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Abstract

Studies have shown that both the syntactic001
structures and words’ semantics are impor-002
tant for sentence matching. Existing stud-003
ies usually model the syntactic structures and004
word semantics separately, resulting in match-005
ing models that overlook the relations and de-006
pendencies between syntactic structures and007
semantic meanings. How to jointly model008
the syntactic and semantic information has009
become a challenging problem in sentence010
matching. To address the issue, we formal-011
ize sentence matching as a problem of as-012
signing the word of one sentence to that of013
another sentence, with the costs determined014
by the differences between the correspond-015
ing syntactic structures and word embedding016
similarities. The proposed method, referred017
to as neural quadratic assignment program-018
ming for sentence matching (NQAP-SM), rep-019
resents the syntactic structures and semantic020
matching signals as an association graph. Solv-021
ing the relaxed quadratic assignment program-022
ming (QAP) on this association graph achieves023
the final matching score. Experimental re-024
sults on three public datasets demonstrated025
that NQAP-SM can outperform the state-of-026
the-art baselines in an effective and efficient027
way. The analysis also showed that NQAP-SM028
can match sentences in an interpretable way.029

1 Introduction030

Matching two natural sentences has become a fun-031

damental technique in information retrieval (IR)032

and natural language processing (NLP). Typical033

tasks include relevance ranking, paraphrase identi-034

fication (PI), and natural language inference (NLI),035

etc. Extensive research efforts have been devoted036

to the task (Li and Xu, 2014; Xu et al., 2020). Most037

studies focus on the semantic similarities of the038

words/phrases of the two sentences. A number of039

sentence matching models have been developed, in-040

cluding the representation-based methods (Huang041

et al., 2013; Shen et al., 2014; Gao et al., 2014),042
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Figure 1: A pair (X = “We book a passenger ticket”,
Y =“they read an animal book”). The words and POS
tags are shown in the nodes, and syntactic dependen-
cies are shown as edges.

interaction-based methods (Hu et al., 2014; Pang 043

et al., 2016; Xiong et al., 2017) and their combina- 044

tions (Mitra et al., 2017). 045

Recently, there are studies that utilize the sen- 046

tences’ syntactic structures for matching (Chen 047

et al., 2016, 2017; Liu et al., 2018). Usually, the 048

syntactic structures are firstly encoded as syntactic 049

features and then are concatenated (or summed) 050

with semantic features (Mou et al., 2016; Chen 051

et al., 2018). All these methods were developed 052

with an assumption that “two sentences with similar 053

syntactic structures tend to be semantically similar”. 054

Syntactic features are separately extracted and used 055

as auxiliary information to the semantic features 056

during the matching. In real practices, however, de- 057

pendencies between syntactic and semantic infor- 058

mation can often be observed in sentence matching, 059

which makes the assumption does not always hold. 060

One example is that if two sentences are very dif- 061

ferent in terms of the word semantics, they should 062

not be considered as similar even they have iden- 063

tical syntactic structures. Figure 1 gives an illus- 064

trative example of two sentences “We book a pas- 065

senger ticket” and “they read an animal book” with 066

the ground-truth label “dissimilar”. The parsed 067

syntactic structures, including the POS tags and 068

syntactic dependencies, are represented as nodes 069

and edges in the two graphs, respectively. We can 070

see that their POS tags and syntactic dependency 071

structures are identical: sharing the same POS se- 072
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quence “PR, VB, DT, NN, NN” and identical de-073

pendencies “nsubj, obj, det, compound”. However,074

it is obvious that they are dissimilar sentences due075

to their totally different word semantics. We con-076

clude that jointly modeling the words’ semantic077

information and sentences’ syntactic structures is078

vital for enhancing matching accuracy.079

To address the issue, we propose that the match-080

ing of two sentences can be formalized as a prob-081

lem of assigning the words of one sentence to the082

words of the other sentence, where the cost of each083

assignment is determined by the difference between084

the corresponding syntactic structures and the word085

embedding similarities. Intuitively, the more simi-086

lar the syntactic structures and word semantics em-087

bedding of two sentences, the less the assignment088

cost will be spent when matching. The matching089

score, therefore, can be considered as the minimal090

cost of the whole assignment.091

Specifically, we design a neural model, referred092

to as neural quadratic assignment programming093

for sentence matching (NQAP-SM), to solve the094

sentence QAP problem efficiently. At the online095

matching process, firstly, the pre-trained language096

model (PLM) and syntactic parser get the word097

embedding and syntactic structure as initialization098

features. Then we fuse these semantic and syntactic099

features into an associate graph and solve the re-100

laxed Lawler’s quadratic assignment programming101

(QAP) (Cho et al., 2010) on the association graph to102

obtain the minimal assignment results. Finally, the103

matching classifier merges the assignment results104

and semantic vector, resulting in the final match-105

ing score. During the training phase, a regularized106

matching loss is constructed and optimized.107

NQAP-SM formulates the problem of sentence108

matching as a word assignment problem, which of-109

fers several advantages, including better modeling110

the dependency of semantic and syntactic match-111

ing signals, ease in interpretation, and improving112

matching accuracy. The contributions of this paper113

can be summarized as follows:114

• We highlight the dependency between se-115

mantic and syntactic information in sentence116

matching. A novel matching model called117

NQAP-SM is proposed in which the relaxed118

QAP is utilized to conduct the sentence match-119

ing in an accurate, efficient, robust, and inter-120

pretable way.121

• Experimental results based on three publicly122

available benchmarks showed that the match- 123

ing accuracy of NQAP-SM outperformed the 124

state-of-the-art baselines. 125

• Analysis showed that NQAP-SM not only can 126

discriminate the similar semantic forms be- 127

tween sentences but also bridge the syntactic 128

gaps between two sentences. 129

2 Related Work 130

Machine learning models have been widely used 131

for matching natural language sentences (Li and 132

Xu, 2014; Xu et al., 2020). Among them, the rep- 133

resentative methods include DSSM (Huang et al., 134

2013) and its extensions (Wang et al., 2017a; Shen 135

et al., 2014; Gao et al., 2014; Kim et al., 2019; Yang 136

et al., 2019). Representative interaction-based mod- 137

els include ARC-II (Hu et al., 2014), MatchPyra- 138

mid (Pang et al., 2016), etc. Mitra et al. (2017) 139

combined both two kinds of models and improved 140

matching accuracy. Recently, the pre-trained lan- 141

guage model has been adapted to conducting match- 142

ing (Devlin et al., 2019; Liu et al., 2019). These 143

models always focused on the superficial matching 144

signals and ignore the rich NLP knowledge. 145

Recently, there is a trend to utilize rich NLP 146

knowledge to improve sentence matching. For ex- 147

ample, TBCNN (Mou et al., 2016) and HIM (Chen 148

et al., 2017) both utilize the syntactic dependency 149

information to enhance the sentence semantic rep- 150

resentations, see also (Chen et al., 2016; Liu et al., 151

2018). The NLP knowledge-enhanced matching 152

models have also adapted to the interaction-based 153

models. For example, MIX (Chen et al., 2018) uti- 154

lizes POS and named-entity tags as prior matching 155

signals. However, these models often separately 156

encode the syntactic information as external fea- 157

tures, overlooking the relation between semantic 158

and syntactic information. 159

Transportation problem has also been adopted 160

in sentence matching (Guo et al., 2016). In a 161

transportation problem, quadratic assignment pro- 162

gramming (QAP) (Cho et al., 2010) has a wide 163

application in Graph Matching (GM). The affin- 164

ity function in QAP can be learned with the man- 165

ners of unsupervised (Leordeanu et al., 2012), 166

semi-supervised (Leordeanu et al., 2011), or super- 167

vised (Loiola et al., 2007). Recently, deep graph 168

matching has been applied for GM on images (Zan- 169

fir and Sminchisescu, 2018; Wang et al., 2021) and 170

the matching accuracy has been achieved. 171
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3 Problem Formulation172

3.1 Sentence matching173

The matching of a pair of natural language sen-174

tences can be formally described as follows: sup-175

pose thatZ is the set of labels which is defined by a176

specific matching task. In the PI tasks, Z = {0, 1},177

where ‘0’ and ‘1’ respectively denote the relation-178

ship of “dissimilar” and “similar”; in natural lan-179

guage inference (NLI) Z = {0, 1, 2}, where 0,180

1, 2 respectively indicate “contradiction”, “neu-181

tral”, and “entailment”. A set of training instances182

D = {(Xi, Yi, zi)}Ni=1 is given where each sample183

(X,Y, z) ∈ D consists of a sentence pair (X,Y )184

and its ground-truth matching label z. Moreover,185

the X,Y are two sequences of words: X =186

{x1, x2, · · · , xtX} and Y = {y1, y2, · · · , ytY },187

where the xi and yj denote the i-th and j-th words188

in X and Y , tX and tY are the number of words189

(lengths) of X and Y , respectively.190

3.2 Formulating sentence matching with QAP191

Quadratic assignment programming (QAP) is192

a type of combinatorial optimization prob-193

lems (Loiola et al., 2007), originally designed for194

the facilities-location problems.195

This paper proposes to adopt QAP for conduct-196

ing sentence matching, by regarding the words in197

one sentence as the “facilities” and words in an-198

other sentence as the “locations”, and their differ-199

ences in syntactic structures and semantics as the200

“assignment costs”. In this way, QAP enables the201

matching model to involve not only the linear syn-202

tactic structure (e.g. word attribute structure) costs203

which correspond to assigning the “facilities” to204

the certain “locations”, but also the quadratic syn-205

tactic structures (e.g. word-word relation structure)206

costs which correspond the affinities between the207

assigning “facilities” and “locations”.208

When applying QAP, two main characteristics209

of sentence matching should be considered: the210

word numbers of two sentences are often different211

and one word from one sentence could align with212

multiple words from another sentence. Therefore,213

we further relax the one-to-one constraint condition214

in Lawler’s QAP (Lawler, 1963)1, which considers215

a relaxed form of QAP:216

max
S

vec(S)TKvec(S), (1)217

1In some literature, QAP also includes other special
forms (Koopmans and Beckmann, 1957). .

matrix which encodes the word-word correspon- 218

dence; vec(S) is S’s column-vectorized notation, 219

and K ∈ RtX tY ×tX tY denotes the syntactic affinity 220

matrix whose diagonal elements encode the word- 221

word embedding similarities and the POS affinities 222

and its off-diagonal elements encode the syntax 223

affinities. The perfect matching is assumed to cor- 224

respond to the highest affinity score. At the same 225

time, the affinity matrix can be converted to the 226

association graph, whose node and edge weights 227

can be regarded as the diagonal and off-diagonal 228

elements of the affinity matrix, respectively. 229

An illustrative example of creating an associ- 230

ation graph for a sentence pair is given in Ap- 231

pendix A. 232

In this way, sentence matching can be formulated 233

as the Lawler’s QAP (as shown in Equation (1)) 234

through the word semantics flow over the associa- 235

tion graph. The sentence matching score, therefore, 236

can be viewed as the highest affinity score when 237

word semantics flow optimally through the associa- 238

tion graph. 239

4 Proposed model: NQAP-SM 240

In this section, we present an efficient implementa- 241

tion of sentence matching with QAP, called neural 242

quadratic assignment programming for sentence 243

matching (NQAP-SM). Figure 2 illustrates the 244

model architecture of NQAP-SM and it can be 245

divided into sentence characteristic initialization, 246

QAP component and matching classifier. The next 247

sections will describe components in details. 248

4.1 Sentence characteristic initialization 249

In this component, the inputted natural language 250

sentence pair (X,Y ) is processed with a pre- 251

trained language model (PLM) and an NLP parser, 252

generating the semantic features and syntactic 253

structures. 254

Semantic features Given a pair (X,Y ), the 255

semantic matching vector (e.g., “[CLS]” vector 256

of BERT), vs ∈ Rd and the words embeddings 257

FX ∈ RtX×d,FY ∈ RtY ×d consists of the seman- 258

tic features: 259

(vs,F
X ,FY ) = PLM(X,Y ; θp), 260

where d denotes the size of the feature vector, PLM 261

could be BERT or other PLM models, and θp de- 262

notes the parameters of PLM. 263

Syntactic structures Generally speaking, there 264
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Figure 2: Architecture of Neural Quadratic Assignment Programming for Sentence Matching.

are two types of structures: the word attribute struc-265

ture (WAS) which reflects the attributes of the word,266

and the word-word relation structure (WRS) which267

defines the relationship between two words.268

The WAS attributes can be further categorized269

and this paper only considers POS attributes. Given270

any sentence X = {x1, · · · , xtX}, the sequence of271

WAS attributes could be
{
ax1 , ax2 , · · · , axtX

}
.272

The WRS attributes can also be further catego-273

rized and this paper considers syntactic dependency.274

Given any sentence X = {x1, · · · , xtX}, the WRS275

parsing results (a dependency parsing graph) can276

be represented as two incidence matrices:277

(IX ,HX) = Parse(X),278

where IX ∈ RtX×eX records the output-links and279

HX ∈ RtX×eX records the in-links, eX denotes280

the edge number of WRS. The elements of these281

two matrices are defined as: if k-th edge links from282

word xi to xj (its type also denoted as ek(xi, xj)),283

IX(i, k) = HX(j, k) = 1, and note that in order to284

reduce the noise from the dependencies, we also set285

IX(j, k) = HX(i, k) = 1. Otherwise, IX(i, k) =286

HX(j, k) = IX(j, k) = HX(i, k) = 0.287

In this paper, we used the Stanford CoreNLP288

parser (Manning et al., 2014) for getting POS, and289

syntactic dependencies. Note that other syntactic290

structures can be also used, such as named-entity291

and semantic dependencies (Wang et al., 2019c).292

4.2 QAP component293

Based on the word embeddings and parsed syn-294

tactic structures, the QAP component first con-295

structs an association graph (affinity matrix) and296

then solves the QAP problem, achieving the permu- 297

tation which represents the word matching between 298

the two sentences. 299

4.2.1 Learned affinity matrix construction 300

Following the practices in (Zhou and De la Torre, 301

2015), the QAP sparse affinity matrix Kl ∈ 302

RtX tY ×tX tY , referred to as the learned affinity ma- 303

trix, can be factorized as 304

Kl = diag(vec(P)) + (IX ⊗K IY )diag(vec(R))(HX ⊗K HY )T ,
(2) 305

where operator diag(·) builds a diagonal matrix 306

from input vector, IX ,HX , IY ,HY are sentences 307

X and Y ’s parsing results, as described in Sec- 308

tion 4.1, ⊗K denotes Kronecker product, and P 309

and R encode the WAS, word embedding similar- 310

ity and WRS similarity matrix, respectively and 311

they are defined as: 312

P = (1− α)UXΛuUY T
+ αFXΛfF

Y T
,R = LXΛrL

Y T , 313

where Λu,Λf ,Λr are learn-able parameters for 314

affinity metric, α is the trade-off coefficient for 315

POS affinities and word-word similarities, and 316

UX ∈ RtX×d,UY ∈ RtY ×d are the WAS se- 317

quence embeddings of X,Y and the edge repre- 318

sentations LX ∈ ReX×d,LY ∈ ReY ×d are built 319

by its edge sequence embeddings. Note that all 320

the aforementioned operations for constructing Kl 321

allow back propagation, and we adopt the GPU 322

implementation provided by (Wang et al., 2019a). 323

Appendix B explanations Equation (2) with an 324

intuitive example. 325

4.2.2 Solving the permutation vector 326

Due to the high compute cost for solving the per- 327

mutation vector through the learned affinity matrix 328
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K l, we adopt the GCN method implemented by329

Wang et al. (2019a) to approximate the QAP prob-330

lem into a linear assignment programming(LAP)331

problem, which can be solved in an efficient way332

for both time and space.333

Specifically, we build the association graph G =334

{v(0),A} with its initial node embedding v(0) and335

its sparse adjacent matrix A from the learned affin-336

ity matrix K l. Then we can apply GCN method to337

updated the node embedding for k-th GCN layer,338

k = 1, 2, · · · , Gk. The key idea is to encode339

the quadratic structure(WRS) to the linear struc-340

ture(WAS). The permutation matrix S can be re-341

garded as the last layer of the node features:342

vec(S) = v(Gk), v(k+1) = AWf(v(k); θk))+v(k),
(3)343

where the f(·) is a MLP projection function at344

the k-th layer is parameterized by θk and the k-345

th layer node embedding of association graph de-346

notes as: v(k) ∈ RtX tY ×`k , with the initial em-347

beddings v(0) ∈ RtX tY ×1 taken from the diago-348

nal elements of K l. The GCN projection matrix349

W ∈ RtX tY ×tX tY comes from the off-diagonal350

elements.351

v(0)(i, a) = Kl(ia, ia), W(ia, jb) = Kl(ia, jb),352

for all i, j ∈ tX , a, b ∈ tY .353

As for the adjacent matrix A, in order to control354

its sparsity, we introduce a hyper-parameter γ to355

generate the sparse adjacent matrix of association356

graph G from the projection matrix W:357

A(ia, jb) =

{
1 if W (ia, jb) ≥ γ
0 otherwise,

358

4.3 Matching classifier359

Given the semantic matching feature vs and QAP360

permutation vector v(Gk), the final matching score361

ẑ can be obtained by the MLP parameterized by362

θm:363

ẑ(X,Y ) = MLP([vs|v(Gk)]; θm). (4)364

where ‘|’ denotes the concatenation operation,365

ẑ(X,Y ) =
[
ẑ1, · · · , ẑ|Z|

]
and ẑk denotes the prob-366

ability of k-th category. The last layer is softmax367

so that the output is a probability distribution.368

4.4 Learning the model parameters369

NQAP-SM has parameters to determine, including370

Θ = {θp, θk,Λu,Λf ,Λr, θm | k = 1, 2, · · · , Gk}.371

In the training phase, given a set of sentence pairs 372

with ground truth labelsD = {(Xi, Yi, zi)}Ni=1, the 373

learning algorithm aims to minimize the matching 374

loss Lm which measures the differences between 375

the prediction ẑ and ground-truth z, regularized by 376

the affinity regularizerR which forces the learned 377

affinity matrix K l and the original parsed affinity 378

matrix K the being similar. Formally, the loss L 379

that being minimized is: 380

L = Lm(ẑ, z) + λaR(K,K l) + µr‖θ‖2, (5) 381

where ‖θ‖2 is the `2 regularizer, λna , µr denote the 382

trade-off coefficient of affinity regularizer and `2 383

regularizer. 384

Matching loss The matching loss Lm is learned 385

by minimizing the cross-entropy loss between the 386

labels and the predicted results: 387

Lm = −
∑

(X,Y,z)∈D

|Z|∑
k=1

zk log ẑk, (6) 388

Affinity regularizer The affinity regularizerRa 389

aims to force the structure affinities respectively 390

correspond to the parsed syntactic structure and that 391

of learned from neural network to be similar. Thus 392

the La is learned to minimize the KL-divergence 393

between the learned affinity matrix K l and parsed 394

affinity matrix K: 395

Ra =
∑

(X,Y )∈D

KL(K||K l), (7) 396

where the parsed affinity matrix K is defined as 397

follows: the diagonal elements K(ia, ia) will be 398

1 if the matched words have identical word at- 399

tribute, otherwise 0. And the off-diagonal element 400

K(ia, jb) will be 1 if the word pair (xi, xj) and 401

(ya, yb) have identical word-word relation, other- 402

wise 0. 403

4.5 Time complexity of online matching 404

At the online time, NQAP-SM needs to process 405

the sentence pairs with PLM, parse them with 406

NLP parser, solve the QAP and finally calculate 407

the matching score. The online time complexity 408

for typical PLM (Devlin et al., 2019; Liu et al., 409

2019) and NLP parser (Manning et al., 2014; 410

Wang et al., 2019c) is of O(|tX + tY |2 × d) and 411

O((|tX |2 + |tY |2)× d), where d is the embedding 412

dimension of each word. 413

At the online matching, the time complexity of 414

the relaxed QAP is related to GCN, which is of 415
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O(Gkm`+Gkn`
2) (Wu et al., 2020) on the asso-416

ciation graph, where n = tXtY is the total number417

of nodes, m is the total number of edges, Gk is the418

number of layers, and ` is the dimension of the node419

hidden features. Note that the hyper-parameter γ420

controls the sparsity of the edges (as mentioned in421

Section 4.2), we can adjust γ so that m � tXtY422

and therefore reduce the time complexity of the423

relaxed QAP to O(GktXtY `
2), which is more ef-424

ficient that the original QAP (Wang et al., 2019a).425

Therefore, the total time complexity of NQAP-SM426

is O(|tX + tY |2 × d+GktXtY `
2), which is com-427

parable with the underlying PLM.428

5 Experiments429

We conducted experiments to verify the ef-430

fectiveness of the proposed approach. The431

source code and all of the experiments have432

been shared at http://github.com/hide_for_433

anonymous_review434

5.1 Experimental Settings435

The experiments were conducted on three large436

scale publicly available benchmarks:437

Quora Question Pairs (QQP):2 a large public438

dataset for paraphrase identification. QQP contains439

404k labeled sentence pairs. We used the same440

data split as in (Wang et al., 2017b). SNLI:3 a441

well-known dataset for natural language inference442

(NLI). SNLI contains 570k labeled sentence pairs.443

Following the practices in (Bowman et al., 2015),444

we used the same data split way. SciTail:4 another445

NLI dataset based on science exams and web. Its446

label only contains two classes: “entailment” or447

“neutral”. The dataset contains 27k sentence pairs.448

Several state-of-the-art baselines which con-449

ducts the matching without utilizing syntactic450

structures were chosen as the baselines, includ-451

ing DIIN (Gong et al., 2018), MwAN (Tan et al.,452

2018),BIMPM (Wang et al., 2017a), CSRAN (Kim453

et al., 2019), DecAtt (Parikh et al., 2016),454

CAFE (Tay et al., 2018), and DGEM (Khot et al.,455

2018), RE2 (Yang et al., 2019), and the BERT (De-456

vlin et al., 2019), RoBERTa (Liu et al., 2019).457

Some models are task-adopted (e.g. DGEM is for458

NLI task), thus they are missing on some datasets.459

NQAP-SM was also compared with the baselines460

2https://www.kaggle.com/c/
quora-question-pairs

3https://nlp.stanford.edu/projects/
snli

4http://data.allenai.org/scitail/

(a) Inference time comparison (b) Matching accuracy comparison

Figure 3: NQAP-SM-BERTBASE’s inference time
(figure (a)) and matching accuracy (figure (b)) curves
w.r.t. the sparsity of the association graph. Experiments
were conducted on SciTail.

that utilize syntactic structures like HIM (Chen 461

et al., 2017), which uses the constituency tree)to 462

improve local word representation. TBCNN (Mou 463

et al., 2016) and ConSeqNet (Wang et al., 2019b) 464

also adopt syntactic structures to the NLI tasks. 465

To get the syntactic structures of the inputted 466

sentences, the Stanford-corenlp (Manning et al., 467

2014) was used to parse the syntactic structures. 468

In all of the experiments, the maximum sentence 469

length was set to 70 and the sentences with lengths 470

less than 3 were removed for reducing the noise. In 471

the training process, all of the models were trained 472

with the learning rate tuned amongst [1e−5, 5e−5]. 473

The batch size was tuned amongst [8, 16, 32], and 474

the graph network layer Gk was tuned amongst 475

[1, 3], ,the coefficient α = 0.8 and the sparsity 476

threshold tuned amongst [0, 0.3] . The trade-off 477

coefficient of affinity regularizer λa’s were tuned 478

amongst [4e− 3, 1e− 2]. 479

5.2 Experimental results 480

Table 1 reports the matching accuracy of the pro- 481

posed NQAP-SM and the baselines on the three 482

datasets. The ‘-’ means the number is not avail- 483

able. The accuracy of baselines is according to 484

the numbers reported. For our methods, the aver- 485

aged numbers over 5 runs are reported, with the 486

standard deviations in parentheses. From the re- 487

sults, we can see that different versions of the pro- 488

posed NQAP-SM outperformed all of the baselines. 489

The results also indicated that though PLM (e.g. 490

BERT,RoBERTa) achieved SOTA matching accu- 491

racy, NQAP-SM can still get improvements by in- 492

corporating the syntactic information. 493

We also note that NQAP-SM outperformed the 494

baselines that utilize the syntactic structures for 495

matching, with a large margin. Comparing NQAP- 496

SM with these models, we found that these baseline 497

models all encode the syntactic structures as sen- 498

tence features to enrich its representations, while 499

NQAP-SM incorporates the syntactic and seman- 500
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Table 1: Performance comparisons on Quora Question Pairs, SNLI and SciTail. The ±numbers in brackets mean
1-std deviations.

Models without syntactic structures QQP:Acc(%) SNLI:Acc(%) SciTail:Acc(%)
DGEM (Khot et al., 2018) - - 77.3
DecAtt (Parikh et al., 2016) - 82.5 81.7
CAFE (Tay et al., 2018) - 88.5 83.3
BIMPM (Wang et al., 2017a) 88.7 88.8 85.4
DIIN (Gong et al., 2018) 89.1 - -
MwAN (Tan et al., 2018) 89.1 - -
CSRAN (Kim et al., 2019) 89.2 88.7 86.7
RE2 (Yang et al., 2019) 89.2 89.0 86.6
BERTBASE (Devlin et al., 2019) 89.4 89.0 89.5
BERTLARGE (Devlin et al., 2019) 89.6 89.2 90.6
RoBERTaLARGE (Liu et al., 2019) 90.0 90.1 91.5
Models with syntactic structures QQP:Acc(%) SNLI:Acc(%) SciTail:Acc(%)
TBCNN (Mou et al., 2016) - 83.5 -
ConSeqNet (Wang et al., 2019b) - - 85.2
HIM (Chen et al., 2017) 88.7 88.6 71.6
Ours(NQAP-SM-BERTBASE) 90.5 (±0.14) 90.0 (±0.16) 90.8 (±0.26)
Ours(NQAP-SM-BERTLARGE) 90.8 (±0.08) 90.2 (±0.03) 91.9 (±0.24)
Ours(NQAP-SM-RoBERTaLARGE) 91.2 (±0.1) 90.9 (±0.08) 93.3 (±0.2)

tic information through a relaxed QAP. The results501

clearly demonstrated that the QAP is more effective502

to utilize syntactic and semantic matching signals.503

We also investigated the online time complexity504

of NQAP-SM. Figure 3 reports the impacts of asso-505

ciation graph sparsity on NQAP-SM-BERTBASE506

on the Scitail test-set, where the sparsity (calcu-507

lated as the fraction of edge number and square508

of node number in association graph) is from509

[2e − 4%, 3e − 3%]. The sparsity was adjusted510

through changing the hyper-parameters γ.511

Figure 3(a) illustrates that the inference time of512

NQAP-SM will decrease with the increasing of the513

association graph sparsity. Moreover, the inference514

time of NQAP-SM-BERTBASE is about 2.5 times515

to that of the underlying PLM, and about 0.7 times516

to that of BERTLARGE . The results verified the517

time complexity analysis conclusion in Section 4.5.518

Figure 3(b) shows the accuracy curves of NQAP-519

SM, which first increases in [9e − 4%, 3e − 3%]520

and then dropped. We conclude that even as-521

sociation graph became sparse, NQAP-SM still522

constantly outperformed BERTBASE and outper-523

formed BERTLARGE at some point. The results524

clearly demonstrated that the QAP is efficient and525

will not delay the online matching time.526

5.3 Empirical Analysis527

We conducted experiments to analyze NQAP-SM.528

5.3.1 Ablation Study529

Firstly, we respectively set the WAS(POS) features530

UX ,UY , WRS(syntactic dependencies) features531

LX ,LY and semantic features vs,F
X ,FY to zero532

vectors, to investigate their effects. Table 2 reports533

Table 2: Ablation study on SciTail test set.

Ablation Study Model Acc(%)
BERTBASE (Devlin et al., 2019) 89.5 (±0.28)
NQAP-SM-w/o semantic and WRS 68.1 (±0.29)
NQAP-SM-w/o semantic and WAS 67.8 (±0.28)
NQAP-SM-w/o semantic 68.5 (±0.26)
NQAP-SM-w/o WAS 90.2 (±0.27)
NQAP-SM-w/o WRS 90.4 (±0.28)
NQAP-SM 90.8 (±0.26)

Table 3: Ablation study for different syntactic structure
on SciTail test set.

Ablation Study Model Acc(%)
BERTBASE (Devlin et al., 2019) 89.5 (±0.28)
NQAP-SM NER&Syntactic dependencies 90.4 (±0.25)
NQAP-SM NER&Semantic dependencies 90.2 (±0.17)
NQAP-SM POS&Syntactic dependencies 90.8 (±0.26)
NQAP-SM POS&Semantic dependencies 90.6 (±0.21)

the accuracy of the NQAP-SM variation on the 534

SciTail test data under BERTBASE , where each 535

variation is denoted as, for example, “NQAP-SM- 536

w/o WRS” which means the WRS features were 537

set zeros. Similar phenomenons have also been 538

observed on the other two datasets of QQP and 539

SNLI, with other PLMs. 540

Compared NQAP-SM-BERTBASE with its vari- 541

ations, we can see that the matching performances 542

dropped with large margins if the semantic features 543

were set as zeros, indicating that only considering 544

the syntactic structures did not work well. We also 545

observed that the matching performances dropped546

when the WAS and WRS features were set to zeros. 547

The bad performances were caused by removing 548

the WAS and WRS features, indicating that using 549

different types of syntactic structures is reasonable 550

and effective for sentence matching. 551
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(a) Ex1. word-word similarity in RoBERTa (b) Ex1. POS and dependencies affinities in NQAP-SM (c) Ex1. word-word crosspondence in RoBERTa

Figure 4: Cross sentence word-word similarity matrix and syntactic affinity matrices for two pairs : example 1(“we
book a passenger ticket”,“they read an animal book”)

We conduct the experiments with different WAS552

and WRS. Specifically, we respectively utilize the553

POS and named-entity(NE) as WAS and respec-554

tively utilize the syntactic dependencies and se-555

mantic dependencies as WRS. For semantic depen-556

dencies parsing, we follows Wang et al. (2019c).557

Table 3 also reports the accuracy of the NQAP-SM-558

BERTBASE variation on the SciTail test data.559

Compared to the original version of NQAP-SM560

with its variations, we can see that the matching ac-561

curacy is different for different WAS and WRS.562

The best and worst performance are caused by563

POS&syntactic dependencies and NER&Semantic564

dependencies, respectively. However, we can ob-565

serve that all of these variations out-perform the566

BERT baseline, which indicates the effectiveness567

of NQAP-SM in different WAS and WRS.568

Moreover, an experiment on the robustness569

of NQAP-SM’s parameters can be found in Ap-570

pendix C.571

5.3.2 Matching Visualization of NQAP-SM572

We conducted experiments to investigate the how573

the NQAP-SM matched two sentences, using two574

representative example sentence pairs from the575

aforementioned example in Figure 1 and a real ex-576

ample from Scitail. The experiment was conducted577

based on the results of NQAP-SM-RoBERTa.578

Figure 4(a) illustrated the word-word similar-579

ity matrix of these two sentences, based on the580

word embeddings outputted by RoBERTa, where581

the darker colors denote the higher similarities. Fig-582

ure 4(b) illustrated the affinities between POS and583

dependencies in two sentences. Based on the simi-584

larities and affinity matrices, NQAP-SM solved the585

QAP and achieved a new correspondence matrix in586

Figure 4(c). The POS, word semantic similarities587

and dependencies affinities correspond to the node588

weights and edge weights in the association graph.589

Example 1 illustrates the sentence pair with the590

similar syntax but different semantic meanings.591

Comparing word-word similarities by RoBERTa 592

(Figure 4(a)) and that of by NQAP-SM (Fig- 593

ure 4(c)), we can see that RoBERTa’s results show 594

low similarities between words of two sentences. 595

On other hand, NQAP-SM has the ability to align 596

the right words because they have higher affinities 597

(i.e. lower assignment cost). For example, bi-gram 598

“we book” can be assigned to “they read” since they 599

both share same POS “PR,NN” and dependencies 600

“nsubj” shown in Figure 4(b). However, NQAM- 601

SM will still output the “dissimilar” result due to 602

its original low total assignment cost. 603

Appendix D gives another example that illus- 604

trates the sentence pair with similar semantics but 605

different syntax. 606

The analysis clearly showed that NQAP-SM can 607

utilize both the syntactic structures and semantic 608

similarities, and make them into good interaction. 609

Only if the sentence pair share similar syntactic 610

and semantic information, they will be predicted 611

as matched. The results also showed how two sen- 612

tences were matched with the refined word-word 613

similarities with the association graph. 614

6 Conclusion 615

In this paper, we present a novel sentence matching 616

model which incorporates both syntactic and se- 617

mantic matching information, referred to as NQAP- 618

SM. NQAP-SM explicitly models the relations be- 619

tween syntactic and semantic information: they are 620

used to derive association graphs. The matching of 621

two sentences, therefore, is formalized as the opti- 622

mal flow of the word correspondence over the as- 623

sociation graphs and is solved by QAP. NQAP-SM 624

offers several advantages: explicitly modeling the 625

relations between syntactic and semantic matching 626

signals, interacting both semantics and syntactic 627

structures, and the ability in interpretation. Experi- 628

mental results based on the three large-scale avail- 629

able benchmarks also confirmed the effectiveness, 630

robustness, and interpretability of NQAP-SM. 631
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Appendix835

A A example for creating association graph836

Figure 5 gives an illustrative example of creating an837

association graph for a sentence pair X =“Mary838

likes flour food” (length |X| = 4) and Y =“Mary839

loves noodles” (length |Y | = 3), using the parsed840

POS tags and syntactic dependencies shown in Fig-841

ure 5(a) which are represented as the node and edge842

weights, respectively.843

Specifically, the POS tags, dependencies, and844

word-word similarities can be converted to the as-845

sociation graph (Figure 5(c)) which consists of846

|X| × |Y | = 12 nodes and the set of nodes847

{(x, y)|x ∈ X, y ∈ Y }, each corresponds to a848

cross-sentence word-word pair sentence X and Y ,849

respectively. The graph can also be represented850

with a weighted adjacency matrix, denoted as the851

affinity matrix K, as shown in Figure 5(b). The852

weights of nodes and edges in the graph are corre-853

sponding to the diagonal and off-diagonal elements854

in the affinity matrix (Figure 5(b)), respectively.855

The weights of nodes and edges in the graph856

are corresponding to the diagonal and off-diagonal857

elements in the affinity matrix (Figure 5(b)), re-858

spectively. Specifically, the weights of node de-859

scribe the word semantic similarities and POS860

(word attribute) affinities, and the weights of861

edges describe the syntactic dependency (word-862

word relation) affinities. For example, the node863

x1y1 =(“Mary”,“Mary”) could have the weight of,864

for example, 1.0 + 1.0 = 2.0 where the first 1.0865

denoting the semantic similarity, and the second866

1.0 denoting the similarity between the POS tags.867

another example is the self-loop edge to the868

node x2y2 =(“likes”,“loves”) whose weight is the869

semantic similarity of “likes” and “loves” plus 1870

(x2 =“likes” and y2 =“loves” have identical POS871

tag “VB”).872

As an example for the edges corresponding to the873

off-diagonal elements in affinity matrix K, there874

could be an edge with weight, for example, 1.0875

between node x1y1 =(“Mary”,“Mary”) and node876

x2y2 =(“likes”,“loves”) because the dependency877

relation between x1 =“Mary” and x2 =“likes” is878

“nsubj”, while the dependency relation between879

y1 =“Mary” and y2 =“loves” is also “nsubj”. Sim-880

ilarly, the other edges can also be created.881

Finally, the association graph corresponds to882

POS, syntactic dependency and word-word similar-883

ity are created. The graph can also be represented884

with an adjacency matrix, denoted as the affinity 885

matrix K, as shown in Figure 5(c). 886

B An intuitive example on affinity matrix 887

factorization 888

Figure 6 gives a working example of factorizing 889

the affinity matrix Kl ∈ RtX tY ×tX tY in Equa- 890

tion (2) (Zhou and De la Torre, 2015): 891

Kl = diag(vec(P))+(IX⊗KIY )diag(vec(R))(HX⊗KHY )T ,892

with the aforementioned example sentence pair: 893

(“Mary likes flour food”, “Mary love noodles”). 894

As shown in Figure 6(a), the words, POS and syn- 895

tactic dependencies are represented in the nodes 896

and edges, respectively. 897

The diagonal and off-diagonal elements in the 898

affinity matrix (Figure 6(d)) represent the affinity of 899

sentence linear structures and quadratic structures, 900

respectively. According to Zhou and De la Torre 901

(2015), the affinity matrix Kl can be factorized 902

into six matrices P,R, IX , IY ,HX ,HY (shown in 903

Figure 6(b,c)) and defined in Section 4.1 and Sec- 904

tion 4.2. Detailed explanations can be found Ta- 905

ble 4. 906

C Robustness of NQAP-SM 907

NQAP-SM has a set of important hyper-parameters 908

λa which trade-off the affinity regularizerRa and 909

matching loss Lm. We conducted experiments on 910

the Scitail test set with BERTBASE as the encoder 911

to test the sensitivity of these hyper-parameters. 912

Figure 7 illustrates the performance changes w.r.t. 913

λa in terms of accuracy and F1, where λa ∈ 914

[3e − 3, 1.1e − 2]. We can see that NQAP-SM 915

performed best when λa ≈ 8e− 3. However, the 916

performance changes were not severe (from 90.6% 917

to 90.8% in terms of accuracy). We conclude that 918

(1) the introduction of the affinity regularizer en- 919

ables NQAP-SM to have some tolerances to the 920

errors caused by the NLP parser, which inevitably 921

occurs in real-world applications; (2) NQAP-SM 922

is robust and not sensitive to the λa. 923

D Another Example for Matching 924

Visualization 925

Example 2 illustrates the example that is from the 926

Sctail training set: (X = “this gas is oxygen”, 927

Y =“oxygen gas is given off by plants”) whose 928

ground truth label is “neutral”. The example illus- 929

trates the sentence pair with similar semantics but 930
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(Mary,
Mary)sim(nsubj, nsubj)

(a) Sentence matching (c) association graph 𝓖𝓖
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Figure 5: Example of converting the matching of a pair of sentences with syntactic structures (a) to the correspond-
ing affinity matrix K (b) or association graph G (c).
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(a) Sentence Pair

1 0.2 0.3
0.2 0.9 0.3
0.3 0.2 0.6
0.2 0.2 0.5𝑿𝑿𝟏𝟏 𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑 𝑿𝑿𝟒𝟒 𝒀𝒀𝟐𝟐
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Figure 6: A working example of factorized affinity matrix Kl with aforementioned example (“Mary likes flour
food”, “Mary loves noodles”). The affinity matrix can be factorized into six matrices: P,R, IX , IY ,HX ,HY
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Figure 7: Accuracy and F1 curves of NQAP-SM-
BERTBASE w.r.t. λa (trade-off coefficient for affinity
regularizer) on the Scitail test set.

different syntax. In Figure 8(a), we can see that931

the sentence pair in example 2 has high semantic932

similarities. However, we can see their syntac-933

tic structures are very different in Figure 8(b) and934

these high semantic words will have high assign-935

ment costs. For example, the dependencies “nsubj”936

of “gas oxygen” in X is different from the depen-937

dencies “compound” of “gas oxygen” in Y and938

the bi-gram will not be aligned in NQAP-SM. Fi- 939

nally, we can see NQAP-SM aligns a few words of 940

X,Y in Figure 8(c) and it will generate a low total 941

assignment cost. 942
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Table 4: The working example of constructing P,R, IX , IY ,HX ,HY

Matrix Formulation Intuitive explanation with the example
P P = (1−α)UXΛu(U

Y )T +αFXΛf (F
Y )T , where

UXΛu(U
Y )T denotes the similarity matrix based on

the POS tags, and FXΛf (F
Y )T denotes the similarity

matrix based on the word embeddings.

The element P(1, 1) (corresponding to “Mary” in X
and “Mary” in Y in the example) is calculated as
α · 1.0 + (1 − α) · 1.0 where the first 1.0 denoting
the semantic similarity of (“Mary”,“Mary”) based on
their word embeddings; and the second 1.0 denoting
their syntactic similarity according to their POS tags
(“NN”,“NN”), and α ∈ [0, 1] is the trade-off coeffi-
cient.

R R = LXΛrL
Y T

The element R(1, 1) (corresponding to the edge “loves
-> Mary” in X and the edge “likes -> Mary” in Y
in the example) in the example has the value of 1.0
because their syntactic dependency types are identical
(“nsubj”).

IX ,HX IX(i, k) = HX(j, k) ={
1 if k-th edge links wordxito wordxj
0 otherwise,

Both IX(2, 1) and HX(1, 1) correspond to the
edge “likes->Mary” in sentence X . IX(2, 1) =
HX(1, 1) = 1 because the edge type is “nsubj” link
from second word “likes” (x2) to the first word “Mary”
(x1). Note that in order to reduce the noise from the
dependencies, we also set a reverse edge IX(1, 1) =
HX(2, 1) = 1.

IY ,HY IY (i, k) = HY (j, k) ={
1 if k-th edge links wordyito wordyj
0 otherwise,

Similar to the example for IX ,HX .

(a) Ex2. word-word similarity in RoBERTa (c) Ex2. word-word crosspondence in RoBERTa(b) Ex2. POS and dependencies affinities in NQAP-SM

Figure 8: Cross sentence word-word similarity matrix and syntactic affinity matrices for two pairs : example
2(“this gas is oxygen”,“oxygen gas is given off by plants”), which is from Scitail training set. Darker colors means
higher similarities or affinities values.
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