Under review as a conference paper at ICLR 2026

BEYOND PIXELS: EFFICIENT DATASET DISTILLATION
VIA SPARSE GAUSSIAN REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Dataset distillation has emerged as a promising paradigm that synthesizes com-
pact, informative datasets capable of retaining the knowledge of large-scale coun-
terparts, thereby addressing the substantial computational and storage burdens of
modern model training. Conventional approaches typically rely on dense pixel-
level representations, which introduce redundancy and are difficult to scale up.
In this work, we propose GSDD, a novel and efficient sparse representation for
dataset distillation based on 2D Gaussians. Instead of representing all pixels
equally, GSDD encodes critical discriminative information in a distilled image
using only a small number of Gaussian primitives. This sparse representation
could improve dataset diversity under the same storage budget, enhancing cov-
erage of difficult samples and boosting distillation performance. To ensure both
efficiency and scalability, we adapt CUDA-based splatting operators for parallel
inference and training, enabling high-quality rendering with minimal computa-
tional and memory overhead. Our method is simple yet effective, broadly appli-
cable to different distillation pipelines, and highly scalable. Experiments show
that GSDD achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and
ImageNet subsets, while remaining highly efficient encoding and decoding cost.

1 INTRODUCTION

Guided by the principles of scaling laws Kaplan et al.| (2020), deep learning has advanced along the
trajectory of larger models, larger datasets, and longer training, which has significantly pushed the
performance boundaries of modern models. However, this paradigm also incurs enormous demands
on computation, storage, and communication resources, creating a barrier that hinders both broad
adoption and sustainable development. Consequently, a pivotal question in the field is how to achieve
strong performance under limited computational and data resources.

Against this backdrop, dataset distillation offers a promising solution. Its goal is to distill the es-
sential knowledge of massive datasets into a compact set of synthetic samples, enabling models
trained on these small sets to approximate the performance of those trained on the full dataset. By
adopting dataset distillation, the costs of model training, data storage, and data transmission can be
substantially reduced. Moreover, it opens up a wide range of applications, including efficient data
replay for continual learning |Yang et al.| (2023)); |Gu et al.| (2024), critical data transfer in federated
learning |[Huang et al.|(20244a)), and privacy preservation Dong et al.| (2022).

Dataset distillation optimizes the synthetic data itself, with the objective of minimizing the training-
aware information gap between the synthetic and original datasets. Broadly, dataset distillation can
be decomposed into two complementary modules: distillation algorithms and data parameteriza-
tion. The former defines how training-aware key information, such as training gradients |Zhao et al.
(2021)), model parameters|Cazenavette et al.|(2022), or distributional statistics|Zhao & Bilen|(2023)),
is extracted, while the latter determines the representation format of the synthetic data. Although ex-
tensive research has focused on innovating distillation algorithms, exploration of the representation
space has been relatively limited, with most approaches directly optimizing in the pixel space. Con-
ventional methods typically adopt a naive pixel grid as the parameterization scheme. Such dense
representations fail to capture the relative importance of pixels and lead to substantial storage re-
dundancy. Decoder-based parameterizations, in contrast, can leverage structural priors to enhance
image realism and share common information, but they inevitably restrict the optimization space

Under review as a conference paper at ICLR 2026

and introduce additional computational and memory overhead. More recently, approaches based
on implicit neural representations (INRs), such as DDiF |Shin et al.[(2025), have substantially re-
duced per-image storage and thereby improved the diversity of distilled datasets. However, their
inherent per-pixel query decoding mechanism incurs prohibitive computational costs, particularly in
high-resolution or large-batch scenarios, creating a severe performance bottleneck.

In this paper, we propose a new paradigm for dataset distillation, termed Gaussian Splatting Dataset
Distillation (GSDD). Instead of relying on dense pixel grids, GSDD represents each distilled image
with a sparse set of 2D Gaussians. Each Gaussian explicitly encodes training-aware image features
that span multiple pixels, and optimizes only a few parameters such as position and shape, thereby
replacing large-scale pixel-level optimization. This sparse representation significantly reduces the
storage cost per image, which in turn increases the diversity of the distilled dataset and improves
coverage across samples of varying difficulty. To further ensure the scalability of GSDD, we adapt
a highly parallelized differentiable rasterizer that enables instantaneous high-quality rendering from
parameters to images.

Our contributions can be summarized as follows:

* We propose a novel dataset parameterization framework based on 2D Gaussian represen-
tations. This is the first work that introduces sparse Gaussian representations into dataset
distillation. The method is both simple and effective, and it can enhance the performance
of a wide range of distillation algorithms.

* We provide a complete design of the Gaussian representation, including parameteriza-
tion, optimization objectives, and an efficient batch-parallel Gaussian rasterization operator.
This design ensures fast convergence, high distillation quality, and stable optimization.

» Extensive experiments demonstrate that our method achieves state-of-the-art performance
on CIFAR-10, CIFAR-100, and multiple ImageNet subsets, while offering faster computa-
tion and lower memory consumption compared with prior approaches.

2 BACKGROUND AND MOTIVATION

2.1 RELATED WORK

Dataset Distillation Algorithms Modern deep learning models typically rely on large-scale train-
ing datasets, whereas the goal of dataset distillation is to replace the dataset with a much smaller
set of high-quality training samplesWang et al.| (2018). Unlike data selection, dataset distillation
explicitly optimizes the synthetic data to achieve superior performance.

Formally, let the original dataset be denoted as
T: {(twyl) | 1= 17 7NT} g D7

where D represents the underlying data distribution. The distilled dataset (also referred to as the
synthetic dataset) is defined as

S:{(sjvyj) ‘j:]., 7N$}7

where ?; and s; denote original and distilled images, and y; and y; are their corresponding labels.
Since this work adopts one-hot label encoding, without loss of generality we denote the distilled
dataset as

The storage footprint of S is typically required to be far smaller than that of 7. In dataset distillation,
the synthetic dataset is treated as a set of learnable objects, where the pixel values of distilled images
s; are regarded as optimization parameters. The ultimate goal is to train a model 65 on the compact
distilled dataset such that its performance closely matches that of a model 6+ trained on the full
dataset|Wang et al.[(2018):

S= argngn |l(0s,D) —1(67.D)|, bs= argrrgnl(G,S), Or = argmeinl(Q,T).

Under review as a conference paper at ICLR 2026

This optimization objective can be approached via meta-learning, but such methods often consume
substantial GPU memory [Feng et al.| (2024) and yield suboptimal performance due to weak su-
pervision signals. To address these challenges, many alternative distillation objectives have been
proposed. The core idea is to extract and align critical training-aware information between S and
T. Mainstream approaches include trajectory matching(TM) |Cazenavette et al.| (2022); |Du et al.
(2023a); ILiu et al.| (2025); |Guo et al.| (2024)); |Cu1 et al.| (2023)), which constrains the distance be-
tween model parameters trained on the two datasets; distribution matching(DM) |[Zhao & Bilen
(2023)); Zhao et al.[(2023); [Liu et al.| (2023); [Wei et al.[(2024); Wang et al.| (2025b), which aligns
feature distributions; and gradient matching(DC) [Zhao et al.[(2021); [Lee et al.| (2022); Du et al.
(2023b)), which constrains the gradients derived from the two datasets. Despite the drastic reduction
in storage requirements, distilled datasets often achieve competitive training performance, and the
resulting synthetic images can diverge significantly from the originals. Consequently, dataset dis-
tillation has found applications in continual learning [Yang et al.| (2023); |Gu et al.| (2024), privacy
preservation Dong et al.|(2022));\Chung et al.|(2024); |Zheng et al.|(2025)), federated learning Huang
et al.[|(2024a)); |J1a et al.|(2025);|Yan et al.| (2025), and neural architecture search|Such et al.| (2020).

Parameterization of Dataset Distillation The parameterization of the distilled dataset S critically
influences both performance and efficiency. Early methods directly optimized RGB pixels, but this
dense representation wastes storage by ignoring spatial redundancy. To address this, decoder-based
approaches |Liu et al.| (2022); |[Liu & Wang| (2023); |Cazenavette et al.| (2023)) learn latent codes with
a shared decoder, which reduces redundancy but limits flexibility in optimization and adds com-
putation costs. Dictionary-based methods [Deng & Russakovsky| (2022); Wei et al.| (2023) instead
combine basis images with index matrices to support domain adaptation and generalization, though
they still store pixel-level bases and are restricted by linear combinations.

Recent studies have introduced compact low-level representations to reduce image redundancy and
increase distilled samples within a fixed storage budget, such as downscaling |[Kim et al.| (2022),
frequency-domain transforms |Shin et al| (2023), and implicit neural representations (INRs) |Shin
et al.| (2025). INR-based methods show strong performance by encoding each image as a neural
field with fewer parameters, but their efficiency is limited since decoding requires per-pixel RGB
queries, causing heavy overhead for high-resolution and large-batch training.

Gaussian Splatting Gaussian splatting [Kerbl et al.[(2023) represents 3D scenes using Gaussian
ellipsoids, offering higher rendering efficiency and explicit geometric control compared to NeRF-
based representations [Mildenhall et al.| (2021)). Originally developed for novel view synthesis, it
initializes a set of Gaussian primitives within a 3D scene, which are then rendered from multi-
ple viewpoints and optimized to match the corresponding ground-truth images, ultimately enabling
arbitrary-view synthesis. In recent years, Gaussian splatting has been extended to a wide range
of domains, including digital humans [Qian et al.| (2024)); |Zielonka et al.[(2025)), autonomous driv-
ing|Zhou et al.| (2024)); [Huang et al.|(2024b)), dynamic scene modeling Wu et al|(2024)); [Huang et al.
(2024c), and 3D editing |Chen et al.|(2024). More recently, Gaussian representations have also been
applied to 2D vision tasks such as image super-resolution Hu et al.|(2024));|(Chen et al.|(2025), image
representation Zhu et al.|(2025)); Weiss & Bradley| (2024)); Zhang et al.| (2025)), and video represen-
tation [Wang et al.| (2025a), where Gaussian primitives are used to efficiently encode high-fidelity
image of videos with fine-grained textures.

This work is the first to introduce Gaussian Splatting as a parameterization for dataset distillation,
which leverages Gaussian representations as a simple yet efficient parameterization for distilled
datasets. Unlike prior approaches that rely on network structures or complex operations, GSDD
employs a CUDA-based differentiable rasterization algorithm to render sparse Gaussian primitives.
As an explicit representation, it offers high flexibility in optimization, substantially increases dataset
diversity under the same storage budget, and significantly accelerates both encoding and decod-
ing. Rather than emphasizing fine-grained image fidelity, our method parameterizes entire distilled
datasets with Gaussian representations and directly optimizes them for model training performance.

2.2 MOTIVATION

Gaussian representations enable faster decoding and rendering, especially compared to the state-
of-the-art DDiF [Shin et al.| (2025) method. DDiF relies on implicit neural representations using a

Under review as a conference paper at ICLR 2026

SIREN network |Sitzmann et al.| (2020) to model distilled images, where each pixel’s RGB value
must be queried individually, as illustrated in Figure[Th. This approach incurs substantial time and
memory overhead as the number and resolution of distilled images increase. In contrast, GSDD
implements a custom CUDA operator for batched rendering of Gaussians. This allows all Gaussians
to be efficiently rendered into distilled images in a single pass. As shown in Figure [Ip, this design
significantly reduces both inference and optimization time and memory usage, thereby improving
the scalability of dataset distillation methods.

Gaussian representations enable compact

modeling of individual distilled images with pixeldovel gradients
very few parameters. Traditional dataset dis- SHON BEESE
tillation methods operate in the pixel space,
where each pixel is assigned the same storage
budget and optimized equally. This uniform
treatment introduces unnecessary storage and (a)
computation costs. In contrast, GSDD can JHE
use a single Gaussian to represent a larger ’4
spatial area, covering multiple pixels simul- aiating g \
taneously. This not only provides a more effi- ﬁ W
cient image representation but also enhances) regiom-foveloptmizaion
optimization efficiency. As shown in Fig-
ure [Tk, pixel-based methods optimize each
pixel independently, which inevitably intro-
duces redundancy and noise. In compari-
son, Gaussian-based optimization aggregates
pixel-level gradients within the support region of each Gaussian, resulting in more robust updates.
Furthermore, each Gaussian can perform localized optimization by adjusting a small set of param-
eters such as position, color, and shape. This region-level update strategy improves both efficiency
and effectiveness during training.

(b) (©

Figure 1: Comparison of Different Distilled Image
Representation

3 METHODOLOGY

3.1 PARAMETERIZATION OF DATASET DISTILLATION BY GAUSSIAN SPLATTING

We adopt a 2D Gaussian mixture model to parameterize distilled images. Each distilled image s; is
represented as a set of M Gaussian components, denoted by

Specifically, for a pixel located at coordinates (x, y), the contribution from the k-th Gaussian com-
ponent g, is defined by the following unnormalized Gaussian function:

1 Ty—1

g (2, Y; e, X)) = exp(—5(x —) 20 (x =) (2)

where x = [z, y]T denotes the pixel center and 13, = [uy, vx|T is the Gaussian mean. The covariance

matrix Y, determines the size, shape, and orientation of the Gaussian. To ensure that >, remains

positive semi-definite during optimization, we parameterize it via a stable Cholesky decomposition,
ie., X, = L, LT, where the lower-triangular matrix Ly, is given by

k0
Lk: il k|- (3)
121 l22

Each Gaussian gy, is associated with a color vector ¢, € R? and an opacity ay,. The final color of
pixel (x, y) is then synthesized by aggregating the contributions of all Gaussians:

M

c(z,y) = Zak - gk (T, Y3 ug, Vi, Bi) - C. “)
k=1

Thus, each Gaussian component can be fully described by a 9-dimensional vector p; =
(wg, vk, 11,151,155, ci, i) € RY. Accordingly, the parameter set of an entire distilled image s; is

Under review as a conference paper at ICLR 2026

g opacity: a@; € R

3
color: c ER Quant
position: (xL i) ER? Adapter

g shape: L; € R?

Gaussian Params

==

Rasterize

" Training Stage S, T Rasterize Images in ~ [-========"=~
— =] Batch
P32 BF16 Pseudo FP32 é . .

Distilled Images

e ettt

Inference Stage

\
-’

————— + Quant Gaussian Params |---"

Original Images

&—> forward BT active bytes E=3 params of one distilled images
®—> backward 3 zeroed bytes LI pixel with sampled points

Figure 2: Overview of the proposed framework. Each Gaussian is parameterized by a total of 9 floating-point
values. A single distilled image is represented by a set of Gaussians. During training, we first quantize the
parameters to bf16 precision to obtain quantized Gaussian primitives. These are then rendered into distilled
images using a customized rasterizer. During the rasterization process, we concatenate all primitives from the
distilled dataset and feed them into a single batched rasterization kernel. This design enables efficient rendering
and facilitates a compact data structure, as the entire distilled dataset can be managed by initializing only one
object instance. To further improve rendering quality when Gaussians are sparse, we incorporate prefiltering
and SuperSampling-based Anti-Aliasing techniques. These enhancements enable more accurate estimation
of RGB values at each pixel. The rendered distilled images are then aligned with the original images for
information matching, and the resulting gradients are backpropagated to update the Gaussian parameters.

given by p/ = {Pi} M |, and the parameterization of the whole distilled dataset S is Ps = {p’ };le
Based on this parameterization, 12 can be seen as a rendering function, which maps the parameters
p’ onto a predefined pixel coordinate grid C, and is implemented as the cuda operator,

sj = R(p’;C), (5)

which maps the parameters p’ onto a predefined pixel coordinate grid C. Here, C denotes the set of
all pixel coordinates, i.e.,

C=A{z|zecl/W,--- (W-1)/W}x{y|lyel/H, -, (H-1)/H}. (6)

This Gaussian-based parameterization is orthogonal to the choice of dataset distillation algorithm.
Once a differentiable synthesis function is defined, it can be seamlessly integrated into any distilla-
tion framework. The optimization objective is to find the optimal distilled parameters Param(S)*
that minimize the distillation loss Lgjsii:

Param(S)* = arg min Lgsan(S, 7), %)
Param(S)

where Lgigin can correspond to any distillation objective.

To accelerate convergence and provide a good initialization for the optimization process, we pre-
initialize the parameters of the distilled dataset. Specifically, we randomly sample a small subset of
real images Sy, |So| = Ns from the original dataset 7', and minimize the mean squared error (MSE)
between the synthesized images and these real samples. The initialization objective is thus:

Param(S)y = arg Paglnij?s) Lyse(S, So). (8)

3.2 EFFICIENT GAUSSIAN SPLATTING DESIGN

The core of the above optimization lies in the differentiable renderer R(p’; C), which maps Gaussian
primitives to distilled images with both high visual fidelity and computational scalability. To enable
efficient processing of Gaussian representations for large-scale dataset distillation, we incorporate

Under review as a conference paper at ICLR 2026

~
S

o
&

o
S
3

Accuracy (%)
Accuracy (%)
Accuracy (%)
Accuracy (%)

w
o

—m~ keep large opacity 30 GPC
—8— keep small opacity 1 —o— 80 20
& keep large size 20 10 —e— 160

GPC

50 1 #- 40 @~ 160 Difficulty Bin
o= kesp smal sze =0 & m o em aw m THD T
0.5 0.6 0.7 0.8 0.9 1.0 0 2500 5000 7500 100001250015000 [0, 10) [10, 20) [20, 30) [30, 40) [40, 50)[50, 100 1 10 40 80 160
Survival Rate Training Epoch Difficulty Bin GPC
() (b) (© (d)

Figure 3: (a) Distillation performance under different Gaussian pruning strategies as a function of the remain-
ing Gaussian ratio; (b) Test accuracy across training epochs with different GPC (Gaussian Images Per Class)
under the same storage budget; (c) Test accuracy of the distilled dataset on samples of varying difficulty under
the same storage budget; (d) Relationship between prediction accuracy on samples of different difficulty and
GPC under the same storage budget. For fair comparison, TM is initialized with real images and serves as a
baseline that represents pixel-based distillation.

several critical designs into the rendering pipeline, including parallel rendering of multiple distilled
images, anti-aliasing strategies, spatial constraints on Gaussian positions and quantization.

Existing open-source rasterization operators are primarily designed for 3D scene reconstruction or
single-image tasks such as representation learning and super-resolution, and generally lack sup-
port for multi-image rendering. To fully leverage the parallelism of modern GPUs, we implement
customized data structures and rendering kernels for both the forward and backward passes. Specifi-
cally, all Gaussian primitives across the entire distilled dataset are represented as a single contiguous
1D vector, and a globally unique ID (GUID) system is used to assign threads that rasterize multiple
images in parallel. Details are provided in Appendix [C] and code will be open-sourced.

Some Gaussians may become highly anisotropic during optimization to capture high-frequency fea-
tures such as edges, which necessitates anti-aliasing strategies. We adopt two complementary tech-
niques: (i) analytic pre-filtering, which approximates each Gaussian’s integral over a pixel area by
convolving it with a unit pixel box filter, resulting in a modified covariance

k= Sk + Dpos, Where Spo, = diag (15, 75) . ©)
introducing a minimum rendering variance that suppresses aliasing for extremely narrow Gaussians;
and (ii) 2x2 supersampling anti-aliasing (SSAA), which averages multiple samples within each
pixel area to smooth boundaries and reduce high-frequency artifacts with minimal overhead.

During optimization, some Gaussian centers tend to drift outside the normalized coordinate space
[—1,1]2, where they receive no gradients and become unrecoverable, a phenomenon we term Gaus-
sian Escape. To alleviate this, we apply a boundary regularization loss to slightly encourage Gaus-
sian centers to remain within the viewable region:

lboundary = —Ej, [log(1 — %) + log(1 — §°)]. (10)

In practice, the positions of Gaussian primitives are defined within the range [—1, 1], and we per-
form coordinate transformations inside the CUDA operator. At each iteration, we clip the Gaussian
positions to ensure they remain within the valid bounds:

i = clip(ug, —1+€,1 —¢). (11)

We observe that Gaussian parameters exhibit robustness to reduced numerical precision, as the ras-
terization process does not suffer from cumulative precision errors. Based on this, we store all
Gaussian parameters in bfloatl6 (bf16) precision. During training, parameters are maintained in
fp32 to ensure accurate updates, while bf16 casting is applied during the forward pass to allow the
model to adapt to quantization effects. After training, all parameters are quantized to bf16.

3.3 ANALYSIS OF THE GAUSSIAN REPRESENTATION

Sparsity improves optimization A key advantage of using Gaussian representations for image
distillation lies in their ability to efficiently capture and encode training-aware image features that

Under review as a conference paper at ICLR 2026

span multiple pixels, using only a single or very few Gaussian primitives. As a result, this approach
yields a more compact and efficient representation for each distilled image. We design a pruning
experiment based on the following hypothesis: Gaussian components with larger spatial extent and
higher opacity are more likely to carry critical training information. As shown in Figure [3a] when
these large and opaque Gaussians are pruned first, the model performance drops sharply as the
pruning ratio increases. In contrast, removing smaller and more transparent Gaussians has less
effect on the performance. The results indicate that large Gaussian components not only cover
broader pixel regions but also contribute more significantly to the final performance of the distilled
dataset. This further confirms that the proposed Gaussian representation captures a highly sparse
and information-dense encoding of the distilled image.

The Gaussian representation enables efficient
modeling of distilled images with a small num-
ber of parameters. Its core mechanism lies
in the ability to apply structured and coherent
modifications to an entire pixel region by ad-
justing the properties of a single Gaussian com-
ponent, such as its position, shape, color, and
opacity. During backpropagation, each Gaus-
sian also naturally aggregates the gradients of @ ®)

all pixels it covers. This optimization pgradi‘gm, Figure 4: (a) Loss landscape of GSDD; (b) Loss
which operates at the level of geometric primi- andscape of pixel-based representation.
tives, offers improved robustness and efficiency

compared to traditional pixel-wise optimiza-

tion. As shown by the convergence curves in Figure [3b] GSDD achieves faster convergence and
higher final performance than pixel-based methods. To further examine the underlying differences
in optimization behavior, we visualize the loss landscapes of both approaches in Figure [fa] and fb]
GSDD exhibits a smoother loss surface with a lower minimum and a wide basin resembling that
of convex optimization, which substantially reduces the difficulty of gradient descent. In contrast,
the pixel-based method presents a highly rugged and noisy loss landscape, making the optimization
process more susceptible to poor local minima.

Diversity improves scalability The parameter efficiency of Gaussian representations allows more
distilled images to be synthesized under a fixed storage budget, thereby improving coverage of and
generalization to more challenging samples. Prior work has shown that models often rely on mem-
orization to generalize to hard examples, a phenomenon that is difficult to address in conventional
dataset distillation settings. To evaluate this advantage, we conduct the following experiment: we
first construct a difficulty spectrum by counting the number of incorrect predictions made by 100
independently trained models for each test sample. We then fix the overall storage budget and com-
pare the performance of student models trained on distilled datasets with different Gaussian images
Per Class(GPC) values, measuring their accuracy across different difficulty ranges. As shown in
Figures [3c|and 3d] the results reveal a clear trend: increasing the number of representable distilled
images initially yields substantial performance gains on easy samples. With higher GPC values, the
models further improve their accuracy on harder examples. These findings suggest that GSDD en-
hances downstream generalization by increasing the diversity of distilled images, thereby covering
a broader range of the difficulty spectrum.

4 EXPERIMENTS

4.1 EXPERIMENTAL RESULTS

Datasets and Baselines We evaluate our method on standard datasets: CIFAR-10, CIFAR-100 (at
32 x 32 resolution), and six ImageNet subsets (at 128 x 128 resolution and 256 x 256 resolution). The
general pipeline of dataset distillation involves two stages: (1) generating a synthetic dataset, and (2)
training a model from scratch on the synthetic data. The performance of the trained model on the real
test set is used to assess the quality of the distilled dataset. We include a wide range of recent dataset
distillation baselines, including TM [Cazenavette et al. (2022), FRePo Zhou et al.| (2022)), IDC |[Kim
et al.[(2022), FreD [Shin et al.[(2023, HaBa |Liu et al.| (2022), RTP Deng & Russakovsky| (2022),

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy on ImageNet subsets (128 x Table 2: Test accuracy on ImageNet subsets (128 x
128) with trajectory matching (TM). 128) with gradient matching (DC) and distribution
matching (DM).

Subset Nette Woof Fruit Yellow Meow Squawk

DC ImageNet Subset (128x128)
Nette Woof Fruit Yellow Meow Squawk
DC (Vanilla) 342 225 21.0 37.1 220 320 28.1

Original 87.4 67.0 63.9 844 66.7 87.5

Avg

Input sized TM (Vanilla) 51.4 29.7 28.8 47.5 333 41.0

FRePo 48.1 297 — — — — GLaD 354 223 207 — 22.6 338 270

, H-GLaD 369 240 224 — 24.1 353 285
Static IDC 61.4 345 38.0 56.5 395 502 IDC 454 255 26.8 _ 253 346 315
FreD 66.8 383 437 632 432 570 FreD 49.1 26.1 300 — 28.7 39.7 347

DDiF 612 352 378 39.1 543 455

Parameterized HaBa 519 324 347 504 369 419

GSDD 702 424 478 640 432 694 56.2
SPEED 669 38.0 434 62.6 436 60.9 or

NSD 686 352398 610 452 529 DM (Vanilla) 304 20.7 204 360 20.1 266 257

— GLaD 322 212 218 — 223 276 250

Generative Prior ~ GLaD 38.7 234 23.1 — 260 358 H-GLaD 348 239 244 — 242 205 274

H-GLaD 454 283256 — 29.6 397 IDC 483 270 299 — 305 388 349

Function DDiF 720 429 482 69.0 474 67.0 gﬁg 28:% 25:8 3?3‘ — 22:3 éﬁjg 22;2

Primitive GSDD 764 464 512 724 538 732 GSDD 74.6 434 520 694 482 736 60.2

HMN [Liu et al.[(2022), SPEED [Wei et al.[(2023), NSD|Yang et al.|(2025), GLaD |Cazenavette et al.
(2023), H-GLaD Zhong et al.[(2025), LD3M Moser et al.| (2024) and DDiF Shin et al.| (2025)).

Experimental Details We use TM |Cazenavette et al| (2022), DM Zhao & Bilen| (2023), and
DC|Zhao et al.| (2021)) as the underlying distillation algorithms in our experiments. All parameters
of Gaussians are trained using the Adam optimizer, and the learning rate for Gaussian parameters is
uniformly set to 0.001. For CIFAR datasets, we apply ZCA whitening as a standard preprocessing
step. We fix the boundary loss weight t0 Apoundary = 0.1. Experiments are conducted on NVIDIA
V100 and RTX 4090 GPUs. To initialize the Gaussian representation, we randomly sample real im-
ages from the original dataset and fit them with Gaussians before entering the standard distillation
loop. We provide complete implementation details and hyperparameters in the Appendix [A]

Storage Budget and Evaluation Protocol We evaluate performance under varying storage bud-
gets, specified in IPC (images per class). Since our method often utilizes multiple low-storage Gaus-
sian images, we additionally report GPC (Gaussian Images per Class) in Appendix [A] The number
of Gaussians per image is computed as pts = ©=SXISX3XPCX2 where the factor of 2 accounts for
our use of bf16 to store each Gaussian parameter, and the denominator 9 reflects the total number of

parameters per Gaussian.

Performance Comparison Through the integration of GSDD, our method consistently outper-
forms the pixel-based TM baseline and other dataset parameterization methods on six ImageNet
subsets with IPC=1, as shown in Table [T} The results on the higher-resolution ImageNet subset
(256x256) are provided in Table [3] where our method remains superior at higher resolutions. In
addition, we also report experiments conducted at a lower resolution on CIFAR-10/100, with the
results presented in Appendix Table [[3] When compared to the state-of-the-art method DDIF, our
approach achieves consistent improvements, demonstrating highly competitive performance. These
results highlight the effectiveness of GSDD in enhancing the quality of distilled datasets.

Universality to Matching Objectives GSDD is designed to be compatible with a wide range
of dataset distillation algorithms and can be directly integrated with them. We evaluate GSDD
under two widely adopted loss paradigms: gradient matching (DC) and distribution matching (DM).
Experimental results, as shown in Table[2} confirm that GSDD robustly enhances performance across
different distillation objectives.

Cross-Architecture Performance An essential property of dataset distillation is robustness across
model architectures. The distilled data should retain high performance even when the evaluation
model differs from the one used during distillation. To assess this, we synthesize data using a
ConvNet and evaluate it on a variety of downstream architectures, including ResNet, VGG, AlexNet
and ViT. The results, summarized in Table[d] and Table [T4] demonstrate that the increased diversity
introduced by GSDD leads to substantial improvements in cross-architecture generalization.

Under review as a conference paper at ICLR 2026

Forward (Batch Sweep)
res=1

Fwd+Bwd (Batch Sweep)

Forward (Res Sweep)
res=1 bs=32

Fwd+Bwd (Res Sweep)
S= bs=32

102

w
£
S0
[
g =
= og=8o"
/e—/%
o —3— P
10 po r B Fwd Mem (MB) FB Mem (MB) g} o Fwd Mem (MB) FB Mem (MB)
Il © 85MB @ 171MB @ 256 MB @ 341 MB © 3917 MB @ 7833 MB @ 11750 MB @ 15666 MB © 91MB @ 181MB @ 272 MB @ 362 MB © 3916 MB @ 7831 MB @ 11747 MB @ 15662 MB
0 100 200 300 400 500 0 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500
Batch Size Batch Size Resolution Resolution
Algorithm | Storage
~— DDIF | st=333 DDIF | st=81 GSDD | st=333 GSDD | st=81

—— DDIF | st=3523 —— DDIF | st=963 ~—— GSDD | st=3523 GSDD | st=963

Figure 5: Performance comparison between GSDD and DDiF under the same per-image storage budget (ab-
breviated as st (floats)). Top row: Forward and forward+backward execution time and memory usage across
varying image resolutions (with fixed batch size = 32). Bottom row: Same metrics across varying batch sizes
(with fixed resolution = 128). GSDD consistently achieves lower latency and memory consumption, especially
under high-resolution and large-batch scenarios.

Table 3: Results on ImageNet-subsets with Dis- Table 4: Cross-Architecture Performance

tribution Matching (DM) for 256 x 256

Subset Nette Woof Fruit Yellow Meow Squawk

Method Nette Woof Fruit Yellow Meow Squawk ™ 220 148 17.1 223 162 255
Vanilla 32.1 200 19.5 334 212 27.6 IDC 279 195 23.9 280 198 299
IDC 537 302 33.1 522 346 47.0 FreD 362 23.7 23.6 312 19.1 37.4

GLaD 304 17.1 21.1 — 19.6 28.2
FreD 542 31.2 325 49.1 340 43.1 H-GLaD 30.8 174 215 — 20.1 288
DDiF 67.8 39.6 432 63.1 448 67.0 DDiF 59.3 34.1 393 51.1 338 540
GSDD 70.0 42.6 51.2 674 464 704 GSDD 58.1 34.6 399 536 34.0 58.0

4.2 BENCHMARK RENDERING EFFICIENCY

To evaluate the efficiency and representational capacity of GSDD, we conduct an image-fitting ex-
periment comparing several recent parameterization methods with the same storage budget, includ-
ing FreD (2023),, SPEED and DDiF (2025). Specifically, we
use the ImageNette dataset and fit the first 100 images from each class (1,000 images in total) at a
resolution of 128. The optimization is performed for 1,000 steps, and for each method we perform
a grid search over learning rates and optimizers to ensure a fair comparison. As shown in Table 3]
GSDD shows great performance across representational quality (PSNR), GPU memory usage, and
runtime efficiency. High fidelity and low computational overhead of GSDD enables fast synthesis of
more diverse (Higher GPC) distilled datasets, which in turn leads to improved downstream perfor-
mance. We further verify in Section[d.3]that larger GPC values with fixed IPC generally correspond
to stronger distilled data performance.

We further conduct a comprehensive quantitative com-

parison with the state-of-the-art DDiF method in terms Table 5: Comparison of Parameterization

of both decoding and training performance. As shown
in Figure 5} we measure the inference time and memory
consumption of both methods across varying per-image
storage budgets, image resolutions, and batch sizes. The
results demonstrate that GSDD consistently outperforms
DDiF in both inference/training speed and memory ef-
ficiency. This advantage becomes especially pronounced

Methods on Image Fitting Efficiency and
Representational Quality

FreD SPEED DDiF GSDD

PSNR(dB)! 15.69 17.77 2323 23.22
VRAM(MB)| 280.4 298.5 1078.8 150.2
Time(s)| 155 69.4 1088.4 24.5

when handling high-resolution inputs or large batch sizes,
where GSDD achieves several-fold, or even an order-of-
magnitude, reductions in both computation time and memory usage. These findings indicate that our
method not only maintains strong image representation capabilities for distillation but also offers
superior rendering speed and significantly lower memory footprint, thereby substantially improving
the scalability of dataset distillation methods in practical deployment scenarios.

Under review as a conference paper at ICLR 2026

CIFAR10 ImageNette CIFAR10 ImageNette
IPC=10, TM IPC=1, TM IPC=1, TM IPC=1, DM
80 ; % O c w et = B . #
—; = 70 J w | . -
Seof —rr—— * L g O - =
E /. - - A+ 7
-
§40 o ‘/ 50 rﬂ 50 iy Pe
40 / — 65 P T==e
<,/ / IR i S e = T
20 4 3004 ~~ S
1 10 40 80 160 4 16 64 128 20 30 40 50 60 80 100 100 120 160 200 240
GPC GPC GPC GPC
—e- Init Acc #— DD Acc * Max Acc

Figure 6: Effect of GPC (Gaussian Images Per Class) on distilled dataset performance across differ-
ent datasets, storage budgets, and distillation algorithms (TM|Cazenavette et al|(2022) and DM|[Zhao|
(2023)). Initial Accuracy denotes the performance of initialized gaussian images (initialized
on sampled real images). Distilled Accuracy denotes the performance after distillation.

4.3 ABLATION STUDY

To investigate the.contributio.n of each component to model pe.rforn.lance, Table 6: Ablation Study
we conduct a series of ablation studies, with results summarized in Ta-
ble [f] The experiments show that opacity modeling and bf16 mixed-
precision training are two major factors, as removing either leads to a ImageNette ACC
notable performance drop. The boundary entry in the table refers to the
result obtained when both hard clipping and loss regularization are re-

on Individual Components

w/o opacity 74.8
w/o boundary 75.1

moved. The impact of anti-aliasing exhibits a dependence on the dataset

. . . w/o bfl6 74.8
and the complexity of the representation. Its effect becomes important w/o antialias 76.4
when the number of Gaussians used to represent each image is limited. all 76. 4
Specifically, for datasets like CIFAR-10, where storage budgets are con- -
strained and each image is represented by a small number of Gaussians, CIFAR' 1.0 ACC
disabling anti-aliasing introduces rendering artifacts that degrade perfor- w/o antialias 74.5
mance. In contrast, for datasets like ImageNette with denser Gaussians, all 75.5

aliasing artifacts are largely mitigated, and the performance gains from
anti-aliasing become relatively minor.

We further examine the effect of GPC through an ablation study, as shown in Figure [fj When
using the memory-efficient DM algorithm or when distilling under small storage budgets, perfor-
mance increases with GPC at first but eventually declines. This is because small GPC values lead
to insufficient diversity, whereas excessively large GPC values allocate too few Gaussians per im-
age, weakening each image’s representational capacity. In more memory-consuming settings, the
optimal turning point of GPC becomes difficult to reach, and performance tends to improve mono-
tonically as GPC increases. Figure[f]also shows that the performance of the initial dataset serves as
a useful reference for estimating a reasonable GPC range.

5 CONCLUSION

This work introduces sparse Gaussian representations into the task of dataset distillation param-
eterization. We propose a complete framework for encoding distilled images using 2D Gaussian
primitives, including the underlying mathematical formulation, a parallel differentiable renderer,
and several tailored components to handle the sparsity of distilled datasets. Specifically, we incor-
porate anti-aliasing and spatial constraints to enhance the utility of Gaussians and improve overall
distillation quality. Through extensive quantitative and qualitative experiments, we demonstrate
that sparse Gaussian representations facilitate more effective optimization, offer strong scalability,
and provide better coverage across samples of varying difficulty. As shown in our results, GSDD
achieves highly competitive performance under various datasets and storage budgets, while also
exhibiting superior computational efficiency compared to DDiF. The proposed method is simple,
plug-and-play, and readily compatible with existing distillation algorithms, leaving ample room for
future extensions. Future work may focus on scaling to larger datasets, extending Gaussian rep-
resentations to video modalities, and exploring dynamic density control of Gaussian primitives to
further enhance representation quality.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide a comprehensive description of our method in Section [3] and detailed hyperparameters,
optimizers, and network architectures for each dataset in Appendix[A] All experiments are conducted
on publicly available datasets. Our core implementation has been submitted to the supplemental
material and more detailed codebase will be open-sourced upon acceptance of the paper.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. It does not involve any unethical experimen-
tation, nor does it use private, sensitive, or personally identifiable data. All datasets employed in
our experiments are publicly available and properly licensed. No data was collected from human
subjects or required approval from an institutional review board.

Our research promotes responsible stewardship of machine learning technology. In particular, by
advancing the use of synthetic representations for dataset distillation, our approach supports privacy-
preserving research and reduces the reliance on real-world data that might raise privacy concerns.

We have taken care to ensure transparency and reproducibility. All implementation details, including
hyperparameters, architectures, and code necessary for reproduction, are provided in the supplemen-
tal materials and will be open-sourced upon acceptance. Furthermore, we acknowledge and cite all
prior works that our approach builds upon, respecting intellectual contributions in line with academic
and ethical standards.

LLM USAGE STATEMENT

All research components presented in this paper, including the initial literature review, problem
formulation, methodological development, and experimental design, were independently conceived
and developed by the authors, without any contribution from large language models (LLMs).

LLMs were used solely as general-purpose tools for non-substantive assistance. Specifically, we
employed LLMs to help polish the writing, check grammar, and clarify LaTeX syntax during the
preparation of the manuscript. In all such cases, the authors critically reviewed, verified, and revised
the generated content to ensure its accuracy and originality. The authors take full responsibility for
the final text, including any parts informed by LLM assistance.

In addition, we made limited use of Al-assisted coding tools (e.g., GitHub Copilot in VSCode) for
basic code autocompletion during code implementation. LL.Ms were also used to assist in initial
framework scaffolding for code visualization and to suggest potential debugging strategies. All core
algorithmic components and experimental pipelines were manually written, verified, and refined by
the authors. Every LLM-assisted suggestion was critically assessed and edited to ensure correctness
and alignment with the intended methodology.

LLMs were not used to generate, modify, or interpret any experimental results or conclusions.

REFERENCES

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10718-10727, June 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Gener-
alizing dataset distillation via deep generative prior. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3739-3748, June 2023.

Du Chen, Liyi Chen, Zhengqiang Zhang, and Lei Zhang. Generalized and efficient 2d gaussian
splatting for arbitrary-scale super-resolution, 2025.

Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei
Yang, Huaping Liu, and Guosheng Lin. Gaussianeditor: Swift and controllable 3d editing with

11

Under review as a conference paper at ICLR 2026

gaussian splatting. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2147621485, 2024.

Ming-Yu Chung, Sheng-Yen Chou, Chia-Mu Yu, Pin-Yu Chen, Sy-Yen Kuo, and Tsung-Yi Ho.
Rethinking backdoor attacks on dataset distillation: A kernel method perspective. In The Twelfth
International Conference on Learning Representations, 2024.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-
1k with constant memory. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 6565—6590, July 2023.

Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable mem-
ories for neural networks. In Advances in Neural Information Processing Systems, volume 35, pp.
34391-34404, 2022.

Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help
privacy? In Proceedings of the 39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pp. 5378-5396, July 2022.

Jiawei Du, Yidi Jiang, Vincent Y. F. Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the
accumulated trajectory error to improve dataset distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3749-3758, June 2023a.

Jiawei Du, Qin Shi, and Joey Tianyi Zhou. Sequential subset matching for dataset distillation. In
Advances in Neural Information Processing Systems, volume 36, pp. 67487-67504, 2023b.

Yunzhen Feng, Shanmukha Ramakrishna Vedantam, and Julia Kempe. Embarrassingly simple
dataset distillation. In The Twelfth International Conference on Learning Representations, 2024.

Jianyang Gu, Kai Wang, Wei Jiang, and Yang You. Summarizing stream data for memory-
constrained online continual learning. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 38(11):12217-12225, March 2024.

Ziyao Guo, Kai Wang, George Cazenavette, HUI LI, Kaipeng Zhang, and Yang You. Towards
lossless dataset distillation via difficulty-aligned trajectory matching. In The Twelfth International
Conference on Learning Representations, 2024.

Jintong Hu, Bin Xia, Bin Chen, Wenming Yang, and Lei Zhang. Gaussiansr: High fidelity 2d
gaussian splatting for arbitrary-scale image super-resolution, 2024.

Chun-Yin Huang, Kartik Srinivas, Xin Zhang, and Xiaoxiao Li. Overcoming data and model het-
erogeneities in decentralized federated learning via synthetic anchors, 2024a. URL https:
//openreview.net/forum?id=PcBJ4pA6DF.

Nan Huang, Xiaobao Wei, Wenzhao Zheng, Pengju An, Ming Lu, Wei Zhan, Masayoshi Tomizuka,
Kurt Keutzer, and Shanghang Zhang. S3gaussian: Self-supervised street gaussians for au-
tonomous driving. arXiv preprint arXiv:2405.20323, 2024b.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-
gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4220-4230, 2024c.

Yuqi Jia, Saeed Vahidian, Jingwei Sun, Jianyi Zhang, Vyacheslav Kungurtsev, Neil Zhengiang
Gong, and Yiran Chen. Unlocking the potential of federated learning: The symphony of dataset
distillation via deep generative latents. In Computer Vision — ECCV 2024, pp. 18-33, Cham,
2025. ISBN 978-3-031-73229-4.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4), July 2023. ISSN 0730-
0301.

12

https://openreview.net/forum?id=PcBJ4pA6bF
https://openreview.net/forum?id=PcBJ4pA6bF
https://arxiv.org/abs/2001.08361

Under review as a conference paper at ICLR 2026

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
In Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 11102—-11118, July 2022.

Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset conden-
sation with contrastive signals. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 12352-12364, July
2022.

Dai Liu, Jindong Gu, Hu Cao, Carsten Trinitis, and Martin Schulz. Dataset distillation by automatic
training trajectories. In Computer Vision — ECCV 2024, pp. 334-351, Cham, 2025. ISBN 978-3-
031-73021-4.

Songhua Liu and Xinchao Wang. Mgdd: A meta generator for fast dataset distillation. In Advances
in Neural Information Processing Systems, volume 36, pp. 56437-56455, 2023.

Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
factorization. In Advances in Neural Information Processing Systems, volume 35, pp. 1100-1113,
2022.

Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient
dataset distillation by representative matching. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 17314-17324, October 2023.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of The Acm, 65(1):99—-106, December 2021. ISSN 0001-0782.

Brian B. Moser, Federico Raue, Sebastian Palacio, Stanislav Frolov, and Andreas Dengel. Latent
dataset distillation with diffusion models, 2024. URL https://arxiv.org/abs/2403.
03881.

Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, and Siyu Tang. 3dgs-avatar: Ani-
matable avatars via deformable 3d gaussian splatting. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5020-5030, 2024.

Donghyeok Shin, Seungjae Shin, and Il-chul Moon. Frequency domain-based dataset distillation.
In Advances in Neural Information Processing Systems, volume 36, pp. 70033-70044, 2023.

Donghyeok Shin, HeeSun Bae, Gyuwon Sim, Wanmo Kang, and Il-chul Moon. Distilling dataset
into neural field. In The Thirteenth International Conference on Learning Representations, 2025.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. In Advances in Neural Information
Processing Systems, volume 33, pp. 7462-7473, 2020.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey Clune. Genera-
tive teaching networks: Accelerating neural architecture search by learning to generate synthetic
training data. In International Conference on Machine Learning, pp. 9206-9216. PMLR, 2020.

Longan Wang, Yuang Shi, and Wei Tsang Ooi. Gsvc: Efficient video representation and compression
through 2d gaussian splatting, 2025a.

Shaobo Wang, Yicun Yang, Zhiyuan Liu, Chenghao Sun, Xuming Hu, Conghui He, and Linfeng
Zhang. Dataset distillation with neural characteristic function: A minmax perspective. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
25570-25580, June 2025b.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation. CoRR,
abs/1811.10959, 2018.

13

https://arxiv.org/abs/2403.03881
https://arxiv.org/abs/2403.03881

Under review as a conference paper at ICLR 2026

Wei Wei, Tom De Schepper, and Kevin Mets. Dataset condensation with latent quantile matching. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, pp. 7703-7712, June 2024.

Xing Wei, Anjia Cao, Funing Yang, and Zhiheng Ma. Sparse parameterization for epitomic dataset
distillation. In Advances in Neural Information Processing Systems, volume 36, pp. 50570-50596,
2023.

Sebastian Weiss and Derek Bradley. Gaussian billboards: Expressive 2d gaussian splatting with
textures, 2024.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 20310-20320, 2024.

Guochen Yan, Luyuan Xie, Xinyi Gao, Wentao Zhang, Qingni Shen, Yuejian Fang, and Zhong-
hai Wu. Fedvck: Non-iid robust and communication-efficient federated learning via valuable
condensed knowledge for medical image analysis. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 21904-21912, 2025.

Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, and Guibing Guo. An efficient dataset conden-
sation plugin and its application to continual learning. In Thirty-Seventh Conference on Neural
Information Processing Systems, 2023.

Shaolei Yang, Shen Cheng, Mingbo Hong, Haoqgiang Fan, Xing Wei, and Shuaicheng Liu. Neural
spectral decomposition for dataset distillation. In Computer Vision — ECCV 2024, pp. 275-290,
Cham, 2025. ISBN 978-3-031-72943-0.

Xinjie Zhang, Xingtong Ge, Tongda Xu, Dailan He, Yan Wang, Hongwei Qin, Guo Lu, Jing Geng,
and Jun Zhang. Gaussianimage: 1000 fps image representation and compression by 2d gaussian
splatting. In Computer Vision — ECCV 2024, pp. 327-345, Cham, 2025. ISBN 978-3-031-72673-
6.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6514-6523,
January 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
International Conference on Learning Representations, 2021.

Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset
condensation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7856-7865, June 2023.

Runkai Zheng, Vishnu Asutosh Dasu, Yinong Oliver Wang, Haohan Wang, and Fernando De la
Torre. Improving noise efficiency in privacy-preserving dataset distillation, 2025.

Xinhao Zhong, Hao Fang, Bin Chen, Xulin Gu, Meikang Qiu, Shuhan Qi, and Shu-Tao Xia. Hier-
archical features matter: A deep exploration of progressive parameterization method for dataset
distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 30462-30471, June 2025.

Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang. Driv-
inggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
21634-21643, 2024.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature re-
gression. In Advances in Neural Information Processing Systems, volume 35, pp. 9813-9827,
2022.

Lingting Zhu, Guying Lin, Jinnan Chen, Xinjie Zhang, Zhenchao Jin, Zhao Wang, and Lequan Yu.
Large images are gaussians: High-quality large image representation with levels of 2d gaussian
splatting, 2025.

14

Under review as a conference paper at ICLR 2026

Woijciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhofer, Justus Thies, and Javier
Romero. Drivable 3d gaussian avatars. In 2025 International Conference on 3D Vision (3DV),
pp- 979-990. IEEE, 2025.

15

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 DATASETS

We conduct experiments on eight datasets in total, including CIFAR-10, CIFAR-100, and six Im-
ageNet subsets: imagenette, imagewoof, imagefruit, imagemeow, imagesquawk, and imageyellow.
CIFAR-10 consists of 60,000 images of resolution 32 x 32 across 10 classes, with 50,000 training
images and 10,000 test images. CIFAR-100 has the same resolution and number of images, but
covers 100 classes. Each ImageNet subset contains images of resolution 128 x 128 from 10 classes,
with more than 10,000 images per subset.

A.2 NETWORK ARCHITECTURES

We adopt ConvNet architectures as the backbone networks. A Depth-n ConvNet consists of n blocks
followed by a fully-connected layer, where each block is composed of a 3 x 3 convolutional layer
with 128 filters, instance normalization, a ReLU activation, and 2 x 2 average pooling with stride 2.

Specifically, we use ConvNetD3 for CIFAR-10 and CIFAR-100, and ConvNetD5 for the ImageNet
subsets.

A.3 IMAGE INITIALIZATION

For the initialization of synthetic images, all experiments adopt the mean squared error (MSE) loss
and use the Adam optimizer with a learning rate of 1 x 1072,

A.4 DATASET DISTILLATION

During dataset distillation, Gaussian points are optimized with the Adam optimizer and a learning
rate of 1 x 1072, The number of optimization iterations is set to 15,000 unless otherwise specified.

Table 7: Hyperparameters for dataset distillation on CIFAR-10 32 x 32.

Setting GPC num_points syn_steps max_start_.epoch expert_epochs Irlr Ir.init batch.syn zca

IPC=1 30 22 60 30 2 le-5 le-2 300 True
IPC=10 160 42 60 30 2 le-5 le-2 380 True
IPC=50 250 136 60 30 2 le-5 le-2 360 True

Table 8: Hyperparameters for dataset distillation on CIFAR-100 32 x 32.

Setting GPC num_points syn_steps max_start_.epoch expert_epochs Irlr Ir.init batch.syn zca

IPC=1 30 22 60 30 2 le-5 le-2 512 True
IPC=10 80 85 60 30 2 le-5 le-2 512 True
IPC=50 400 85 60 30 2 le-5 le-2 640 True

Table 9: Hyperparameters for dataset distillation on ImageNet-subset TM 128 x 128.

Setting GPC num_points syn_steps max_start_epoch expert_epochs Irr Ir.init batch_syn zca

IPC=1 64 170 20 40 2 le-6 le-2 150 False
IPC=10 640 170 20 40 2 le-5 le-2 160 False

A.5 PERFORMANCE BENCHMARKING

In Table|§[, we evaluate the image-fitting performance of FreD [Shin et al.|(2023)), SPEED [Wei et al.
(2023)), DDiF|Shin et al.|(2025)), and GSDD. We select 100 images from each class of the ImageNette
dataset, resulting in a total of 1,000 images, all at a resolution of 128. Each method is constrained
to the same storage budget, meaning that, on average, each image is represented using 963 floating-
point parameters. For SPEED, we follow the parameter-counting formula provided in its original

16

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameters for dataset distillation on ImageNet-subset 128 x 128 (DM).

Setting GPC num_points batch real batch.syn zca Iteration
IPC=1 200 54 1024 2000 False 20000

Table 11: Hyperparameters for dataset distillation on ImageNet-subset 256 x 256 (DM).

Setting GPC num_points batch_real batch.syn zca Iteration
IPC=1 120 364 512 512 False 20000

paper,

#Params = DK + 1.5NHEk + R(3D?2 +7D) + L(D + 1),
and, given the storage constraint, we solve for all feasible hyperparameter combinations. The fi-
nal configuration used in our experiments is (D=32, N=32, k=135, R=2, L=64). We attempted to
evaluate HaBa (2022) as well, but its model structure cannot be solved inversely under
the resolution of 128 and the storage budget of 963 parameters. FreD, DDiF, and GSDD exhibit
clear advantages in terms of estimating and meeting the storage budget. For each method, we search
over Adam and SGD optimizers and learning rates spaced exponentially by a factor of 10, and we
report the highest PSNR achieved. All models are trained for 1,000 iterations using MSE loss. Each
experiment is repeated three times with random initialization, and the average result is reported. The
results demonstrate that our method achieves strong representational capability and computational
efficiency.

B MORE EXPERIMENTAL RESULTS

B.1 PERFORMANCE COMPARISON ON LOW-DIMENSIONAL DATASETS

As shown in Table [I3] our method GSDD consistently achieves the best performance across both
CIFAR-10 and CIFAR-100 under all IPC settings. Notably, GSDD surpasses all baselines by a clear
margin in the low-data regime (IPC=1), achieving 67.6% on CIFAR-10 and 43.0% on CIFAR-100.
In high-data settings (IPC=50), GSDD maintains its superiority, reaching 77.7% and 53.1% respec-
tively. These results demonstrate the strong generalization ability and scalability of our primitive-
based distillation framework.

B.2 DETAILED CROSS-ARCHITECTURE RESULTS

We evaluate the generalization ability of distilled data across different architectures, includ-
ing AlexNet, VGG11, ResNet18, and ViT. The network implementations follow those provided
in/Cazenavette et al.|(2023). For training, the learning rate is set to 1 x 10~ for AlexNet, 5 x 10~°
for ViT, and 1 x 10~ for the remaining architectures. All models are optimized using Adam with a
cosine annealing learning rate schedule. We report the results averaged over three independent runs,
as shown in Figure [[4]

B.3 DIFFERENT INITIALIZATION STRATEGY

Prior methods often initialize distilled data using real images, which Table 15: Initialization
may introduce additional privacy risks. We further conduct an ablation ~Strategy Ablation Results
study on different initialization strategies, including random initializa-
tion. However, we find that optimizing Gaussian representations from
purely random initialization is inherently unstable: the initial Gaussian

Init Acc.

IDC real 61.4
FreD real 66.8

points are extremely small and sparsely distributed, creating large gaps NSD random 68.6
that prevent effective gradient propagation. To mitigate this issue, we in- DDiF real 72.0
troduce a Solid-Color Warmup strategy. Instead of fitting any real images, GSDD random 63.6
all Gaussian representations are first optimized to fit a single solid-color GSDD warmup 69.4
image. This process reduces point sparsity and adjusts the initial point GSDD real 764

sizes, after which standard distillation begins. As shown in Table[I3] even

17

Under review as a conference paper at ICLR 2026

Table 12: Hyperparameters for dataset distillation on ImageNet-subset 128 x 128 (DC).

Setting GPC num_points batch_real batch.syn zca Iteration
IPC=1 200 54 720 2000 False 5000

Table 13: Classification accuracy on CIFAR-10 and CIFAR-100 under different IPC settings.

CIFARI10 CIFAR100
Method
IPC=1 IPC=10 IPC=50 IPC=1 IPC=10 IPC=50
Input sized ™ 46.3£0.8 65.3+0.7 71.6£0.2 24.3+0.3 40.1+0.4 47.7+0.2
FRePo 46.840.7 65.5+04 71.7¢0.2 28.7+0.1 42.5+0.2 44.3%0.2
Static IDC 50.0£0.4 67.5+0.5 74.5+0.2 — — —
FreD 60.6+£0.8 70.3+0.3 75.840.1 34.6+0.4 42.7+£0.2 47.8+0.1
Parameterized HaBa 48.3+0.8 69.9+0.4 74.0+0.2 — — 47.0+0.2

RTP 66.4+04 71204 73.6£0.5 34.0+0.4 42.9+0.7 —
HMN 65.7£0.3 73.7+0.1 76.9+0.2 36.3x0.2 45.4+0.2 48.5+0.2
SPEED 63.2+0.1 73.5#0.2 77.7#0.4 40.4+0.4 459+0.3 49.1+0.2
NSD 68.5+0.8 73.4+0.2 752+0.6 36.5£0.3 46.1+£0.2 —

Function DDiF 66.5+0.4 74.0+0.4 77.5#03 42.1x0.2 46.0+0.2 49.9+0.2
Primitive GSDD 67.6x04 75.5+0.3 77.74£0.5 43.0+0.1 47.4+0.3 53.1+0.2

without real-image initialization, our warmup-based strategy achieves strong results and surpasses
several methods that depend on real-image initialization.

C PARALLELIZATION STRATEGY FOR BATCHED RENDERING

To scale the rendering pipeline from a single image to an entire batch of images while maximizing
GPU throughput, we designed a global ID system coupled with corresponding data structure man-
agement. The core idea is to consolidate the rendering of multiple independent images into a single,
massive computational task.

C.1 CORE CHALLENGE AND THE GLOBAL ID SYSTEM

The parallelization strategy for batched rendering evolves the original single-image pipeline’s local
indexing system into a global, batch-aware framework. The original approach operated in a local
context where screen tiles were indexed from 0 to M-1 for a single image, and data structures
pertained only to that instance.

To scale this process across a batch of B images, we introduced a Globally Unique ID (GUID)
system. This system creates a single, contiguous address space for all tiles across the entire batch.
A local tile j from image i is re-indexed into a global tile id using the linear transformation:

global tile_id = i x M + j (12)

This re-indexing prompted adaptations to our key CUDA kernels. The intersection mapping kernel
was modified to calculate this global tile id for each generated intersection record, enabling the sub-
sequent sorting operation to correctly group tasks on a global, batch-wide level. Correspondingly,
the rasterization kernel is now launched with a 1D grid of BxM thread blocks, where each block’s
index directly corresponds to a global tile id. Inside the kernel, this global ID is decomposed back
into its constituent image id and local tile id. This allows each thread block to precisely identify
which tile of which image it is responsible for, ensuring it writes the final pixel color to the correct
memory offset within the batch output tensor.

To support this parallelization strategy, we further employ specific data structures at the Python
(PyTorch) level to manage and transfer data efficiently.

18

Under review as a conference paper at ICLR 2026

Table 14: Detailed cross-architecture performance comparison.

Test Net Method Nette Woof Fruit Yellow Meow Squawk

T™M 132+06 100£00 10000 110202 9800 —

IDC 17409 16507 179£07 206+09 16805 20710

AlexNet FreD 35704 239+07 158407 198+12 144205 36303
DDiF 60.7+23 364%23 418+06 56208 403:19 60.5=0.4

GSDD 63.1%13 33.6+09 41920 535+09 38108 60.1+02

T™M 17421 126+18 11810 169+1.1 13813 —
IDC 196+15 16021 138+13 168+35 13120 19112
VGG11 ~ FreD 218+29 17117 12626 182+1.1 132+19 18623
DDiF 53.6+1.5 299+19 338%19 44217 320:18 379%15
GSDD 568+1.6 32714 34130 573+45 31318 55934

TM 34923 207+1.0 23.1%15 43411 22822 —

IDC 43.6+13 232+08 329+28 442+35 282+05 478+19

ResNetls FreD 488+18 284206 340+19 493+11 290+18 502+0.8
DDiF 63.8+18 375+19 420+19 559:1.0 358+18 62.6=15

GSDD 59.1+30 39.5:2.0 42608 559:12 40929 62.6+0.6

™ 226+1.1 159+04 233+£04 18113 18.6+x09 —
IDC 310£0.6 224+08 31.1+08 303+06 214+£07 322+1.2
ViT FreD 38407 254+1.7 319%x14 376+x20 197+08 444+1.0
DDiF 59.0+0.4 328+08 394+08 479+£0.6 27.0+0.6 548=*1.1
GSDD 534+0.6 326+1.1 41.0+x12 476+0.8 258+04 535=+2.1

C.2 1D FLATTENING AND CONTIGUOUS MEMORY LAYOUT

We avoid using Python lists or non-contiguous tensors to store the parameters of different images.
Instead, all Gaussian parameters (e.g., means, features, and Cholesky components) across the batch
are concatenated and stored in a single large contiguous PyTorch tensor. For a batch of B images
with N points each, the means tensor has a shape of (B x N, 2), rather than being represented
as a list of B tensors of shape (N, 2). This design ensures memory contiguity and eliminates the
performance overhead caused by frequent concatenation.

By combining the global ID system at the CUDA kernel level with a contiguous memory layout at
the framework level, we have constructed an end-to-end rendering architecture that achieves high
throughput for large-scale batched rendering tasks.

C.3 BENCHMARK ACROSS DIFFERENT GPUS

To evaluate the stability of our CUDA-based rasterizer, we conduct systematic benchmarking on five
different GPU architectures. We use an image-fitting task in which Gaussian representations recon-
struct 1000 images sampled from ImageNet (10 classes x 100 images in total). Each experiment is
repeated three times, and we average all results. We test four storage budgets (21, 170, 682, 2730
Gaussians per image). All experiments used PyTorch 2.5.1 and CUDA < 12.0.

Table 16: Runtime, memory usage, and PSNR of our rasterizer benchmarked across five GPU ar-
chitectures under varying storage budgets.

Time (s) Memory (GB) PSNR
GPU Model 21 170 682 2730 21 170 682 2730 21 170 682 2730
Tesla-V100-SXM2-32GB 23.65 26.11 30.28 4294 | 1.66 1.70 1.81 228 | 2024 2593 30.65 36.09

NVIDIA-A100-SXM4-40GB | 1045 12.87 19.09 4153 | 1.66 1.70 1.81 228 | 20.24 26.03 31.06 36.08
NVIDIA-GeForce-RTX-3090 | 10.33 16.07 2544 6138 | 1.66 1.70 1.81 228 | 20.24 26.03 31.06 36.08
NVIDIA-GeForce-RTX-4090 | 7.60 938 14.06 31.00 | 1.66 1.70 1.81 228 | 20.24 26.02 31.03 36.06
NVIDIA-GeForce-RTX-5090 | 7.13 699 954 21.79 | 1.66 1.70 1.81 228 | 20.23 26.02 31.03 36.06

As shown in Table [T6] Different GPUs exhibit different runtimes due to heterogeneous compute
capabilities, and RTX5090 is the fastest, while RTX3090 is the slowest. Memory usage remained

19

Under review as a conference paper at ICLR 2026

identical across all platforms, and PSNR variation is small across architectures. Slight performance
drops on V100 are expected due to older hardware, but results on A100/3090/4090/5090 remain
highly consistent.

C.4 RESULTS ON CROSS-RESOLUTION GENERALIZATION

Gaussian Splatting naturally supports rendering at arbitrary resolutions through supersampling, en-
abling us to distill data at a low resolution (e.g., 128) while still using it to train models at a higher
resolution (e.g., 256). This effectively reduces the computation when distilling datasets at large
resolutions. Following results and setup in DDiF (2025), we conduct cross-resolution
experiments as shown in Table[T7]

Table 17: Test accuracies with different resolutions and networks. Images are first distilled with low
resolution(128) and test at higher resolution(256/512).

test resolution test network method accuracyf difference| ratiol

Vanilla 31.2 20.2 0.39

IDC 55.0 6.4 0.10

SPEED 58.8 8.1 0.12
ConvNetDS FreD 56.4 10.4 0.16
DDiF 66.3 5.7 0.08

GSDD 66.4 10.0 0.13

256 Vanilla 44.0 73 0.14
IDC 55.4 6.0 0.10

SPEED 62.6 43 0.06
ConvNetD6 FreD 61.8 5.0 0.07
DDiF 70.6 14 0.02

GSDD 71.6 4.8 0.06

Vanilla 27.4 24.0 0.47

IDC 39.5 21.9 0.36

SPEED 45.0 21.9 0.33
ConvNetD5 FreD 42.9 23.9 0.36
DDiF 58.7 133 0.18

GSDD 59.4 17.0 0.22

512 Vanilla 412 10.1 0.20
IDC 51.5 9.9 0.16

SPEED 60.1 6.8 0.10
ConvNetD6 FreD 56.3 10.5 0.16
DDiF 69.0 3.0 0.04

GSDD 67.8 8.6 0.11

For IDC, SPEED, and FreD, we adopt their best-performing upsampling strategies. For DDiF and
GSDD, supersampling is applied, allowing lossless upscaling of the distilled images. GSDD main-
tains competitive performance in cross-resolution tasks. Although its relative performance drop is
larger than DDIF, which is likely due to GSDD’s inherent sparsity, reducing its ability to capture
fine-grained features when evaluated at higher resolutions.

D VISUALIZATION OF ANTIALIAS AND GAUSSIAN ESCAPE

Figure 7] visualizes the test images without and with anti-aliasing, along with the actual renderings
on CIFAR-10. It is evident that when the Gaussian points are relatively elongated, the rendering
quality degrades, resulting in pronounced aliasing artifacts and discontinuous stripes, which in turn
adversely affect the performance of the distilled dataset.

In Figure[8] we visualize the escaping phenomenon of Gaussian points after training when no bound-
ary constraints are applied. We plot the distributions of all Gaussian point centers and observe that,

20

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 7: Comparison between aliasing and anti-aliasing. (a) shows the schematic illustration, while
(b) demonstrates the effect on CIFAR-10 dataset visualization. The anti-aliasing strategy leads to
smoother and clearer patterns.

Total Points: 67200, Out of Boundary: 7921, Ratio: 11.79% Total Points: 108800, Out of Boundary: 12599, Ratio: 11.58%

10 ===

Y coordinate
°
Y coordinate

- 67200 Gaussidn Points ! :

—- Boundaryx=41 . . H == Boundaryx = &

15 == Boundaryy = ¥1 1 == Boundaryy =1 i
i 1

-15 -10 -05 05 10 15 15 -10 -05

00
X coordinate

(a) CIFAR-10 (b) Imagenette

00
X coordinate

Figure 8: Visualization of Gaussian point distributions without boundary constraints. We plot the
center coordinates of all Gaussian points after training and observe clear escaping phenomena on
both CIFAR-10 and Imagenette, which reduces the representational efficiency of Gaussian points.

on both CIFAR-10 and Imagenette datasets, Gaussian points tend to escape beyond the valid range,
which in turn undermines their representational efficiency.

E VISUALIZATION OF GSDD

We visualize the process of Gaussian initialization in Figure [9] The first row illustrates the actual
rendering results of Gaussian points, while the second row depicts the Gaussians as ellipses that
encode their positions, shapes, and colors. It can be observed that, during optimization, Gaussian
points continuously move, reshape, and adjust their colors to fit the target image.

21

Under review as a conference paper at ICLR 2026

Citer=100 iter=500

2000 00

Figure 9: Visualization of the Gaussian initialization process. The first row shows the actual render-
ings of Gaussian points at different iterations, while the second row represents each Gaussian as an
ellipse encoding its position, shape, and color. During optimization, Gaussian points continuously
adjust their positions, shapes, and colors to fit the target image.

Figure 10: Visualization of Distilled Images on CIFAR-10

22

Under review as a conference paper at ICLR 2026

Figure 12: Visualization of Distilled Images on ImageNette

23

	introduction
	Background and Motivation
	Related Work
	Motivation

	methodology
	Parameterization of Dataset Distillation By Gaussian Splatting
	Efficient Gaussian Splatting Design
	Analysis of the Gaussian Representation

	experiments
	Experimental Results
	Benchmark Rendering Efficiency
	Ablation Study

	conclusion
	Experimental Details
	Datasets
	Network Architectures
	Image Initialization
	Dataset Distillation
	Performance Benchmarking

	More Experimental Results
	Performance Comparison on Low-Dimensional Datasets
	Detailed Cross-architecture Results
	Different Initialization Strategy

	Parallelization Strategy for Batched Rendering
	Core Challenge and the Global ID System
	1D Flattening and Contiguous Memory Layout
	Benchmark across different GPUs
	Results on Cross-Resolution Generalization

	Visualization of Antialias And Gaussian Escape
	Visualization of GSDD

