pareto frontier: at comparable IS it attains lower FID, and at comparable FID it attains
higher IS, achieving both the lowest FID and the highest IS observed. This indicates that SSG
improves peak fidelity and maximum diversity without degrading the trade-off.
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Figure 4: SSG’s Refinement Mechanism and Performance. (a) Analysis of the ∆ log magnitude
of Fourier transformed latent embeddings. SSG redistributes the model’s focus by suppressesing
redundant low-frequency spectral energy while selectively boosting the essential high-frequency
energy beyond the Nyquist frequency (red line). (b) SSG achieves a consistently better FID vs.
IS trade-off across sampling temperatures, indicating an improved quality-diversity profile. Please
refer to Fig. 10 for the full trade-off graph over all evaluated sampling temperatures.

4.5 SPECTRAL FIDELITY AND HIGH-FREQUENCY ROBUSTNESS
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Figure 5: Spectral Amplitude Ratio Analysis.
Images generated with SSG consistently adhere
better to the distribution of the reference dataset.

To rigorously verify the perceptual impact of
SSG, we extended our analysis to the pixel
level. We computed average spectral energy
profiles using 50,000 samples generated by
VAR-d16 with and without SSG, comparing
them against the 10,000 ImageNet validation
images used for metrics in Tab. 1 to ensure sta-
tistical robustness. The resulting spectral anal-
ysis in Fig. 5 focuses on the frequency range
101 to 102, corresponding to meaningful fine
textures rather than basic structure or extreme
noise. In the band below 5.5 × 101, SSG con-
sistently exhibits higher spectral energy than
the baseline, effectively enhancing fine details.
Crucially, at frequencies beyond 5.5× 101, the
baseline diverges from the reference curve, sug-
gesting the possible amplification of artifacts or

noise. In contrast, SSG maintains tighter alignment with the reference dataset, demonstrating that it
regulates the generation process to match the true distribution rather than blindly amplifying noise.

Table 5: Ablation of SSG on VAR-d16, covering expansion type and ℓprior formulation.
†baseline without SSG implementation; ‡zero padding replaces extrapolation from L′

interp.

Expansion Type ℓprior Formulation βk Decay Schedule FID↓ IS↑ Relative Latency

Baseline† N/A N/A 3.42 275.6 1.0
Spatial Nearest Neighbor ✓ 4.02 229.1 1.0
Spatial Linear ✓ 3.79 234.8 1.0
Frequency DSE‡ ✓ 3.34 277.6 1.0

Frequency DSE x 3.63 287.8 1.0
Frequency DSE (Ours) ✓ 3.27 285.3 1.0
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4.6 ABLATION STUDIES

Prior formulation. Tab. 5 contrasts no SSG (Baseline) with spatial- and frequency-domain for-
mulations of ℓprior on VAR-d16. Spatial priors (nearest, linear) underperform the baseline in both
FID and IS. Switching to frequency-domain DSE improves results: DSE† achieves FID 3.34 and IS
277.6, surpassing both baseline and spatial variants. Our full DSE prior yields the best balance (FID
3.27, IS 285.3) at unchanged latency, supporting the frequency-domain design.

Decay schedule. A fixed βk (no decay) results in overguidance, producing exaggerated features
recognizable to Inception yet off-distribution. This raises the IS to 287.8 while worsening the FID
to 3.63. A linear decay schedule, however, stabilizes refinement and achieves a superior trade-off,
yielding our best FID of 3.27 while maintaining a high IS of 285.3. Further βk scaling in Appx. F

4.7 EXTENSION TO OTHER HIERARCHICAL GENERATIVE MODELS

Table 6: Preliminary Generalization of SSG
to Other Architectures. Generation quality
(FID/IS) and inference efficiency (Steps/Time).
Model FID↓ IS↑ Steps Time (s)

VQ-Diffusion 9.39 158.3 100 7.3
+SSG(Adapted) 9.18 165.8 100 7.3

While SSG is intentionally tailored for the ex-
plicit multiscale hierarchy of VAR, the un-
derlying information-theoretic perspective in-
troduced in Sec. 2.2 is not inherently re-
stricted to this architecture; it holds poten-
tial for broader coarse-to-fine generative frame-
works, such as diffusion and other autoregres-
sive models. These paradigms, which progress
from noisy to clean representations or accumulate semantic information hierarchically, present nat-
ural anchors for guidance analogous to SSG. To empirically explore this concept, we performed a
preliminary case study by applying an SSG-inspired formulation directly to the pre-sampling space
of VQ-Diffusion (Gu et al., 2022). Evaluating metrics over 10,000 samples across 1,000 ImageNet
classes at 256× 256 resolution, our initial results in Tab. 6 demonstrate performance improvements.
Specifically, SSG integration yielded a 0.21 reduction in FID and an 7.5 increase in IS, all while
incurring negligible overhead to inference time. Despite the marginal improvement due to the con-
ceptual and preliminary nature of this application, these findings strongly suggest that the theoretical
establishment of SSG can indeed benefit broader paradigms exhibiting coarse-to-fine behavior, en-
couraging further research in this direction.

5 CONCLUSION

We introduced Scaled Spatial Guidance (SSG), a training-free, logit-space guidance for VAR-
structured models. SSG amplifies a semantic residual built with a frequency-domain prior via DSE,
mitigating the train–inference discrepancy and reinforcing the intended coarse-to-fine hierarchy.
Across VAR baselines and tokenizers, SSG delivers consistent gains in fidelity and diversity with
negligible latency, competitive with or surpassing recent diffusion and masked models. We expect
SSG to be a simple, model-agnostic building block for future work in next-scale generation.
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ETHICS STATEMENT

Scaled Spatial Guidance (SSG) is an inference-time technique that enhances pretrained generative
models. While it can improve fidelity and controllability, the same capabilities could be misused by
unauthorized actors. Risks include making deceptive or misleading media more convincing, with
potential harms to privacy, reputation, and public trust.

Because SSG operates on existing models, it inherits their capabilities and limitations, including
biases and harmful content patterns present in the underlying data. Our experiments therefore rely
on publicly available, well-established models that include safety filters and community-vetted usage
policies. SSG is not a safety filter itself; it should be deployed only alongside robust prompt and
output moderation, provenance signals where appropriate, and human oversight for sensitive uses.

This work is intended for academic research and constructive applications. We explicitly prohibit
malicious or unethical use, including the generation of deceptive content or content intended to cause
harm. We encourage careful documentation of assumptions, adherence to model licenses and safety
settings, and the development of clear ethical guidelines to ensure the responsible advancement of
guidance methods and the broader generative modeling community.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To facilitate this, we will make
our source code for Scaled Spatial Guidance (SSG) publicly available. The appendix provides com-
prehensive implementation details, including the architecture of the Discrete Spatial Enhancement
(DSE) module, hyperparameter settings for all experiments, and the specific publicly available pre-
trained models used in our evaluation.
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APPENDIX

A COARSE-STATE APPROXIMATION AND FREQUENCY HEURISTIC

We assume the established coarse structure satisfies f̂k−1 ≈ L(f̂K) and that I(zk; f̂k−1 | L(f̂K)) ≤
ε for small ε (approximate stepwise sufficiency). The low/high-frequency split leveraging ideal low
pass filter (L) and high pass filter (H) (L + H = Id) is used for intuition; by Data Processing
Inequality (DPI), filtering can only reduce Mutual Information (MI).

B EXPANSION OF THE VAR-IB OBJECTIVE

Here, we provide a detailed derivation for the expansion of the VAR-specific Information Bottleneck
objective. We begin with the objective as defined in the main text:

LVAR-IB = max
zk

βI(zk; f̂K | f̂k−1)− I(f̂k−1; zk) (9)

The simplification uses the expansion of the conditional mutual information term, I(zk; f̂K | f̂k−1).
We leverage the chain rule for mutual information (Cover & Thomas, 2006), which is expressed as:

I(A;B | C) = I(A;B,C)− I(A;C) (10)

This expression is applicable when the variables form a Markov chain A → B → C. This con-
dition implies that C is conditionally independent of A given B, which simplifies the joint mutual
information term I(A;B,C) to I(A;B). In our context, the variables are A = zk, B = f̂K , and
C = f̂k−1. The required Markov chain is therefore zk → f̂K → f̂k−1. This Markov condition
holds if our coarse state term f̂k−1 is a deterministic function of the final, high-resolution output f̂K
(i.e., f̂k−1 = L(f̂K)). This leads us to elaborate on deterministic conditioning.

Deterministic conditioning (exact chain rule). Let Ck := L(f̂K) denote the low-pass projection
of the final output. Since Ck is a deterministic function of f̂K , the chain rule holds exactly:

I(zk; f̂K | Ck) = I(zk; f̂K) − I(zk;Ck). (11)

Substituting Ck as the established coarse structure yields

LVAR-IB = max
zk

β I(zk; f̂K) − (β + 1) I(zk;Ck).

To connect with the VAR state, we use the coarse-state approximation f̂k−1 ≈ Ck (see Appx. A).
With the low/high-frequency decomposition f̂K = L(f̂K) + H(f̂K), where L(·) and H(·) are
deterministic filters (hence I(·;L(f̂K)) and I(·;H(f̂K)) are well-defined and non-increasing by
DPI), identifying Ck = L(f̂K) yields the intuitive form used in the main text.

Therefore, using the exact identity in Eq. (11) and the coarse-state approximation f̂k−1 ≈ L(f̂K)
(Appx. A), the conditional term satisfies

I(zk; f̂K | f̂k−1) ≈ I(zk; f̂K)− I(zk; f̂k−1). (12)

Substituting this back into the objective and collecting terms yields

LVAR-IB ≈ max
zk

β
(
I(zk; f̂K)− I(zk; f̂k−1)

)
− I(f̂k−1; zk)

= max
zk

βI(zk; f̂K)− βI(zk; f̂k−1)− I(zk; f̂k−1)

= max
zk

βI(zk; f̂K)− (β + 1)I(zk; f̂k−1).
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C MAP INTERPRETATION OF THE SURROGATE

C.1 STOCHASTIC-CHANNEL JUSTIFICATION OF THE DOT-PRODUCT SURROGATE

Where randomness enters. At step k we sample rk ∼ Cat(q′) with q′ = softmax(ℓ′/T ); then
zk = emb(rk) and f̂k = g(f̂k−1, zk) are deterministic. Hence shaping ℓ′ shapes the stochastic node.

First-order IB-aligned ascent. Consider the power-tilted contrast

Cs(q′) = (1 + s)Eq′ [log pθ(r | ck)] − sEq′ [log pprior(r | f̂k−1)],

with logits ℓk and ℓprior for the two heads. Evaluated at q′ = softmax(ℓk/T ),

∇ℓ′Cs
(
softmax(ℓ′/T )

)∣∣∣
ℓ′=ℓk

= s
T ∆k (up to a mean shift removable by softmax invariance),

so a small logit update δ obeys Cs ≈ const + s
T δ⊤∆k. Adding a quadratic proximity term − 1

2∥δ∥
2
2

yields

max
δ

s
T δ⊤∆k − 1

2∥δ∥
2
2 ⇒ δ⋆ = s

T ∆k, ℓ′ = ℓk + β∆k (β = s/T ),

which is the SSG update. Thus the dot product (ℓ′)⊤∆k is the natural first-order ascent direction for
the categorical sampling channel.

Robustness to logit preprocessing (DSE, temperature). In practice, the base/prior logits may
be obtained after deterministic preprocessing: ℓ̃k = Pk(ℓk), ℓ̃prior = Pk−1(ℓprior), e.g., frequency-
aware interpolation (DSE) for the prior or temperature rescaling. Since sampling remains rk ∼
Cat(softmax(ℓ̃′/T )), stochasticity still enters only via the categorical, and the first-order derivation
applies with the processed novelty direction ∆̃k = ℓ̃k − ℓ̃prior. Scalar rescalings (temperature)
reparameterize β via β = s/T .

More generally, for a locally linear map ℓ̃′ ≈ J ℓ′ around ℓk, the quadratic proximal step becomes

max
δ

s
T δ⊤J⊤∆̃k − 1

2 δ
⊤M δ, M ⪰ 0,

with solution δ⋆ = s
T M−1J⊤∆̃k. Choosing M = I (our L2 proximity) and J ≈ I recovers

ℓ′ = ℓk+β ∆̃k. Thus DSE-based construction of ℓprior and temperature modify the effective direction
and step size but do not alter the stochastic-channel justification or the closed-form SSG update.

C.2 PROXIMITY REGULARIZATION: L2 VS. DISTRIBUTIONAL TRUST REGIONS

Our state-redundancy term uses an L2 proximity regularizer on logits, − 1
2∥ℓ

′− ℓk∥22. Two remarks:

Tikhonov view. This is a Tikhonov (weight-decay–style) trust region in logit space that stabilizes
updates and yields the closed-form solution ℓ′ = ℓk + β∆k.

Distributional alternative. One can instead impose a distributional trust region via a KL penalty
between the base distribution qk = softmax(ℓk/T ) and the guided distribution q′ = softmax(ℓ′/T ),
e.g.,

−λKL
(
qk ∥ q′

)
or − λKL

(
q′ ∥ qk

)
.

This aligns the constraint in probability space but generally eliminates the simple closed form for ℓ′
and requires iterative updates. For small steps, a second-order expansion of KL around ℓk reduces
to a quadratic in ℓ′ − ℓk, recovering an L2-type proximal form (up to a positive semidefinite metric
induced by the softmax Fisher information). We adopt the L2 surrogate for its simplicity and closed-
form optimizer while noting KL-based trust regions as a compatible alternative.
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C.3 MAP INTERPRETATION

We then can view the guided logits ℓ′ as obtained by MAP:

log p(ℓ′ | evidence) = β (ℓ′)⊤∆k︸ ︷︷ ︸
log -likelihood surrogate

+ log p(ℓ′)︸ ︷︷ ︸
log prior

, p(ℓ′) ∝ exp
(
− 1

2∥ℓ
′ − ℓk∥22

)
.

The likelihood surrogate ∝ exp(β (ℓ′)⊤∆k) rewards alignment with the novelty direction ∆k =
ℓk − ℓprior, while the Gaussian prior anchors ℓ′ near the base logits ℓk. Maximizing the log-posterior
gives exactly

L(ℓ′) = β (ℓ′)⊤∆k − 1
2∥ℓ

′ − ℓk∥22,

D FULL DERIVATION OF SCALED SPATIAL GUIDANCE

We begin with the Information Bottleneck (IB) objective, which seeks a compressed representation
X̃ of an input X that is maximally informative about a target Y :

LIB = min
X̃

I(X; X̃) − β I(X̃;Y ), (13)

where I(·; ·) denotes mutual information and β > 0 trades off compression and relevance.

Instantiation for VAR at step k. For sequential coarse-to-fine generation, set X = f̂k−1 (previ-
ous state), X̃ = zk (residual to be generated), and Y = f̂K (final output). Since we care about novel
information about f̂K beyond f̂k−1, we use conditional mutual information, yielding

LVAR-IB = max
zk

β I
(
zk; f̂K | f̂k−1

)
− I

(
f̂k−1; zk

)
. (14)

Chain-rule simplification. Under deterministic conditioning of the coarse state (Appx. A, B),
I(A;B | C) = I(A;B)− I(A;C) with C a deterministic function of B. Since f̂k−1 is an approxi-
mately deterministic low-pass of f̂K ,

LVAR-IB = max
zk

β
[
I(zk; f̂K)− I(zk; f̂k−1)

]
− I(zk; f̂k−1)

= max
zk

β I(zk; f̂K) − (β + 1) I(zk; f̂k−1). (15)

Frequency-domain reduction. Decompose the final output into ideal low- and high-frequency
components, f̂K = L(f̂K)+H(f̂K). Approximating additivity of information across disjoint bands,
I(zk; f̂K) ≈ I(zk;L(f̂K))+ I(zk;H(f̂K)), and identifying the coarse state with the low-frequency
part, f̂k−1 ≈ L(f̂K), we obtain the full intermediate steps:

LVAR-IB ≈ max
zk

β
(
I
(
zk;L(f̂K)

)
+ I

(
zk;H(f̂K)

))
− (β + 1) I

(
zk;L(f̂K)

)
(16)

= max
zk

β I
(
zk;L(f̂K)

)
+ β I

(
zk;H(f̂K)

)
− β I

(
zk;L(f̂K)

)
− I

(
zk;L(f̂K)

)
(17)

= max
zk

β I
(
zk;H(f̂K)

)
+

(
β − β − 1

)
I
(
zk;L(f̂K)

)
(18)

= max
zk

β I
(
zk;H(f̂K)

)
− I

(
zk;L(f̂K)

)
. (19)

Thus, the ideal residual zk should be informative about new high-frequency content while uninfor-
mative about already-established low-frequency structure.

Logit-level surrogate and closed-form guidance. At step k, the model samples a residual token
rk from residual logits ℓk ∈ R|V|; its embedding yields zk. We construct a MAP-style surrogate
aligned with Eq. (19) with two parts: (i) a target-informativeness term that follows a proxy for high-
frequency detail, the semantic residual ∆k := ℓk − ℓprior, where ℓprior carries coarse information
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from the previous step; and (ii) a state-redundancy penalty that keeps guided logits close to the base
ℓk. For guided logits ℓ′,

L(ℓ′) = β (ℓ′)⊤∆k − 1
2∥ℓ

′ − ℓk∥22, ℓ′ ∈ R|V|. (20)

The objective is strictly concave in ℓ′ (Hessian −I) and admits a unique maximizer obtained by
setting the gradient to zero:

∇ℓ′L(ℓ′) = β∆k − (ℓ′ − ℓk) = 0 =⇒ ℓ′ = ℓk + β∆k. (21)

Scaled Spatial Guidance. Allowing the trade-off to vary by step, β 7→ βk, yields the SSG update

ℓSSG
k = ℓk + βk ∆k = ℓk + βk (ℓk − ℓprior). (22)

This closed-form guidance mirrors the high- vs. low-frequency information trade-off in
Eq.( 19)while incurring negligible overhead.

Table 7: Infinity Table, latency measured for generating with batch size=1
Method FID↓ ImageReward↑ CLIP Score↑ HPSv2.1↑ GenEval↑ Latency(s)

Infinity-2B 10.01 0.952 0.275 30.46 0.683 1.83
+SSG (Ours) 9.68 0.964 0.277 30.61 0.690 1.86

E ADDITIONAL MODEL EVALUATION

In this section, we additionally report metrics that reflect human preference and prompt alignment:
ImageReward (Xu et al., 2023), a reward model trained on human preferences; HPSv2.1 (Wu et al.,
2023), a scorer for aesthetic quality and prompt alignment; and Geneval (Ghosh et al., 2023), a
multi-dimensional benchmark for generative model evaluation. Also, we re-report FID and CLIP
Score from Tab. 4. Overall, adding SSG to the baseline Infinity model provides overall improvement
in all metrics, while adding only a minimal latency overhead. The detailed result is in Tab. 7.

F ANALYSIS OF GUIDANCE PARAMETER SCALING

This section analyzes the trade-off between key generation metrics. We vary the guidance parameter
βk and plot the FID vs. IS to examine the balance between distribution fidelity and sample quality.

IS(↑)

FI
D
(↓
)

Metric Trade-offs. The plot on the left reveals
a clear trade-off between FID and IS. Initially,
increasing the guidance strength improves both
metrics, achieving an optimal point. However,
further pushing for higher IS values beyond this
point leads to a sharp degradation in FID, in-
dicating a loss in overall sample diversity and
fidelity. We test βk values over the range [0.2,
2.4] with a step size of 0.2.

Figure 6: The trade-off between FID and IS of the guidance parameter βk. The curve illustrates
that optimizing solely for IS can be detrimental to the generation quality as measured by FID.

The results in Fig. 6 were obtained by applying SSG to the VAR-d16 model. To ensure an optimal
balance, we select the βk from the point just before the FID score begins to degrade significantly.
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Figure 7: Prompt and class used to generate Fig. 1, and exact model used leveraging SSG per image.

G DETAILED PROMPTS AND SPECIFICATIONS FOR FIG. 1

This appendix provides the exact prompts and class conditions used to generate the images in
Fig. 1. We report both class-conditional and text-conditional models, evaluated at resolutions from
256×256 to 1024×1024. Model specifications are summarized in Fig. 7 for reproducibility. Display
size in Fig. 1 is proportional to native resolution; a 256×256 image occupies one quarter of the area
of a 1024×1024 image.

H ADDITIONAL RELATED WORKS

Diffusion models are a central paradigm for visual generation (Ho et al., 2020; Nichol & Dhariwal,
2021). Early work such as latent diffusion (Rombach et al., 2022) employed U-Net backbones to
iteratively denoise latent representations. While U-Nets provide strong multi-scale feature extrac-
tion, capturing long-range dependencies can be challenging, motivating transformer-based designs,
such as DiT and U-ViT (Peebles & Xie, 2023; Bao et al., 2023). Transformers offer improved global
interaction modeling and scale effectively, yielding fidelity gains with model size (Chen et al., 2024;
Ma et al., 2024; Li et al., 2024a). Recent rectified-flow methods aim for faster, few-/single-step
generation (Esser et al., 2024; Batifol et al., 2025), yet iterative denoising remains a major computa-
tional bottleneck in common pipelines, with substantial inference costs in memory and time (Peebles
& Xie, 2023; Rombach et al., 2022; Yan et al., 2024; Hatamizadeh et al., 2024).

I LATENCY COMPARISON

We report wall-clock inference time (Tab. 8 and relative latency (Tab. 1, Tab. 2, Tab. 3, Tab. 4,
Tab. 5, and Tab. 6). Due to VRAM limits on our available GPU (NVIDIA A6000), all reproduced
measurements use batch size 1. Accordingly, table entries marked § (reproduced) are normalized to
our locally measured VAR-d30 wall time at bs= 1, while entries without § use relative times taken
from the literature, which are normalized to VAR-d30 as originally reported (typically at bs= 64)
(Tab. 2 and Tab. 3). Thus, each relative time is computed against a VAR-d30 baseline measured
under the same conditions as its source. The exact numbers can be found in Tab. 8
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Table 8: Latency Comparison of Models With and Without SSG. ‡: Zero-padding replaces ex-
trapolation from L′

interp.

Model Without SSG With SSG

mean std params mean std params

256x256

VAR-d16 0.273 0.0303 310M 0.279 0.0313 310M
VAR-d20 0.320 0.0398 601M 0.324 0.0288 601M
VAR-d24 0.384 0.0288 1.0B 0.390 0.0279 1.0B
VAR-d30 0.530 0.0346 2.0B 0.536 0.0372 2.0B

512x512 VAR-d36 1.28 0.0279 2.4B 1.29 0.0326 2.4B

T2I HART-d20 1.06 0.0280 732M 1.07 0.0236 732M
Infinity-2B 1.83 0.0136 2.2B 1.86 0.0125 2.2B

Ablations

VAR-d16(Nearest Neighbour) – – – 0.278 0.0297 310M
VAR-d16(Linear) – – – 0.278 0.0278 310M
VAR-d16(DSE‡) – – – 0.276 0.0317 310M
VAR-d16(DSE with static βk) – – – 0.279 0.0332 310M

Extension VQ-Diffusion 7.27 0.0893 594M 7.27 0.0829 594M

Especially, note that bs = 1 is applied only to VAR (across scales) for internal comparisons and
for isolating the incremental cost of the SSG operation. This choice does not compromise validity:
all entries remain comparable because each is normalized to a VAR-d30 baseline measured under
matched conditions.

Results are averaged over 100 runs, reporting the sample mean (mean), standard deviation (std), and
the model parameters (params) both before and after applying SSG.

J REPRODUCTION NOTES FOR REPORTED TABLES

We document the sources of all reported numbers. Unless otherwise noted, values in Tab. 1, Tab. 2,
Tab. 3, and Tab. 4 are taken from the original papers. The mark § reproduced denotes results we
computed due to issues with the released VAR pretrained weights (Tian et al., 2024); see Sec. 4.1
for details. For Tab. 4, all entries are our reproductions, due to problems detailed in Sec. 4.1.

(k-2)th Image (k-1)th Image kth Imagekth Semantic Residual(k-1)th Semantic Residual

W
ith

ou
t S

SG
W

ith
 S

SG

Figure 8: Progressive Detail Enhancement with SSG. Without SSG (top), semantic residuals lack
progressive detail, leading to artifacts like disconnected legs (red box). With SSG (bottom), the
kth residual introduces finer, structurally coherent details, such as the clearer beak (green box) and
properly connected legs (red box) not present at k − 1st, better realizing a coarse-to-fine nature.
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K FURTHER QUALITATIVE COMPARISON ON FINE DETAIL GENERATION

This section provides a further qualitative examination of Fig. 8. Using SSG not only adds fine
detail but also improves overall visual coherence by placing those details consistently within the
object structure, yielding more complete and perceptually stable entities.

We present additional qualitative evaluations of VAR models from d16 to d36 at 256×256 and
512×512 in the class-conditional setting. The results in Fig. 11 show that SSG consistently enhances
fine detail and completes entities across VAR scales.

To further validate the improvements in generative quality in text-conditional generation using T2I
models including HART (Tang et al., 2025) and Infinity (Han et al., 2025), we present additional
qualitative evaluations. These results demonstrate that while SSG improves the image fidelity, it
also enhances the models’ ability to generate the precise details described in the input prompt. This
is further illustrated in Fig. 12 and Fig. 13.

We also analyze failure cases where SSG’s improvements are limited. Fig. 14 illustrates these limi-
tations, categorized by (a) poor initial states and (b) challenging or ambiguous conditions. In column
(a) (top), a VAR-d36 generation, SSG restores the main guitar structure but fails to render fine de-
tails including the strings. This is constrained by the model’s tokenization limits and a poor initial
state with severely distorted guitar that SSG cannot fully correct. For the HART model (middle),
the prompt provides only vague screen-specific details. SSG’s improvement is minimal, bounded
by the model’s own limitations in rendering this content, particularly when it is uncertain what to
refine from the vague initial state. In the bottom example (HART), SSG successfully enforces the
“a 7 year old brown skin girl” prompt detail and removes artifacts, yet fails to perfectly render the
bird. This demonstrates that SSG’s corrective power may be limited when starting from a severely
misaligned initial state.

Column (b) in Fig. 14 highlights failures related to prompt comprehension or inherent ambiguity
within a class. For class-conditional generation (VAR-d30, top), objects, such as the sea cucumber,
that naturally fuse with the background are not distinctly generated. This occurs because SSG does
not force such objects to be distinct, respecting their inherent nature to blend into the background.
For the HART model (middle), given a highly ambiguous prompt like “Cosmic Death,” SSG merely
shifts the output from “Death” to “Cosmos” but cannot resolve the conceptual ambiguity, reflecting
a model-level text understanding failure. Similarly, in the bottom HART example, the text encoder
fails to parse specialized medical jargon, capturing only the word “goat”. While SSG successfully
removes most artifacts, it cannot compensate for the encoder’s fundamental inability to interpret the
specialized prompt.

L HUMAN PERCEPTUAL EVALUATION

Figure 9: Human Evaluation (A/B Test). The
SSG-enhanced method demonstrates superior per-
ceived quality compared to the baseline

To validate the perceptual quality and semantic
fidelity, we conducted a blind A/B choice hu-
man evaluation. This evaluation involved 28
participants, ranging from non-experts to ex-
perts in the visual generation field, who as-
sessed 15 item pairs sampled across VAR-
structured models, specifically VAR, HART,
and Infinity. The results in Fig. 9 demonstrate
a significant preference for the SSG-enhanced
images. These images were favored in 71.0%
of trials, compared to only 11.9% for the base-
line. This robust subjective preference confirms
that the superior spectral fidelity, coupled with
stronger alignment to the given class or text
conditions, directly translates into a significant and robust improvement in perceived quality. The
17.1% tie rate indicates that the improvements provided by the SSG might be difficult to distin-
guish for non-expert evaluators in those instances, suggesting that SSG’s enhancement often targets
fine-grained details which, while objectively superior, require closer inspection to fully perceive.
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Figure 10: Full-Scale FID vs. IS Trade-off. This plot extends Fig. 4 (b) by showing the complete
trade-off curves, averaged over 5 runs with error bars for both FID and IS. The curve with SSG
consistently demonstrates a better quality-diversity profile, achieving both a lower minimum FID
and higher maximum IS compared to the baseline across the full range of evaluated temperatures.

M TEMPERATURE SCALING DETAILS

To ensure reproducibility for the results shown in Fig. 4 (b), we specify the temperature values used.
For the baseline model (without SSG), we swept the temperature from 0.5 to 1.2. For our method
(with SSG), we used a range of 0.7 to 1.5. Both evaluations were performed in increments of 0.1.

Figure 10 presents the full-scale FID vs. IS trade-off curve, which encompasses all data points
used for Fig. 4 (b). This evaluation spans the temperature range from 0.5 to 1.5 in 0.1 increments,
yielding 11 data points in total. This plot explicitly includes the average of N = 5 independent runs
across random seeds, with the uncertainty of both the FID and IS metrics indicated by error bars.
As clearly observed in the full-scale result, the case with SSG (orange) demonstrates a superior
trade-off profile than the baseline (blue) across the entire operational spectrum. The points achieved
with SSG successfully form the Pareto frontier, attaining both the lowest FID and the highest IS
on the curves. Crucially, the best FID recorded by our SSG is lower than the baseline’s best FID,
with this substantial improvement falling outside the error bar range of the baseline’s optimal point.
Furthermore, for any comparable data points, SSG consistently yields a better FID and IS, which
robustly substantiates our initial claim that SSG provides a consistently better FID vs. IS trade-off.

N LIMITATIONS

SSG operates in logit space. Therefore, architectures that do not expose logits at inference, such
as autoregressive models that sample in feature space or decoders without a token head, require
substantial modification to apply SSG, even though the idea still applies to the pre-sampling stage.

O THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs solely for editorial assistance, to polish grammar mostly and converting paper-
written mathematical expressions into LATEX (including formatting proofs in the appendix). The
model did not generate ideas, claims, or experimental content, and it was not used for data analysis
or code design beyond minor formatting. All technical statements, equations, and results were
authored and verified by the authors.
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023, Vulture

Class/Model Without SSG With SSG

VAR-d36
512x512

158, Toy Terrier

VAR-d30
256x256

362, Badger

VAR-d24
256x256

980, Volcano

VAR-d20
256x256

355, Llama

VAR-d16
256x256

Figure 11: Qualitative evaluation of VAR across scales. Applying SSG enhances fine-detail gen-
eration consistently over multiple scales.
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Stranger things as dogs, all 
characters are dogs that 

look like the human actors, 
promotional poster photo

Prompt Without SSG With SSG

14 year old boy 
affectionately covers with a 
blanket an elderly man with 
curly gray hair, sleeping on 

couch, sci fi apartment, 
cyberpunk style, night, 

neon lights, realistic, 8k v 5

Hyper realistic photo of 
hippiebabypig taking selfie

4 people riding horses

Figure 12: Qualitative Evaluation using HART. The use of SSG not only improves the quality of
the generated images but also results in a stronger alignment with the input prompt.
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Stained glass river

Prompt Without SSG With SSG

Super close macro shot of a 
violet Salvia officinalis 
blossom hyperrealistic
sunny bright shining 

photography

Photo of a halfbody portrait 
of a bearded pirate smoking 
a Cohiba cigar. The pirate 

has a hostile expression and 
is wearing a pirate hat with 

a skull on it. He has 
earrings and should 

resemble a character from 
Pirates of the Caribbean. 

Portrait of God when he is 
creating the Sardinian 

island starting from his foot 
print, expressionist oil 

painting

Figure 13: Qualitative Evaluation using Infinity. The use of SSG improves overal image quality,
Most importantly, it captures the precise details depicted in the input prompt.
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Class 329
(Sea Cucumber, Holothurian)

Without SSG With SSG

Cosmic death,

A goat with signs of dynamic instability, 
history of fall, sink and counter, adjacent level 

compression, motion degraded, extremity 
strength 4 out of 5, clear radicular pattern, 

describe central back, degenerative change, all 
other components within normal limits, many 

additional chronic findings above 

Class 546
(Electric Guitar)

Without SSG With SSG

Ux product interface design of laptop screen 
confirm app download, behance, blender

Aerial cinematic photo of a 7 year old brown 
skin girl on top of an eagle flying in the sky. 

Narnia style. Wes anderson color palette. 
Sunrise natural light.

(a) (b)

Figure 14: Qualitative Evaluation on Failure Cases. SSG’s corrective capability is bounded by
initial states or task ambiguity. (a) Cases where SSG cannot fully recover from poor initial states
stemming from tokenization issues or weak text-prompt alignment. (b) Limitations due to prompts
being highly specialized or ambiguous, or when objects are inherently fused with the background.

26


	Introduction
	Methods
	Preliminaries: Next-Scale Autoregressive Generation
	Derivation of Scaled Spatial Guidance
	Prior Construction in the Frequency Domain
	Efficient Inference-Time Implementation

	Related Work
	Experiments
	Experimental Settings
	Training-Free Enhancement of Next-Scale Generative Models
	Generalization Across Diverse Token Architectures
	Analyzing the Scale-Wise Refinement Mechanism
	Spectral Fidelity and High-Frequency Robustness
	Ablation Studies
	Extension to Other Hierarchical Generative Models

	Conclusion
	Coarse-State Approximation and Frequency Heuristic
	Expansion of the VAR-IB Objective
	MAP interpretation of the surrogate
	Stochastic-Channel Justification of the Dot-Product Surrogate
	Proximity regularization: L2 vs. distributional trust regions
	MAP Interpretation

	Full Derivation of Scaled Spatial Guidance
	Additional Model Evaluation
	Analysis of Guidance Parameter Scaling
	Detailed prompts and specifications for Fig. 1
	Additional Related Works
	Latency Comparison
	Reproduction Notes for Reported Tables
	Further qualitative comparison on fine detail generation
	Human Perceptual Evaluation
	Temperature Scaling Details
	Limitations
	The Use of Large Language Models (LLMs)

