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Abstract

We study acquisition functions for active learning (AL) for text classification.
The Expected Loss Reduction (ELR) method focuses on a Bayesian estimate
of the reduction in classification error, recently updated with Mean Objective
Cost of Uncertainty (MOCU). We convert the ELR framework to estimate the
increase in (strictly proper) scores like log probability or negative mean square
error, which we call Bayesian Estimate of Mean Proper Scores (BEMPS2). We
also prove convergence results borrowing techniques used with MOCU. In order
to allow better experimentation with the new acquisition functions, we develop a
complementary batch AL algorithm, which encourages diversity in the vector of
expected changes in scores for unlabelled data. To allow high performance text
classifiers, we combine ensembling and dynamic validation set construction on
pretrained language models. Extensive experimental evaluation then explores how
these different acquisition functions perform. The results show that the use of mean
square error and log probability with BEMPS yields robust acquisition functions,
which consistently outperform the others tested.

1 Introduction

Classification has extensive uses and deep learning has substantially improved its performance, but
a major hurdle for its use is the paucity of labelled or annotated data. The data labelling process
performed by domain experts is expensive and tedious to produce, especially in the medical field,
where due to lack of expertise and privacy issues, annotation costs are time-consuming and expensive
[11]. Active Learning (AL) is an approach to speeding up learning by judiciously selecting data to be
annotated [27]. AL is perhaps the simplest of all human-in-the-loop learning approaches, because the
only interaction is the (expert) human providing a class label, yet for even in the simplest of tasks,
classification, a general theory of AL is not agreed on.

Moreover, in practical situations, one needs to consider many issues when designing an AL system
with deep learning: the expense to retrain deep neural networks and the use of validation data for
training [31], transformer language models [16], batch mode AL with diversity [22], and consideration
of expert capabilities and costs [8, 43]. Also important in experimental work is the need for realistic
labelling sizes, with practitioners we work with saying expert annotation may allow a budget of up to
1000 data points, rarely more. Using large batch sizes (e.g., 1000 in [1, 20]) can thus be impractical.

Our fundamental research contribution is to suggest what makes a good acquisition function for the
uncertainty component, without any batching. While there are many recent methods looking at the
uncertainty diversity trade-off for batch AL [22], few recently have focused on understanding the
uncertainty side alone. A substantial advance is a recent theoretical framework, Mean Objective
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Cost of Uncertainty (MOCU) [42] that provides a convergence proof. As our first contribution,
we convert their expected loss reduction framework to an AL model using strictly proper scoring
rules or Bregman divergences [9] instead of classification errors. MOCU required manipulations
of the expected error, resulting in weighted-MOCU (WMOCU), in order to achieve convergence
and avoid getting stuck in error bands. Strictly proper scoring rules naturally avoid this problem by
generalising expected errors to expected scores. Using strictly proper scoring rules means better
calibrated classifiers are rewarded. The scoring rules go beyond simple minimum errors of WMOCU
and can be adapted to different kinds of inference tasks (e.g., different utilities, precision-recall
trade-offs, etc.). This property is preferable and beneficial for applications such as medical domains
where actual errors become less relevant for an inference task.

In order to evaluate the new acquisition functions we use text classification, which is our target
application domain. For realistic evaluation, we want to use near state of the art systems, which
means using pretrained language models with validation sets [24], and neural network ensembles [13].
Ensembling also doubles as a heuristic technique to yield estimates of model uncertainty and posterior
probabilities. Coming up with a simple approach to combine ensembling and validations sets is our
second research contribution. The importance of these combinations for AL has been noted [40, 25].
For further batch comparisons, we then bring back diversity into the research, suggesting a way to
naturally complement our new family of acquisition functions with a method to achieve diversity,
our third research contribution. Extensive experiments with a comprehensive set of ablation studies
on four text classification datasets show that our BEMPS-based AL model consistently outperforms
recent techniques like WMOCU and BADGE, although we explicitly exclude recent semi-supervised
AL methods because they represent an unfair comparison against strictly supervised learning.

2 Related work

The proposed BEMPS, as a general Bayesian model for acquisition functions, quantifies the model
uncertainty using the theory of (strictly) proper scoring rules for categorical variables [9]. Thus,
we first review existing acquisition functions (aka query strategies) proposed in some recent AL
models that are most related to ours, and refer interested readers to [22] for a comprehensive
discussion of recent strategies. One common and simple heuristic often used is maximum entropy
[45, 44, 34, 7], where one chooses samples that maximise the predictive entropy. Bayesian AL by
disagreement (BALD) [10] and its batch version (i.e., BatchBALD) [12] instead compute the mutual
information between the model predictions and the model parameters, which indeed chooses samples
that maximise the decrease in expected entropy [20]. Recently, inspired by the one-step-look-ahead
strategy of ELR [23], Zhao et al. [42] extended MOCU [39] to WMOCU with a theoretical guarantee
of convergence. But WMOCU only applies to errors which are less relevant for some inference tasks.
BEMPS naturally extends those methods, focusing on Bayesian estimation of uncertainty related to
the model’s expected proper score.

Ensemble methods are used to obtain better uncertainty estimates with deep learning, including Monte-
Carlo dropout (MC-dropout) [6, 12, 21] and deep ensembles [13]. More sophisticated techniques are
being developed, for instance, MCMC, hybrid and deterministic approaches [36, 2]. However, plain
ensembling remains a competitive and simple method for deep learning [2].

Query strategies considering just uncertainty do not always work well in a batch setting, due to
the highly similar samples acquired in a batch [35, 22, 17]. To overcome this problem, there have
been many AL methods that achieve batch diversity by acquiring samples that are both informative
and diverse, such as [19, 38, 14, 1, 40, 43, 29]. BADGE [1] and ALPS [40] are the two recent AL
methods focusing on batch diversity. BADGE uses gradient embeddings of unlabelled samples as
inputs of k-MEANS++ to select a set of diverse samples, which relies on fine-tuning pretrained
language models. Instead of using gradient embeddings, ALPS uses surprisal embeddings computed
from the predictive word probabilities generated by a masked language model for cold-start AL.
Whereas our BEMPS computes for each unlabelled sample a vector of expected change in the proper
scores, relating directly to the performance.

Other recent batch AL approaches, WAAL [30] and VAAL [32] use semi-supervised learning, for
instance WAAL’s models are trained on the feature space obtained with the help of the unlabelled data.
We exclude these methods from our comparison since they are semi-supervised learning algorithms.
Both Core-set [26] and WAAL [30] also set up sophisticated non-Bayesian cost functions using
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bounds to deal with the many unknown probabilities when trying to optimise for a batch, whereas the
Bayesian formula of BEMPS can be directly estimated.

In experimental work, the use of a validation set to train deep learning models in active learning is
not uncommon, the goal of which is to avoid over-fitting and achieve early-stopping. Some existing
methods assume that there is a large validation set available a prior [1, 12, 7], but means the cost of
labelling the set is not factored into the labelling budget. We argue that the availability of a separate
validation set is impractical in real world AL scenarios. Although Yuan et al. [40] use fixed epochs
to train the classifier without a validation set to save the cost, the classifier could either be under-fit
or over-fit. We instead use a dynamic approach to generate alternative validation sets from the ever
increasing labelled pool after each iteration.

3 Bayesian estimate of mean proper scores

We first review the general Bayesian model for acquisition functions that includes ELR, MOCU and
BALD. We then develop Bayesian Estimate of Mean Proper Scores (BEMPS), a new uncertainty
quantification framework with a theoretical foundation based on strictly proper scoring rules [9]. It
naturally extends ELR and BALD, focusing on the Bayesian estimation of uncertainty related to the
models expected performance.

Suppose models of our interest are parameterised by parameters θ ∈ Θ, L indicates labelled data,
probability of label y for data x is given by Pr(y | θ, x), and Pr(· | θ, x) presents a vector of label
probabilities. With a fully conditional model, the posterior of θ is unaffected by unlabelled data,
which means Pr(θ | L,U) = Pr(θ | L) for any unlabelled data U . Moreover, we assume without loss
of generality that this model family is well behaved in a statistical sense, so the model is identifiable.
The “cost" of the posterior Pr(θ | L) can be measured by some functional Q(Pr(θ | L)), denoted
Q(L) for short, whereQ(L) ≥ 0 andQ(L) = 0 when some convergence objective has been achieved.
For our model this is when Pr(θ | L) has converged to a point mass at a single model. A suitable
objective function is to measure the expected decrease in Q(·) due to acquiring the label for a data
point x. The corresponding acquisition function for AL is formulated [10, Equation (1)] as

∆Q(x|L) = Q(L)− EPr(y|L,x)
[
Q(L ∪ {(x, y)})

]
, (1)

whereas for ELR the expression is split over an inequality sign [23, Equation (2)]. It estimates
how much the cost is expected to reduce when a new data point x is acquired. Since the true
label for the new data x is unknown a prior, we have to use expected posterior proportions from
our model, Pr(y | L, x) to estimate the likely label. For BALD [10] using Shannon’s entropy,
QI(L) = I(Pr(θ | L)), which measures uncertainty in the parameter space and thus has no strong
relationship to actual errors [42]. MOCU and ELR use a Bayesian regret given by the expected loss
difference between the optimal Bayesian classifier and the optimal classifier:

QMOCU (L) = EPr(x′)

min
y′

(1− Pr(y′ | L, x′))− EPr(θ|L)

[
min
y′

(1− Pr(y′ | θ, x′))

] . (2)

WMOCU uses a weighting function defined by Eq (11) in [42] to have a more amenable definition
of ∆Q(x|L) than the MOCU method. Although WMOCU guarantees ∆Q(x|L) converging to the
optimal classifier (under minimum errors) according to the Q(L) with the strictly concave function
by Eq (15) in [42], the optimal approximation of the convergences can only be solved by controlling
a hyperparameter of the weighting function manually. To allow theoretical guarantees of convergence
under more general loss functions, we propose a different definition for Q(L) based on strictly proper
scoring rules.

3.1 Strictly Proper Scoring Rules for Active Learning

A scoring rule assesses the quality of probabilistic prediction of categorical variables, and is often
used in training a classification algorithm. For a model Pr(y | θ, x) with input data x and if one
observes label y, the score is given by a function S(Pr(· | θ, x), y). A strictly proper scoring
rule has the behaviour that in the limit of infinite labelled data Ln, as n → ∞, the average score
1
n

∑
(x,y)∈Ln

S(Pr(· | θ, x), y) has a unique maximum for θ at the “true" model (for our identifiable
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model family). The Savage representation [9] states that a strictly proper scoring rule for categorical
variables takes the form S(q(·), y) = G(q(·)) + dG(q(·))(δy − q(·)) for a strictly convex function
G(·) with subgradient dG(·). Note that the expectation of a scoring rule according to the supplied
probability takes a simple form Eq(y)

[
S(q(·), y)

]
=
∑
y q(y)S(q(·), y) = G(q(·)).

With strictly proper scoring rules, we develop a generalised class of acquisition functions built using
the posterior (i.e., w.r.t. Pr(θ | L)) expected difference between the score for the Bayes optimal
classifier and the score for the “true" model. This is inherently Bayesian due to the use of Pr(θ | L).

QS(L) = EPr(x) Pr(θ|L)

[
EPr(y|θ,x)

[
S(Pr(· | θ, x), y)− S(Pr(· | L, x), y)

]]
(3)

= EPr(x) Pr(θ|L)
[
B(Pr(· | L, x),Pr(· | θ, x))

]
(4)

= EPr(x)

[
EPr(θ|L)

[
G(Pr(· | θ, x))

]
−G(Pr(· | L, x))

]
(5)

∆QS(x|L) = EPr(x′)

[
EPr(y|L,x)

[
G(Pr(· | L, (x, y), x′))

]
−G(Pr(· | L, x′))

]
(6)

The QS(L) has three equivalent variations, one for an arbitrary strictly proper scoring rule S(q(·), y)
(Eq (3)), one for a corresponding Bregman divergence B(·, ·) (Eq (4)) and the third for an arbitrary
strictly convex function G(·) (Eq (5)). Their connections are given in [9].

It is noteworthy that the acquisition function ∆QS(x|L) defined in Eq (6) is in a general form,
applicable to any strictly proper scoring function for categorical variables. For instance, using a
logarithmic scoring rule, popular for deep neural networks, we have Slog(q(·), y) = log q(y) and
Glog(q(·)) = −I(q(·)). Using the squared error scoring rule, known as a Brier score, we have

SMSE(q(·), y) = −
∑
ŷ

(
q(ŷ)− 1y=ŷ

)2
and GMSE(q(·)) =

∑
y q(y)2 − 1. Combining these G(·)

functions with Equation (6) yields two acquisition functions for the different scoring rules. These, as
well as the corresponding for BALD have some elegant properties, with proofs given in Appendix A.
Lemma 1 (Properties of scoring). In the context of a fully conditional classification model
Pr(y | θ, x), the QI(L), QS(L), ∆QI(x|L), ∆QS(x|L) as defined above are all non-negative.

Moreover, they guarantee learning will converge to the “truth".
Theorem 1 (Convergence of active learning). We have a fully conditional classification model
Pr(y | θ, x), for θ ∈ Θ with finite discrete classes y and input features x. Moreover, there is a
unique “true" model parameter θr with which the data is generated, the prior distribution p(θ)
satisfies p(θr) > 0, and the model is identifiable. Then for the AL algorithm defined by the acquisition
functions defined above of ∆QI(x|L) or ∆QS(x|L) after being applied for n steps gives labelled
data Ln, then limn→∞∆QI(x|Ln) = 0 and likewise for QS(·). Moreover, limn→∞ Pr(θ | Ln) is a
delta function at θ = θr for data acquired by both ∆QI(x|L) or ∆QS(x|L).

Finiteness and discreteness of x is used to adapt results from [42] to show for all x that ∆Q(x|Ln)→
0 as n → ∞, not an issue since real data is always finite. Interestingly ∆QI(x|L), i.e., BALD,
achieves convergence too, which occurs because the model is identifiable and fully conditional,
during AL we are free to choose x values that would distinguish different parameter values θ. Full
conditionality also supports BEMPS because it means any inherent bias in the AL selection is nullified
with the use of the data distribution Pr(x). But it also means that the theory has not been shown to
hold for semi-supervised learning algorithms, where full conditionality does not apply.

Compared with BALD, MOCU and WMOCU, the advantage of using strictly proper scoring rules in
BEMPS is that they generalise expected errors to expected scores, which can be tailored for different
inference tasks. BALD uses mutual information to score samples based on how their labels could
inform the true model parameter distribution, which will be problematic if the uncertainty of model
parameters has a reduced relationship to the classification performance. This is reflected by its poor
performance in our experiments. MOCU however has convergence issues as ELR, as pointed out by
Zhao et al. [42]. Even though WMOCU can overcome the convergence issues, it is limited to the
minimisation of expected errors.

In contrast, measuring the quality of predictive distributions via rewarding calibrated predictive
distributions, scoring rules are in favour of adaptability. For instance, scoring rules can be developed
[9] for some different inference tasks, including Brier score, logarithmic score, etc. Many loss

4



Algorithm 1 Estimating point-wise ∆Q(x|L, x′)
with Equation (6)

Require: unlabelled data point x, existing labelled data
L, estimation point x′

Require: model/network ensemble ΘE = {θ1, ..., θE}
built from labelled data L,

Require: strictly convex function G(·) taking as input
a probability density over y

1: Q = 0

2: qx(·) =
∑
θ∈ΘE Pr(θ | L)) Pr(· | θ, x)

3: for y do
4: q(·) =

∑
θ∈ΘE Pr(θ | L, (x, y)) Pr(· | θ, x′)

5: Q += qx(y)G(q(·))

6: q(·) =
∑
θ∈ΘE Pr(θ | L) Pr(· | θ, x′)

7: Q −= G(q(·))
8: return Q

Algorithm 2 Estimate of argmaxx∈U ∆Q(x|L)

Require: unlabelled pool U , estimation pool X
1: for x ∈ U do
2: Qx = 0
3: for x′ ∈ X do
4: Qx += ∆Q(x|L, x′)
5: return argmaxx∈U Qx

Algorithm 3 Finding a diverse batch
Require: unlabelled pool U , batch size B
Require: estimation pool X , top fraction T
1: ∀x∈UQx = 0
2: for x ∈ U , x′ ∈ X do
3: Qx += vecx,x′ = ∆Q(x|L, x′)
4: V ← topk(Q,T ∗ |U |)
5: batch = ∅
6: centroids = k-Means centers (vecx∈V , B)
7: for c ∈ centroids do
8: batch ∪= {argminx∈V ||c− vecx||}
9: return batch

functions used by neural networks, like cross-entropy loss, are indeed proper scoring rules [13].
In most cases we can create a particular model to match just about any Bregman divergence (e.g.,
minimum squared errors is a Gaussian). In practice we can use robust models (e.g., a Dirichlet-
multinomial rather than a multinomial, a negative binomial rather than a Poisson, Cauchy rather than
Gaussian) in our log probability. For the particular cases we used, minimising Brier score gets the
probability right in a least squares sense, i.e., minimising the squared error between the predictive
probability and the one-shot label representation, which pays less attention to very low probability
events. Meanwhile, log probability gets the probability scales right, paying attention to all events.

3.2 Acquisition Algorithms with Enhanced Batch Diversity

Algorithm 2 gives an implementation of BEMPS for an arbitrary strictly convex function G(·),
returning the data point with the best estimated measure. To work with a Bregman divergence or
proper score, the corresponding strictly convex function G(·) should first be derived. When G(·) is
negative entropy, we call this CoreLog and when G(·) is the sum of squares we call this CoreMSE,
corresponding to the log probability or Brier scoring rules respectively. Algorithm 2 calls Algorithm 1
to get the estimation at test point x′, which implements the function inside EPr(x′) [·] in Equation (6).
Note Pr(θ | L, (x, y)) is computed from Pr(θ | L) using Bayes theorem. Both Algorithms 2 and 3
use a fixed estimation pool, X , a fixed random subset of the initial unlabelled data used to estimate
expected values EPr(x′) [·]. Algorithm 3 returns B data points representing a batch with enhanced
diversity: it first calls Algorithm 1 to get, for each data point x in the unlabelled pool, the vector of
expected changes in score values over the estimation pool. Thus, this vector conveys information
about uncertainty directly related to the change in score due to the addition of x. While the gradient
embedding used in [1] represents a sample’s impact on the model, our vector represents a sample’s
impact on the mean proper score. Concurrently Algorithm 3 computes the estimate of ∆Q(x|L) for
these same xs. The top T% of scoring data x are then clustered with k-Means and a representative of
each cluster closest to the cluster mean is returned. This k-Means selection process tends to generate
a diverse batch of high-scoring samples. The intuition is that 1) only higher scoring data x should
appear in a batch; 2) those clusters capture the pattern of expected changes in score values deduced
by samples in the unlabelled pool, where the samples with a similar mean change in score values
are grouped together; 3) samples in the same cluster can affect the learning similarly, so should not
co-occur in a batch.

4 Experiments

We demonstrate the efficacy of BEMPS via evaluating the performance of CoreMSE and CoreLog
as its two examples on various benchmark datasets for text classification. These two acquisition
functions were compared with recent techniques for AL.
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Table 1: Datasets and the used language model
Dataset Unlabelled/Test sizes # Classes Lang. Model Initial labelled size

AG NEWS 120,000 / 7,600 4 DistilBERT 26
PUBMED 20K RCT 15,000 / 2,500 5 DistilBERT 26
IMDB 25,000 / 25,000 2 DistilBERT 26
SST-5 8544 / 2210 5 DistilBERT 26

Table 2: The average running time (in seconds) per single acquisition iteration with unlabelled pools
of varied sizes, which were generated from AG NEWS.

# Unlabelled CoreMSE CoreLog Max-Ent BALD MOCU WMOCU BADGE ALPS Rand

10k 65 65 61 61 65 65 76 62 <1
25k 163 163 159 159 163 163 323 283 <1
50k 326 326 322 322 326 327 884 573 <1
100k 654 654 649 650 658 659 2904 1299 <1

Datasets We used four benchmark text datasets for three different classification tasks: topic classifi-
cation, sentence classification, and sentiment analysis, as shown in Table 1. The AG NEWS for topic
classification contains 120K texts of four balanced classes [41]. The PUBMED 20k was used for
sentence classification [3], which contains about 20K medical abstracts with five categories. This
dataset is imbalanced. For sentiment analysis, we used both the SST-5 and the IMDB datasets. SST-5
contains 11K sentences extracted from movie reviews with five imbalanced sentiment labels [33],
and IMDB contains 50K movie reviews with two balanced classes [18].

Baselines We considered Max-Entropy [37], BALD [10], MOCU [42], WMOCU [42], BADGE [1]
and ALPS [40] together with a random baseline. Max-Entropy and BALD are earlier uncertainty-
based methods. MOCU, WMOCU, BADGE and ALPS are the four recent AL methods. Following
their originally published algorithms, we re-implemented them for text classification tasks, with the
same backbone classifier for fair comparisons. Note that the hypothetical labels used in BADGE
were computed with ensembles.

Experiment setup We used a small and fast pretrained language model, DistilBERT [24] as the
backbone classifier in our experiments. We fine-tuned DistilBERT on each dataset after each AL
iteration with a random re-initialization [5], proven to improve the model performance over the use
of incremental fine-tuning with the newly acquired samples [7]. The maximum sequence length was
set to 128, and a maximum of 30 epochs was used in fine-tuning DistilBERT with early stopping [4].
We used AdamW [15] as the optimizer with learning rate 2e-5 and betas 0.9/0.999. Meanwhile, the
initial training and validation split contain only 20 and 6 samples respectively.

Each AL method was run for five times with different random number seeds on each dataset. The
batch size B was set to {1, 5, 10, 50, 100}. To compute the predictive distributions Pr(· | L, x)
and Pr(· | L, (x, y), x′), we borrowed the idea of deep ensembles [13], where we trained five
DistilBERTs with randomly generated train-validation splits (i.e., train/validation=70/30%) based
on an incrementally augmented labelled pool. Thus each member of the ensemble has a different
train/validation set, helping to diversify the ensemble. We call this split process dynamic validation
set (aka Dynamic VS). With it, our implementation of CoreMSE and CoreLog does not rely on a
separate large validation set. More detailed experimental settings are given in Appendix B.

All experiments were run on 8 Tesla 16GB V100 GPUs. For each AL method, we computed the
average running time per one acquisition iteration as the total running time divided by the total
number of iterations (i.e., 10). Table 2 summarizes as an example the running times of all the AL
methods on AG NEWS with unlabelled pools of different size. The batch size B was set to 50, top
fraction T to 50% and the size of X to 600. Except for BADGE and the random baseline, the runtimes
of the other methods increase nearly linearly with the size of the unlabelled pool.

Comparative performance metrics We followed Ash et al. [1] to compute a pairwise comparison
matrix but use a counting-based algorithm [28], as shown in the left of Figure 1. The rows and
columns of the matrix correspond to the AL methods used in our experiments. Each entry represents
the outcome of the comparison between method i and method j over all datasets (D). Let Ci,j,d = 1
when method i beats method j on dataset d, and 0 otherwise. Each cell value of the matrix is them
computed as Ci,j =

∑D
d Ci,j,d. To determine the value of Ci,j,d, we used a two-side paired t-test
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Figure 1: Performance on SST-5 dataset. The left half illustrates the learning curve, while the right
half illustrates the matrix of paired comparisons. The dashline represents the performance of the
backbone classifier trained on the entire dataset.

to compare their performance for 5 weighted F1 scores (or accuracy) at maximally spaced labelled
sample sizes {l1i,j,d, l2i,j,d, ..., l5i,j,d} from the learning curve. We compute the t-score as t =

√
5µ̂/σ̂,

where µ̂ and σ̂ are the usual sample mean and std.dev. In Figure 1, we selected five samples at the
different iterations according to the step size 50 in the experiment. For example, the first sample
l1i,j,d is chosen at the 50th iteration, and the second sample l1i,j,d is chosen at the 100th iteration, etc.

µ̂ = 1
5

∑5
k=1

(
lki,j,d

)
, σ̂ =

√
1
4

∑5
k=1

(
lki,j,d − µ̂2

)
. The Ci,j,d is assigned to 1 if method i beats

method j with t-score > 2.776 (p-value < 0.05). We accumulate the outcome of each pair comparison
into the total quantity of each strategy (i.e., the “Total” column in the matrix). The highest total
quantity gives a ranking over the AL methods. We also report the learning curves of all the AL
methods with both weighted F1 score and accuracy.

4.1 Model performance: learning curves and comparative comparisons

Active learning with batch size one We first compared our CoreMSE and CoreLog based on
Algorithm 2 to the baselines on the PUBMED and the SST-5 datasets to demonstrate how those
methods perform particularly on a hard classification setting where classes are imbalanced. The
learning curve sitting in the left of Figure 1 shows CoreMSE, CoreLog and WMOCU outperform
all the other methods considered, we attribute to their estimation of uncertainty being better related
to classification accuracy. Among these three methods, our CoreMSE performs the best in term of
F1 score. The matrix at the right of Figure 1 then presents a statistical summary of comparative
performance. CoreMSE has the highest total quantity which further confirms its effectiveness in
acquiring informative samples in AL. More results on SST-5 and PUBMED, including both learning
curves and comparative matrices are reported in Appendix C.

Batch active learning We compared batch CoreMSE and batch CoreLog implemented based on
Algorithm 3 with BADGE, ALPS and batch WMOCU on the four datasets listed in Table 1, We
extended WMOCU with our Algorithm 3 to build its batch counterpart. Specifically, we generated
vecx using its point-wise error estimates, i.e., Eq (10) in [42]. The random baseline selected B
unlabelled samples randomly. Here we present the results derived with B = 50 as an example. More
comprehensive results with different batch sizes, including accuracy, can be found in Appendix C.

The learning curves in Figure 2 show that batch CoreMSE and CoreLog almost always outperform
the other AL methods as the number of acquired samples increases. Batch WMOCU devised with our
batch algorithm compare favourably with BADGE and ALPS that use gradient/surprisal embeddings
to increase batch diversity. These results suggest that selecting the representative samples from
clusters learned with vectors of expected change in scores can better improve batch diversity, leading
to an improved AL performance. Comparing CoreMSE/CoreLog with WMOCU further shows
the advantage of BEMPS. Moreover, the performance differences between our methods and others
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Figure 2: Learning curves of batch size 50 for PUBMED, IMDB, SST-5 and AG NEWS. The dashline
represents the performance of the backbone classifier trained on the entire dataset.

(a) F1-based pairwise comparison (b) Accuracy-based pairwise comparison

Figure 3: Pairwise comparison matrices of batch active learning strategies.

on PUBMED and SST-5 indicate that batch CoreMSE and CoreLog can still achieve good results
when the annotation budget is limited in those imbalanced datasets. We also created four pairwise
comparison matrices for different batch sizes using either F1 score or accuracy. Figure 3 show
the sum of the four matrices, summarizing the comparative performance on the four datasets. The
maximum cell value is now 4 × 4 = 16. In other words, if a method beats another on all the four
datasets across the four different batch sizes, the corresponding cell value will be 16. Both matrices
computed with F1 score and accuracy respectively show both CoreMSE and CoreLog are ranked
higher than the other methods. The observations discussed above are also consistent across different
batch sizes.

4.2 Ablation Studies

Batch size In Figure 4, we plotted the learning curves of batch CoreMSE with different batch sizes
(i.e., B ∈ {1, 5, 10, 50, 100}) on PUBMED and SST-5 as an example. The curves demonstrate that
the performance of smaller batch sizes (5 or 10) is superior to that of large batch sizes (50 or 100),
especially in the early rounds of training, but surprisingly also superior to that of the no-batch case.
The no-batch case need to perform multiple one-step-look-ahead optimising acquisitions (Algorithm
1 and Algorithm 2) sequentially in order to acquire B samples whereas the batch case only perform
the acquisition at once, heuristically, incorporating a form of diversity based directly on the error
surface (Algorithm 1 and Algorithm 3). This phenomena is also seen with BatchBALD [12, see
Figure 4]. Thus we can conclude that the one-step-look-ahead of Equation (1) is only greedy, and
not optimal. More results of Batch CoreMSE and CoreLog on PUBMED, SST-5, AG NEWS and
IMDB can be found in Appendix B. In general, all the results shown in the learning curves prove that

8



Figure 4: Learning curves of batch size 1, 5, 10, 50 and 100 for CoreMSE

Figure 5: Learning curves of the model training with diversity. The dashline represents the perfor-
mance of the backbone classifier trained on the entire dataset.

batch algorithms improve AL performance over the no-batch ones, and smaller batch sizes are more
preferable to the large ones.

Batch diversity To further study the effectiveness of Algorithm 3, we considered the following
variants: 1) Pretrained_LM: Instead of using the expected changes of scores to represent each
unlabelled sample x, we used the embedding generated by the last layer of DistilBERT in k-Means
clustering, which is similar to the BERT-KM in [40]; and 2) CoreMSE_top and CoreLog_top: We
simply chose the top-B samples ranked by Qx. Figure 5 shows the results for all these variants.
Our batch CoreMSE and CoreLog perform much better than the corresponding CoreMSE_top and
CoreLog_top, which showcases Algorithm 3 can promote batch diversity that benefits AL for text
classification. The performance difference between Pretrained_LM and batch CoreMSE/CoreLog
indicates that representing each unlabelled sample as vector of expected changes in scores (i.e.,
Equation (6)) is effective in capturing the information to be used for diversification.

Dynamic VS We studied how the dynamic VS impacts the ensemble model training by comparing
batch CoreMSE with dynamic VS to its following variations: 1) 3/30 epochs without VS: ensemble
model training without VS and each model was trained for 3 or 30 epochs [4], 2) Fixed length (#1000)
VS: a pre-fixed validation set with 1000 labelled samples separate from the labelled pool, used in
some existing AL empirical work; 3) Constant VS: a variant of dynamic VS where one random split
was generated after each AL iteration and then shared by all the ensemble models. Figure 6 shows
the learning curves of those compared AL methods. Dynamic VS gains an advantage after the third
acquisition iteration on PUBMED and SST-5, the first iteration on AG NEWS. It is not surprising to
see that 30 epochs without VS and Fixed length VS performs better in the early acquisition iterations,
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Figure 6: Learning curves of the model training with a dynamic validation set, constant validation set,
fixed # epochs without validation set, fixed length # labels validation set for CoreMSE. The dashline
represents the performance of the backbone classifier trained on the entire dataset.

since they used the whole augmented labelled pool in training DistilBERT, whereas CoreMSE used
70%. But choosing the number of epochs without a validation set is simply heuristic otherwise. Also
Fixed length VS is midway between Constant VS and Dynamic VS, indicating the variability in
ensembles inherent in the dynamic training sets is a source of improvement. More ablation results
are reported in Appendix D.

5 Conclusion

We developed the BEMPS framework for acquisition functions for AL based around strictly proper
scoring rules [9], or alternatively, Bregman divergences. These are fundamental scores in statistical
learning theory and almost universally used when training neural networks, unlike simple errors,
thus make a solid basis. In experiments we used mean squared error and log probability, making
new acquisition functions CoreMSE and CoreLog respectively. For this, we developed convergence
theory, borrowing techniques from [42], that we also extended to the earlier BALD acquisition
function. A primary limitation of the theory is that it does not support the use of unlabelled data
within the learning algorithm, for instance, as would be done by state of the art semi-supervised
learning methods. Given that semi-supervised learning and AL really address a common problem,
this represents an area for future work for our techniques. But note recent high performing batch AL
uses semi-supervised learning, thus we excluded them from comparison.

For more efficient and effective evaluation of the new BEMPS based acquisition functions, we
developed two techniques to improve performance, a batch AL strategy naturally complement to
our BEMPS algorithms, and a dynamic validation-ensembling hybrid that generates high scoring
ensembles but does not require a separate large labelled dataset. While this ensembling increases
computational demand, it is only done for small datasets. These were both tested in isolation and
shown to perform well. Though, interestingly, batch BEMPS works better than no-batch BEMPS,
also seen for BatchBALD. This suggests that the one-step-look-ahead can be improved, and additional
theory is needed. Finally, we followed some of the strong evaluation standards set in earlier research,
but we kept to small labelled set sizes in keeping with text annotation practice, testing our approach
against WMOCU, BADGE, BALD and baselines. Using mean squared error and log probability as
the scoring rules yielded consistently high-performing AL on a variety of data sets.

Acknowledgements

The work has been supported by the Tides Foundation through Grant 1904-57761, as part of the
Google AI Impact Challenge, with Turning Point. Wray Buntine’s work was also partly supported by
DARPA’s Learning with Less Labelling (LwLL) program under agreement FA8750-19-2-0501.

10



References
[1] Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch

active learning by diverse, uncertain gradient lower bounds. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=ryghZJBKPS.

[2] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry P. Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning. In 8th International Conference on Learning
Representations, ICLR 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
BJxI5gHKDr.

[3] Franck Dernoncourt and Ji Young Lee. PubMed 200k RCT: a dataset for sequential sentence classification
in medical abstracts. In Proceedings of the Eighth International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 308–313, Taipei, Taiwan, November 2017. Asian Federation
of Natural Language Processing. URL https://www.aclweb.org/anthology/I17-2052.

[4] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, A. Farhadi, Hannaneh Hajishirzi, and Noah A. Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping. ArXiv,
abs/2002.06305, 2020.

[5] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

[6] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050–1059. PMLR, 2016.

[7] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data.
In International Conference on Machine Learning, pages 1183–1192. PMLR, 2017. URL http://
proceedings.mlr.press/v70/gal17a/gal17a.pdf.

[8] Ruijiang Gao and Maytal Saar-Tsechansky. Cost-accuracy aware adaptive labeling for active learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 2569–2576, 2020.

[9] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation. Journal
of the American Statistical Association, 102(477):359–378, 2007. URL https://doi.org/10.1198/
016214506000001437.

[10] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
classification and preference learning. stat, 1050:24, 2011.

[11] Amelia Jiménez-Sánchez, Shadi Albarqouni, and Diana Mateus. Capsule networks against medical imaging
data challenges. In Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of
Biomedical Data and Expert Label Synthesis, pages 150–160. Springer, 2018.

[12] Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. BatchBALD: Efficient and diverse batch acquisition
for deep Bayesian active learning. In Advances in Neural Information Processing Systems, 2019.

[13] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, pages 6405—-6416, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[14] Peng Liu, Hui Zhang, and Kie B Eom. Active deep learning for classification of hyperspectral images.
IEEE journal of selected topics in applied earth observations and remote sensing, 10(2):712–724, 2017.
ISSN 1939-1404.

[15] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

[16] Jinghui Lu and Brian MacNamee. Investigating the effectiveness of representations based on pretrained
transformer-based language models in active learning for labelling text datasets. CoRR, abs/2004.13138,
2020. URL https://arxiv.org/abs/2004.13138.

[17] Shuang Ma, Zhaoyang Zeng, Daniel McDuff, and Yale Song. Active contrastive learning of audio-
visual video representations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=OMizHuea_HB.

11

https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=BJxI5gHKDr
https://openreview.net/forum?id=BJxI5gHKDr
https://www.aclweb.org/anthology/I17-2052
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://proceedings.mlr.press/v70/gal17a/gal17a.pdf
http://proceedings.mlr.press/v70/gal17a/gal17a.pdf
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2004.13138
https://openreview.net/forum?id=OMizHuea_HB


[18] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association
for computational linguistics: Human language technologies, pages 142–150, 2011. URL https://www.
aclweb.org/anthology/P11-1015.pdf.

[19] Hieu T. Nguyen and Arnold Smeulders. Active learning using pre-clustering. In Proceedings of the
Twenty-First International Conference on Machine Learning, ICML ’04, page 79, New York, NY, USA,
2004. Association for Computing Machinery. ISBN 1581138385. doi: 10.1145/1015330.1015349. URL
https://doi.org/10.1145/1015330.1015349.

[20] Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-Lobato. Bayesian
batch active learning as sparse subset approximation. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/84c2d4860a0fc27bcf854c444fb8b400-Paper.pdf.

[21] Remus Pop and Patric Fulop. Deep ensemble bayesian active learning. In Bayesian Deep Learning
Workshop at NeurIPS, 2020.

[22] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. A
survey of deep active learning. CoRR, abs/2009.00236, 2020. URL https://arxiv.org/abs/2009.
00236.

[23] Nicholas Roy and Andrew McCallum. Toward optimal active learning through sampling estimation of
error reduction. In Proceedings of the Eighteenth International Conference on Machine Learning, ICML
’01, pages 441–448, San Francisco, CA, USA, 2001.

[24] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of BERT:
smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL http://arxiv.org/abs/1910.
01108.

[25] Christopher Schröder and Andreas Niekler. A survey of active learning for text classification using deep
neural networks. CoRR, abs/2008.07267, 2020. URL https://arxiv.org/abs/2008.07267.

[26] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In
International Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=H1aIuk-RW.

[27] Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University
of Wisconsin–Madison, 2009. URL http://axon.cs.byu.edu/~martinez/classes/778/Papers/
settles.activelearning.pdf.

[28] Nihar B Shah and Martin J Wainwright. Simple, robust and optimal ranking from pairwise comparisons.
The Journal of Machine Learning Research, 18(1):7246–7283, 2017.

[29] Tianze Shi, Adrian Benton, Igor Malioutov, and Ozan İrsoy. Diversity-aware batch active learning for
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