
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND PIXELS: EFFICIENT DATASET DISTILLATION
VIA SPARSE GAUSSIAN REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Dataset distillation has emerged as a promising paradigm that synthesizes com-
pact, informative datasets capable of retaining the knowledge of large-scale coun-
terparts, thereby addressing the substantial computational and storage burdens of
modern model training. Conventional approaches typically rely on dense pixel-
level representations, which introduce redundancy and are difficult to scale up.
In this work, we propose GSDD, a novel and efficient sparse representation for
dataset distillation based on 2D Gaussians. Instead of representing all pixels
equally, GSDD encodes critical discriminative information in a distilled image
using only a small number of Gaussian primitives. This sparse representation
could improve dataset diversity under the same storage budget, enhancing cov-
erage of difficult samples and boosting distillation performance. To ensure both
efficiency and scalability, we adapt CUDA-based splatting operators for parallel
inference and training, enabling high-quality rendering with minimal computa-
tional and memory overhead. Our method is simple yet effective, broadly appli-
cable to different distillation pipelines, and highly scalable. Experiments show
that GSDD achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and
ImageNet subsets, while remaining highly efficient encoding and decoding cost.

1 INTRODUCTION

Guided by the principles of scaling laws Kaplan et al. (2020), deep learning has advanced along the
trajectory of larger models, larger datasets, and longer training, which has significantly pushed the
performance boundaries of modern models. However, this paradigm also incurs enormous demands
on computation, storage, and communication resources, creating a barrier that hinders both broad
adoption and sustainable development. Consequently, a pivotal question in the field is how to achieve
strong performance under limited computational and data resources.

Against this backdrop, dataset distillation offers a promising solution. Its goal is to distill the es-
sential knowledge of massive datasets into a compact set of synthetic samples, enabling models
trained on these small sets to approximate the performance of those trained on the full dataset. By
adopting dataset distillation, the costs of model training, data storage, and data transmission can be
substantially reduced. Moreover, it opens up a wide range of applications, including efficient data
replay for continual learning Yang et al. (2023); Gu et al. (2024), critical data transfer in federated
learning Huang et al. (2024a), and privacy preservation Dong et al. (2022).

Dataset distillation optimizes the synthetic data itself, with the objective of minimizing the training-
aware information gap between the synthetic and original datasets. Broadly, dataset distillation can
be decomposed into two complementary modules: distillation algorithms and data parameteriza-
tion. The former defines how training-aware key information, such as training gradients Zhao et al.
(2021), model parameters Cazenavette et al. (2022), or distributional statistics Zhao & Bilen (2023),
is extracted, while the latter determines the representation format of the synthetic data. Although ex-
tensive research has focused on innovating distillation algorithms, exploration of the representation
space has been relatively limited, with most approaches directly optimizing in the pixel space. Con-
ventional methods typically adopt a naı̈ve pixel grid as the parameterization scheme. Such dense
representations fail to capture the relative importance of pixels and lead to substantial storage re-
dundancy. Decoder-based parameterizations, in contrast, can leverage structural priors to enhance
image realism and share common information, but they inevitably restrict the optimization space

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and introduce additional computational and memory overhead. More recently, approaches based
on implicit neural representations (INRs), such as DDiF Shin et al. (2025), have substantially re-
duced per-image storage and thereby improved the diversity of distilled datasets. However, their
inherent per-pixel query decoding mechanism incurs prohibitive computational costs, particularly in
high-resolution or large-batch scenarios, creating a severe performance bottleneck.

In this paper, we propose a new paradigm for dataset distillation, termed Gaussian Splatting Dataset
Distillation (GSDD). Instead of relying on dense pixel grids, GSDD represents each distilled image
with a sparse set of 2D Gaussians. Each Gaussian explicitly encodes training-aware image features
that span multiple pixels, and optimizes only a few parameters such as position and shape, thereby
replacing large-scale pixel-level optimization. This sparse representation significantly reduces the
storage cost per image, which in turn increases the diversity of the distilled dataset and improves
coverage across samples of varying difficulty. To further ensure the scalability of GSDD, we adapt
a highly parallelized differentiable rasterizer that enables instantaneous high-quality rendering from
parameters to images.

Our contributions can be summarized as follows:

• We propose a novel dataset parameterization framework based on 2D Gaussian represen-
tations. This is the first work that introduces sparse Gaussian representations into dataset
distillation. The method is both simple and effective, and it can enhance the performance
of a wide range of distillation algorithms.

• We provide a complete design of the Gaussian representation, including parameteriza-
tion, optimization objectives, and an efficient batch-parallel Gaussian rasterization operator.
This design ensures fast convergence, high distillation quality, and stable optimization.

• Extensive experiments demonstrate that our method achieves state-of-the-art performance
on CIFAR-10, CIFAR-100, and multiple ImageNet subsets, while offering faster computa-
tion and lower memory consumption compared with prior approaches.

2 BACKGROUND AND MOTIVATION

2.1 RELATED WORK

Dataset Distillation Algorithms Modern deep learning models typically rely on large-scale train-
ing datasets, whereas the goal of dataset distillation is to replace the dataset with a much smaller
set of high-quality training samplesWang et al. (2018). Unlike data selection, dataset distillation
explicitly optimizes the synthetic data to achieve superior performance.

Formally, let the original dataset be denoted as

T = {(ti, yi) | i = 1, · · · , NT } ⊆ D,

where D represents the underlying data distribution. The distilled dataset (also referred to as the
synthetic dataset) is defined as

S = {(sj , yj) | j = 1, · · · , NS},

where ti and sj denote original and distilled images, and yi and yj are their corresponding labels.
Since this work adopts one-hot label encoding, without loss of generality we denote the distilled
dataset as

S = {sj | j = 1, · · · , NS}.
The storage footprint of S is typically required to be far smaller than that of T . In dataset distillation,
the synthetic dataset is treated as a set of learnable objects, where the pixel values of distilled images
sj are regarded as optimization parameters. The ultimate goal is to train a model θS on the compact
distilled dataset such that its performance closely matches that of a model θT trained on the full
dataset Wang et al. (2018):

S = argmin
S

∣∣l(θS ,D)− l(θT ,D)
∣∣, θS = argmin

θ
l(θ,S), θT = argmin

θ
l(θ, T).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This optimization objective can be approached via meta-learning, but such methods often consume
substantial GPU memory Feng et al. (2024) and yield suboptimal performance due to weak su-
pervision signals. To address these challenges, many alternative distillation objectives have been
proposed. The core idea is to extract and align critical training-aware information between S and
T . Mainstream approaches include trajectory matching(TM) Cazenavette et al. (2022); Du et al.
(2023a); Liu et al. (2025); Guo et al. (2024); Cui et al. (2023), which constrains the distance be-
tween model parameters trained on the two datasets; distribution matching(DM) Zhao & Bilen
(2023); Zhao et al. (2023); Liu et al. (2023); Wei et al. (2024); Wang et al. (2025b), which aligns
feature distributions; and gradient matching(DC) Zhao et al. (2021); Lee et al. (2022); Du et al.
(2023b), which constrains the gradients derived from the two datasets. Despite the drastic reduction
in storage requirements, distilled datasets often achieve competitive training performance, and the
resulting synthetic images can diverge significantly from the originals. Consequently, dataset dis-
tillation has found applications in continual learning Yang et al. (2023); Gu et al. (2024), privacy
preservation Dong et al. (2022); Chung et al. (2024); Zheng et al. (2025), federated learning Huang
et al. (2024a); Jia et al. (2025); Yan et al. (2025), and neural architecture search Such et al. (2020).

Parameterization of Dataset Distillation The parameterization of the distilled dataset S critically
influences both performance and efficiency. Early methods directly optimized RGB pixels, but this
dense representation wastes storage by ignoring spatial redundancy. To address this, decoder-based
approaches Liu et al. (2022); Liu & Wang (2023); Cazenavette et al. (2023) learn latent codes with
a shared decoder, which reduces redundancy but limits flexibility in optimization and adds com-
putation costs. Dictionary-based methods Deng & Russakovsky (2022); Wei et al. (2023) instead
combine basis images with index matrices to support domain adaptation and generalization, though
they still store pixel-level bases and are restricted by linear combinations.

Recent studies have introduced compact low-level representations to reduce image redundancy and
increase distilled samples within a fixed storage budget, such as downscaling Kim et al. (2022),
frequency-domain transforms Shin et al. (2023), and implicit neural representations (INRs) Shin
et al. (2025). INR-based methods show strong performance by encoding each image as a neural
field with fewer parameters, but their efficiency is limited since decoding requires per-pixel RGB
queries, causing heavy overhead for high-resolution and large-batch training.

Gaussian Splatting Gaussian splatting Kerbl et al. (2023) represents 3D scenes using Gaussian
ellipsoids, offering higher rendering efficiency and explicit geometric control compared to NeRF-
based representations Mildenhall et al. (2021). Originally developed for novel view synthesis, it
initializes a set of Gaussian primitives within a 3D scene, which are then rendered from multi-
ple viewpoints and optimized to match the corresponding ground-truth images, ultimately enabling
arbitrary-view synthesis. In recent years, Gaussian splatting has been extended to a wide range
of domains, including digital humans Qian et al. (2024); Zielonka et al. (2025), autonomous driv-
ing Zhou et al. (2024); Huang et al. (2024b), dynamic scene modeling Wu et al. (2024); Huang et al.
(2024c), and 3D editing Chen et al. (2024). More recently, Gaussian representations have also been
applied to 2D vision tasks such as image super-resolution Hu et al. (2024); Chen et al. (2025), image
representation Zhu et al. (2025); Weiss & Bradley (2024); Zhang et al. (2025), and video represen-
tation Wang et al. (2025a), where Gaussian primitives are used to efficiently encode high-fidelity
image of videos with fine-grained textures.

This work is the first to introduce Gaussian Splatting as a parameterization for dataset distillation,
which leverages Gaussian representations as a simple yet efficient parameterization for distilled
datasets. Unlike prior approaches that rely on network structures or complex operations, GSDD
employs a CUDA-based differentiable rasterization algorithm to render sparse Gaussian primitives.
As an explicit representation, it offers high flexibility in optimization, substantially increases dataset
diversity under the same storage budget, and significantly accelerates both encoding and decod-
ing. Rather than emphasizing fine-grained image fidelity, our method parameterizes entire distilled
datasets with Gaussian representations and directly optimizes them for model training performance.

2.2 MOTIVATION

Gaussian representations enable faster decoding and rendering, especially compared to the state-
of-the-art DDiF Shin et al. (2025) method. DDiF relies on implicit neural representations using a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

SIREN network Sitzmann et al. (2020) to model distilled images, where each pixel’s RGB value
must be queried individually, as illustrated in Figure 1a. This approach incurs substantial time and
memory overhead as the number and resolution of distilled images increase. In contrast, GSDD
implements a custom CUDA operator for batched rendering of Gaussians. This allows all Gaussians
to be efficiently rendered into distilled images in a single pass. As shown in Figure 1b, this design
significantly reduces both inference and optimization time and memory usage, thereby improving
the scalability of dataset distillation methods.

𝑦

𝒙
𝒓

𝒈

𝒃

(𝑥, 𝑦)

splatting

query coordinates

aggregate gradients

pixel-level gradients

region-level optimization

(a)

(b) (c)

Figure 1: Comparison of Different Distilled Image
Representation

Gaussian representations enable compact
modeling of individual distilled images with
very few parameters. Traditional dataset dis-
tillation methods operate in the pixel space,
where each pixel is assigned the same storage
budget and optimized equally. This uniform
treatment introduces unnecessary storage and
computation costs. In contrast, GSDD can
use a single Gaussian to represent a larger
spatial area, covering multiple pixels simul-
taneously. This not only provides a more effi-
cient image representation but also enhances
optimization efficiency. As shown in Fig-
ure 1c, pixel-based methods optimize each
pixel independently, which inevitably intro-
duces redundancy and noise. In compari-
son, Gaussian-based optimization aggregates
pixel-level gradients within the support region of each Gaussian, resulting in more robust updates.
Furthermore, each Gaussian can perform localized optimization by adjusting a small set of param-
eters such as position, color, and shape. This region-level update strategy improves both efficiency
and effectiveness during training.

3 METHODOLOGY

3.1 PARAMETERIZATION OF DATASET DISTILLATION BY GAUSSIAN SPLATTING

We adopt a 2D Gaussian mixture model to parameterize distilled images. Each distilled image sj is
represented as a set of M Gaussian components, denoted by

Gj = {gk | k = 1, · · · ,M}. (1)

Specifically, for a pixel located at coordinates (x, y), the contribution from the k-th Gaussian com-
ponent gk is defined by the following unnormalized Gaussian function:

gk(x, y;µk,Σk) = exp
(
− 1

2 (x− µk)
TΣ−1

k (x− µk)
)
, (2)

where x = [x, y]T denotes the pixel center and µk = [uk, vk]
T is the Gaussian mean. The covariance

matrix Σk determines the size, shape, and orientation of the Gaussian. To ensure that Σk remains
positive semi-definite during optimization, we parameterize it via a stable Cholesky decomposition,
i.e., Σk = LkL

T
k , where the lower-triangular matrix Lk is given by

Lk =

[
lk11 0
lk21 lk22

]
. (3)

Each Gaussian gk is associated with a color vector ck ∈ R3 and an opacity αk. The final color of
pixel (x, y) is then synthesized by aggregating the contributions of all Gaussians:

c(x, y) =

M∑
k=1

αk · gk(x, y;uk, vk,Σk) · ck. (4)

Thus, each Gaussian component can be fully described by a 9-dimensional vector pk =
(uk, vk, l

k
11, l

k
21, l

k
22, ck, αk) ∈ R9. Accordingly, the parameter set of an entire distilled image sj is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

opacity: 𝛼! ∈ ℝ

color: 𝑐! ∈ ℝ"

position: (𝑥! , 𝑦!) ∈ ℝ#

shape: 𝐿! ∈ ℝ"

Gaussian Params

FP32

…… …

Inference Stage

save

BF16

……

Pseudo FP32

… ……

Training Stage

Matching Loss
𝑳𝒅𝒅

Pre-Filter SSAA
pixel to be colored colored pixel

Rasterize Images in
Batch

Quant Gaussian Params

Gaussians Primitives Distilled Images

Original Images

forward
backward

…
…

active bytes
zeroed bytes

params of one distilled images

Concated Params Distilled Images

Quant
Adapter

Parallel
Rasterizer…

Pseudo FP32

BF16

Anti-alias in Distilled Images

Rasterize

pixel with sampled points

Figure 2: Overview of the proposed framework. Each Gaussian is parameterized by a total of 9 floating-point
values. A single distilled image is represented by a set of Gaussians. During training, we first quantize the
parameters to bf16 precision to obtain quantized Gaussian primitives. These are then rendered into distilled
images using a customized rasterizer. During the rasterization process, we concatenate all primitives from the
distilled dataset and feed them into a single batched rasterization kernel. This design enables efficient rendering
and facilitates a compact data structure, as the entire distilled dataset can be managed by initializing only one
object instance. To further improve rendering quality when Gaussians are sparse, we incorporate prefiltering
and SuperSampling-based Anti-Aliasing techniques. These enhancements enable more accurate estimation
of RGB values at each pixel. The rendered distilled images are then aligned with the original images for
information matching, and the resulting gradients are backpropagated to update the Gaussian parameters.

given by pj = {pjk}Mk=1, and the parameterization of the whole distilled dataset S is PS = {pj}NS
j=1.

Based on this parameterization, R can be seen as a rendering function, which maps the parameters
pj onto a predefined pixel coordinate grid C, and is implemented as the cuda operator,

sj = R(pj ; C), (5)

which maps the parameters pj onto a predefined pixel coordinate grid C. Here, C denotes the set of
all pixel coordinates, i.e.,

C = {x | x ∈ 1/W, · · · , (W − 1)/W} × {y | y ∈ 1/H, · · · , (H − 1)/H}. (6)

This Gaussian-based parameterization is orthogonal to the choice of dataset distillation algorithm.
Once a differentiable synthesis function is defined, it can be seamlessly integrated into any distilla-
tion framework. The optimization objective is to find the optimal distilled parameters Param(S)∗
that minimize the distillation loss Ldistill:

Param(S)∗ = arg min
Param(S)

Ldistill(S, T), (7)

where Ldistill can correspond to any distillation objective.

To accelerate convergence and provide a good initialization for the optimization process, we pre-
initialize the parameters of the distilled dataset. Specifically, we randomly sample a small subset of
real images S0, |S0| = NS from the original dataset T , and minimize the mean squared error (MSE)
between the synthesized images and these real samples. The initialization objective is thus:

Param(S)0 = arg min
Param(S)

LMSE(S,S0). (8)

3.2 EFFICIENT GAUSSIAN SPLATTING DESIGN

The core of the above optimization lies in the differentiable renderer R(pj ; C), which maps Gaussian
primitives to distilled images with both high visual fidelity and computational scalability. To enable
efficient processing of Gaussian representations for large-scale dataset distillation, we incorporate

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.5 0.6 0.7 0.8 0.9 1.0
Survival Rate

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

keep large opacity
keep small opacity
keep large size
keep small size

(a)

0 2500 5000 7500 100001250015000
Training Epoch

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

GPC
1
10
40

80
160
TM

(b)

[0, 10) [10, 20) [20, 30) [30, 40) [40, 50)[50, 100]
Difficulty Bin

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

GPC
1
10

40
80

160
TM

(c)

1 10 40 80 160
GPC

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Difficulty Bin
[50, 100]
[40, 50)

[30, 40)
[20, 30)

[10, 20)
[0, 10)

(d)

Figure 3: (a) Distillation performance under different Gaussian pruning strategies as a function of the remain-
ing Gaussian ratio; (b) Test accuracy across training epochs with different GPC (Gaussian Images Per Class)
under the same storage budget; (c) Test accuracy of the distilled dataset on samples of varying difficulty under
the same storage budget; (d) Relationship between prediction accuracy on samples of different difficulty and
GPC under the same storage budget. For fair comparison, TM is initialized with real images and serves as a
baseline that represents pixel-based distillation.

several critical designs into the rendering pipeline, including parallel rendering of multiple distilled
images, anti-aliasing strategies, spatial constraints on Gaussian positions and quantization.

Existing open-source rasterization operators are primarily designed for 3D scene reconstruction or
single-image tasks such as representation learning and super-resolution, and generally lack sup-
port for multi-image rendering. To fully leverage the parallelism of modern GPUs, we implement
customized data structures and rendering kernels for both the forward and backward passes. Specifi-
cally, all Gaussian primitives across the entire distilled dataset are represented as a single contiguous
1D vector, and a globally unique ID (GUID) system is used to assign threads that rasterize multiple
images in parallel. Details are provided in Appendix C, and code will be open-sourced.

Some Gaussians may become highly anisotropic during optimization to capture high-frequency fea-
tures such as edges, which necessitates anti-aliasing strategies. We adopt two complementary tech-
niques: (i) analytic pre-filtering, which approximates each Gaussian’s integral over a pixel area by
convolving it with a unit pixel box filter, resulting in a modified covariance

Σ′
k = Σk +Σbox, where Σbox = diag

(
1
12 ,

1
12

)
, (9)

introducing a minimum rendering variance that suppresses aliasing for extremely narrow Gaussians;
and (ii) 2×2 supersampling anti-aliasing (SSAA), which averages multiple samples within each
pixel area to smooth boundaries and reduce high-frequency artifacts with minimal overhead.

During optimization, some Gaussian centers tend to drift outside the normalized coordinate space
[−1, 1]2, where they receive no gradients and become unrecoverable, a phenomenon we term Gaus-
sian Escape. To alleviate this, we apply a boundary regularization loss to slightly encourage Gaus-
sian centers to remain within the viewable region:

lboundary = −Ek

[
log(1− x̃2) + log(1− ỹ2)

]
. (10)

In practice, the positions of Gaussian primitives are defined within the range [−1, 1], and we per-
form coordinate transformations inside the CUDA operator. At each iteration, we clip the Gaussian
positions to ensure they remain within the valid bounds:

µ̃k = clip(µk,−1 + ϵ, 1− ϵ). (11)

We observe that Gaussian parameters exhibit robustness to reduced numerical precision, as the ras-
terization process does not suffer from cumulative precision errors. Based on this, we store all
Gaussian parameters in bfloat16 (bf16) precision. During training, parameters are maintained in
fp32 to ensure accurate updates, while bf16 casting is applied during the forward pass to allow the
model to adapt to quantization effects. After training, all parameters are quantized to bf16.

3.3 ANALYSIS OF THE GAUSSIAN REPRESENTATION

Sparsity improves optimization A key advantage of using Gaussian representations for image
distillation lies in their ability to efficiently capture and encode training-aware image features that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

span multiple pixels, using only a single or very few Gaussian primitives. As a result, this approach
yields a more compact and efficient representation for each distilled image. We design a pruning
experiment based on the following hypothesis: Gaussian components with larger spatial extent and
higher opacity are more likely to carry critical training information. As shown in Figure 3a, when
these large and opaque Gaussians are pruned first, the model performance drops sharply as the
pruning ratio increases. In contrast, removing smaller and more transparent Gaussians has less
effect on the performance. The results indicate that large Gaussian components not only cover
broader pixel regions but also contribute more significantly to the final performance of the distilled
dataset. This further confirms that the proposed Gaussian representation captures a highly sparse
and information-dense encoding of the distilled image.

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

Direction 1 Scale

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00 Direction 2 Scale

0.60
0.65
0.70
0.75
0.80
0.85
0.90

Gr
an

d
Lo

ss

0.60

0.65

0.70

0.75

0.80

(a)

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

Direction 1 Scale

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00 Direction 2 Scale

0.845
0.850
0.855
0.860
0.865

0.870

0.875

Gr
an

d
Lo

ss

0.850

0.852

0.854

0.856

0.858

0.860

0.862

0.864

0.866

(b)

Figure 4: (a) Loss landscape of GSDD; (b) Loss
landscape of pixel-based representation.

The Gaussian representation enables efficient
modeling of distilled images with a small num-
ber of parameters. Its core mechanism lies
in the ability to apply structured and coherent
modifications to an entire pixel region by ad-
justing the properties of a single Gaussian com-
ponent, such as its position, shape, color, and
opacity. During backpropagation, each Gaus-
sian also naturally aggregates the gradients of
all pixels it covers. This optimization paradigm,
which operates at the level of geometric primi-
tives, offers improved robustness and efficiency
compared to traditional pixel-wise optimiza-
tion. As shown by the convergence curves in Figure 3b, GSDD achieves faster convergence and
higher final performance than pixel-based methods. To further examine the underlying differences
in optimization behavior, we visualize the loss landscapes of both approaches in Figure 4a and 4b.
GSDD exhibits a smoother loss surface with a lower minimum and a wide basin resembling that
of convex optimization, which substantially reduces the difficulty of gradient descent. In contrast,
the pixel-based method presents a highly rugged and noisy loss landscape, making the optimization
process more susceptible to poor local minima.

Diversity improves scalability The parameter efficiency of Gaussian representations allows more
distilled images to be synthesized under a fixed storage budget, thereby improving coverage of and
generalization to more challenging samples. Prior work has shown that models often rely on mem-
orization to generalize to hard examples, a phenomenon that is difficult to address in conventional
dataset distillation settings. To evaluate this advantage, we conduct the following experiment: we
first construct a difficulty spectrum by counting the number of incorrect predictions made by 100
independently trained models for each test sample. We then fix the overall storage budget and com-
pare the performance of student models trained on distilled datasets with different Gaussian images
Per Class(GPC) values, measuring their accuracy across different difficulty ranges. As shown in
Figures 3c and 3d, the results reveal a clear trend: increasing the number of representable distilled
images initially yields substantial performance gains on easy samples. With higher GPC values, the
models further improve their accuracy on harder examples. These findings suggest that GSDD en-
hances downstream generalization by increasing the diversity of distilled images, thereby covering
a broader range of the difficulty spectrum.

4 EXPERIMENTS

4.1 EXPERIMENTAL RESULTS

Datasets and Baselines We evaluate our method on standard datasets: CIFAR-10, CIFAR-100 (at
32×32 resolution), and six ImageNet subsets (at 128×128 resolution and 256×256 resolution). The
general pipeline of dataset distillation involves two stages: (1) generating a synthetic dataset, and (2)
training a model from scratch on the synthetic data. The performance of the trained model on the real
test set is used to assess the quality of the distilled dataset. We include a wide range of recent dataset
distillation baselines, including TM Cazenavette et al. (2022), FRePo Zhou et al. (2022), IDC Kim
et al. (2022), FreD Shin et al. (2023), HaBa Liu et al. (2022), RTP Deng & Russakovsky (2022),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy on ImageNet subsets (128 ×
128) with trajectory matching (TM).

Subset Nette Woof Fruit Yellow Meow Squawk

Original 87.4 67.0 63.9 84.4 66.7 87.5

Input sized TM (Vanilla) 51.4 29.7 28.8 47.5 33.3 41.0
FRePo 48.1 29.7 — — — —

Static IDC 61.4 34.5 38.0 56.5 39.5 50.2
FreD 66.8 38.3 43.7 63.2 43.2 57.0

Parameterized HaBa 51.9 32.4 34.7 50.4 36.9 41.9
SPEED 66.9 38.0 43.4 62.6 43.6 60.9

NSD 68.6 35.2 39.8 61.0 45.2 52.9

Generative Prior GLaD 38.7 23.4 23.1 — 26.0 35.8
H-GLaD 45.4 28.3 25.6 — 29.6 39.7

Function DDiF 72.0 42.9 48.2 69.0 47.4 67.0

Primitive GSDD 76.4 46.4 51.2 72.4 53.8 73.2

Table 2: Test accuracy on ImageNet subsets (128 ×
128) with gradient matching (DC) and distribution
matching (DM).

DC ImageNet Subset (128×128)
Avg

Nette Woof Fruit Yellow Meow Squawk

DC (Vanilla) 34.2 22.5 21.0 37.1 22.0 32.0 28.1
GLaD 35.4 22.3 20.7 — 22.6 33.8 27.0

H-GLaD 36.9 24.0 22.4 — 24.1 35.3 28.5
IDC 45.4 25.5 26.8 — 25.3 34.6 31.5
FreD 49.1 26.1 30.0 — 28.7 39.7 34.7
DDiF 61.2 35.2 37.8 — 39.1 54.3 45.5

GSDD 70.2 42.4 47.8 64.0 43.2 69.4 56.2
DM

DM (Vanilla) 30.4 20.7 20.4 36.0 20.1 26.6 25.7
GLaD 32.2 21.2 21.8 — 22.3 27.6 25.0

H-GLaD 34.8 23.9 24.4 — 24.2 29.5 27.4
IDC 48.3 27.0 29.9 — 30.5 38.8 34.9
FreD 56.2 31.0 33.4 — 33.3 42.7 39.3
DDiF 69.2 42.0 45.3 — 45.8 64.6 53.4

GSDD 74.6 43.4 52.0 69.4 48.2 73.6 60.2

HMN Liu et al. (2022), SPEED Wei et al. (2023), NSD Yang et al. (2025), GLaD Cazenavette et al.
(2023), H-GLaD Zhong et al. (2025), LD3M Moser et al. (2024) and DDiF Shin et al. (2025).

Experimental Details We use TM Cazenavette et al. (2022), DM Zhao & Bilen (2023), and
DC Zhao et al. (2021) as the underlying distillation algorithms in our experiments. All parameters
of Gaussians are trained using the Adam optimizer, and the learning rate for Gaussian parameters is
uniformly set to 0.001. For CIFAR datasets, we apply ZCA whitening as a standard preprocessing
step. We fix the boundary loss weight to λboundary = 0.1. Experiments are conducted on NVIDIA
V100 and RTX 4090 GPUs. To initialize the Gaussian representation, we randomly sample real im-
ages from the original dataset and fit them with Gaussians before entering the standard distillation
loop. We provide complete implementation details and hyperparameters in the Appendix A.

Storage Budget and Evaluation Protocol We evaluate performance under varying storage bud-
gets, specified in IPC (images per class). Since our method often utilizes multiple low-storage Gaus-
sian images, we additionally report GPC (Gaussian Images per Class) in Appendix A. The number
of Gaussians per image is computed as pts = res×res×3×IPC×2

GPC×9 , where the factor of 2 accounts for
our use of bf16 to store each Gaussian parameter, and the denominator 9 reflects the total number of
parameters per Gaussian.

Performance Comparison Through the integration of GSDD, our method consistently outper-
forms the pixel-based TM baseline and other dataset parameterization methods on six ImageNet
subsets with IPC=1, as shown in Table 1. The results on the higher-resolution ImageNet subset
(256×256) are provided in Table 3, where our method remains superior at higher resolutions. In
addition, we also report experiments conducted at a lower resolution on CIFAR-10/100, with the
results presented in Appendix Table 13. When compared to the state-of-the-art method DDiF, our
approach achieves consistent improvements, demonstrating highly competitive performance. These
results highlight the effectiveness of GSDD in enhancing the quality of distilled datasets.

Universality to Matching Objectives GSDD is designed to be compatible with a wide range
of dataset distillation algorithms and can be directly integrated with them. We evaluate GSDD
under two widely adopted loss paradigms: gradient matching (DC) and distribution matching (DM).
Experimental results, as shown in Table 2, confirm that GSDD robustly enhances performance across
different distillation objectives.

Cross-Architecture Performance An essential property of dataset distillation is robustness across
model architectures. The distilled data should retain high performance even when the evaluation
model differs from the one used during distillation. To assess this, we synthesize data using a
ConvNet and evaluate it on a variety of downstream architectures, including ResNet, VGG, AlexNet
and ViT. The results, summarized in Table 4 and Table 14, demonstrate that the increased diversity
introduced by GSDD leads to substantial improvements in cross-architecture generalization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Batch Size

100

101

102

Ti
m

e
(m

s)

Forward (Batch Sweep)
res=128

Fwd Mem (MB)
85 MB 171 MB 256 MB 341 MB

0 100 200 300 400 500
Batch Size

Fwd+Bwd (Batch Sweep)
res=128

FB Mem (MB)
3917 MB 7833 MB 11750 MB 15666 MB

0 100 200 300 400 500
Resolution

Forward (Res Sweep)
bs=32

Fwd Mem (MB)
91 MB 181 MB 272 MB 362 MB

0 100 200 300 400 500
Resolution

Fwd+Bwd (Res Sweep)
bs=32

FB Mem (MB)
3916 MB 7831 MB 11747 MB 15662 MB

Algorithm | Storage
DDIF | st=333
DDIF | st=3523

DDIF | st=81
DDIF | st=963

GSDD | st=333
GSDD | st=3523

GSDD | st=81
GSDD | st=963

Figure 5: Performance comparison between GSDD and DDiF under the same per-image storage budget (ab-
breviated as st (floats)). Top row: Forward and forward+backward execution time and memory usage across
varying image resolutions (with fixed batch size = 32). Bottom row: Same metrics across varying batch sizes
(with fixed resolution = 128). GSDD consistently achieves lower latency and memory consumption, especially
under high-resolution and large-batch scenarios.

Table 3: Results on ImageNet-subsets with Dis-
tribution Matching (DM) for 256× 256

Method Nette Woof Fruit Yellow Meow Squawk

Vanilla 32.1 20.0 19.5 33.4 21.2 27.6
IDC 53.7 30.2 33.1 52.2 34.6 47.0
FreD 54.2 31.2 32.5 49.1 34.0 43.1

LatentDD 56.1 28.0 30.7 — 36.3 47.1
DDiF 67.8 39.6 43.2 63.1 44.8 67.0
GSDD 70.0 42.6 51.2 67.4 46.4 70.4

Table 4: Cross-Architecture Performance

Subset Nette Woof Fruit Yellow Meow Squawk

TM 22.0 14.8 17.1 22.3 16.2 25.5
IDC 27.9 19.5 23.9 28.0 19.8 29.9
FreD 36.2 23.7 23.6 31.2 19.1 37.4
GLaD 30.4 17.1 21.1 — 19.6 28.2

H-GLaD 30.8 17.4 21.5 — 20.1 28.8
LD3M 32.0 19.9 21.4 — 22.1 30.4
DDiF 59.3 34.1 39.3 51.1 33.8 54.0
GSDD 58.1 34.6 39.9 53.6 34.0 58.0

4.2 BENCHMARK RENDERING EFFICIENCY

To evaluate the efficiency and representational capacity of GSDD, we conduct an image-fitting ex-
periment comparing several recent parameterization methods with the same storage budget, includ-
ing FreD Shin et al. (2023), SPEED Wei et al. (2023) and DDiF Shin et al. (2025). Specifically, we
use the ImageNette dataset and fit the first 100 images from each class (1,000 images in total) at a
resolution of 128. The optimization is performed for 1,000 steps, and for each method we perform
a grid search over learning rates and optimizers to ensure a fair comparison. As shown in Table 5,
GSDD shows great performance across representational quality (PSNR), GPU memory usage, and
runtime efficiency. High fidelity and low computational overhead of GSDD enables fast synthesis of
more diverse (Higher GPC) distilled datasets, which in turn leads to improved downstream perfor-
mance. We further verify in Section 4.3 that larger GPC values with fixed IPC generally correspond
to stronger distilled data performance.

Table 5: Comparison of Parameterization
Methods on Image Fitting Efficiency and
Representational Quality

FreD SPEED DDiF GSDD

PSNR(dB)↑ 15.69 17.77 23.23 23.22
VRAM(MB)↓ 280.4 298.5 1078.8 150.2

Time(s)↓ 15.5 69.4 1088.4 24.5

We further conduct a comprehensive quantitative com-
parison with the state-of-the-art DDiF method in terms
of both decoding and training performance. As shown
in Figure 5, we measure the inference time and memory
consumption of both methods across varying per-image
storage budgets, image resolutions, and batch sizes. The
results demonstrate that GSDD consistently outperforms
DDiF in both inference/training speed and memory ef-
ficiency. This advantage becomes especially pronounced
when handling high-resolution inputs or large batch sizes,
where GSDD achieves several-fold, or even an order-of-
magnitude, reductions in both computation time and memory usage. These findings indicate that our
method not only maintains strong image representation capabilities for distillation but also offers
superior rendering speed and significantly lower memory footprint, thereby substantially improving
the scalability of dataset distillation methods in practical deployment scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

1 10 40 80 160
GPC

20

40

60

80

Ac
cu

ra
cy

 (
%

)

CIFAR10
IPC=10, TM

4 16 64 128
GPC

30
40
50
60
70
80

ImageNette
IPC=1, TM

20 30 40 50 60 80 100
GPC

40

50

60

70

CIFAR10
IPC=1, TM

100 120 160 200 240
GPC

65

70

75

ImageNette
IPC=1, DM

Init Acc DD Acc Max Acc

Figure 6: Effect of GPC (Gaussian Images Per Class) on distilled dataset performance across differ-
ent datasets, storage budgets, and distillation algorithms (TM Cazenavette et al. (2022) and DM Zhao
& Bilen (2023)). Initial Accuracy denotes the performance of initialized gaussian images (initialized
on sampled real images). Distilled Accuracy denotes the performance after distillation.

4.3 ABLATION STUDY

Table 6: Ablation Study
on Individual Components

ImageNette ACC

w/o opacity 74.8
w/o boundary 75.1

w/o bf16 74.8
w/o antialias 76.4

all 76.4
CIFAR-10 ACC

w/o antialias 74.5
all 75.5

To investigate the contribution of each component to model performance,
we conduct a series of ablation studies, with results summarized in Ta-
ble 6. The experiments show that opacity modeling and bf16 mixed-
precision training are two major factors, as removing either leads to a
notable performance drop. The boundary entry in the table refers to the
result obtained when both hard clipping and loss regularization are re-
moved. The impact of anti-aliasing exhibits a dependence on the dataset
and the complexity of the representation. Its effect becomes important
when the number of Gaussians used to represent each image is limited.
Specifically, for datasets like CIFAR-10, where storage budgets are con-
strained and each image is represented by a small number of Gaussians,
disabling anti-aliasing introduces rendering artifacts that degrade perfor-
mance. In contrast, for datasets like ImageNette with denser Gaussians,
aliasing artifacts are largely mitigated, and the performance gains from
anti-aliasing become relatively minor.

We further examine the effect of GPC through an ablation study, as shown in Figure 6. When
using the memory-efficient DM algorithm or when distilling under small storage budgets, perfor-
mance increases with GPC at first but eventually declines. This is because small GPC values lead
to insufficient diversity, whereas excessively large GPC values allocate too few Gaussians per im-
age, weakening each image’s representational capacity. In more memory-consuming settings, the
optimal turning point of GPC becomes difficult to reach, and performance tends to improve mono-
tonically as GPC increases. Figure 6 also shows that the performance of the initial dataset serves as
a useful reference for estimating a reasonable GPC range.

5 CONCLUSION

This work introduces sparse Gaussian representations into the task of dataset distillation param-
eterization. We propose a complete framework for encoding distilled images using 2D Gaussian
primitives, including the underlying mathematical formulation, a parallel differentiable renderer,
and several tailored components to handle the sparsity of distilled datasets. Specifically, we incor-
porate anti-aliasing and spatial constraints to enhance the utility of Gaussians and improve overall
distillation quality. Through extensive quantitative and qualitative experiments, we demonstrate
that sparse Gaussian representations facilitate more effective optimization, offer strong scalability,
and provide better coverage across samples of varying difficulty. As shown in our results, GSDD
achieves highly competitive performance under various datasets and storage budgets, while also
exhibiting superior computational efficiency compared to DDiF. The proposed method is simple,
plug-and-play, and readily compatible with existing distillation algorithms, leaving ample room for
future extensions. Future work may focus on scaling to larger datasets, extending Gaussian rep-
resentations to video modalities, and exploring dynamic density control of Gaussian primitives to
further enhance representation quality.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide a comprehensive description of our method in Section 3, and detailed hyperparameters,
optimizers, and network architectures for each dataset in Appendix A. All experiments are conducted
on publicly available datasets. Our core implementation has been submitted to the supplemental
material and more detailed codebase will be open-sourced upon acceptance of the paper.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. It does not involve any unethical experimen-
tation, nor does it use private, sensitive, or personally identifiable data. All datasets employed in
our experiments are publicly available and properly licensed. No data was collected from human
subjects or required approval from an institutional review board.

Our research promotes responsible stewardship of machine learning technology. In particular, by
advancing the use of synthetic representations for dataset distillation, our approach supports privacy-
preserving research and reduces the reliance on real-world data that might raise privacy concerns.

We have taken care to ensure transparency and reproducibility. All implementation details, including
hyperparameters, architectures, and code necessary for reproduction, are provided in the supplemen-
tal materials and will be open-sourced upon acceptance. Furthermore, we acknowledge and cite all
prior works that our approach builds upon, respecting intellectual contributions in line with academic
and ethical standards.

LLM USAGE STATEMENT

All research components presented in this paper, including the initial literature review, problem
formulation, methodological development, and experimental design, were independently conceived
and developed by the authors, without any contribution from large language models (LLMs).

LLMs were used solely as general-purpose tools for non-substantive assistance. Specifically, we
employed LLMs to help polish the writing, check grammar, and clarify LaTeX syntax during the
preparation of the manuscript. In all such cases, the authors critically reviewed, verified, and revised
the generated content to ensure its accuracy and originality. The authors take full responsibility for
the final text, including any parts informed by LLM assistance.

In addition, we made limited use of AI-assisted coding tools (e.g., GitHub Copilot in VSCode) for
basic code autocompletion during code implementation. LLMs were also used to assist in initial
framework scaffolding for code visualization and to suggest potential debugging strategies. All core
algorithmic components and experimental pipelines were manually written, verified, and refined by
the authors. Every LLM-assisted suggestion was critically assessed and edited to ensure correctness
and alignment with the intended methodology.

LLMs were not used to generate, modify, or interpret any experimental results or conclusions.

REFERENCES

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10718–10727, June 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Gener-
alizing dataset distillation via deep generative prior. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3739–3748, June 2023.

Du Chen, Liyi Chen, Zhengqiang Zhang, and Lei Zhang. Generalized and efficient 2d gaussian
splatting for arbitrary-scale super-resolution, 2025.

Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei
Yang, Huaping Liu, and Guosheng Lin. Gaussianeditor: Swift and controllable 3d editing with

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

gaussian splatting. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 21476–21485, 2024.

Ming-Yu Chung, Sheng-Yen Chou, Chia-Mu Yu, Pin-Yu Chen, Sy-Yen Kuo, and Tsung-Yi Ho.
Rethinking backdoor attacks on dataset distillation: A kernel method perspective. In The Twelfth
International Conference on Learning Representations, 2024.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-
1k with constant memory. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 6565–6590, July 2023.

Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable mem-
ories for neural networks. In Advances in Neural Information Processing Systems, volume 35, pp.
34391–34404, 2022.

Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help
privacy? In Proceedings of the 39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pp. 5378–5396, July 2022.

Jiawei Du, Yidi Jiang, Vincent Y. F. Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the
accumulated trajectory error to improve dataset distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3749–3758, June 2023a.

Jiawei Du, Qin Shi, and Joey Tianyi Zhou. Sequential subset matching for dataset distillation. In
Advances in Neural Information Processing Systems, volume 36, pp. 67487–67504, 2023b.

Yunzhen Feng, Shanmukha Ramakrishna Vedantam, and Julia Kempe. Embarrassingly simple
dataset distillation. In The Twelfth International Conference on Learning Representations, 2024.

Jianyang Gu, Kai Wang, Wei Jiang, and Yang You. Summarizing stream data for memory-
constrained online continual learning. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 38(11):12217–12225, March 2024.

Ziyao Guo, Kai Wang, George Cazenavette, HUI LI, Kaipeng Zhang, and Yang You. Towards
lossless dataset distillation via difficulty-aligned trajectory matching. In The Twelfth International
Conference on Learning Representations, 2024.

Jintong Hu, Bin Xia, Bin Chen, Wenming Yang, and Lei Zhang. Gaussiansr: High fidelity 2d
gaussian splatting for arbitrary-scale image super-resolution, 2024.

Chun-Yin Huang, Kartik Srinivas, Xin Zhang, and Xiaoxiao Li. Overcoming data and model het-
erogeneities in decentralized federated learning via synthetic anchors, 2024a. URL https:
//openreview.net/forum?id=PcBJ4pA6bF.

Nan Huang, Xiaobao Wei, Wenzhao Zheng, Pengju An, Ming Lu, Wei Zhan, Masayoshi Tomizuka,
Kurt Keutzer, and Shanghang Zhang. S3gaussian: Self-supervised street gaussians for au-
tonomous driving. arXiv preprint arXiv:2405.20323, 2024b.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-
gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4220–4230, 2024c.

Yuqi Jia, Saeed Vahidian, Jingwei Sun, Jianyi Zhang, Vyacheslav Kungurtsev, Neil Zhenqiang
Gong, and Yiran Chen. Unlocking the potential of federated learning: The symphony of dataset
distillation via deep generative latents. In Computer Vision – ECCV 2024, pp. 18–33, Cham,
2025. ISBN 978-3-031-73229-4.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4), July 2023. ISSN 0730-
0301.

12

https://openreview.net/forum?id=PcBJ4pA6bF
https://openreview.net/forum?id=PcBJ4pA6bF
https://arxiv.org/abs/2001.08361

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
In Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 11102–11118, July 2022.

Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset conden-
sation with contrastive signals. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 12352–12364, July
2022.

Dai Liu, Jindong Gu, Hu Cao, Carsten Trinitis, and Martin Schulz. Dataset distillation by automatic
training trajectories. In Computer Vision – ECCV 2024, pp. 334–351, Cham, 2025. ISBN 978-3-
031-73021-4.

Songhua Liu and Xinchao Wang. Mgdd: A meta generator for fast dataset distillation. In Advances
in Neural Information Processing Systems, volume 36, pp. 56437–56455, 2023.

Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
factorization. In Advances in Neural Information Processing Systems, volume 35, pp. 1100–1113,
2022.

Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient
dataset distillation by representative matching. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 17314–17324, October 2023.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of The Acm, 65(1):99–106, December 2021. ISSN 0001-0782.

Brian B. Moser, Federico Raue, Sebastian Palacio, Stanislav Frolov, and Andreas Dengel. Latent
dataset distillation with diffusion models, 2024. URL https://arxiv.org/abs/2403.
03881.

Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, and Siyu Tang. 3dgs-avatar: Ani-
matable avatars via deformable 3d gaussian splatting. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5020–5030, 2024.

Donghyeok Shin, Seungjae Shin, and Il-chul Moon. Frequency domain-based dataset distillation.
In Advances in Neural Information Processing Systems, volume 36, pp. 70033–70044, 2023.

Donghyeok Shin, HeeSun Bae, Gyuwon Sim, Wanmo Kang, and Il-chul Moon. Distilling dataset
into neural field. In The Thirteenth International Conference on Learning Representations, 2025.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. In Advances in Neural Information
Processing Systems, volume 33, pp. 7462–7473, 2020.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey Clune. Genera-
tive teaching networks: Accelerating neural architecture search by learning to generate synthetic
training data. In International Conference on Machine Learning, pp. 9206–9216. PMLR, 2020.

Longan Wang, Yuang Shi, and Wei Tsang Ooi. Gsvc: Efficient video representation and compression
through 2d gaussian splatting, 2025a.

Shaobo Wang, Yicun Yang, Zhiyuan Liu, Chenghao Sun, Xuming Hu, Conghui He, and Linfeng
Zhang. Dataset distillation with neural characteristic function: A minmax perspective. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
25570–25580, June 2025b.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation. CoRR,
abs/1811.10959, 2018.

13

https://arxiv.org/abs/2403.03881
https://arxiv.org/abs/2403.03881

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wei Wei, Tom De Schepper, and Kevin Mets. Dataset condensation with latent quantile matching. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, pp. 7703–7712, June 2024.

Xing Wei, Anjia Cao, Funing Yang, and Zhiheng Ma. Sparse parameterization for epitomic dataset
distillation. In Advances in Neural Information Processing Systems, volume 36, pp. 50570–50596,
2023.

Sebastian Weiss and Derek Bradley. Gaussian billboards: Expressive 2d gaussian splatting with
textures, 2024.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 20310–20320, 2024.

Guochen Yan, Luyuan Xie, Xinyi Gao, Wentao Zhang, Qingni Shen, Yuejian Fang, and Zhong-
hai Wu. Fedvck: Non-iid robust and communication-efficient federated learning via valuable
condensed knowledge for medical image analysis. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 21904–21912, 2025.

Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, and Guibing Guo. An efficient dataset conden-
sation plugin and its application to continual learning. In Thirty-Seventh Conference on Neural
Information Processing Systems, 2023.

Shaolei Yang, Shen Cheng, Mingbo Hong, Haoqiang Fan, Xing Wei, and Shuaicheng Liu. Neural
spectral decomposition for dataset distillation. In Computer Vision – ECCV 2024, pp. 275–290,
Cham, 2025. ISBN 978-3-031-72943-0.

Xinjie Zhang, Xingtong Ge, Tongda Xu, Dailan He, Yan Wang, Hongwei Qin, Guo Lu, Jing Geng,
and Jun Zhang. Gaussianimage: 1000 fps image representation and compression by 2d gaussian
splatting. In Computer Vision – ECCV 2024, pp. 327–345, Cham, 2025. ISBN 978-3-031-72673-
6.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6514–6523,
January 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
International Conference on Learning Representations, 2021.

Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset
condensation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7856–7865, June 2023.

Runkai Zheng, Vishnu Asutosh Dasu, Yinong Oliver Wang, Haohan Wang, and Fernando De la
Torre. Improving noise efficiency in privacy-preserving dataset distillation, 2025.

Xinhao Zhong, Hao Fang, Bin Chen, Xulin Gu, Meikang Qiu, Shuhan Qi, and Shu-Tao Xia. Hier-
archical features matter: A deep exploration of progressive parameterization method for dataset
distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 30462–30471, June 2025.

Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang. Driv-
inggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
21634–21643, 2024.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature re-
gression. In Advances in Neural Information Processing Systems, volume 35, pp. 9813–9827,
2022.

Lingting Zhu, Guying Lin, Jinnan Chen, Xinjie Zhang, Zhenchao Jin, Zhao Wang, and Lequan Yu.
Large images are gaussians: High-quality large image representation with levels of 2d gaussian
splatting, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, and Javier
Romero. Drivable 3d gaussian avatars. In 2025 International Conference on 3D Vision (3DV),
pp. 979–990. IEEE, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 DATASETS

We conduct experiments on eight datasets in total, including CIFAR-10, CIFAR-100, and six Im-
ageNet subsets: imagenette, imagewoof, imagefruit, imagemeow, imagesquawk, and imageyellow.
CIFAR-10 consists of 60,000 images of resolution 32 × 32 across 10 classes, with 50,000 training
images and 10,000 test images. CIFAR-100 has the same resolution and number of images, but
covers 100 classes. Each ImageNet subset contains images of resolution 128× 128 from 10 classes,
with more than 10,000 images per subset.

A.2 NETWORK ARCHITECTURES

We adopt ConvNet architectures as the backbone networks. A Depth-n ConvNet consists of n blocks
followed by a fully-connected layer, where each block is composed of a 3 × 3 convolutional layer
with 128 filters, instance normalization, a ReLU activation, and 2× 2 average pooling with stride 2.
Specifically, we use ConvNetD3 for CIFAR-10 and CIFAR-100, and ConvNetD5 for the ImageNet
subsets.

A.3 IMAGE INITIALIZATION

For the initialization of synthetic images, all experiments adopt the mean squared error (MSE) loss
and use the Adam optimizer with a learning rate of 1× 10−2.

A.4 DATASET DISTILLATION

During dataset distillation, Gaussian points are optimized with the Adam optimizer and a learning
rate of 1× 10−2. The number of optimization iterations is set to 15,000 unless otherwise specified.

Table 7: Hyperparameters for dataset distillation on CIFAR-10 32× 32.

Setting GPC num points syn steps max start epoch expert epochs lr lr lr init batch syn zca

IPC=1 30 22 60 30 2 1e-5 1e-2 300 True
IPC=10 160 42 60 30 2 1e-5 1e-2 380 True
IPC=50 250 136 60 30 2 1e-5 1e-2 360 True

Table 8: Hyperparameters for dataset distillation on CIFAR-100 32× 32.

Setting GPC num points syn steps max start epoch expert epochs lr lr lr init batch syn zca

IPC=1 30 22 60 30 2 1e-5 1e-2 512 True
IPC=10 80 85 60 30 2 1e-5 1e-2 512 True
IPC=50 400 85 60 30 2 1e-5 1e-2 640 True

Table 9: Hyperparameters for dataset distillation on ImageNet-subset TM 128× 128.

Setting GPC num points syn steps max start epoch expert epochs lr lr lr init batch syn zca

IPC=1 64 170 20 40 2 1e-6 1e-2 150 False
IPC=10 640 170 20 40 2 1e-5 1e-2 160 False

A.5 PERFORMANCE BENCHMARKING

In Table 5, we evaluate the image-fitting performance of FreD Shin et al. (2023), SPEED Wei et al.
(2023), DDiF Shin et al. (2025), and GSDD. We select 100 images from each class of the ImageNette
dataset, resulting in a total of 1,000 images, all at a resolution of 128. Each method is constrained
to the same storage budget, meaning that, on average, each image is represented using 963 floating-
point parameters. For SPEED, we follow the parameter-counting formula provided in its original

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameters for dataset distillation on ImageNet-subset 128× 128 (DM).

Setting GPC num points batch real batch syn zca Iteration

IPC=1 200 54 1024 2000 False 20000

Table 11: Hyperparameters for dataset distillation on ImageNet-subset 256× 256 (DM).

Setting GPC num points batch real batch syn zca Iteration

IPC=1 120 364 512 512 False 20000

paper,
#Params = DK + 1.5NHk +R(3D22 + 7D) + L(D + 1),

and, given the storage constraint, we solve for all feasible hyperparameter combinations. The fi-
nal configuration used in our experiments is (D=32, N=32, k=135, R=2, L=64). We attempted to
evaluate HaBa Liu et al. (2022) as well, but its model structure cannot be solved inversely under
the resolution of 128 and the storage budget of 963 parameters. FreD, DDiF, and GSDD exhibit
clear advantages in terms of estimating and meeting the storage budget. For each method, we search
over Adam and SGD optimizers and learning rates spaced exponentially by a factor of 10, and we
report the highest PSNR achieved. All models are trained for 1,000 iterations using MSE loss. Each
experiment is repeated three times with random initialization, and the average result is reported. The
results demonstrate that our method achieves strong representational capability and computational
efficiency.

B MORE EXPERIMENTAL RESULTS

B.1 PERFORMANCE COMPARISON ON LOW-DIMENSIONAL DATASETS

As shown in Table 13, our method GSDD consistently achieves the best performance across both
CIFAR-10 and CIFAR-100 under all IPC settings. Notably, GSDD surpasses all baselines by a clear
margin in the low-data regime (IPC=1), achieving 67.6% on CIFAR-10 and 43.0% on CIFAR-100.
In high-data settings (IPC=50), GSDD maintains its superiority, reaching 77.7% and 53.1% respec-
tively. These results demonstrate the strong generalization ability and scalability of our primitive-
based distillation framework.

B.2 DETAILED CROSS-ARCHITECTURE RESULTS

We evaluate the generalization ability of distilled data across different architectures, includ-
ing AlexNet, VGG11, ResNet18, and ViT. The network implementations follow those provided
in Cazenavette et al. (2023). For training, the learning rate is set to 1× 10−3 for AlexNet, 5× 10−5

for ViT, and 1× 10−2 for the remaining architectures. All models are optimized using Adam with a
cosine annealing learning rate schedule. We report the results averaged over three independent runs,
as shown in Figure 14.

B.3 DIFFERENT INITIALIZATION STRATEGY

Table 15: Initialization
Strategy Ablation Results

Init Acc.

IDC real 61.4
FreD real 66.8
NSD random 68.6
DDiF real 72.0
GSDD random 63.6
GSDD warmup 69.4
GSDD real 76.4

Prior methods often initialize distilled data using real images, which
may introduce additional privacy risks. We further conduct an ablation
study on different initialization strategies, including random initializa-
tion. However, we find that optimizing Gaussian representations from
purely random initialization is inherently unstable: the initial Gaussian
points are extremely small and sparsely distributed, creating large gaps
that prevent effective gradient propagation. To mitigate this issue, we in-
troduce a Solid-Color Warmup strategy. Instead of fitting any real images,
all Gaussian representations are first optimized to fit a single solid-color
image. This process reduces point sparsity and adjusts the initial point
sizes, after which standard distillation begins. As shown in Table 15, even

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 12: Hyperparameters for dataset distillation on ImageNet-subset 128× 128 (DC).

Setting GPC num points batch real batch syn zca Iteration

IPC=1 200 54 720 2000 False 5000

Table 13: Classification accuracy on CIFAR-10 and CIFAR-100 under different IPC settings.

Method CIFAR10 CIFAR100

IPC=1 IPC=10 IPC=50 IPC=1 IPC=10 IPC=50

Input sized TM 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 40.1±0.4 47.7±0.2
FRePo 46.8±0.7 65.5±0.4 71.7±0.2 28.7±0.1 42.5±0.2 44.3±0.2

Static IDC 50.0±0.4 67.5±0.5 74.5±0.2 — — —
FreD 60.6±0.8 70.3±0.3 75.8±0.1 34.6±0.4 42.7±0.2 47.8±0.1

Parameterized HaBa 48.3±0.8 69.9±0.4 74.0±0.2 — — 47.0±0.2
RTP 66.4±0.4 71.2±0.4 73.6±0.5 34.0±0.4 42.9±0.7 —
HMN 65.7±0.3 73.7±0.1 76.9±0.2 36.3±0.2 45.4±0.2 48.5±0.2
SPEED 63.2±0.1 73.5±0.2 77.7±0.4 40.4±0.4 45.9±0.3 49.1±0.2
NSD 68.5±0.8 73.4±0.2 75.2±0.6 36.5±0.3 46.1±0.2 —

Function DDiF 66.5±0.4 74.0±0.4 77.5±0.3 42.1±0.2 46.0±0.2 49.9±0.2

Primitive GSDD 67.6±0.4 75.5±0.3 77.7±0.5 43.0±0.1 47.4±0.3 53.1±0.2

without real-image initialization, our warmup-based strategy achieves strong results and surpasses
several methods that depend on real-image initialization.

C PARALLELIZATION STRATEGY FOR BATCHED RENDERING

To scale the rendering pipeline from a single image to an entire batch of images while maximizing
GPU throughput, we designed a global ID system coupled with corresponding data structure man-
agement. The core idea is to consolidate the rendering of multiple independent images into a single,
massive computational task.

C.1 CORE CHALLENGE AND THE GLOBAL ID SYSTEM

The parallelization strategy for batched rendering evolves the original single-image pipeline’s local
indexing system into a global, batch-aware framework. The original approach operated in a local
context where screen tiles were indexed from 0 to M-1 for a single image, and data structures
pertained only to that instance.

To scale this process across a batch of B images, we introduced a Globally Unique ID (GUID)
system. This system creates a single, contiguous address space for all tiles across the entire batch.
A local tile j from image i is re-indexed into a global tile id using the linear transformation:

global tile id = i×M + j (12)

This re-indexing prompted adaptations to our key CUDA kernels. The intersection mapping kernel
was modified to calculate this global tile id for each generated intersection record, enabling the sub-
sequent sorting operation to correctly group tasks on a global, batch-wide level. Correspondingly,
the rasterization kernel is now launched with a 1D grid of B×M thread blocks, where each block’s
index directly corresponds to a global tile id. Inside the kernel, this global ID is decomposed back
into its constituent image id and local tile id. This allows each thread block to precisely identify
which tile of which image it is responsible for, ensuring it writes the final pixel color to the correct
memory offset within the batch output tensor.

To support this parallelization strategy, we further employ specific data structures at the Python
(PyTorch) level to manage and transfer data efficiently.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 14: Detailed cross-architecture performance comparison.

Test Net Method Nette Woof Fruit Yellow Meow Squawk

AlexNet

TM 13.2 ± 0.6 10.0 ± 0.0 10.0 ± 0.0 11.0 ± 0.2 9.8 ± 0.0 —
IDC 17.4 ± 0.9 16.5 ± 0.7 17.9 ± 0.7 20.6 ± 0.9 16.8 ± 0.5 20.7 ± 1.0
FreD 35.7 ± 0.4 23.9 ± 0.7 15.8 ± 0.7 19.8 ± 1.2 14.4 ± 0.5 36.3 ± 0.3
DDiF 60.7 ± 2.3 36.4 ± 2.3 41.8 ± 0.6 56.2 ± 0.8 40.3 ± 1.9 60.5 ± 0.4
GSDD 63.1 ± 1.3 33.6 ± 0.9 41.9 ± 2.0 53.5 ± 0.9 38.1 ± 0.8 60.1 ± 0.2

VGG11

TM 17.4 ± 2.1 12.6 ± 1.8 11.8 ± 1.0 16.9 ± 1.1 13.8 ± 1.3 —
IDC 19.6 ± 1.5 16.0 ± 2.1 13.8 ± 1.3 16.8 ± 3.5 13.1 ± 2.0 19.1 ± 1.2
FreD 21.8 ± 2.9 17.1 1.7 12.6 ± 2.6 18.2 ± 1.1 13.2 ± 1.9 18.6 ± 2.3
DDiF 53.6 ± 1.5 29.9 ± 1.9 33.8 ± 1.9 44.2 ± 1.7 32.0 ± 1.8 37.9 ± 1.5
GSDD 56.8 ± 1.6 32.7 ± 1.4 34.1 ± 3.0 57.3 ± 4.5 31.3 ± 1.8 55.9 ± 3.4

ResNet18

TM 34.9 ± 2.3 20.7 ± 1.0 23.1 ± 1.5 43.4 ± 1.1 22.8 ± 2.2 —
IDC 43.6 ± 1.3 23.2 ± 0.8 32.9 ± 2.8 44.2 ± 3.5 28.2 ± 0.5 47.8 ± 1.9
FreD 48.8 ± 1.8 28.4 ± 0.6 34.0 ± 1.9 49.3 ± 1.1 29.0 ± 1.8 50.2 ± 0.8
DDiF 63.8 ± 1.8 37.5 ± 1.9 42.0 ± 1.9 55.9 ± 1.0 35.8 ± 1.8 62.6 ± 1.5
GSDD 59.1 ± 3.0 39.5 ± 2.0 42.6 ± 0.8 55.9 ± 1.2 40.9 ± 2.9 62.6 ± 0.6

ViT

TM 22.6 ± 1.1 15.9 ± 0.4 23.3 ± 0.4 18.1 ± 1.3 18.6 ± 0.9 —
IDC 31.0 ± 0.6 22.4 ± 0.8 31.1 ± 0.8 30.3 ± 0.6 21.4 ± 0.7 32.2 ± 1.2
FreD 38.4 ± 0.7 25.4 ± 1.7 31.9 ± 1.4 37.6 ± 2.0 19.7 ± 0.8 44.4 ± 1.0
DDiF 59.0 ± 0.4 32.8 ± 0.8 39.4 ± 0.8 47.9 ± 0.6 27.0 ± 0.6 54.8 ± 1.1
GSDD 53.4 ± 0.6 32.6 ± 1.1 41.0 ± 1.2 47.6 ± 0.8 25.8 ± 0.4 53.5 ± 2.1

C.2 1D FLATTENING AND CONTIGUOUS MEMORY LAYOUT

We avoid using Python lists or non-contiguous tensors to store the parameters of different images.
Instead, all Gaussian parameters (e.g., means, features, and Cholesky components) across the batch
are concatenated and stored in a single large contiguous PyTorch tensor. For a batch of B images
with N points each, the means tensor has a shape of (B × N, 2), rather than being represented
as a list of B tensors of shape (N, 2). This design ensures memory contiguity and eliminates the
performance overhead caused by frequent concatenation.

By combining the global ID system at the CUDA kernel level with a contiguous memory layout at
the framework level, we have constructed an end-to-end rendering architecture that achieves high
throughput for large-scale batched rendering tasks.

C.3 BENCHMARK ACROSS DIFFERENT GPUS

To evaluate the stability of our CUDA-based rasterizer, we conduct systematic benchmarking on five
different GPU architectures. We use an image-fitting task in which Gaussian representations recon-
struct 1000 images sampled from ImageNet (10 classes × 100 images in total). Each experiment is
repeated three times, and we average all results. We test four storage budgets (21, 170, 682, 2730
Gaussians per image). All experiments used PyTorch 2.5.1 and CUDA ≤ 12.0.

Table 16: Runtime, memory usage, and PSNR of our rasterizer benchmarked across five GPU ar-
chitectures under varying storage budgets.

Time (s) Memory (GB) PSNR
GPU Model 21 170 682 2730 21 170 682 2730 21 170 682 2730

Tesla-V100-SXM2-32GB 23.65 26.11 30.28 42.94 1.66 1.70 1.81 2.28 20.24 25.93 30.65 36.09
NVIDIA-A100-SXM4-40GB 10.45 12.87 19.09 41.53 1.66 1.70 1.81 2.28 20.24 26.03 31.06 36.08
NVIDIA-GeForce-RTX-3090 10.33 16.07 25.44 61.38 1.66 1.70 1.81 2.28 20.24 26.03 31.06 36.08
NVIDIA-GeForce-RTX-4090 7.60 9.38 14.06 31.00 1.66 1.70 1.81 2.28 20.24 26.02 31.03 36.06
NVIDIA-GeForce-RTX-5090 7.13 6.99 9.54 21.79 1.66 1.70 1.81 2.28 20.23 26.02 31.03 36.06

As shown in Table 16. Different GPUs exhibit different runtimes due to heterogeneous compute
capabilities, and RTX5090 is the fastest, while RTX3090 is the slowest. Memory usage remained

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

identical across all platforms, and PSNR variation is small across architectures. Slight performance
drops on V100 are expected due to older hardware, but results on A100/3090/4090/5090 remain
highly consistent.

C.4 RESULTS ON CROSS-RESOLUTION GENERALIZATION

Gaussian Splatting naturally supports rendering at arbitrary resolutions through supersampling, en-
abling us to distill data at a low resolution (e.g., 128) while still using it to train models at a higher
resolution (e.g., 256). This effectively reduces the computation when distilling datasets at large
resolutions. Following results and setup in DDiF Shin et al. (2025), we conduct cross-resolution
experiments as shown in Table 17.

Table 17: Test accuracies with different resolutions and networks. Images are first distilled with low
resolution(128) and test at higher resolution(256/512).

test resolution test network method accuracy↑ difference↓ ratio↓

256

ConvNetD5

Vanilla 31.2 20.2 0.39
IDC 55.0 6.4 0.10

SPEED 58.8 8.1 0.12
FreD 56.4 10.4 0.16
DDiF 66.3 5.7 0.08
GSDD 66.4 10.0 0.13

ConvNetD6

Vanilla 44.0 7.3 0.14
IDC 55.4 6.0 0.10

SPEED 62.6 4.3 0.06
FreD 61.8 5.0 0.07
DDiF 70.6 1.4 0.02
GSDD 71.6 4.8 0.06

512

ConvNetD5

Vanilla 27.4 24.0 0.47
IDC 39.5 21.9 0.36

SPEED 45.0 21.9 0.33
FreD 42.9 23.9 0.36
DDiF 58.7 13.3 0.18
GSDD 59.4 17.0 0.22

ConvNetD6

Vanilla 41.2 10.1 0.20
IDC 51.5 9.9 0.16

SPEED 60.1 6.8 0.10
FreD 56.3 10.5 0.16
DDiF 69.0 3.0 0.04
GSDD 67.8 8.6 0.11

For IDC, SPEED, and FreD, we adopt their best-performing upsampling strategies. For DDiF and
GSDD, supersampling is applied, allowing lossless upscaling of the distilled images. GSDD main-
tains competitive performance in cross-resolution tasks. Although its relative performance drop is
larger than DDiF, which is likely due to GSDD’s inherent sparsity, reducing its ability to capture
fine-grained features when evaluated at higher resolutions.

D VISUALIZATION OF ANTIALIAS AND GAUSSIAN ESCAPE

Figure 7 visualizes the test images without and with anti-aliasing, along with the actual renderings
on CIFAR-10. It is evident that when the Gaussian points are relatively elongated, the rendering
quality degrades, resulting in pronounced aliasing artifacts and discontinuous stripes, which in turn
adversely affect the performance of the distilled dataset.

In Figure 8, we visualize the escaping phenomenon of Gaussian points after training when no bound-
ary constraints are applied. We plot the distributions of all Gaussian point centers and observe that,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 7: Comparison between aliasing and anti-aliasing. (a) shows the schematic illustration, while
(b) demonstrates the effect on CIFAR-10 dataset visualization. The anti-aliasing strategy leads to
smoother and clearer patterns.

(a) CIFAR-10 (b) Imagenette

Figure 8: Visualization of Gaussian point distributions without boundary constraints. We plot the
center coordinates of all Gaussian points after training and observe clear escaping phenomena on
both CIFAR-10 and Imagenette, which reduces the representational efficiency of Gaussian points.

on both CIFAR-10 and Imagenette datasets, Gaussian points tend to escape beyond the valid range,
which in turn undermines their representational efficiency.

E VISUALIZATION OF GSDD

We visualize the process of Gaussian initialization in Figure 9. The first row illustrates the actual
rendering results of Gaussian points, while the second row depicts the Gaussians as ellipses that
encode their positions, shapes, and colors. It can be observed that, during optimization, Gaussian
points continuously move, reshape, and adjust their colors to fit the target image.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

iter=0 iter=100 iter=500 iter=2000 iter=10000

Figure 9: Visualization of the Gaussian initialization process. The first row shows the actual render-
ings of Gaussian points at different iterations, while the second row represents each Gaussian as an
ellipse encoding its position, shape, and color. During optimization, Gaussian points continuously
adjust their positions, shapes, and colors to fit the target image.

Figure 10: Visualization of Distilled Images on CIFAR-10

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 11: Visualization of Distilled Images on CIFAR-100

Figure 12: Visualization of Distilled Images on ImageNette

23

	introduction
	Background and Motivation
	Related Work
	Motivation

	methodology
	Parameterization of Dataset Distillation By Gaussian Splatting
	Efficient Gaussian Splatting Design
	Analysis of the Gaussian Representation

	experiments
	Experimental Results
	Benchmark Rendering Efficiency
	Ablation Study

	conclusion
	Experimental Details
	Datasets
	Network Architectures
	Image Initialization
	Dataset Distillation
	Performance Benchmarking

	More Experimental Results
	Performance Comparison on Low-Dimensional Datasets
	Detailed Cross-architecture Results
	Different Initialization Strategy

	Parallelization Strategy for Batched Rendering
	Core Challenge and the Global ID System
	1D Flattening and Contiguous Memory Layout
	Benchmark across different GPUs
	Results on Cross-Resolution Generalization

	Visualization of Antialias And Gaussian Escape
	Visualization of GSDD

