Neural Quadratic Assignment Programming for Sentence Matching

Anonymous ACL submission

Abstract

Studies have shown that both the syntactic
structures and words’ semantics are impor-
tant for sentence matching. Existing stud-
ies usually model the syntactic structures and
word semantics separately, resulting in match-
ing models that overlook the relations and de-
pendencies between syntactic structures and
semantic meanings. How to jointly model
the syntactic and semantic information has
become a challenging problem in sentence
matching. To address the issue, we formal-
ize sentence matching as a problem of as-
signing the word of one sentence to that of
another sentence, with the costs determined
by the differences between the correspond-
ing syntactic structures and word embedding
similarities. The proposed method, referred
to as neural quadratic assignment program-
ming for sentence matching (NQAP-SM), rep-
resents the syntactic structures and semantic
matching signals as an association graph. Solv-
ing the relaxed quadratic assignment program-
ming (QAP) on this association graph achieves
the final matching score. Experimental re-
sults on three public datasets demonstrated
that NQAP-SM can outperform the state-of-
the-art baselines in an effective and efficient
way. The analysis also showed that NQAP-SM
can match sentences in an interpretable way.

1 Introduction

Matching two natural sentences has become a fun-
damental technique in information retrieval (IR)
and natural language processing (NLP). Typical
tasks include relevance ranking, paraphrase identi-
fication (PI), and natural language inference (NLI),
etc. Extensive research efforts have been devoted
to the task (Li and Xu, 2014; Xu et al., 2020). Most
studies focus on the semantic similarities of the
words/phrases of the two sentences. A number of
sentence matching models have been developed, in-
cluding the representation-based methods (Huang
et al., 2013; Shen et al., 2014; Gao et al., 2014),

Sentence X

Sentence Y

Figure 1: A pair (X = “We book a passenger ticket”,
Y =“they read an animal book”). The words and POS
tags are shown in the nodes, and syntactic dependen-
cies are shown as edges.

interaction-based methods (Hu et al., 2014; Pang
et al., 2016; Xiong et al., 2017) and their combina-
tions (Mitra et al., 2017).

Recently, there are studies that utilize the sen-
tences’ syntactic structures for matching (Chen
et al., 2016, 2017; Liu et al., 2018). Usually, the
syntactic structures are firstly encoded as syntactic
features and then are concatenated (or summed)
with semantic features (Mou et al., 2016; Chen
et al., 2018). All these methods were developed
with an assumption that “two sentences with similar
syntactic structures tend to be semantically similar”.
Syntactic features are separately extracted and used
as auxiliary information to the semantic features
during the matching. In real practices, however, de-
pendencies between syntactic and semantic infor-
mation can often be observed in sentence matching,
which makes the assumption does not always hold.

One example is that if two sentences are very dif-
ferent in terms of the word semantics, they should
not be considered as similar even they have iden-
tical syntactic structures. Figure 1 gives an illus-
trative example of two sentences “We book a pas-
senger ticket” and “they read an animal book™ with
the ground-truth label “dissimilar”. The parsed
syntactic structures, including the POS tags and
syntactic dependencies, are represented as nodes
and edges in the two graphs, respectively. We can
see that their POS tags and syntactic dependency
structures are identical: sharing the same POS se-

quence “PR, VB, DT, NN, NN” and identical de-
pendencies “nsubj, obj, det, compound”. However,
it is obvious that they are dissimilar sentences due
to their totally different word semantics. We con-
clude that jointly modeling the words’ semantic
information and sentences’ syntactic structures is
vital for enhancing matching accuracy.

To address the issue, we propose that the match-
ing of two sentences can be formalized as a prob-
lem of assigning the words of one sentence to the
words of the other sentence, where the cost of each
assignment is determined by the difference between
the corresponding syntactic structures and the word
embedding similarities. Intuitively, the more simi-
lar the syntactic structures and word semantics em-
bedding of two sentences, the less the assignment
cost will be spent when matching. The matching
score, therefore, can be considered as the minimal
cost of the whole assignment.

Specifically, we design a neural model, referred
to as neural quadratic assignment programming
for sentence matching (NQAP-SM), to solve the
sentence QAP problem efficiently. At the online
matching process, firstly, the pre-trained language
model (PLM) and syntactic parser get the word
embedding and syntactic structure as initialization
features. Then we fuse these semantic and syntactic
features into an associate graph and solve the re-
laxed Lawler’s quadratic assignment programming
(QAP) (Cho et al., 2010) on the association graph to
obtain the minimal assignment results. Finally, the
matching classifier merges the assignment results
and semantic vector, resulting in the final match-
ing score. During the training phase, a regularized
matching loss is constructed and optimized.

NQAP-SM formulates the problem of sentence
matching as a word assignment problem, which of-
fers several advantages, including better modeling
the dependency of semantic and syntactic match-
ing signals, ease in interpretation, and improving
matching accuracy. The contributions of this paper
can be summarized as follows:

* We highlight the dependency between se-
mantic and syntactic information in sentence
matching. A novel matching model called
NQAP-SM is proposed in which the relaxed
QAP is utilized to conduct the sentence match-
ing in an accurate, efficient, robust, and inter-
pretable way.

» Experimental results based on three publicly

available benchmarks showed that the match-
ing accuracy of NQAP-SM outperformed the
state-of-the-art baselines.

* Analysis showed that NQAP-SM not only can
discriminate the similar semantic forms be-
tween sentences but also bridge the syntactic
gaps between two sentences.

2 Related Work

Machine learning models have been widely used
for matching natural language sentences (Li and
Xu, 2014; Xu et al., 2020). Among them, the rep-
resentative methods include DSSM (Huang et al.,
2013) and its extensions (Wang et al., 2017a; Shen
etal.,2014; Gao et al., 2014; Kim et al., 2019; Yang
et al., 2019). Representative interaction-based mod-
els include ARC-II (Hu et al., 2014), MatchPyra-
mid (Pang et al., 2016), etc. Mitra et al. (2017)
combined both two kinds of models and improved
matching accuracy. Recently, the pre-trained lan-
guage model has been adapted to conducting match-
ing (Devlin et al., 2019; Liu et al., 2019). These
models always focused on the superficial matching
signals and ignore the rich NLP knowledge.

Recently, there is a trend to utilize rich NLP
knowledge to improve sentence matching. For ex-
ample, TBCNN (Mou et al., 2016) and HIM (Chen
et al., 2017) both utilize the syntactic dependency
information to enhance the sentence semantic rep-
resentations, see also (Chen et al., 2016; Liu et al.,
2018). The NLP knowledge-enhanced matching
models have also adapted to the interaction-based
models. For example, MIX (Chen et al., 2018) uti-
lizes POS and named-entity tags as prior matching
signals. However, these models often separately
encode the syntactic information as external fea-
tures, overlooking the relation between semantic
and syntactic information.

Transportation problem has also been adopted
in sentence matching (Guo et al., 2016). In a
transportation problem, quadratic assignment pro-
gramming (QAP) (Cho et al., 2010) has a wide
application in Graph Matching (GM). The affin-
ity function in QAP can be learned with the man-
ners of unsupervised (Leordeanu et al., 2012),
semi-supervised (Leordeanu et al., 2011), or super-
vised (Loiola et al., 2007). Recently, deep graph
matching has been applied for GM on images (Zan-
fir and Sminchisescu, 2018; Wang et al., 2021) and
the matching accuracy has been achieved.

3 Problem Formulation

3.1 Sentence matching

The matching of a pair of natural language sen-
tences can be formally described as follows: sup-
pose that Z is the set of labels which is defined by a
specific matching task. In the PI tasks, Z = {0, 1},
where ‘0’ and ‘1’ respectively denote the relation-
ship of “dissimilar” and “similar”’; in natural lan-
guage inference (NLI) Z = {0, 1,2}, where 0,
1, 2 respectively indicate “contradiction”, “neu-
tral”, and “entailment”. A set of training instances
D = {(X;,Y;, 2)} Y, is given where each sample
(X,Y, z) € D consists of a sentence pair (X,Y)
and its ground-truth matching label z. Moreover,
the X,Y are two sequences of words: X =
{$17$2> T 7$tx} and YV = {y1,y2, T ayty}’
where the z; and y; denote the ¢-th and j-th words
in X and Y, tx and ty are the number of words
(lengths) of X and Y, respectively.

3.2 Formulating sentence matching with QAP

Quadratic assignment programming (QAP) is
a type of combinatorial optimization prob-
lems (Loiola et al., 2007), originally designed for
the facilities-location problems.

This paper proposes to adopt QAP for conduct-
ing sentence matching, by regarding the words in
one sentence as the “facilities” and words in an-
other sentence as the “locations”, and their differ-
ences in syntactic structures and semantics as the
“assignment costs”. In this way, QAP enables the
matching model to involve not only the linear syn-
tactic structure (e.g. word attribute structure) costs
which correspond to assigning the “facilities” to
the certain “locations”, but also the quadratic syn-
tactic structures (e.g. word-word relation structure)
costs which correspond the affinities between the
assigning “facilities” and “locations”.

When applying QAP, two main characteristics
of sentence matching should be considered: the
word numbers of two sentences are often different
and one word from one sentence could align with
multiple words from another sentence. Therefore,
we further relax the one-to-one constraint condition
in Lawler’s QAP (Lawler, 1963)!, which considers
a relaxed form of QAP:

max vec(S)TKvec(S), (1)

'In some literature, QAP also includes other special
forms (Koopmans and Beckmann, 1957). .

matrix which encodes the word-word correspon-
dence; vec(S) is S’s column-vectorized notation,
and K € RIxtv*txty denotes the syntactic affinity
matrix whose diagonal elements encode the word-
word embedding similarities and the POS affinities
and its off-diagonal elements encode the syntax
affinities. The perfect matching is assumed to cor-
respond to the highest affinity score. At the same
time, the affinity matrix can be converted to the
association graph, whose node and edge weights
can be regarded as the diagonal and off-diagonal
elements of the affinity matrix, respectively.

An illustrative example of creating an associ-
ation graph for a sentence pair is given in Ap-
pendix A.

In this way, sentence matching can be formulated
as the Lawler’s QAP (as shown in Equation (1))
through the word semantics flow over the associa-
tion graph. The sentence matching score, therefore,
can be viewed as the highest affinity score when
word semantics flow optimally through the associa-
tion graph.

4 Proposed model: NQAP-SM

In this section, we present an efficient implementa-
tion of sentence matching with QAP, called neural
quadratic assignment programming for sentence
matching (NQAP-SM). Figure 2 illustrates the
model architecture of NQAP-SM and it can be
divided into sentence characteristic initialization,
QAP component and matching classifier. The next
sections will describe components in details.

4.1 Sentence characteristic initialization

In this component, the inputted natural language
sentence pair (X,Y) is processed with a pre-
trained language model (PLM) and an NLP parser,
generating the semantic features and syntactic
structures.

Semantic features Given a pair (X,Y), the
semantic matching vector (e.g., “[CLS]” vector
of BERT), v, € R? and the words embeddings
FX ¢ Rix*d FY ¢ Riv*d consists of the seman-
tic features:

(vs, F¥,FY) = PLM(X, Y;0,),

where d denotes the size of the feature vector, PLM
could be BERT or other PLM models, and 6, de-
notes the parameters of PLM.

Syntactic structures Generally speaking, there

Sentence characteristic initialization component
4 1

matching classifier component

—_

i
— Mary (x,) '
likes (x;)
flour (x3)

L food (xs)

 Mary (y1)

L noodles (y3)

v 4 loves(yy) — | NLP

. O O ic vector

i
i

i

|

Lo
Semantics !
]

i

1

)

]

i

Affinity
Matrix
Construction

oo o|x]o 0|00 020
o [o[x]o[o]o o o 0o]is]

Figure 2: Architecture of Neural Quadratic Assignment Programming for Sentence Matching.

are two types of structures: the word attribute struc-
ture (WAS) which reflects the attributes of the word,
and the word-word relation structure (WRS) which
defines the relationship between two words.

The WAS attributes can be further categorized
and this paper only considers POS attributes. Given
any sentence X = {1, - ,x¢, }, the sequence of

WAS attributes could be {am s Qagy Aoy }

The WRS attributes can also be further catego-
rized and this paper considers syntactic dependency.
Given any sentence X = {z1, -, Z¢, }, the WRS
parsing results (a dependency parsing graph) can
be represented as two incidence matrices:

(X, HY) = Parse(X),

where IX € Rfx*€x records the output-links and
HY e Rfx*ex records the in-links, ex denotes
the edge number of WRS. The elements of these
two matrices are defined as: if k-th edge links from
word z; to x; (its type also denoted as e (z;, 5)),
IX(i, k) = HX(j, k) = 1, and note that in order to
reduce the noise from the dependencies, we also set
IX(j, k) = HX (i, k) = 1. Otherwise, IX (i, k) =
HX(j,k) =1X(j, k) = H¥(i,k) = 0.

In this paper, we used the Stanford CoreNLP
parser (Manning et al., 2014) for getting POS, and
syntactic dependencies. Note that other syntactic
structures can be also used, such as named-entity
and semantic dependencies (Wang et al., 2019c¢).

4.2 QAP component

Based on the word embeddings and parsed syn-
tactic structures, the QAP component first con-
structs an association graph (affinity matrix) and

then solves the QAP problem, achieving the permu-
tation which represents the word matching between
the two sentences.

4.2.1 Learned affinity matrix construction

Following the practices in (Zhou and De la Torre,
2015), the QAP sparse affinity matrix K! &
Rixty*txty referred to as the learned affinity ma-
trix, can be factorized as

K'! = diag(vec(P)) + (I¥ @ IV)diag(vec(R))(HX @, HV)T,
2
where operator diag(-) builds a diagonal matrix
from input vector, IX , HX IV, HY are sentences
X and Y’s parsing results, as described in Sec-
tion 4.1, ® denotes Kronecker product, and P
and R encode the WAS, word embedding similar-
ity and WRS similarity matrix, respectively and
they are defined as:

P=(1-a)UXA U + aF¥AFYT R = LYA LY,

where Ay,Af,A, are learn-able parameters for
affinity metric, « is the trade-off coefficient for
POS affinities and word-word similarities, and
UX e Rixxd UY ¢ R™*4 are the WAS se-
quence embeddings of X,Y and the edge repre-
sentations LX € Rex*4 LY ¢ R %4 are built
by its edge sequence embeddings. Note that all
the aforementioned operations for constructing K'
allow back propagation, and we adopt the GPU
implementation provided by (Wang et al., 2019a).

Appendix B explanations Equation (2) with an
intuitive example.

4.2.2 Solving the permutation vector

Due to the high compute cost for solving the per-
mutation vector through the learned affinity matrix

K', we adopt the GCN method implemented by
Wang et al. (2019a) to approximate the QAP prob-
lem into a linear assignment programming(LAP)
problem, which can be solved in an efficient way
for both time and space.

Specifically, we build the association graph G =
{v(©, A} with its initial node embedding v(?) and
its sparse adjacent matrix A from the learned affin-
ity matrix K. Then we can apply GCN method to
updated the node embedding for £-th GCN layer,
k = 1,2,--- ,Gg. The key idea is to encode
the quadratic structure(WRS) to the linear struc-
ture(WAS). The permutation matrix S can be re-
garded as the last layer of the node features:

vee(S) = v@) vEHD) — AW £(vF); 9))+v(F)

3)
where the f(-) is a MLP projection function at
the k-th layer is parameterized by 6, and the k-
th layer node embedding of association graph de-
notes as: v(¥) € Rixtvxf* with the initial em-
beddings v(?) € R!xtv*1! taken from the diago-
nal elements of K!. The GCN projection matrix
W ¢ Rixiv*ixty comes from the off-diagonal
elements.

v9 (@i, a) = K!(ia,ia), W(ia, jb) = K'(ia, jb),

forall¢,7 € tx,a,b € ty.

As for the adjacent matrix A, in order to control
its sparsity, we introduce a hyper-parameter y to
generate the sparse adjacent matrix of association
graph G from the projection matrix W:

1 if W(ia,jb) > v
0 otherwise,

A(ia, jb) = {

4.3 Matching classifier

Given the semantic matching feature v, and QAP
permutation vector v(©+) the final matching score
Z can be obtained by the MLP parameterized by
Om,:

2(X,Y) = MLP([v|[v(®)]:0,,). 4

3

where ‘|’ denotes the concatenation operation,
Z2(X,Y) = [731, e 75'|Z|] and Z; denotes the prob-
ability of k-th category. The last layer is softmax
so that the output is a probability distribution.

4.4 Learning the model parameters

NQAP-SM has parameters to determine, including
G) = {9p79k7AU7Af7AI'79m | k =]-7 27 e 7Gk}

In the training phase, given a set of sentence pairs
with ground truth labels D = {(X;,Y;, 2;)} Y, the
learning algorithm aims to minimize the matching
loss £,,, which measures the differences between
the prediction Z and ground-truth z, regularized by
the affinity regularizer R which forces the learned
affinity matrix ! and the original parsed affinity
matrix K the being similar. Formally, the loss £
that being minimized is:

L="Ln(22)+ MNRE K+ 10?5

where ||6]|? is the /5 regularizer, \?, 11, denote the
trade-off coefficient of affinity regularizer and ¢
regularizer.

Matching loss The matching loss £, is learned
by minimizing the cross-entropy loss between the
labels and the predicted results:

IZ]

Z Z zi log 2y, (6)

(X,Y,2)€D k=1

Affinity regularizer The affinity regularizer R,
aims to force the structure affinities respectively
correspond to the parsed syntactic structure and that
of learned from neural network to be similar. Thus
the L, is learned to minimize the KL-divergence
between the learned affinity matrix K and parsed
affinity matrix K:

Ra= Y. KL(K|K"), @)
(X,Y)eD

where the parsed affinity matrix K is defined as
follows: the diagonal elements K (ia,ia) will be
1 if the matched words have identical word at-
tribute, otherwise 0. And the off-diagonal element
K (ia, jb) will be 1 if the word pair (x;, ;) and
(Ya, y») have identical word-word relation, other-
wise 0.

4.5 Time complexity of online matching

At the online time, NQAP-SM needs to process
the sentence pairs with PLM, parse them with
NLP parser, solve the QAP and finally calculate
the matching score. The online time complexity
for typical PLM (Devlin et al., 2019; Liu et al.,
2019) and NLP parser (Manning et al., 2014;
Wang et al., 2019¢) is of O(|tx + ty|* x d) and
O((|tx|? + [ty]?) x d), where d is the embedding
dimension of each word.

At the online matching, the time complexity of
the relaxed QAP is related to GCN, which is of

O(Gpml + Gynf?) (Wu et al., 2020) on the asso-
ciation graph, where n = txty is the total number
of nodes, m is the total number of edges, G}, is the
number of layers, and ¢ is the dimension of the node
hidden features. Note that the hyper-parameter
controls the sparsity of the edges (as mentioned in
Section 4.2), we can adjust v so that m < txty
and therefore reduce the time complexity of the
relaxed QAP to O(Gtxty £?), which is more ef-
ficient that the original QAP (Wang et al., 2019a).
Therefore, the total time complexity of NQAP-SM
is O(|tx + ty|> x d + Gjtxtyl?), which is com-
parable with the underlying PLM.

S Experiments

We conducted experiments to verify the ef-
fectiveness of the proposed approach. The
source code and all of the experiments have
been shared at http://github.com/hide_for_

anonymous_review

5.1 Experimental Settings

The experiments were conducted on three large
scale publicly available benchmarks:

Quora Question Pairs (QQP):? a large public
dataset for paraphrase identification. QQP contains
404k labeled sentence pairs. We used the same
data split as in (Wang et al., 2017b). SNLI:* a
well-known dataset for natural language inference
(NLI). SNLI contains 570k labeled sentence pairs.
Following the practices in (Bowman et al., 2015),
we used the same data split way. SciTail:* another
NLI dataset based on science exams and web. Its
label only contains two classes: “entailment” or
“neutral”. The dataset contains 27k sentence pairs.

Several state-of-the-art baselines which con-
ducts the matching without utilizing syntactic
structures were chosen as the baselines, includ-
ing DIIN (Gong et al., 2018), MwAN (Tan et al.,
2018),BIMPM (Wang et al., 2017a), CSRAN (Kim
et al.,, 2019), DecAtt (Parikh et al., 2016),
CAFE (Tay et al., 2018), and DGEM (Khot et al.,
2018), RE2 (Yang et al., 2019), and the BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019).
Some models are task-adopted (e.g. DGEM is for
NLI task), thus they are missing on some datasets.
NQAP-SM was also compared with the baselines

https://www.kaggle.com/c/
quora-question—-pairs

*https://nlp.stanford.edu/projects/
snli

‘http://data.allenai.org/scitail/

~ NQAP-SM-BERT(BASE) 0.908
20907 T BeRT(BASE)
- BERT(LARGE) 0.906

—_— ,.0904
g —~ NQAP-SM-BERT(BASE)

£ 0.902 — BERT(BASE)
8 — BERT(LARGE)

mpl

§ 0.006

per

2 0.005

Time

' 0.004 < 0.900
H
£ 0.003 0898

= 0.896
0.002

3e3% 1.563% 1e-3% Ge-d% Se-d% 2e-4% 3e3% 15e3% 1e-3% 9e-d% Se-d% 2e-4%

Association graph edge sparsity Assaciation araph edae sparsitv
(a) Inference time comparison (b) Matching accuracy comparison

Figure 3: NQAP-SM-BERTpasg’s inference time
(figure (a)) and matching accuracy (figure (b)) curves
w.r.t. the sparsity of the association graph. Experiments
were conducted on SciTail.

that utilize syntactic structures like HIM (Chen
et al., 2017), which uses the constituency tree)to
improve local word representation. TBCNN (Mou
et al., 2016) and ConSeqNet (Wang et al., 2019b)
also adopt syntactic structures to the NLI tasks.

To get the syntactic structures of the inputted
sentences, the Stanford-corenlp (Manning et al.,
2014) was used to parse the syntactic structures.
In all of the experiments, the maximum sentence
length was set to 70 and the sentences with lengths
less than 3 were removed for reducing the noise. In
the training process, all of the models were trained
with the learning rate tuned amongst [le—5, 5e—5].
The batch size was tuned amongst [8, 16, 32|, and
the graph network layer GG, was tuned amongst
[1,3], ,the coefficient @« = 0.8 and the sparsity
threshold tuned amongst [0,0.3] . The trade-off
coefficient of affinity regularizer \,’s were tuned
amongst [4e — 3, 1le — 2].

5.2 Experimental results

Table 1 reports the matching accuracy of the pro-
posed NQAP-SM and the baselines on the three
datasets. The ‘-’ means the number is not avail-
able. The accuracy of baselines is according to
the numbers reported. For our methods, the aver-
aged numbers over 5 runs are reported, with the
standard deviations in parentheses. From the re-
sults, we can see that different versions of the pro-
posed NQAP-SM outperformed all of the baselines.
The results also indicated that though PLM (e.g.
BERT,RoBERT2) achieved SOTA matching accu-
racy, NQAP-SM can still get improvements by in-
corporating the syntactic information.

We also note that NQAP-SM outperformed the
baselines that utilize the syntactic structures for
matching, with a large margin. Comparing NQAP-
SM with these models, we found that these baseline
models all encode the syntactic structures as sen-
tence features to enrich its representations, while
NQAP-SM incorporates the syntactic and seman-

http://github.com/hide_for_anonymous_review
http://github.com/hide_for_anonymous_review
http://github.com/hide_for_anonymous_review
https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://nlp.stanford.edu/projects/snli
https://nlp.stanford.edu/projects/snli
http://data.allenai.org/scitail/

Table 1: Performance comparisons on Quora Question Pairs, SNLI and SciTail. The -=numbers in brackets mean

1-std deviations.

Models without syntactic structures |

QQP:Acc(%) [SNLI:Acc(%) [SciTail:Acc(%)

DGEM (Khot et al., 2018) - - 77.3
DecAtt (Parikh et al., 2016) - 82.5 81.7
CAFE (Tay et al., 2018) - 88.5 83.3
BIMPM (Wang et al., 2017a) 88.7 88.8 854
DIIN (Gong et al., 2018) 89.1 - -
MwAN (Tan et al., 2018) 89.1 - -
CSRAN (Kim et al., 2019) 89.2 88.7 86.7
RE2 (Yang et al., 2019) 89.2 89.0 86.6
BERTgBasEk (Devlin et al., 2019) 89.4 89.0 89.5
BERT L ARGE (Devlin etal., 2019) 89.6 89.2 90.6
RoBERTa; 4 rgk (Liu et al., 2019) 90.0 90.1 91.5
Models with syntactic structures QQP:Acc(%) | SNLI:Acc(%) | SciTail:Acc(%)
TBCNN (Mou et al., 2016) - 83.5 -
ConSeqNet (Wang et al., 2019b) - - 85.2
HIM (Chen et al., 2017) 88.7 88.6 71.6
Ours(NQAP-SM-BERT 5 45) 90.5 (+£0.14) | 90.0 (+0.16) 90.8 (+0.26)
Ours(NQAP-SM-BERT 1, s rcE) 90.8 (+0.08) | 90.2 (£0.03) 91.9 (+0.24)
Ours(NQAP-SM-RoBERTa; srcr) | 91.2 (£0.1) 90.9 (4+0.08) 93.3 (£0.2)

tic information through a relaxed QAP. The results
clearly demonstrated that the QAP is more effective
to utilize syntactic and semantic matching signals.

We also investigated the online time complexity
of NQAP-SM. Figure 3 reports the impacts of asso-
ciation graph sparsity on NQAP-SM-BERT pasE
on the Scitail test-set, where the sparsity (calcu-
lated as the fraction of edge number and square
of node number in association graph) is from
[2e — 4%, 3e — 3%)]. The sparsity was adjusted
through changing the hyper-parameters .

Figure 3(a) illustrates that the inference time of
NQAP-SM will decrease with the increasing of the
association graph sparsity. Moreover, the inference
time of NQAP-SM-BERT g 45 1s about 2.5 times
to that of the underlying PLM, and about 0.7 times
to that of BERT 4rcr. The results verified the
time complexity analysis conclusion in Section 4.5.

Figure 3(b) shows the accuracy curves of NQAP-
SM, which first increases in [9e — 4%, 3e — 3%
and then dropped. We conclude that even as-
sociation graph became sparse, NQAP-SM still
constantly outperformed BERT 5 455 and outper-
formed BERT 1 osrcE at some point. The results
clearly demonstrated that the QAP is efficient and
will not delay the online matching time.

5.3 Empirical Analysis
We conducted experiments to analyze NQAP-SM.

5.3.1 Ablation Study

Firstly, we respectively set the WAS(POS) features
UX, UY, WRS(syntactic dependencies) features
LX, LY and semantic features v,, FX, FY to zero
vectors, to investigate their effects. Table 2 reports

Table 2: Ablation study on SciTail test set.

Ablation Study Model Acc(%)

BERT g a5k (Devlin et al., 2019) 89.5 (4+0.28)
NQAP-SM-w/o semantic and WRS | 68.1 (4+0.29)
NQAP-SM-w/o semantic and WAS | 67.8 (40.28)
NQAP-SM-w/o semantic 68.5 (£0.26)
NQAP-SM-w/o WAS 90.2 (£0.27)
NQAP-SM-w/o WRS 90.4 (£0.28)
NQAP-SM 90.8 (+0.26)

Table 3: Ablation study for different syntactic structure
on SciTail test set.

Ablation Study Model [Acc(%)

BERT g ase (Devlin et al., 2019) 89.5 (£0.28)
NQAP-SM NER&Syntactic dependencies | 90.4 (£0.25)
NQAP-SM NER&Semantic dependencies | 90.2 (£0.17)
NQAP-SM POS&Syntactic dependencies | 90.8 (+0.26)
NQAP-SM POS&Semantic dependencies | 90.6 (£0.21)

the accuracy of the NQAP-SM variation on the
SciTail test data under BERT g 45, where each
variation is denoted as, for example, “NQAP-SM-
w/o WRS” which means the WRS features were
set zeros. Similar phenomenons have also been
observed on the other two datasets of QQP and
SNLI, with other PLMs.

Compared NQAP-SM-BERT g 4 g with its vari-
ations, we can see that the matching performances
dropped with large margins if the semantic features
were set as zeros, indicating that only considering
the syntactic structures did not work well. We also
observed
when the WAS and WRS features were set to zeros.
The bad performances were caused by removing
the WAS and WRS features, indicating that using
different types of syntactic structures is reasonable
and effective for sentence matching.

Figure 4: Cross sentence word-word similarity matrix and syntactic affinity matrices for two pairs : example 1(“we

book a passenger ticket”,“they read an animal book™)

We conduct the experiments with different WAS
and WRS. Specifically, we respectively utilize the
POS and named-entity(NE) as WAS and respec-
tively utilize the syntactic dependencies and se-
mantic dependencies as WRS. For semantic depen-
dencies parsing, we follows Wang et al. (2019c).
Table 3 also reports the accuracy of the NQAP-SM-
BERT g 45E variation on the SciTail test data.

Compared to the original version of NQAP-SM
with its variations, we can see that the matching ac-
curacy is different for different WAS and WRS.
The best and worst performance are caused by
POS&syntactic dependencies and NER&Semantic
dependencies, respectively. However, we can ob-
serve that all of these variations out-perform the
BERT baseline, which indicates the effectiveness
of NQAP-SM in different WAS and WRS.

Moreover, an experiment on the robustness
of NQAP-SM’s parameters can be found in Ap-
pendix C.

5.3.2 Matching Visualization of NQAP-SM

We conducted experiments to investigate the how
the NQAP-SM matched two sentences, using two
representative example sentence pairs from the
aforementioned example in Figure 1 and a real ex-
ample from Scitail. The experiment was conducted
based on the results of NQAP-SM-RoBERTa.
Figure 4(a) illustrated the word-word similar-
ity matrix of these two sentences, based on the
word embeddings outputted by ROBERTa, where
the darker colors denote the higher similarities. Fig-
ure 4(b) illustrated the affinities between POS and
dependencies in two sentences. Based on the simi-
larities and affinity matrices, NQAP-SM solved the
QAP and achieved a new correspondence matrix in
Figure 4(c). The POS, word semantic similarities
and dependencies affinities correspond to the node
weights and edge weights in the association graph.
Example 1 illustrates the sentence pair with the
similar syntax but different semantic meanings.

Comparing word-word similarities by ROBERTa
(Figure 4(a)) and that of by NQAP-SM (Fig-
ure 4(c)), we can see that ROBERTa’s results show
low similarities between words of two sentences.
On other hand, NQAP-SM has the ability to align
the right words because they have higher affinities
(i.e. lower assignment cost). For example, bi-gram
“we book” can be assigned to “they read” since they
both share same POS “PR,NN” and dependencies
“nsubj” shown in Figure 4(b). However, NQAM-
SM will still output the “dissimilar” result due to
its original low total assignment cost.

Appendix D gives another example that illus-
trates the sentence pair with similar semantics but
different syntax.

The analysis clearly showed that NQAP-SM can
utilize both the syntactic structures and semantic
similarities, and make them into good interaction.
Only if the sentence pair share similar syntactic
and semantic information, they will be predicted
as matched. The results also showed how two sen-
tences were matched with the refined word-word
similarities with the association graph.

6 Conclusion

In this paper, we present a novel sentence matching
model which incorporates both syntactic and se-
mantic matching information, referred to as NQAP-
SM. NQAP-SM explicitly models the relations be-
tween syntactic and semantic information: they are
used to derive association graphs. The matching of
two sentences, therefore, is formalized as the opti-
mal flow of the word correspondence over the as-
sociation graphs and is solved by QAP. NQAP-SM
offers several advantages: explicitly modeling the
relations between syntactic and semantic matching
signals, interacting both semantics and syntactic
structures, and the ability in interpretation. Experi-
mental results based on the three large-scale avail-
able benchmarks also confirmed the effectiveness,
robustness, and interpretability of NQAP-SM.

References

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on EMNLP,
pages 632-642.

Haolan Chen, Fred X. Han, Di Niu, Dong Liu, Kunfeng
Lai, Chenglin Wu, and Yu Xu. 2018. MIX: multi-
channel information crossing for text matching. In
Proceedings of the 24th International Conference on

KDD, pages 110-119.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics, pages 1657-1668.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Enhancing and combining sequen-
tial and tree Istm for natural language inference.
arXiv preprint arXiv:1609.06038.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. 2010.
Reweighted random walks for graph matching. In

European conference on Computer vision, pages
492-505. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 4171-4186.

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xi-
aodong He, and Li Deng. 2014. Modeling inter-
estingness with deep neural networks. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 2—13.

Yichen Gong, Heng Luo, and Jian Zhang. 2018. Nat-
ural language inference over interaction space. In
6th International Conference on Learning Represen-
tations, ICLR, Conference Track Proceedings.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. Semantic matching by non-linear word
transportation for information retrieval. In Proceed-
ings of the 25th ACM International on Conference
on Information and Knowledge Management, pages
701-710.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network architec-
tures for matching natural language sentences. In
Advances in Neural Information Processing Systems
27, pages 2042-2050.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry P. Heck. 2013. Learning
deep structured semantic models for web search us-
ing clickthrough data. In 22nd ACM International

Conference on Information and Knowledge Manage-

ment, CIKM’13, pages 2333-2338.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
pages 5189-5197.

Seonhoon Kim, Inho Kang, and Nojun Kwak.
2019. Semantic sentence matching with densely-
connected recurrent and co-attentive information. In
The Thirty-Third AAAI Conference on Artificial In-
telligence, pages 6586-6593.

Tjalling C Koopmans and Martin Beckmann. 1957. As-
signment problems and the location of economic ac-
tivities. Econometrica: journal of the Econometric
Society, pages 53-76.

Eugene L Lawler. 1963. The quadratic assignment
problem. Management science, pages 586-599.

Marius Leordeanu, Rahul Sukthankar, and Martial
Hebert. 2012. Unsupervised learning for graph
matching. International journal of computer vision,
pages 28-45.

Marius Leordeanu, Andrei Zanfir, and Cristian Smin-
chisescu. 2011. Semi-supervised learning and opti-
mization for hypergraph matching. In 2011 Interna-
tional Conference on Computer Vision, pages 2274—
2281.

Hang Li and Jun Xu. 2014. Semantic matching in
search. Foundations and Trends in Information Re-
trieval, pages 343-469.

Yang Liu, Matt Gardner, and Mirella Lapata. 2018.
Structured alignment networks for matching sen-
tences. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1554-1564.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Eliane Maria Loiola, Nair Maria Maia de Abreu,
Paulo Oswaldo Boaventura-Netto, Peter Hahn, and
Tania Querido. 2007. A survey for the quadratic as-
signment problem. European journal of operational
research, pages 657-690.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55-60.

Bhaskar Mitra, Fernando Diaz, and Nick Craswell.
2017. Learning to match using local and distributed

representations of text for web search. In Proceed-
ings of the 26th International Conference on World
Wide Web, pages 1291-1299.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan,
and Zhi Jin. 2016. Natural language inference by
tree-based convolution and heuristic matching. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, pages 130—
136.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengx-
ian Wan, and Xueqi Cheng. 2016. Text matching as
image recognition. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, pages
2793-2799.

Ankur Parikh, Oscar Téckstrom, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on EMNLP, pages
2249-2255.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. 2014. Learning semantic rep-
resentations using convolutional neural networks for
web search. In Proceedings of the 23rd international
conference on WWW, pages 373-374.

Chuangi Tan, Furu Wei, Wenhui Wang, Weifeng Lv,
and Ming Zhou. 2018. Multiway attention networks
for modeling sentence pairs. In Proceedings of the
27th International Joint Conference on Artificial In-
telligence, pages 4411-4417.

Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018.
Compare, compress and propagate: Enhancing neu-
ral architectures with alignment factorization for nat-
ural language inference. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1565-1575.

Runzhong Wang, Junchi Yan, and Xiaokang Yang.
2019a. Learning combinatorial embedding net-
works for deep graph matching. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 3056-3065.

Runzhong Wang, Junchi Yan, and Xiaokang Yang.
2021. Neural graph matching network: Learning
lawler’s quadratic assignment problem with exten-
sion to hypergraph and multiple-graph matching.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Xiaoyan Wang, Pavan Kapanipathi, Ryan Musa,
Mo Yu, Kartik Talamadupula, Ibrahim Abdelaziz,
Maria Chang, Achille Fokoue, Bassem Makni,
Nicholas Mattei, et al. 2019b. Improving natural lan-
guage inference using external knowledge in the sci-
ence questions domain. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 7208—
7215.

10

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019c.
Second-order semantic dependency parsing with
end-to-end neural networks. In Proceedings of the
57th Annual Meeting of the ACL, pages 4609-4618.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017a.
Bilateral multi-perspective matching for natural lan-
guage sentences. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-

gence, pages 4144—4150.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017b.
Bilateral multi-perspective matching for natural lan-
guage sentences. In Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, pages 4144-4150.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. 2020. A
comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning
systems.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan
Liu, and Russell Power. 2017. End-to-end neural ad-
hoc ranking with kernel pooling. In Proceedings of
the 40th International Conference on Research and
Development in Information Retrieval, pages 55-64.

Jun Xu, Xiangnan He, and Hang Li. 2020. Deep
learning for matching in search and recommenda-
tion. Foundations and Trends in Information Re-
trieval, pages 102-288.

Rungi Yang, Jianhai Zhang, Xing Gao, Feng Ji, and
Haiqing Chen. 2019. Simple and effective text
matching with richer alignment features. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4699—
4709.

Andrei Zanfir and Cristian Sminchisescu. 2018. Deep
learning of graph matching. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 2684-2693.

Feng Zhou and Fernando De la Torre. 2015. Factorized
graph matching. IEEE transactions on pattern anal-
ysis and machine intelligence, pages 1774—1789.

Appendix

A A example for creating association graph

Figure 5 gives an illustrative example of creating an
association graph for a sentence pair X =“Mary
likes flour food” (length | X| = 4) and Y =“Mary
loves noodles” (length |Y'| = 3), using the parsed
POS tags and syntactic dependencies shown in Fig-
ure 5(a) which are represented as the node and edge
weights, respectively.

Specifically, the POS tags, dependencies, and
word-word similarities can be converted to the as-
sociation graph (Figure 5(c)) which consists of
|X| x |[Y] = 12 nodes and the set of nodes
{(z,y)|z € X,y € Y}, each corresponds to a
cross-sentence word-word pair sentence X and Y,
respectively. The graph can also be represented
with a weighted adjacency matrix, denoted as the
affinity matrix K, as shown in Figure 5(b). The
weights of nodes and edges in the graph are corre-
sponding to the diagonal and off-diagonal elements
in the affinity matrix (Figure 5(b)), respectively.

The weights of nodes and edges in the graph
are corresponding to the diagonal and off-diagonal
elements in the affinity matrix (Figure 5(b)), re-
spectively. Specifically, the weights of node de-
scribe the word semantic similarities and POS
(word attribute) affinities, and the weights of
edges describe the syntactic dependency (word-
word relation) affinities. For example, the node
z1y1 =(“Mary”,“Mary”’) could have the weight of,
for example, 1.0 + 1.0 = 2.0 where the first 1.0
denoting the semantic similarity, and the second
1.0 denoting the similarity between the POS tags.

another example is the self-loop edge to the
node xoyo =(“likes”,“loves”) whose weight is the
semantic similarity of “likes” and “loves” plus 1
(zo =“likes” and y2 =“loves” have identical POS
tag “VB”).

As an example for the edges corresponding to the
off-diagonal elements in affinity matrix K, there
could be an edge with weight, for example, 1.0
between node x1y; =(“Mary”,“Mary’’) and node
xoys =(“likes”,“loves”) because the dependency
relation between 1 =“Mary” and z9 =“likes” is
“nsubj”’, while the dependency relation between
y1 ="Mary” and yo =“loves” is also “nsubj”. Sim-
ilarly, the other edges can also be created.

Finally, the association graph corresponds to
POS, syntactic dependency and word-word similar-
ity are created. The graph can also be represented

11

with an adjacency matrix, denoted as the affinity
matrix K, as shown in Figure 5(c).

B An intuitive example on affinity matrix
factorization

Figure 6 gives a working example of factorizing
the affinity matrix K! € Rixiv*ix!y in Equa-
tion (2) (Zhou and De la Torre, 2015):

K! = diag(vec(P))+(I* @xIY)diag(vec(R))(HX @ HY)7

with the aforementioned example sentence pair:
(“Mary likes flour food”, “Mary love noodles™).
As shown in Figure 6(a), the words, POS and syn-
tactic dependencies are represented in the nodes
and edges, respectively.

The diagonal and off-diagonal elements in the
affinity matrix (Figure 6(d)) represent the affinity of
sentence linear structures and quadratic structures,
respectively. According to Zhou and De la Torre
(2015), the affinity matrix K’ can be factorized
into six matrices P, R, IX, IV, HX HY (shown in
Figure 6(b,c)) and defined in Section 4.1 and Sec-
tion 4.2. Detailed explanations can be found Ta-
ble 4.

C Robustness of NQAP-SM

NQAP-SM has a set of important hyper-parameters
Aq Which trade-off the affinity regularizer R, and
matching loss £,,,. We conducted experiments on
the Scitail test set with BERT g 45 as the encoder
to test the sensitivity of these hyper-parameters.
Figure 7 illustrates the performance changes w.r.t.
Ag in terms of accuracy and Fi, where)\, €
[3e — 3,1.1e — 2]. We can see that NQAP-SM
performed best when)\, ~ 8¢ — 3. However, the
performance changes were not severe (from 90.6%
to 90.8% in terms of accuracy). We conclude that
(1) the introduction of the affinity regularizer en-
ables NQAP-SM to have some tolerances to the
errors caused by the NLP parser, which inevitably
occurs in real-world applications; (2) NQAP-SM
is robust and not sensitive to the \,.

D Another Example for Matching
Visualization

Example 2 illustrates the example that is from the
Sctail training set: (X = “this gas is oxygen”,
Y =*“oxygen gas is given off by plants”) whose
ground truth label is “neutral”. The example illus-
trates the sentence pair with similar semantics but

XY X, Ka¥s XYy Xabs Kol X¥i Yol Xa¥s Ke¥i Xelo Koy

R xn[2[o[o[o[t[o o oo [0o][0]0
xelo o2l o1 oo oofolo]o]0

w0 [o[talo o o o000

- xx[o 1o oz[o oo [0o[o[o0]0
=+ SSsim(fsubj, nsubj) xe[14 o [o o 1o oo oo 0|01

obj | t*msub) e[o[o[oo ofoz[ofolo 0|10

w0 o a0 oo oz[ofo]o]o]0

obj wefoflofofwfofofofoz[o]o]o]o

e[o[oo oS o o ofis[o]o]0

w0 [0 oo o o[o]o]12[0]0

Sentence X Sentence Y xloflofojo of1Taf[o]|0o o o2fo
wn[o [0 o o[t o[o[w 00015

(a) Sentence matching

(b) affinity matrix K o

~ -

(¢) association graph G

Figure 5: Example of converting the matching of a pair of sentences with syntactic structures (a) to the correspond-

ing affinity matrix K (b) or association graph G (c).

NN VB NN Mary loves food
NN o Mary[1 [02 [03
VBlo i) o e ke[02 [09 [03
NNl oo ft 03 | 02 | 06
flour & & &
NLL o T food | 02 | 02 | 05
P T T
— _ WAS Similarities: Ux/lu(Uy) Embedding Similarities: FXA[(FV)
Y, Y, Y3
Xy 2 0.2 13
X,| 02 1.9 03 | b
Y3 X3| 03 0.2 1.6
Xy 12 0.2 1.5
(b) Linear Structure
diagonal
elements qT: X1 Y3 oV KoYz KoV XaVi Xa¥s X3V Xa¥i XeYs XeYs
xnfMdo [ofof1{ofofofofof[o]o
: Mary (71 0 0 l 0 w002t f1ofofolofofofo]o
: likes [1|1 | o Mary RN
¢ output " anf o | ovJaapo o fofojofofofo]o
link flour | 0 0 1 loves | 11 nsubj obj w0 [T [0JoaTs oo o oo o0
food 0 1 1 noodles 0 1 nsubj| 1 0 |i _Ixn,v: 1lo|ofweftofajo|ofofjo|of1
x Iz P etements %5/ 0 [0 oo e fosfafofofof1]o
nsubj obj compound nsubj obj obj | 0 1 iy [o o[oo o [aJos[afofololo
.

Mary| | 0 0 Mary [71 0 compound| 0 0 &elofofofofo|ofwfo2 fo|o]|o
input jikes 1 1 0 Joves | 1 1 xufofojojolofofo|wftefo |00
link R xr [0 0 ofo]o]ofo]o]|ofi2]so] 0

flour| 0 0 1 noodles| 0 1 x‘y‘ > >

food| 0 1 1 P wlo[ofofolofatfofo]o]olozfo
: HX : xrloo|ofo|1]{ofo|o|o]o| o4y

(¢) Quadratic Structure

(d) Learned Affinity Matrix K!

Figure 6: A working example of factorized affinity matrix &' with aforementioned example (“Mary likes flour
food”, “Mary loves noodles”). The affinity matrix can be factorized into six matrices: P, R, IX, IV HX HY

—accuracy —F1 score
90.85

92.44
2.8 = 92.42

I J N 924 o

90.75 s . =

& 90.75 = N 92.38 g

2 o7 , . 9236 &

> B ,' < 9234 E
® 90.65 - 92.32
2.6 92.3
92.28
90.55 92.26
9.5 92.24
3.0E-03 4.0E-03 5.0E-03 6.0E-03 7.0E-03 S$.0E-03 9.0E-03 1.0E-02 L.IE-02 la

Figure 7: Accuracy and F} curves of NQAP-SM-
BERT g asE w.rt. A\, (trade-off coefficient for affinity
regularizer) on the Scitail test set.

different syntax. In Figure 8(a), we can see that
the sentence pair in example 2 has high semantic
similarities. However, we can see their syntac-
tic structures are very different in Figure 8(b) and
these high semantic words will have high assign-
ment costs. For example, the dependencies “nsubj”
of “gas oxygen” in X is different from the depen-
dencies “compound” of “gas oxygen” in Y and

12

the bi-gram will not be aligned in NQAP-SM. Fi-
nally, we can see NQAP-SM aligns a few words of
X, Y in Figure 8(c) and it will generate a low total
assignment cost.

Table 4: The working example of constructing P, R, IX, 1Y HX HY

Matrix | Formulation

Intuitive explanation with the example

P P=(1-a)USAu(UN)T+aFXA;(F")T, where | The element P(1, 1) (corresponding to “Mary” in X
U¥A.(UY)T denotes the similarity matrix based on | and “Mary” in Y in the example) is calculated as
the POS tags, and FX A s (F¥)” denotes the similarity | @ - 1.0 + (1 — @) - 1.0 where the first 1.0 denoting
matrix based on the word embeddings. the semantic similarity of (“Mary”,“Mary”) based on

their word embeddings; and the second 1.0 denoting
their syntactic similarity according to their POS tags
(“NN”,“NN”), and @ € [0, 1] is the trade-off coeffi-
cient.

R R=L%A,LY" The element R(1, 1) (corresponding to the edge “loves

-> Mary” in X and the edge “likes -> Mary” in Y
in the example) in the example has the value of 1.0
because their syntactic dependency types are identical
(“nsubj”).
I, B | I7(, k) = HY(5, k) = [Both I¥(2,1) and H¥(1,1) correspond to the
1 if k-th edge links wordz;to wordx ; edge “likes->Mary” in sentence X. I¥(2,1) =
0 otherwise, H™(1,1) = 1 because the edge type is “nsubj” link
from second word “likes” (x2) to the first word “Mary”
(x1). Note that in order to reduce the noise from the
dependencies, we also set a reverse edge I* (1,1) =
HY(2,1) = 1.
7, HY [IV (k) = HY (5,k) = | Similar to the example for IX , HY .
1 if k-th edge links wordy;to wordy;
0 otherwise,

(a) Ex2. word-word similarity in RoBERTa

(b) Ex2. POS and dependencies affinities in NQAP-SM (c¢) Ex2. word-word crosspondence in ROBERTa

Figure 8: Cross sentence word-word similarity matrix and syntactic affinity matrices for two pairs : example
2(“this gas is oxygen”,“oxygen gas is given off by plants”), which is from Scitail training set. Darker colors means

higher similarities or affinities values.

13

