
Multi-Task Accelerated MR Reconstruction Schemes
for Jointly Training Multiple Contrasts

Victoria Liu
California Institute of Technology

vliu@caltech.edu

Kanghyun Ryu
Stanford University

kanghyun@stanford.edu

Cagan Alkan
Stanford University

calkan@stanford.edu

John Pauly
Stanford University

pauly@stanford.edu

Shreyas Vasanawala
Stanford University

vasanawala@stanford.edu

Abstract

Model-based accelerated MRI reconstruction methods leverage large datasets to
reconstruct diagnostic-quality images from undersampled k-space. These networks
require matching training and test time distributions to achieve high quality recon-
structions. However, there is inherent variability in MR datasets, including different
contrasts, orientations, anatomies, and institution-specific protocols. The current
paradigm is to train separate models for each dataset. However, this is a demanding
process and cannot exploit information that may be shared amongst datasets. To
address this issue, we propose multi-task learning (MTL) schemes that can jointly
reconstruct multiple datasets. We test multiple MTL architectures and weighted
loss functions against single task learning (STL) baselines. Our quantitative and
qualitative results suggest that MTL can outperform STL across a range of dataset
ratios for two knee contrasts.

1 Introduction

To reduce MRI scan time, various iterative reconstruction schemes have been investigated [1–4].
Recently, deep learning approaches, which train a network to estimate the reconstructed image using
retrospectively undersampled k-space, have shown superior efficacy over previous non-network based
methods [5]. However, these networks require sufficient collection of fully sampled k-space data
from similar acquisition protocols as the test-time inference data [6]. For example, to train multiple
contrasts, the current paradigm is to collect multiple, fully sampled k-space data for each contrast
and train each contrast-specific network separately to avoid domain shift. [6; 7]. Considering the
exceptionally large variability of MR images (i.e. different contrasts, orientations, anatomies, pulse
sequences), separate training requires a large effort and limits the additional information that can be
gained from multiple datasets.

To address this barrier, we propose a novel multi-task learning (MTL) scheme that can jointly train
a single network on a variety of datasets. The scheme jointly trains various fully sampled k-space
datasets by treating them as different tasks within the same network. The network can train multiple
tasks simultaneously and exploit shared, common features to prevent individual tasks from overfitting
and foster better performance compared to conventional STL counterparts.

MTL has recently gained traction in various areas [8–15], but has yet to be applied to MRI recon-
struction. Our study investigates how this scheme can be useful for jointly training diverse datasets.
Specifically, we focus on exploring the performance on two multi-contrast datasets with different data
size ratios. We test multiple MTL architectures and multi-task loss functions against STL baselines.
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Figure 1: Multi-task learning network architectures built on an unrolled variational network for (a)
fully split and (b) shared-encoder-split-decoder blocks.

Our quantitative and qualitative results suggest that the proposed scheme can perform better than
STL across all dataset ratios.

2 Methods

The baseline STL network is a typical unrolled network (i.e., Variational Network) composed of a
series of unrolled blocks as in [16]. Each unrolled block solves an unrolled iterative optimization
problem:

x̂ = argminx
1

2
∥Ax− k̃∥2 + λΨ(x), (1)

where Ψ is a trainable regularization function modelled as a fully convolutional U-Net; A is a linear
operator that consists of sensitivity map projection, Fourier transform, and discrete sampling; k̃
is a vector of acquired k-space. The MTL network structure is composed of shared layers and
task-specific layers, each consisting of multiple unrolled blocks inside the layer. In the following
sections, we describe two types of network architectures developed for this study and three weighted
loss functions that account for deviations between tasks.

2.1 Network architecture

Two architectures are used in the study: split and multi-head, as shown in Figure 1. Both networks
start with a number of shared blocks before splitting into task-specific blocks. In the split architecture,
the task-specific blocks do not share further information (1a); we refer to these task-specific blocks
as split blocks. In the multi-head architecture, the U-Net encoder continues to be shared amongst
tasks, but the decoder is task-specific (1b); we refer to these partially split blocks as multi-head
blocks. During inference, a sample is fed through the appropriate shared and task-specific layers.
Note that during inference, the MTL architecture is equivalent to STL, and each task can be inferred
individually.

2.2 Multi-task loss function

In this study, we consider three different loss weighting schemes. Naive weighting addresses the data
imbalance in the loss function by weighting individual task losses in an inverse relation to dataset size,
as seen in Equation 2. Uncertainty weighting [9] treats the multi-task network as a probabilistic model
and incorporates the task-dependent (or homoscedastic) uncertainty in the loss function. Finally,
dynamic weight averaging (DWA) [14] assigns task losses based on the learning speed of each task.

naive loss =
1

tasks

tasks∑
i

(N− |taski|) · lossi (2)
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Table 1: Comparison of STL, MTL, and transfer learning for PDw-FS reconstruction

SSIM pSNR

PDw-FS Slices STL MTL Transfer STL MTL Transfer

N = 32 0.813 0.825 0.829 31.67 31.95 32.17
N = 107 0.846 0.851 0.854 33.11 33.25 33.47
N = 253 0.857 0.858 0.862 33.7 33.8 33.94
N = 497 0.861 0.863 0.867 34.03 34.1 34.29

2.3 Dataset

We use two public knee datasets that are described in [16] and available at mridata.org [17]. The
datasets contain 19 coronal proton density weighted (PDw) and 20 coronal proton density weighted
fat suppression (PDw-FS) knee scans acquired with a 15-channel knee coil. The sensitivity maps of
each coil are estimated from a 24× 24 block at the center of the k-space using ESPIRiT [18]. 2D
slices are treated as separate samples and are randomly divided into training, validation, and test sets.
There are 13 PDw volumes (481 slices) and 14 PDw-FS volumes (497 slices) in the training set. In
our experiments, PDw simulates the abundant dataset by using all 481 slices, and PDw-FS simulates
the scarce dataset by using a percentage (497, 253, 107, or 32 slices) of the 497 slices.

2.4 Training and inference

Our models are implemented in PyTorch and trained on NVIDIA Titan Xp GPUs with 12GB of
memory. For the experiments, networks with 12 unrolled blocks are used to ensure convergence. For
MTL, different weighted loss functions – naive, DWA, uncertainty – are used for training the network.
To assess image quality, magnitude images are normalized between 0 and 1, and peak signal-to-noise
ratio (pSNR), structural similarity index (SSIM), and normalized root mean square error (nRMSE)
are used. During inference, k-spaces in the test-set are undersampled identically to guarantee fair
comparisons.

2.5 Experiments

For MTL, there are an exponential number of ways to compose the shared, split, and multi-head
unrolled blocks. After preliminary experiments for two, six, or ten shared blocks in the beginning
or middle of the network, we heuristically narrow our selection to two fully shared blocks at the
beginning, followed by ten task-specific (either split or multi-head) blocks (see Figure 1). For this
study, we mix and match the two aforementioned architectures with the three loss functions (naive,
DWA, uncertainty) for a total of six MTL networks (see Appendix). MTL networks are jointly trained
using 481 PDw slices and a percentage of PDw-FS slices. We also provide comparisons with transfer
learning by taking the PDw baseline and fine-tuning all layers using PDw-FS data [6].

Source code for implementation is publicly available via GitHub. 1

3 Results

As seen in Table 1, an MTL network performs better than STL at every dataset ratio. At N = 107 and
N = 253, the naive-weighted, split architecture dominates the other MTL architectures (see Appendix).
Interestingly, the MTL network not only improves metrics for PDw-FS, but also for PDw at certain
ratios (see Appendix).

Qualitative examination also suggests that MTL reduces errors in reconstruction. A comparison
between STL and MTL is seen in Figure 2 for two different inference slices. At N = 107, the MTL
image is reconstructed by the naive-weighted, split network. Although the naive-weighted, split

1https://github.com/liuvictoria/multiTaskLearning
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Figure 2: Representative reconstructions for MTL versus STL networks at (a) N = 107 and (b) N =
253 for PDw-FS test dataset. The arrows point to aliasing artifacts present in STL.

network gives the best quantitative metrics at N = 253, qualitative observation suggests that the naive-
weighted, multi-head network, a close runner-up, reconstructs comparably high quality images for N
= 253. As such, we choose to show the reconstruction from the naive-weighted, multi-head network
for N = 253. Interestingly, transfer learning performs better than MTL quantitatively (see Table 1 and
Appendix). Because PDw-FS and PDw data are similar, this result suggests that multi-task learning
may be better suited for more dissimilar tasks.

4 Conclusion and discussion

This study explores the use of multi-task learning in jointly training diverse MRI data for reconstruc-
tion. Our framework introduces inductive biases in the network by enforcing the sharing of useful
information between tasks. We see that MTL performs better than STL baselines across a range
of abundant versus scarce ratios, for both PDw and PDw-FS datasets. We did not expect MTL to
outperform STL for the abundant data, and this positive sharing of information may guide selection
of tasks in future experiments.

Our finding that transfer learning marginally outperforms MTL suggests that MTL may be better
suited for more dissimilar tasks such as different orientations, anatomies rather than multi-contrasts.
Moreover, it is possible that once we use larger datasets, STL will dominate transfer learning, and
MTL’s main competitor will be STL.

One noted difficulty is selecting an appropriate architecture and loss function, as negative transfer
between the dataset can occur (see Appendix). All in all, our study provides a proof of concept that
MTL can be successfully used in jointly training multiple contrasts for MRI reconstruction.
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Table 2: SSIM of PDw-FS test dataset for different MTL networks

PDw-FS Slice Count

Architecture MTL Loss N = 32 N = 107 N = 253 N = 497

STL (PDw & PDw-FS data) 0.813 0.846 0.857 0.861
Transfer learning 0.829 0.854 0.862 0.867
Split Naive 0.825 0.851 0.858 0.863
Split DWA 0.847 0.856
Split Uncertainty 0.806 0.801 0.855
Multi-head Naive 0.819 0.849 0.857
Multi-head DWA 0.846 0.857
Multi-head Uncertainty 0.822 0.848 0.854

Table 3: SSIM of PDw test dataset for different MTL networks

PDw-FS Slice Count

Architecture MTL Loss N = 32 N = 107 N = 253 N = 497

STL (PDw data only) 0.903 0.903 0.903 0.903
Split Naive 0.891 0.9 0.90 0.905
Split DWA 0.9 0.899
Split Uncertainty 0.901 0.852 0.902
Multi-head Naive 0.896 0.899 0.899
Multi-head DWA 0.897 0.902
Multi-head Uncertainty 0.904 0.903 0.903

A Appendix

Tables 2 and 3 provide benchmarks for how well various MTL networks perform, compared to STL
baselines and transfer learning. Transfer learning is not shown in Table 3 because transfer learning is
fine-tuned for PDw-FS only. Experimental setups are described in detail in Section 2.5. Blank spaces
arise from experiments that were not run.

Figure 3 compares transfer learning, STL, and MTL experiments for PDw-FS. These are the same
PDw-FS slices shown in Figure 2, with the addition of the transfer learning results. The improvement
from MTL to transfer learning is less pronounced than the improvement from STL to MTL. Figure 4
compares STL and MTL for PDw.
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Figure 3: Comparison of STL, MTL, and transfer learning for PDw-FS slices. The first row shows
images created by jointly training 107 PDw-FS images with 481 PDw images for STL and MTL. The
second row shows the results of jointly training 253 PDw-FS images with 481 PDw images for STL
and MTL. For transfer learning, fine-tuning is done with 107 and 253 slices in the first and second
rows, respectively.

Figure 4: Comparison of STL and MTL for PDw slices. For MTL, the first and second rows show
images created by jointly training 107 or 253 PDw-FS images, respectively, with 481 PDw images.
The STL baseline in both rows is trained using 481 slices of PDw only. The MTL network shown
here is has a multi-head architecture with uncertainty weighting.
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